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Supplemental Figure S1. Chromatin local to RPS7A, encoding a small ribosomal sub-
unit protein, changes in accordance with its repression in transcription. (A) Typhoon
plot shows that the nucleosomes in the gene body of RPS7A become well-organized
over the 120 min time course. (B) Cross-correlation heatmap shows the upstream shift
of the nucleosomes in the the gene body of RPS7A, as well as a replacement of small
fragments with nucleosome-sized fragments 200 bp upstream of its TSS. (C) Line plot
shows that both reduced promoter occupancy and an organization of gene body nucle-
osomes coincide with decreased transcription of RPS7A.
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Supplemental Figure S2. CKB1, coding for a cell growth protein kinase, exhibits
unchanging transcript levels and chromatin. (A) Typhoon plot of CKB1 shows tran-
scription and chromatin do not change over the duration of the 120 min time course.
(B) Cross-correlation heatmap shows the chromatin local to the TSS of CKB1 is es-
sentially constant. (C) Line plot showing the nearly unchanging promoter occupancy,
nucleosome disorganization, and transcription of CKB1 through 120 min.
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Supplemental Figure S3. Changes in orthogonal chromatin measures are correlated
with log2 fold-changes in transcription. (A) Scatter plot shows our combined chromatin
score is correlated with average log2 fold-change in transcription with r=0.68. (B)
Scatter plot shows average change in small fragment occupancy and average change in
nucleosome disorganization are less correlated, with r=0.33, indicative of the orthog-
onal statistical power of each in correlating with changes in transcription.
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Supplemental Figure S4. (A, B) Gene Ontology (GO) categories with the most signif-
icant enrichment among the 300 genes showing the greatest decrease (A) and increase
(B) in various chromatin scores in replicate 1. (C, D) GO categories with the most
significant enrichment among the 300 genes showing the greatest decrease (C) and
increase (D) in various chromatin scores in replicate 2. In each case, the 8 most signifi-
cant GO categories are shown, as in the paper. Both replicates recover down-regulated
translation and multiple ribosomal subunit pathways with similar significance, and
both replicates recover up-regulated sulfate assimilation and glycolytic process path-
ways with similar significance. Replicate 2 recovers up-regulated stress response, me-
thionine metabolism, and protein refolding pathways with slightly greater significance
than replicate 1 does, though all of these GO categories still appear in the top 8 of both.
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Supplemental Figure S5. GO enrichment analysis of genes with highly dynamic chro-
matin recovers established cadmium response pathways. (A) Top 8 categories resulting
from GO enrichment analysis of 300 genes with greatest decrease in small fragment
occupancy, nucleosome disorganization, and combined chromatin score. Translation-
related genes are recovered with significant FDR. (B) Top 8 categories resulting from
GO enrichment analysis of 300 genes with greatest increase in small fragment occu-
pancy, nucleosome disorganization, and combined chromatin score. Genes involved
with stress response, sulfur assimilation, and protein folding pathways are recovered
with significant FDR.
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Supplemental Figure S6. Sulfur pathway gene MET32 activates with binding dynam-
ics local to Met4 complex binding. (A) MET32 typhoon plot shows changes in small
fragments at motifs for TFs in the Met4 complex. Small fragments at a Cbf1 motif
(red triangle) change from a clear well-positioned cluster at 0 min to an enrichment
of small fragments near a Met4 motif (green triangle) and a Met32 motif (obscured by
green triangle) from 7.5 min onward. (B) Cross-correlation heatmap of the dramatic
chromatin changes at MET32 beginning at 7.5 min. Changes include nucleosome disor-
ganization, downstream shift of the +1 nucleosome, and increased occupancy of small
fragments upstream of MET32. (C) Line plot shows the transcriptional activation of
MET32 at 7.5 min alongside significant nucleosome disorganization.
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Supplemental Figure S7. Sense transcription of MET31 is repressed while antisense
transcription is induced. (A) Typhoon plot of MET31 shows activation of antisense
transcription within the transcript boundary of MET31, downstream of small fragment
enrichment at a Met31/Met32 binding motif (yellow triangle). (B) Cross-correlation
heatmap of MET31 shows the nucleosome disorganization associated with an induc-
tion of antisense transcription. (C) Line plot shows the nucleosome disorganization of
