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Over a thousand different transcription factors (TFs) bind with varying occupancy across the human genome. Chromatin
immunoprecipitation (ChIP) can assay occupancy genome-wide, but only one TF at a time, [imiting our ability to compre-
hensively observe the TF occupancy landscape, let alone quantify how it changes across conditions. We developed TF oc-
cupancy profiler (TOP), a Bayesian hierarchical regression framework, to profile genome-wide quantitative occupancy of
numerous TFs using data from a single chromatin accessibility experiment (DNase- or ATAC-seq). TOP is supervised, and its
hierarchical structure allows it to predict the occupancy of any sequence-specific TF, even those never assayed with ChIP. We
used TOP to profile the quantitative occupancy of hundreds of sequence-specific TFs at sites throughout the genome and
examined how their occupancies changed in multiple contexts: in approximately 200 human cell types, through 12 h of ex-
posure to different hormones, and across the genetic backgrounds of 70 individuals. TOP enables cost-effective exploration

of quantitative changes in the landscape of TF binding.
[Supplemental material is available for this article.]

Genes are expressed differently in different types of cells and under
different conditions. This response of a cell’s gene expression to
its internal and external context is enacted in large part through
the tuned occupancy of transcription factors (TFs) across the ge-
nome. To understand how TFs regulate gene expression, it is criti-
cal to determine how likely they are to be present at sites in the
genome over time, and how that likelihood changes across varying
genetic backgrounds, different cell types, and dynamic environ-
mental conditions. We can measure the quantitative occupancy
of one TF throughout the genome using chromatin immunopre-
cipitation followed by high-throughput sequencing (ChIP-seq),
provided that a selective antibody exists for the TF. Although
The ENCODE Project Consortium has generated such data for
hundreds of human TFs, the data are typically from only a small
number of cell types because of a major limitation of ChIP-seq: A
separate experiment is required for each TF in each cell type under
each condition. Profiling the time-varying genome-wide occupan-
cy of a large set of TFs across a broad range of cell types and condi-
tions is currently impractical because it would require thousands of
antibodies and millions of separate ChIP experiments.

Corresponding author: amink@cs.duke.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.272203.120.

An alternative strategy for profiling genome-wide TF occu-
pancy is to exploit chromatin accessibility data like DNase-seq or
ATAC-seq, which many groups and consortia have generated for
a large number of cell types and experimental conditions (Neph
et al. 2012; Thurman et al. 2012; Buenrostro et al. 2013; Klemm
et al. 2019). The primary advantage of this strategy is that a single
DNase- or ATAC-seq experiment can be used to profile the occu-
pancy of many different TFs at once, and a number of methods us-
ing this strategy have been proposed in recent years (Pique-Regi
et al. 2011; He et al. 2012, 2014; Luo and Hartemink 2013;
Sherwood et al. 2014; Zhong et al. 2014; Kihard and Lahdesmaki
2015; Raj et al. 2015; Zeng et al. 2016; Keilwagen et al. 2019;
Quang and Xie 2019; Li et al. 2019a; Schreiber et al. 2020a).

Although multiple methods have been developed to predict
TF binding (for an overview of the modeling frameworks used by
a number of these methods, see Supplemental Table S1), many re-
quire data types beyond DNase- or ATAC-seq (Keilwagen et al.
2019; Quang and Xie 2019; Li et al. 2019a; Schreiber et al.
2020a), making them less efficient at profiling TF occupancy across
multiple cell types, conditions, or genetic backgrounds than
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methods requiring only one data type. Furthermore, most existing
methods model TF occupancy in a binary fashion—each TF is sim-
ply considered present or absent at each location in the genome—
not effectively using the wealth of quantitative information avail-
able in the data (Hoffman et al. 2012). Although peak-calling is
widely applied to genomic sequencing data, and binary peak calls
are simple to use when training classification models, we know
that at different genomic locations, TFs show different levels of oc-
cupancy (likelihood of being bound at that location across the cells
in a population) in accordance with prevailing energetic and ther-
modynamic conditions, including competition with other TFs and
nucleosomes (Narlikar et al. 2007; Gordan and Hartemink 2008;
Wasson and Hartemink 2009; Li et al. 2011; Lickwar et al. 2012;
Neph et al. 2012). Also, growing evidence suggests quantitative
levels of TF occupancy can play a significant role in regulating
gene expression (Gertz et al. 2009; Segal and Widom 2009;
McDaniell et al. 2010; Tewari et al. 2012). Therefore, it is important
that statistical models be developed with a quantitative per-
spective, allowing us to monitor subtle changes in TF occupancy
over time across different genetic backgrounds, cell types, and
conditions.

Here, we describe a novel method called TF occupancy profil-
er (TOP) that integrates chromatin accessibility data from DNase-
or ATAC-seq with information about TF binding specificity (in
our case, TF motifs) to predict the quantitative occupancy of mul-
tiple TF motifs genome-wide. TOP follows the site-centric strategy
used by CENTIPEDE (Pique-Regi et al. 2011), and later by
MILLIPEDE (Luo and Hartemink 2013), BinDNase (Kdhdra and
Lihdesmaki 2015), and msCentipede (Raj et al. 2015). This strat-
egy models the DNase- or ATAC-seq profiles (a.k.a. footprints)
around motif matches and is therefore limited to predictions at ge-
nomic locations with motif matches.