MET31 is anti-correlated with its repressed sense transcription.
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Supplemental Figure S8. Sulfur-saving PDC6 is highly activated with dramatic changes
in its local chromatin. (A) Typhoon plot of PDC6 shows significant enrichment of small
fragments at binding motifs for Met32 (red triangle) and Met4 (yellow triangle) be-
ginning at 30 min. (B) Cross-correlation heatmap of PDC6 shows a clear downstream
shift of the +1 nucleosome and dramatic disorganization of other nucleosomes in the
gene body between 30–120 min. (C) Line plot shows the highly activated transcription
of PDC6 is associated with significant enrichment of small fragments in the promoter
and nucleosome disorganization in the gene body.
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Supplemental Figure S9. The expression of MCD4, encoding an endoplasmic reticu-
lum membrane protein, is up-regulated with evidence for changes in binding by known
regulators Zap1 and Snf1 (Lyons et al. 2000; Venters et al. 2011), but also exhibits sur-
prisingly increased nucleosome organization within its gene body. (A) Typhoon plot
depicts the complex chromatin and transcription dynamics of MCD4. Along with in-
creased transcription within the gene body of MCD4, a small transcript 200–300 bp
upstream of the TSS is decreasing concomitantly. Time course shows monotonically
changing binding at TF motifs flanking this upstream transcript. Small fragments be-
come enriched at a Zap1 motif (yellow triangle). Small fragments at a Snf1 motif (red
triangle) are replaced by fragments greater than 190 bp. (B) Cross-correlation heatmap
depicts an enrichment of small fragments just upstream of MCD4 as well as increased
nucleosome organization. (C) Line plot shows an anti-correlated relationship between
the decreased nucleosome disorganization and increased transcription of MCD4.
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Supplemental Figure S10. UTR2, whose overexpression has been linked to endoplas-
mic reticulum stress (Miller et al. 2010), exhibits decreased sense transcription with
increased antisense transcription. (A) Typhoon plot of UTR2 shows an inverse change
in transcript level on the sense and antisense strands near the 5’ end of the ORF of
UTR2. As UTR2 is being down-regulated, an antisense transcript is becoming highly
expressed. (B) Cross-correlation heatmap shows an organization of the +1 nucleo-
some of UTR2 as well as an upstream shift of its +1 and +2 nucleosomes (though this
would a downstream shift relative to the antisense transcript). (C) Line plot of the time
course of UTR2 depicts decreasing chromatin dynamic scores alongside decreased rates
of sense transcription.
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Supplemental Figure S11. YBR241C, a gene coding for a vacuole localization protein
(Wiederhold et al. 2009), exhibits simultaneous activation of both sense and antisense
transcription. (A) Typhoon plot of YBR241C shows activation of both sense transcrip-
tion and antisense transcripts near the 5’ transcript boundary of YBR241C. (B) Cross-
correlation heatmap of chromatin local to its TSS. Gene body nucleosomes disorganize
beginning at 30 min and a small factor appears to bind between the +1 and +2 nucle-
osomes. (C) Line plot of the change in chromatin and sense transcription of YBR241C
through the time course. Its chromatin measures change more subtly than its increased
sense transcription, perhaps owing to the effects of increased antisense transcription.
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Supplemental Figure S12. Small fragment occupancy in the promoter reveals tran-
scription factor binding dynamics implicated in cadmium stress response. (A) Scatter
plot of the 0–60 min occupancy change for 2,119 small fragment peaks identified in
gene promoters. 50 peaks increased in occupancy by at least double (red), while 34
peaks decreased by at least half (blue). (B) Average change in occupancy for promoter
peaks per FIMO-assigned TF. TFs are labeled as increased/decreased (red/blue) if the
absolute value of their average log-fold change exceeds 0.1. TFs with the greatest in-
crease in binding occupancy include the iron homeostasis regulators Aft1/Aft2, sulfur
pathway regulators Met4/Met32, glycolytic activators Gcr1/Gcr2, and general stress
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responders Msn2/Msn4. (C) Scatter plot of occupancy of Aft1 (turquoise circle) and
Aft2 (blue X) at 0 min and 60 min. Aft1 and Aft2 exhibit genome-wide enrichment in
binding at 60 min compared to 0 min, particularly in the promoters of a few genes like
SER33. (D) Typhoon plot of SER33 shows small fragment enrichment at Aft1/Aft2 (red
triangle) and Gcr2 (blue triangle, mostly obscured by red triangle) motifs as well as
near Met32 (yellow triangle) and Met4 (green triangle) motifs.