In contrast to earlier methods like CENTIPEDE (Pique-Regi
et al. 2011), PIQ (Sherwood et al. 2014), and msCentipede (Raj
et al. 2015), TOP is supervised, meaning we can use available
ChlIP-seq data to train it to high accuracy. Importantly, and in con-
trast to earlier methods like MILLIPEDE (Luo and Hartemink 2013)
and BinDNase (Kdhdrda and Lahdesmaki 2015), TOP uses a
Bayesian hierarchical regression framework, obtaining both TF-
specific and TF-generic model parameters by borrowing informa-
tion across the full spectrum of training TFs and cell types. The hi-
erarchical nature of TOP is significant because it enables us to
predict the occupancy of TFs for which we lack training data, in-
cluding ones that have never before been profiled with ChIP.

We aim to evaluate TOP’s performance and explore the po-
tential applications of TOP’s quantitative predictions in three dif-
ferent contexts. First, we predict the genome-wide quantitative
occupancy of hundreds of TF motifs across many human cell
types, constructing a cell type specificity map for different TFs
and identifying TFs with selective binding and differential occu-
pancy across cell types. Second, we assess TOP’s ability to elucidate
the dynamics of TF occupancy across treatment conditions using
time course data from human cells exposed to steroid hormones.
Finally, to evaluate TOP’s utility across varying genetic back-
grounds, we predict quantitative TF occupancy for TF motifs in
70 Yoruba lymphoblastoid cell lines (LCLs) and map thousands
of genetic variants associated with quantitative TF occupancy
across individuals (which we term “topQTLs”). These topQTLs
suggest specific mechanistic explanations for the functional im-
pact of genetic variants within regulatory regions. In summary,
TOP offers a cost-effective strategy for profiling the quantitative oc-
cupancy of hundreds of TF motifs using only a single chromatin

accessibility experiment, markedly enhancing our ability to ex-
plore quantitative changes in TF occupancy across cell types, con-
ditions, and genetic variants.

Results

Bayesian hierarchical regression accurately predicts quantitative
TF occupancy from chromatin accessibility data

Training TOP entailed two basic steps, as illustrated in Figure 1.
First, following the site-centric strategy, we used motif matches
to enumerate candidate binding sites and extracted DNase- and/
or ATAC-seq along with ChIP-seq data centered on each site for
training. Second, we fit our Bayesian hierarchical regression model
on spatially binned DNase- and/or ATAC-seq data. Owing to its hi-
erarchical nature, once TOP is trained, we can use it to predict oc-
cupancy for any TF motif in any cell type or condition for which
we have DNase- or ATAC-seq data, generating TF occupancy esti-
mates for ChIP-seq experiments that have not been performed.

Specifically, in the first step, for each TF, we identified candi-
date binding sites by motif scanning with a permissive threshold
(using FIMO) (Grant et al. 2011). Then, for each cell type, we con-
sidered (normalized) DNase and/or ATAC cleavage events occur-
ring within 100 bp of the candidate binding site. Similarly, we
quantified TF occupancy in terms of ChIP-seq read counts within
100 bp of the candidate binding site, and this served as the target of
our regression when training TOP. We simplified the chromatin
accessibility data into predictive features using five bins that aggre-
gate the number of cleavage events occurring within the motif it-
self, as well as within two nonoverlapping flanking regions
upstream and downstream; this is the same binning scheme
used in the MILLIPEDE model (Luo and Hartemink 2013) and
markedly reduces the potential impact of DNase digestion or
TnS insertion bias (Luo and Hartemink 2013; He et al. 2014;
Sung et al. 2014; Raj et al. 2015; Martins et al. 2018; Li et al. 2019b).

As an alternative, we tried extracting DNase features using
wavelet-transformed multiscale signals from coarse to fine spatial
resolution. However, after variable selection using Lasso
(Tibshirani 1996), we found only the coarsest resolutions yielded
significant features for predicting TF occupancy, whereas fine-res-
olution features were essentially irrelevant (Supplemental Fig. S1).
Moreover, the simpler MILLIPEDE binning scheme achieved com-
parable or better prediction accuracy than optimally selected wave-
let features (Supplemental Fig. S2). As an added benefit, when
fitting TOP to a large number of different TFs across many diverse
cell types, the five-bin scheme showed superior computational ef-
ficiency and better generality in capturing common features across
TFs and cell types. Thus, the results that follow are all based on
chromatin accessibility data aggregated into five bins.

We chose to use a Bayesian hierarchical model because it al-
lows statistical information to be borrowed across TFs and cell
types. TOP’s hierarchical structure has three levels (Supplemental
Fig. S3). The bottom level of the hierarchy contains model param-
eters specific to each TF x cell type combination for which ChIP-
seq training data are available. In the middle level, one set of TF-
specific but cell type-generic model parameters is shared across
all training cell types for each TF. Finally, the top level has one
set of TF-generic parameters jointly learned from all TFs. In other
words, we obtain more general model parameters as we move to
higher levels of the hierarchy. Once its parameters have been
trained, TOP can quickly estimate occupancy for TFs (or TF families
sharing a motif) in new cell types or conditions with DNase- or
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Figure 1. Schematic outline of the TF occupancy profiler (TOP) workflow. (Left) Collect training data. For a sequence-specific TF with a known PWM,
compute its candidate binding sites throughout the genome. Then, around each of those sites, collect ChIP-seq and DNase- and/or ATAC-seq data
from the same cell type. (Center) Extract DNase or ATAC features using MILLIPEDE binning and fit a Bayesian hierarchical regression model to the training
data. Bottom-level models in the hierarchy make predictions in a TF x cell type—specific manner; middle-level models extend prediction in a TF-specific man-
ner to new cell types; and the top-level model extends prediction in a TF-generic manner to new TFs. (Right) Predict TF occupancy at candidate binding sites
across cell types. Blue columns indicate a cell type for which ChIP-seq measurements are available, allowing us to evaluate the predictive accuracy of our
bottom-level models. Orange columns indicate a cell type for which we make novel predictions of TF occupancy using middle-level parameters of the hi-

erarchical model.

ATAC-seq data by using a model from the appropriate level of the
hierarchy.

We evaluated TOP’s performance in terms of its fit to quanti-
tative TF occupancy as measured experimentally by ChIP (Fig. 2).
To avoid overfitting and allow easier comparison with other meth-
ods, we trained models using odd chromosomes and tested
prediction performance using even chromosomes for all the com-
parisons shown in Figures 2 and 3. TOP predicted quantitative oc-
cupancy with varying degrees of accuracy across different TFs (Figs.
2A, 3). In light of technical differences and possible batch effects
between DNase- and ATAC-seq data, or between DNase-seq data
generated by different ENCODE laboratories, we trained separate
hierarchical models for ATAC-seq and for DNase-seq data from
Duke and from Washington (UW). Our results show comparable
performance between DNase- and ATAC-seq (Figs. 2B,C, 3). We
also fit a joint model using both DNase- and ATAC-seq features
(with five DNase bins and five ATAC bins) but found only slight
improvement over models trained using just one of DNase- or
ATAC-seq, suggesting that collecting both DNase- and ATAC-seq
data in an effort to improve prediction accuracy is unnecessary.

In general, although bottom-level models achieved the high-
est prediction accuracy, middle-level models performed equally
well, and top-level models performed nearly as well (Fig. 2B-D).
This indicates that for a TF that has been profiled with ChIP in
some cell type, we can use the TF’s middle-level model to predict
its occupancy in any other cell type with available DNase- or
ATAC-seq data. In addition, even for TFs that have never been
profiled with ChIP, the top-level TF-generic model will still tend
to provide good predictions of quantitative occupancy. Our
predicted occupancy accurately matched quantitative ChIP-seq

occupancy in various cell types and allowed us to explore TF occu-
pancy in cell types like the embryonic stem cell line HOES in which
no TF ChIP data have been published to date (Fig. 2E). The quan-
titative predictions produce composite landscapes that sensitively
reflect cell type-specific changes in TF occupancy.

Because our goal is to efficiently and accurately predict quan-
titative TF occupancy for candidate binding sites using only a sin-
gle chromatin accessibility experiment, when comparing with
alternative existing methods, we focused on site-centric methods
that use only TF motif information and DNase (or ATAC) data, in-
cluding CENTIPEDE (Pique-Regi et al. 2011), msCentipede (Raj
etal. 2015), MILLIPEDE (Luo and Hartemink 2013), and BinDNase
(Kahéara and Lahdesmaéki 2015) (for a discussion of why these were
chosen, see Methods). Although these predict TF binding in a site-
centric framework, they only predict probabilities of TF binding
rather than ChIP-seq read counts. However, because the CENTI-
PEDE paper showed a substantial correlation between its TF bind-
ing predictions (posterior log odds) and ChIP-seq read counts (sqrt
transformed), we used the posterior log odds of TF binding as a
proxy for quantitative ChIP-seq predictions. We also included to-
tal chromatin accessibility and cell-average ChIP occupancy at the
candidate sites as baselines. Our results indicate TOP achieves
greater—and in some cases markedly greater—accuracy than all
the other methods on both DNase- and ATAC-seq data (Fig. 2B;
Supplemental Fig. $4).

One important advantage of TOP is that it enables TF occu-
pancy predictions across cell types or TFs that have not been pro-
filed before. To show this, we trained a separate version of TOP
by holding out ChIP training data for a random subset of TFs
(and their related TF family members) and cell types. We then
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Figure 2. Evaluation of TOP results. (A) Scatter plots show predicted versus measured TF occupancy for test chromosomes of a specific TF in a specific cell
type using Duke DNase-seq data, with dots representing the candidate binding sites across the genome. Model performance differs among TFs, as seen in
the two examples. (B) Separately for ATAC-seq and DNase-seq data from Duke and UW protocols, violin plots show distribution of Pearson’s correlations
between predicted and measured TF occupancy (asinh transformed) in test chromosomes. Predictions were made with TOP models at each level of the
hierarchy, in comparison with CENTIPEDE, msCentipede, MILLIPEDE, and BinDNase (using log odds of binding probability as a quantitative measurement
of TF occupancy), as well as with total accessibility around candidate sites. (C) Comparing prediction performance in scenarios in which ChlP training data
are missing for a cell type (indicated in purple). (Left) Predicting TF occupancy with data from K562 held out from training. (Right) Predicting TF occupancy
with data from HepG2 held out from training. TOP is trained without any held-out data. MILLIPEDE and BinDNase are trained using a different cell type and
also using data that was held out for TOP, showing that TOP performs as well without the held-out data as these methods do with it. msCentipede and
CENTIPEDE are unsupervised, so do not require training data; however, their performance is poor. For more, see Supplemental Figure S5. (D) Comparing
prediction performance in scenarios in which ChlP training data are missing for both TFs and a cell type (indicated in purple). Data from NRF1 and MYC
(and all their TF family members with similar motifs), as well as from HepG2, were held out from training. MILLIPEDE and BinDNase were not included in this
comparison as they require training data from the exact TFs. For more, see Supplemental Figure S6. (E) Predicted TF occupancy landscapes for two genomic
regions in K562 and HIES cell types. For K562, ChIP-seq data for these TFs are available and are displayed for comparison; for HOES, no published ChIP-seq
data are available so TOP provides a novel view of TF occupancy in this embryonic stem cell line. (Left) An example genomic region where the occupancy
landscape did not change markedly between K562 and H9ES. (Right) An example genomic region near the HMBS gene (involved in heme biosynthesis)
where GATAT1, TALT, and NFE2 showed clear cell type-specific occupancy.