16



LEE1 ENB1A B

Supplemental Figure S13. Genes with evidence of marked Aft1/Aft2 binding dynam-
ics. (A) Gene LEE1, coding for an unknown zinc-finger protein, activates with a highly
enriched signal of small factor binding at an Aft1/Aft2 binding motif. (B) Gene ENB1,
coding for a ferric enterobactin transmembrane transporter (Heymann et al. 2000), ac-
tivates concurrently with a small fragment enrichment at an Aft1/Aft2 binding motif.
Biochemical assays have previously identified Aft1 as a regulator for ENB1 (Emerson
et al. 2002).
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Supplemental Figure S14. Precise determination of +1, +2, and +3 nucleosome po-
sitions allows for the characterization of positional changes associated with transcrip-
tion. (A) Annotated typhoon plot of the +1, +2, and +3 nucleosomes of RPS7A (red
lines indicate center positions over time). Nucleosomes shift upstream concomitantly
with the reduction in transcription of RPS7A. (B) Heatmap of the cross-correlation of
the nucleosomes and small factors local to RPS7A annotated with called +1, +2, and
+3 nucleosome positions (red lines). Peak calling of cross-correlation values allows for
tracking of positional movement of nucleosomes across time points. (C) Scatter plot of
the cumulative positional shift of +1 and +2 nucleosomes through the 120 min time
course, for all genes where the positions of those two nucleosomes could be called.
A majority of these genes exhibit some downstream shift in both their +1 and +2
nucleosomes (upper right quadrant).
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Supplemental Figure S15. Transcript boundaries are called for genes exhibiting sig-
nificant transcription on their antisense strand. (A) Depiction of transcript boundary
calling using MET31 as an example. We call boundaries using the sum of the RNA-seq
pileup across the entire time course; adding up the signal over time helps to reduce
noise and offers a better chance of identifying valid antisense transcript boundaries.
(B) Histogram of the length of called antisense transcripts. We found 667 genes that
contained antisense transcripts, most of which were between 500–3000 bp long.
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Supplemental Figure S16. OD readings taken every 15 minutes for 48 hours when
yeast cells are grown at cadmium concentrations of 0, 1, 2, 4, 8, 16, 32, 64, 128, 258,
512, and 1024 µM. Each concentration was performed in replicate and OD readings
were averaged. To study the cell’s acute response to cadmium, we ultimately chose to
use a concentration of 1000 µM (1 mM), where cells showed no evidence of growth.
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Supplemental Figure S17. Gels to monitor and assess micrococcal nuclease (MNase)
digestion. Gels shown here are for replicate 1; gels for replicate 2 show similar levels of
consistency across the time course. (A) At each time point (0, 7.5, 15, 30, 60, 120 min-
utes), chromatin extracts were digested with a titration of four MNase concentrations,
and the resulting fragments were run in four lanes of a gel (from left to right within
each time point: 30, 15, 7.5, 3.75 units of MNase). At each time point, an asterisk in-
dicates the sample ultimately selected for library preparation (in this case, consistently
3.75 units of MNase). (B) Using the selected concentration of MNase at each time
point, libraries of MNase-digested DNA were run out on a gel to ensure qualitative con-
sistency in the fragment length distributions across the full time course before sending
the DNA out for sequencing. Quantitative assessments of the distribution of fragment
lengths after sequencing are provided in Supplemental Figure S19.
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Supplemental Figure S18. Genes selected for analysis must satisfy certain criteria re-
lated to minimum ORF length and MNase-seq coverage (A) Distribution of ORF lengths.
Genes with ORFs shorter than 500 bp (red line) were removed from further analysis.
(B) Distribution of MNase-seq coverage within 2000 bp window around gene TSSs.
Genes with fewer than 85% (red line) covered positions were removed from further
analysis.
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Supplemental Figure S19. Fragment length distributions for the first (A) and sec-
ond (B) MNase replicates. The distributions of fragment lengths, for both nucleoso-