compared predictions made using TOP with the held-out training
set with the full training set, as well as the other methods. Our re-
sults indicate TOP achieves similar performance with parameters
trained using the held-out training set as with the full training
set and consistently outperforms all other methods (Fig. 2C,D;
Supplemental Figs. S5, S6). In summary, these results show
TOP’s superior performance in making predictions across TFs
and cell types.

TOP is trained to predict quantitative TF occupancy, which is
one of its motivating applications and what distinguishes it from
existing methods that are trained to make binary predictions about
whether sites are bound or unbound. However, to allow compari-
son with those existing methods, we can instead train TOP with a
logit link function. This logistic version of TOP performs as well or
better in the binary prediction context as the best supervised

methods (MILLIPEDE and BinDNase) and notably better than un-
supervised methods (CENTIPEDE and msCentipede) or total acces-
sibility (Supplemental Fig. S7). The incorporation of a hierarchical
framework not only contributes to its improvement over
MILLIPEDE and BinDNase but additionally enables predictions
for TFs and cell types that are not present during training.

TOP reveals a spectrum of predictability across TFs and cell types

Across TFs, we observed a spectrum of predictability of TF occupan-
cy, as indicated by the blue squares in Figure 3. Predictability was
correlated with the degree of DNase depletion at the motif
(Supplemental Fig. S8). For TFs with higher prediction accuracy,
like NRF1 and ATF1, we observed clear profiles of depletion within
motif regions and elevation at nearby flanking regions
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Figure 3. TOP provides quantitative TF occupancy profiles for hundreds of TF motifs across many cell types. (Top, left) Blue squares represent the TF x cell
type combinations profiled with ChIP-seq as part of the ENCODE Project. For each of these TFs, we used a middle-level (TF-specific, cell type—generic) TOP
model to generate new occupancy predictions across the rest of the cell types (orange squares). We then used a top-level (TF-generic) model to generate
new occupancy predictions for the remainder of the TF motifs (red squares). (Zoomed inset) In the case of TF x cell type combinations with available
ChlP-seq data, we computed the accuracy of TOP predictions; shades of blue indicate the correlation between predicted and measured occupancy. In
this submatrix, TFs (columns) were sorted by average accuracy, revealing a spectrum of predictability. TFs toward the left were on average more predictable,
whereas TFs to the right were less predictable.
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(Supplemental Fig. S9), suggesting direct TF-DNA contact. Many
of these TFs have previously been classified as pioneer factors,
which directly open up chromatin and keep it open to allow other
TFs to bind nearby (Sherwood et al. 2014). In contrast, TFs with
lower prediction accuracy, like STATs and SREBPs, showed less
marked elevation at nearby flanking regions and weak or no deple-
tion at motif regions (Supplemental Fig. S9). Weaker DNase deple-
tion profiles may result from transient binding with short
residence time—known to occur with nuclear receptors and the
AP-1 complex (Voss et al. 2011; Lickwar et al. 2012; Sung et al.
2014; Goldstein et al. 2017)—or from ChIP data that include
many indirect binding events. For some TFs, we observed a high
prediction accuracy in most cell types but a lower prediction accu-
racy in just one or two cell types. DNase profiles in the latter cases
showed markedly weaker depletion (Supplemental Fig. S$10). Many
of those cases may be related to a low level of expression for the TF
in those cell types.

TOP uses PWM scores to provide a priori information about
how likely a site is to be bound in any cell type or condition.
However, in the absence of genetic variation, the PWM score of
a particular site does not change across cell types or conditions,
so TOP’s ability to quantify changes in TF occupancy in such situ-
ations depends entirely on changes in the chromatin accessibility
data. As expected, when we compared them as single features, the
overall level of DNase cleavage was almost always more correlated
with ChIP-seq occupancy across cell types than was the PWM score
(Supplemental Fig. S11).

Having established the reliability of TOP’s predictions, we ap-
plied it to data from different contexts to illustrate the biological
insights that arise from its ability to efficiently predict and com-
pare quantitative occupancy for myriad TF motifs across condi-
tions; each of the remaining three subsections explores one of
these applications: changes in TF occupancy across different cell
types, in response to dynamic environmental conditions, and in
the context of genetic variation. In these applications, we focused
on DNase-seq data, instead of ATAC-seq data, because DNase-seq
data are currently available with matching ChIP-seq data in more
cell types from ENCODE and are also available across 70 individu-
als from Yoruba LCLs to study genetic effects on predicted TF
occupancy.