mal lengths and shorter lengths, remain quite consistent across all time points in each
replicate. (C) The fragment length distribution after subsampling and merging the
two MNase replicates. In the merged data set, nucleosome-length fragments peak at
159±1 bp at all time points.
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Supplemental Figure S20. Cross-correlation and entropy can be used to characterize
the organizational structure of nucleosomes. (A) Heatmap of the nucleosome kernel
computed using 2,500 well-positioned nucleosomes from Brogaard et al. (2012). Well-
positioned nucleosome fragments are primarily between 150–170 bp in length. (B)
Heatmap of the small factor kernel, computed using 151 Abf1 sites from MacIsaac
et al. (2006). The kernel focuses on fragments 60–90 bp long. (C) Heatmap of triple
nucleosome kernel, computed to quantify gene body nucleosome organization. (D)
Typhoon plot exhibits higher values of cross-correlation at positions where MNase-seq
fragments best match with nucleosome kernel (turquoise) or small factor kernel (or-
ange). (E) Sum of the nucleosome cross-correlation scores at each gene’s TSS shows
the relative spacing between +1, +2, and +3 nucleosomes. (F) Example typhoon plots
with low and high entropy values. Low entropy is observed with well-positioned nucle-
osomes. High entropy is observed when fragments are dispersed with little structure.
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Supplemental Figure S21. Comparison of the nucleosome kernels that arise when
using canonical nucleosome positions as reported by Brogaard vs. those called by DAN-
POS software. (A, B) Nucleosome kernels using the 2,500 highest-scoring nucleosome
positions as determined by Brogaard and colleagues. (C, D) Nucleosome kernels us-
ing the 2,500 most-enriched nucleosome positions as called by DANPOS applied to our
data. Kernels created from DANPOS sites are comparable to those created from Bro-
gaard sites. DANPOS kernels have a slightly lower variance in their fragment length
distribution than Brogaard kernels (8.5 vs. 10.8 bp), likely because the DANPOS sites
were derived from our own data, rather than being independent of our data.
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Supplemental Figure S22. Comparison between using log2 fold-change in transcript
level vs. log2 fold-change in transcription rate when correlating against changes in dif-
ferent chromatin occupancy measures. (A) Scatter plot of log2 fold-change in estimated
transcription rate vs. log2 fold-change in measured transcript level. Coloring indicates
the mRNA stability as half life, in minutes. log2 fold-change in transcription rate is
nearly perfectly correlated with log2 fold-change in transcript level (r=1.00, rounded).
(B–D) Each of average change in small fragment occupancy, average change in nucle-
osome disorganization, and combined chromatin score has a correlation with average
log2 fold-change in transcript level that is comparable to its correlation with average
log2 fold-change in transcription rate (compare with Figures 3C, 3D, and S3A, respec-
tively).
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Supplemental Figure S23. Comparison of Gaussian process regression predictions to
simpler measures of chromatin changes. (A) The predictions of our full regression
model after 120 minutes have a Pearson’s correlation of 0.67. (B–E) In comparison
with our full regression model, each of average change in gene body nucleosome oc-
cupancy, average change in gene body nucleosome disorganization, average change in
promoter small fragment occupancy, and combined chromatin score predict transcript
levels with a markedly lower absolute value of correlation, in all cases 0.43 or less. Our
combined chromatin score outperforms each of the simpler chromatin measures, but
still falls quite short of the full Gaussian process regression model.
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Supplemental Figure S24. MNase fragments local to called +1 nucleosome shifts.
(A) Genes whose +1 nucleosome shifts upstream the most when analyzed using the
middle of MNase fragments, show the same upstream shift when analyzed using left or
right ends of fragments. (B) Genes whose +1 nucleosome shifts downstream the most
when analyzed using the middle of MNase fragments, show the same downstream shift
when analyzed using left or right ends of fragments.

28



GO term Small Occ. Nuc. Dis. Combined RNA

Translation 22.0 64.9 88.0 88.0

Structural constituent of ribosome 19.2 53.6 76.3 79.4

Cytosolic large ribosomal subunit 15.2 38.5 55.3 63.1

90S preribosome - 24.8 19.7 48.1

Cytosolic small ribosomal subunit 8.0 27.4 35.8 39.8

Maturation of SSU-rRNA from tricistronic rRNA transcript
(SSU-rRNA, 5.8S rRNA, LSU-rRNA)

- 21.8 17.8 32.5

Small-subunit processome - 15.7 9.6 31.2

rRNA processing - 7.9 - 24.7

Preribosome, large subunit precursor - 9.9 - 21.9

Endonucleolytic cleavage in ITS1 to separate SSU-rRNA from
5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript
(SSU-rRNA, 5.8S rRNA, LSU-rRNA)

- 6.5 - 21.8

Ribosomal large subunit biogenesis - 6.1 - 20.2

Ribosomal large subunit assembly - - - 15.6

Endonucleolytic cleavage to generate mature 5’-end of SSU-rRNA
from (SSU-rRNA, 5.8S rRNA, LSU-rRNA)

- - - 15.0

Endonucleolytic cleavage in 5’-ETS of tricistronic rRNA transcript
(SSU-rRNA, 5.8S rRNA, LSU-rRNA)

- - - 14.5

snoRNA binding - 6.0 - 13.0

Ribosomal small subunit assembly - 6.9 8.5 7.1

Maturation of LSU-rRNA from tricistronic rRNA transcript
(SSU-rRNA, 5.8S rRNA, LSU-rRNA)

- - - 7.7

t-UTP complex - - - 6.0

RNA binding - - 5.9 5.6

Maturation of 5.8S rRNA from tricistronic rRNA transcript
(SSU-rRNA, 5.8S rRNA, LSU-rRNA)

- - - 5.2

Supplemental Table S1. Gene Ontology (GO) terms for genes with the greatest orga-
nization in chromatin or decrease in transcript level. Score is the − log10 FDR of the
term. Most of the highest scoring GO terms identified by RNA, relating to translation,
are also identified by GO using changes in the chromatin.
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GO term Small Occ. Nuc. Dis. Combined RNA

Sulfate assimilation 3.9 1.4 3.8 5.8

Alditol:NADP+ 1-oxidoreductase activity 0.9 - 1.0 3.9

Response to stress 3.9 - 1.8 3.3

Autophagy of mitochondrion - - - 2.7

Cellular response to oxidative stress - - - 2.6

Sulfur amino acid metabolic process - 1.3 2.6 -

Arabinose catabolic process - - - 2.2

D-xylose catabolic process - - - 2.2

Protein localization by the Cvt pathway - - - 2.2

Phagophore assembly site - - - 2.2

Protein refolding - 2.1 1.5 -

Methionine metabolic process 0.8 1.6 1.7 -

Methionine biosynthetic process 1.2 - 1.4 1.6

Fungal-type vacuole lumen 1.5 - 0.8 1.0

Negative regulation of gluconeogenesis - - - 1.5

Unfolded protein binding 0.9 - 1.5 0.7

Glycolytic process 1.4 - - 1.1

Protein quality control for misfolded or incompletely synthesized
proteins

- 1.4 - -

Aldo-keto reductase (NADP) activity - - - 1.2

Glutathione transferase activity - - - 1.2

Transmembrane transport - - - 1.2

Protein catabolic process in the vacuole - - - 1.1

Structural constituent of ribosome - - 1.0 -

GID complex - - - 1.0

Supplemental Table S2. Gene Ontology (GO) terms for genes with the greatest disor-
ganization in chromatin or increase in transcript level. Score is the − log10 FDR of the
term. Many of the highest scoring GO terms identified by RNA, such as those relating to
sulfur assimilation, stress, and protein folding, are also identified by GO using changes
in the chromatin, although some relating to sugar metabolism are identified by RNA
but not by chromatin measures.
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Supplemental Method S1. Preparing MNase and RNA sequencing libraries and align-
ing reads to the genome