TOP maps out the cell type specificity of TF occupancy

TFs regulate gene expression in a cell type-specific manner. To as-
sess TF occupancy differences across cell types, we constructed a
cell type differential occupancy map to reveal distinct patterns in
how TFs direct the gene regulation programs of different cell types.
For each TF, we calculated the percentage of candidate sites in each
cell type showing occupancy significantly higher or lower than the
mean across cell types (FDR<10%); we then clustered TFs on the
basis of this measure of cell type specificity (Fig. 4A). Some TFs—in-
cluding TAL1, GATA1, and NRF1—displayed large differences in
occupancy among cell types, whereas the occupancy of other
TFs—Ilike the SPs—was quite cell type invariant (Fig. 4B). Lending
credence to these results, we successfully recovered TFs known to
be specifically or differentially expressed in certain cell types. For
instance, as expected, we saw that POUSF1 (also known as
OCT4) occupancy was significantly higher in stem cells; hepato-
cyte nuclear factors (HNFs) were higher in liver cells; GATAs were
higher in K562; and REST was lower in medulloblastoma, etc.

To explore the relationship between a TF’s concentration
(here approximated by its gene expression level) and its occupan-

cy, we computed the correlation between each TF’s average level of
occupancy in each cell type with its gene expression level in that
same cell type, and observed several categories of TFs with different
relationships (Fig. 4C; Supplemental Table S4). Many TFs showed
significant positive correlations between their gene expression lev-
el and average occupancy, most of which are known to be cell
type-specific TFs, such as FOSL2, HNF4A, FOXA1, and POUSF1
(Supplemental Fig. S12A). Three TFs (BATF, BHLHE40, and ZEB1,
all known repressors) showed significant negative correlations
(Supplemental Fig. S12B). This result is somewhat unexpected
because increased levels of expression might generally be expected
to correlate with increased occupancy (even for repressors), but
many layers of post-transcriptional regulation and complicated
regulatory dynamics make causal interpretation problematic.
Future experiments probing the dynamics of expression and bind-
ing will be necessary to shed light on this result.

TOP monitors the dynamics of TF occupancy during
hormone response

Nuclear hormone receptors are TFs specifically activated in re-
sponse to hormone exposure. Once activated, they bind to specific
hormone response elements (HREs) where they regulate gene ex-
pression, often in conjunction with the binding of cofactors and
remodeling of the chromatin structure. Glucocorticoid (GC) recep-
tor (GR; encoded by the NR3C1 gene), androgen receptor (AR), and
estrogen receptor (ER; including ESR1 [also known as ER-alphal
and ESR2 [also known as ER-beta] gene) are type I nuclear receptors,
playing critical roles in immune response or reproductive system
development, and are heavily involved in many types of cancer.
To investigate TF occupancy dynamics in response to glucocorti-
coid, androgen, or estrogen stimulation, we predicted TF occupan-
cy using DNase-seq data collected under each of these treatment
conditions. For GC treatment, we conducted DNase-seq experi-
ments in A549 cells (human alveolar adenocarcinoma cell line)
over 12 time points from 0 to 12 h of GC exposure (McDowell
et al. 2018). For androgen treatment, we collected DNase-seq
data in LNCaP cells (human prostate adenocarcinoma cell line)
over four time points from O to 12 h following androgen induction
(Tewari et al. 2012). For estrogen treatment, we used published
DNase-seq data before and after estrogen induction in two kinds
of cells: Ishikawa (human endometrial adenocarcinoma cell line)
and T-47D (human ductal carcinoma cell line) (Gertz et al. 2013).

We identified sites with significantly differential TF occupan-
cy before and after estrogen induction, as well as over the full time
courses for GC and androgen treatment. We then ranked TFs based
on the percentage of sites showing significantly increased or de-
creased occupancy in response to treatment. We grouped TFs
with similar motifs together using RSAT clusters (Castro-
Mondragon et al. 2017) and present results for all significant clus-
ters in Figure 5 (results for individual TFs in Supplemental Fig.
S13).

We observed different sets of TFs enriched in response to GC,
androgen, and estrogen. In the list of most dynamic clusters for GC
response (Fig. 5A), GR was ranked at the top—consistent with re-
cent results showing that motif-driven GR binding is the most pre-
dictive feature of GC-inducible enhancers (Vockley et al. 2016;
McDowell et al. 2018)—followed closely by CEBP (McDowell
et al. 2018). FOX and GATA clusters appeared next, and in both
cases, although we identified more sites whose occupancy in-
creased over the time course, we also detected a significant number
that decreased.
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Figure 4. Cell type—specificity matrix of TFs. (A) Percentage of sites with predicted cell type occupancy significantly above or below predicted cell type
mean occupancy (FDR < 10%). Cell types were first grouped by lineage (ordered alphabetically) (Sheffield et al. 201 3) and, within each lineage group, were
ordered by hierarchical clustering. TFs were ordered by hierarchical clustering (with optimal leaf ordering) (Bar-Joseph et al. 2001). (B) Violin plots shown
for each TF the distribution across cell types of the percentage of sites showing significantly differential occupancy. Colored dots highlight cell types with at
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(C) Pearson’s correlation across cell types between average predicted occupancy and gene expression of each TF (in this plot, we used only Duke DNase
data because corresponding gene expression was measured in each of the cell types).

Among TFs whose occupancy was predicted to be signifi-
cantly responsive to androgen treatment (Fig. 5B), AR was at the
top of the list, followed by the FOX cluster. Clusters showed very
few sites with decreasing occupancy along the time course.
These observations are consistent with our previous findings
that androgen induction mainly leads to an increase in chromatin
accessibility and that AR and FOXAT1 are key TFs with increased oc-
cupancy (Tewari et al. 2012). The fact that the occupancy of many
AR and FOXALT sites increased gradually over the duration of the
time course (Supplemental Fig. S14A) highlights the importance
of a quantitative perspective of TF occupancy.