Preparing MNase sequencing libraries
Illumina sequencing libraries of MNase-treated DNA were prepared using 500 ng of
DNA as previously described (Henikoff et al. 2011).

Preparing RNA sequencing libraries
Illumina sequencing libraries of total RNA were prepared using the Illumina TruSeq
Stranded Total RNA Human/Mouse/Rat kit (Cat number RS-122-2201) following the
protocol provided by Illumina with Ribo-Zero.

Aligning sequencing reads to the genome
All reads were aligned to the sacCer3/R64 version of the S. cerevisiae genome using
Bowtie 0.12.7 (Langmead et al. 2009).

The recovered sequences from all paired-end MNase reads were truncated to 20 bp
and aligned in paired-end mode using the following Bowtie parameters: --wrapper

basic-0 --time -p 32 -n 2 -l 20 --phred33-quals -m 1 --best --strata -S.
The recovered sequences from all single-end RNA reads were truncated to 51 bp

and aligned in single-end mode using the same Bowtie parameters.

Supplemental Method S2. Analyzing Gene Ontology enrichment

GO enrichment analysis was performed using GOATOOLS (Klopfenstein et al. 2018)
with the go-basic.obo annotations from the Gene Ontology Consortium (Ashburner
et al. 2000; The Gene Ontology Consortium 2019). False discovery rate was corrected
using the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995).
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Supplemental Method S3. Clustering genes based on chromatin measures

Genes with the greatest increase in average small fragment occupancy or average
nucleosome disorganization were chosen for clustering. The top 500 genes for each
measure were combined into a final set of 832 (fewer than 1000 because many genes
were in both sets).

Clustering was performed in SciPy (Virtanen et al. 2020) using hierarchical clus-
tering on the basis of pair-wise Euclidean distance between z-normalized measures of
change in small fragment occupancy and nucleosome disorganization. Ward linkage
was chosen for its efficient approximation to the minimal sum of squares objective
(Ward 1963). Eight clusters were ultimately chosen to balance the interpretability of
fewer clusters with the significance of identified GO terms in smaller and more homo-
geneous but more numerous clusters.

Supplemental Method S4. Calling +1, +2, +3 nucleosomes and linking them over
time

Nucleosomes were called using peaks of the nucleosome cross-correlation scores
local to each gene’s TSS. Peaks within a 1000 bp window around the TSS were sorted
by score. The position with the greatest peak score was labeled as a nucleosome center
and removed. Positions within 80 bp were also removed. This procedure was repeated
until all peak positions were removed and nucleosomes called for this 1000 bp window.

“Linked” nucleosomes are defined as nucleosomes across the time course that nom-
inally represent the same underlying nucleosome even though its position may have
shifted or become more or less fuzzy. Nucleosomes were linked across time points
using a nearest-neighbor approach. In a greedy manner, the most well-positioned
nucleosome (lowest disorganization score) was considered first. The position of this
nucleosome was used to identify the linked nucleosomes in previous and subsequent
time points by considering the nearest nucleosome in each of the respective time points
within 100 bp of the original nucleosome’s position.

Each gene’s +1 nucleosome was called by identifying the linked nucleosome closest
to the TSS. The +2 and +3 nucleosomes were computed as the next nucleosomes at
least 80 bp downstream from the preceding one.