In the case of estrogen induction (Fig. 5C), ER was ranked at
the top, followed closely by the NFY cluster. The DNase digestion
profiles flanking NFYA binding sites showed oscillation patterns
similar to those observed within nucleosomes (Supplemental Fig.
S15; Zhong et al. 2016). This is consistent with previous reports
that NFYA has nucleosome-like properties and plays an important
role in maintaining chromatin structure (Nardini et al. 2013;
Sherwood et al. 2014).

That different TFs were enriched in these lists may be partly
due to cell type differences but also suggests different utilization
of cofactors for GR, AR, and ER binding in response to hormone
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increased following GC treatment.

stimulation. We observed that PWM scores were significantly
higher in sites with increased occupancy than sites of unchanged
occupancy for GR, AR, and ER but not for CEBPB, FOXA1, or NFYA
(Supplemental Fig. S14B), indicating that motif strength for GR,
AR, and ER may play a role in prioritizing the selection of binding
sites in response to hormone stimulation. This accords with results
indicating that GR motif strength is predictive of GC-induced en-
hancer function (Vockley et al. 2016).

To independently validate our occupancy predictions with
data not seen during training, we compared our predictions
throughout the GC time course with ChIP-seq data collected in
the same experiment (Fig. 5D,E; McDowell et al. 2018). We com-
puted the correlation between measured and predicted occupan-
cies for CTCF, JUNB, FOSL2, JUN, CEBPB, and GR. Across all six
TFs and 12 time points, the average correlation was 0.70. Over
the time course, it was lowest before treatment (0.63) but other-
wise consistent (between 0.68 and 0.72). Among TFs, predictions
were the most accurate for CTCF (0.91)—not surprising given
how predictable we observed it to be (Fig. 3)—and least for GR
(0.52). Two reasons for the lower accuracy of GR are that we used

a top-level model because GR was not included in our training
set (owing to potential quality concerns with the GR ChIP-seq
data from ENCODE) and that GR is known to have a weak
DNase footprint (Goldstein et al. 2017). The correlation is particu-
larly low before treatment (time point 0), consistent with observa-
tions that many GR binding sites occur at regions of the genome
that are already open before GC exposure (Reddy et al. 2012).
We also noticed that some subtle and transient dynamics of TF oc-
cupancy measured by ChIP-seq were not captured by predictions
based on DNase-seq data (Supplemental Fig. $16).

TOP identifies genetic variants associated with predicted TF
occupancy (topQTLs) and provides mechanistic interpretations
for dsQTLs

A large majority of genetic variants associated with complex traits
are located in noncoding genomic regions (Hindorff et al. 2009),
suggesting roles in transcriptional regulation. To elucidate this, it
is imperative that we continue to identify genetic variants affect-
ing TF occupancy and chromatin dynamics. To examine whether
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TOP is capable of sensitively distinguishing quantitatively differ-
ential TF occupancy across individuals or genetic variants, we pre-
dicted CTCF occupancy in LCLs from two trio studies, one from a
CEPH Utah (CEU) family and one from a Yoruba from Ibadan (YRI)
family (McDaniell et al. 2010; The 1000 Genomes Project
Consortium 2010). TOP successfully identified differential CTCF
occupancy between individuals across CEU and YRI families (Fig.
6A) and was sensitive enough to capture quantitative differences
in CTCF occupancy between allele genotypes at allele-specific sites
within CEU and YRI families (Fig. 6B).

Encouraged by this result, we extended our predictions of ge-
nome-wide quantitative occupancy to approximately 1500 TF mo-
tifs across 70 Yoruba LCLs using TOP applied to previously
published genotype and DNase-seq data (Degner et al. 2012).
With the resulting TF occupancy profiles across 70 individuals,
we applied a QTL mapping strategy to identify genetic variants
whose genotypes were significantly associated with changes in
predicted TF occupancy, which we called “topQTLs.” Because ge-
netic variants that change TF motifs often affect TF binding occu-
pancy by changing DNA binding affinity (Deplancke et al. 2016),
we focused our attention on SNPs within TF motif matches
because these have the highest potential for causal interpretation.

We compared topQTLs within motif matches to a subset of
dsQTLs that we call “localizable dsQTLs,” dsQTLs that fall inside
the 100-bp windows with which they are linked and also lie within
TF motif matches (Fig. 6C). Of the 1230 reported dsQTLs that were
localizable, 943 of them were topQTLs (this number increased to
1000 when using FDR < 20%, whereas 1141 [93%] were associated
with a significant change in predicted TF occupancy under a less
stringent threshold of P-value <0.05). In so doing, we identified ge-
netic variants associated with the occupancy of TFs that are likely
to drive observed changes in chromatin accessibility, providing
a more mechanistic interpretation for localizable dsQTLs.
Moreover, we identified more than 6000 additional topQTLs that
were not reported as dsQTLs. Among RSAT-clustered motifs,
CTCF, STAT/IRF, SP/KLF, ETS, AP-1, POU, NF-kB, and RREB1 mo-
tifs had the greatest number of topQTLs (each well over 200);
most of these factors are known to be active in LCLs and critical
for immune cell development (Degner et al. 2012; Tehranchi
et al. 2016). Figure 6D shows three sample topQTLs: one for NF-
kB that is a nonlocalizable dsQTL, another for NF-kB that is a local-
izable dsQTL, and one for CTCF that is not reported as a dsQTL.

That CTCF had the largest number of topQTLs, over 1300, is
noteworthy because CTCF plays a key role in chromosomal loop-
ing and commonly demarcates the boundaries of topologically as-
sociating domains (TADs) (Rao et al. 2014). A genetic variant that
disrupts a CTCF motif not only may have a significant impact on
occupancy at loop anchor sites but also could disrupt TAD bound-
aries. Such disruption has been shown experimentally and patho-
logically to dysregulate the chromatin landscape and the
expression of genes within the affected TAD (Lupiafiez et al. 2016).

Tehranchi et al. (2016) conducted pooled ChIP-seq experi-
ments for five TFs (NF-kB, SPI1, JUND, STAT1, and POU2F1 [also
known as OCT1]) across 60 LCLs, and identified SNPs showing
pre-ChIP versus post-ChIP differential allele frequencies, which
they called binding QTLs (bQTLs). Among our topQTLs that are
also identified as bQTLs, we observed a strong directionality agree-
ment between allele preference in topQTLs and bQTLs (Supple-
mental Fig. S17). However, the overlap between bQTLs and
topQTLs is low. This can happen when bQTLs reside in regions
without detectable changes in chromatin accessibility, for in-
stance, when a TF shows transient binding or low residency, like

NF-kB. Alternatively, it can happen when bQTLs do not reside
within a match to any TF motif; indeed, <0.9% of bQTLs reside
within their own motif matches (Tehranchi et al. 2016), which
may reflect the inability of ChlIP to distinguish direct versus indi-
rect binding. Although <0.9% of bQTLs are located in their own
motif matches, >10% of bQTLs can be explained by the topQTLs
of different motifs (Supplemental Fig. S17), suggesting that
topQTLs may help us gain a mechanistic understanding about di-
rect binding at these loci. Consistent with Tehranchi et al. (2016),
CTCF topQTLs were enriched in bQTLs, highlighting the func-
tional significance of CTCF and its topQTLs (Supplemental Fig.
S17).

Discussion

We introduce TOP to accurately predict quantitative ChIP-seq oc-
cupancy using chromatin accessibility data from DNase- or ATAC-
seq. TOP effectively learns both TF-specific and TF-generic model
parameters among TFs and across cell types using a Bayesian hier-
archical regression framework. TOP uses a supervised learning
strategy, trained with existing ChIP-seq data, TF binding specific-
ity data (motifs), and DNase- or ATAC-seq data, yet can accurately
predict TF occupancy for new conditions, cell types, or TFs owing
to its hierarchical structure. In contrast to traditional ways of ana-
lyzing ChIP-seq data by calling peaks in order to label genomic
regions as bound or unbound, TOP adopts a quantitative
perspective, allowing us to predict the level of TF occupancy along
a continuum. This opens up a new way to investigate quantitative
changes in TF occupancy across cell types, treatment conditions,
and developmental time courses. TOP is general in that it can pre-
dict occupancy for sequence-specific TFs of interest with new
DNase- or ATAC-seq data in any cell type or condition without re-
quiring a new ChlIP-seq experiment. For example, TOP’s ability to
use time course DNase data over 12 h of GC treatment served as a
cost-effective strategy to study the temporal dynamics of TF occu-
pancy: By doing one DNase-seq experiment at each time point, we
obtained occupancy predictions for hundreds of TF motifs, allow-
ing us to screen for TFs showing significant changes in occupancy.
For example, TOP results suggest a significant role for FOX and
GATA factors in GC-induced transcriptional response (Fig. SA). Al-
though TOP was trained on human data, it could equally be
trained and applied in other organisms. As an example, we were
able to successfully predict quantitative Reb1 occupancy (ChIP-
exo) in the yeast genome from DNase-seq data (Supplemental
Fig. S18). As a resource for the community, we provide predicted
occupancy for hundreds of JASPAR TF motifs across hundreds of
ENCODE cell types, throughout a 12-h time course of GC expo-
sure, and across 70 LCLs. TOP makes use of existing ChIP-seq
data generated by ENCODE and other projects and learns a model
that extends to more cell types and conditions, allowing people to
generate preliminary TF occupancy estimates for ChIP-seq experi-
ments that have not yet been performed.

Recently, other methods have emerged for the imputation of
missing epigenomic data (histone modifications, chromatin acces-
sibility, etc.) using the many types of available data generated by
ENCODE (Ernst and Kellis 2015; Durham et al. 2018; Schreiber
et al. 2020b). Our approach shares a goal with these imputation
methods in trying to predict unmeasured data using models
trained on existing data sets across multiple cell types. However,
we note a few major distinctions between our approach and these
recent imputation strategies. First, our approach requires only
DNase- or ATAC-seq and TF ChIP-seq data for training and requires
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only DNase- or ATAC-seq data to make predictions. In contrast, ex-
isting imputation methods often require a large variety of existing
assays (DNase- or ATAC-seq, RNA-seq, histone modification ChIP-
seq, etc.), which may not be readily available, especially in studies
that profile new cell types or treatment conditions. Second, our
strategy predicts TF occupancy only at candidate binding sites
(based on low stringency motif matches), whereas existing impu-
tation approaches attempt to impute a TF’'s ChIP-seq signal across
the entire genome. Each strategy has its own advantages. The site-
centric strategy we adopt here is able to more effectively model the
DNase or ATAC-seq features around motif matches but will miss
binding sites that do not match known motifs. In contrast, meth-
ods that impute a TF’'s ChIP-seq signal across the entire genome are
not limited to candidate binding sites but will devote statistical
power and computational effort to genomic locations where a giv-
en TF is unlikely to bind, which is the overwhelming majority.
Third, TOP uses a Bayesian hierarchical regression framework to
model chromatin accessibility features, which allows for easier in-
terpretation (by examining the regression coefficients learned
from the model) than more complex methods, especially those in-
volving deep neural networks or tensor factorization. Last but not
least, our hierarchical model is able to predict the binding of TFs
that have never been assayed by ChIP, a significant advantage
over imputation methods that require ChIP-seq training data for
TFs of interest.