While nucleosome positions were computed using fragment centers, these positions
were not affected by overdigestion of either fragment end by MNase (Supplemental
Fig. S24A, B).
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Supplemental Method S5. Merging replicate MNase and RNA samples

MNase and RNA replicates were confirmed to have a high concordance through parallel
analyses of each replicate including GO enrichment analyses (Supplemental Fig. S4A,
B, C, D). After this confirmation, replicates were merged using the following procedure.

Replicates A and B are defined as sets of reads from six samples across the time
course, while T is the set of times at which those samples were taken:

A = {a0, a7.5, a15, a30, a60, a120}
B = {b0, b7.5, b15, b30, b60, b120}
T = {0, 7.5, 15, 30, 60, 120}

Separately for each replicate, the time point with the fewest reads determined that
replicate’s subsampling depth (kA and kB):

kA = min
t∈T
|at| , kB = min

t∈T
|bt|

The reads at each time point in each replicate were then subsampled (uniformly at
random) to that replicate’s subsampling depth in order to form new sets A′ and B′:

A′ = {a′0, . . . , a′120}
B′ = {b′0, . . . , b′120}
|a′t| = kA , |b′t| = kB , ∀t ∈ T

Finally, the sets of subsampled reads were merged into a superset, M , for downstream
analysis:

M = {m0, . . . ,m120} = {a′0 ∪ b′0, . . . , a′120 ∪ b′120}

This procedure yields the highest possible overall read depth for the merged superset
while still maintaining a consistent depth and a consistent proportion of reads between
replicates A and B across all of the time points.
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Supplemental Method S6. Details for gene set selection

Genes whose ORFs are less than 500 bp (Supplemental Fig. S18A) long were omit-
ted in order to ensure valid “gene body” calculations between [TSS, +500]. TSS an-
notations were determined by Park et al. (2014). For five genes, SUL1, SUL2, MET32,
HSP26, and BDS1, we manually annotated the TSS to be consistent with the RNA-seq
data in this study. We required a half-life for each gene in order to estimate transcrip-
tion rates. MNase-seq coverage was computed in a 2,000 bp window centered on each
gene’s TSS. A position in this window is considered “covered” when there exists at
least one fragment whose center is at this position. MNase coverage was then defined
as the number of covered positions in this window divided by the length of the win-
dow, 2,000 bp. Genes with MNase coverage below 0.85 (n=109) were excluded from
further analysis (Supplemental Fig. S18B).
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Supplemental Method S7. Estimating transcription rates

Transcription rates were computed for each gene using a zero-order growth with first-
order decay relationship:

dCi

dt
= Ri − k · Ci

Ci =
Ri

k
+Gi · e−kti

ti ∈ {7.5, 15, 30, 60, 120}, s.t. i ∈ {1, . . . , 5}

where Ci is the gene’s total RNA concentration measured by RNA-seq for sample i, k is
its (fixed) decay rate, Gi is the concentration of its RNA governed by zero-order growth,
and Ri is its unknown transcription rate. Assuming a constant rate of transcription
between time points, we can solve for Ri and Gi using pairs of difference equations:

Ci−1 =
Ri

k
+Gi · e−k·ti−1

Ci =
Ri

k
+Gi · e−k·ti

Similarly, steady-state transcription rates, R0 at t0, were computed by setting the
rate of production equal to the rate of decay:

t0 = 0, i = 0

R0 = k · C0

To compute the decay rate k for a given gene, a half-life value τ was computed as an
average of the values reported in three previous studies (Geisberg et al. 2014; Miller
et al. 2011; Presnyak et al. 2015). The gene’s decay rate was then set to the inverse of
the average half-life, k = 1/τ .

Because the above method may compute a transcription rate as being less than or
equal to 0 at some time point, rates were floored to be at least 0.1 TPM/min so as to
facilitate reasonable evaluations of fold change.

The computed transcription rates significantly correlate with measured mRNA abun-
dance (Supplemental Fig. S22A) and correlate with measures of the chromatin (Fig.
2C, Fig. 2D, Supplemental Fig. S3A) nearly identically to how mRNA abundance corre-
lates with measures of the chromatin (Supplemental Fig. S22B Supplemental Fig. S22C,
Supplemental Fig. S22D).
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