The fact that TOP predicts TF occupancy only at candidate
binding sites is a limitation because it has been observed that for
many TFs, a large number of their ChIP-seq peaks do not have motif
matches (Deplancke et al. 2016). On the other hand, this does have
some benefits, because distinguishing direct from indirect binding
can be difficult using ChIP assays. By focusing only on motif match-
es, our results can be viewed as predictions of TF occupancy that are
explainable by direct binding. Indeed, TOP could be used to suggest
direct-binding TFs that may be mediating the indirect binding of
other TFs in ChIP experiments (Gordan et al. 2009). As a last obser-
vation, because motif quality directly affects which genomic loca-
tions are selected as candidate binding sites and because PWM
scores also factor into TOP predictions, better TF binding affinity
models should improve TOP’s predictions in the future. Another
limitation of TOP (and other motif-based methods) is that it is
hard to precisely distinguish TF family members without any addi-
tional information about their expression in the monitored cell type
or their binding profiles in comparable cell types. Therefore, we
note that the TOP model predictions and applications would be lim-
ited to TF families, or more accurately, motifs.

Our study provides a comprehensive survey of quantitative
occupancy for multiple TFs across multiple cell types. Our results
show a wide spectrum of predictability across TFs, providing a ref-
erence for the reliability of computational predictions. Although
the occupancy of many TFs can be predicted at high accuracy,
our results also suggest that computational predictions based on
motif information and chromatin accessibility data may not be
sufficient to reproduce ChIP measurement for many TFs. In addi-
tion, from our analysis of the GC treatment time course data, we
found some subtle and transient dynamics of TF occupancy mea-
sured by ChIP-seq were not captured by predictions based on
DNase-seq data, especially for TFs with more transient binding,
like GR. Therefore, ChIP experiments will still be needed to provide
insight into TF occupancy, especially for TFs that are harder to
predict.

Our approach can be viewed as complementary to ChIP-
based exploration of TF occupancy. It is not intended to recapitu-

late all experimentally detected ChIP-seq signals. Rather, TOP
makes use of existing ChIP-seq data that have been generated by
ENCODE and other projects, and amplifies to more cell types
and conditions, allowing people to generate preliminary TF occu-
pancy estimates for ChIP-seq experiments that have not yet been
performed. Instead of doing one ChIP-seq experiment for every
TF in a particular cell type or condition, TOP needs only one
DNase- or ATAC-seq experiment to predict the genome-wide occu-
pancy of many TFs. TOP can therefore be used to screen and iden-
tify TFs showing significant changes in occupancy, enabling the
prioritization of future ChIP experiments for a small number of
key TFs. The modeling strategy we present here offers a founda-
tional and cost-effective approach for profiling the quantitative
occupancy of myriad TFs across diverse cell types, dynamic
conditions, and genetic variants.

Methods

Candidate binding site selection

We defined candidate TF binding sites by PWM scanning across
the genome using FIMO (Grant et al. 2011). When training or ap-
plying our model, we included as candidate sites all motif matches
with P-value < 1075, Similar to CENTIPEDE (Pique-Regi et al. 2011)
and MILLIPEDE (Luo and Hartemink 2013), we filtered out candi-
date sites if >10% of the nucleotides in the surrounding window
(100 bp flanking each side of the motif) were unmappable or over-
lapped with ENCODE blacklist regions.

When training the regression model, if the training TF had
more than one motif, we manually selected one based on which
was the most representative motif for that TF in the Factorbook da-
tabase (Wang et al. 2012). After training, we used the model pa-
rameters estimated at various levels of the TOP hierarchy to
make occupancy predictions for motifs from JASPAR. The motifs
selected for training the model, along with the full list of all motifs
used for prediction in this paper, are provided in Supplemental
Tables S2 and S3.

Normalization and data preprocessing

To account for differences in sequencing depth across experiments
in different cell types or conditions, DNase-seq, ATAC-seq, and
ChIP-seq data were normalized by library size. This simple library
size normalization is flexible for downstream analysis. We consid-
ered other types of normalization methods, including quantile
normalization, trimmed mean of M-values (TMM), etc. However,
these methods assume different experiments will have the same
distribution of reads across peaks (or a subset of common peaks)
among all the experiments, which is too strong an assumption
in our case—especially, for example, when comparing hormone
receptor binding before and after hormone induction—and leads
to a high number of false negatives in the GR, AR, and ER analyses.

To address the offsets inherent in ATAC-seq reads, we shifted
their start positions to align the signal across strands, thereby ob-
taining more accurate TnS binding locations (Buenrostro et al.
2013).

Feature extraction using binning versus wavelet coefficients

We systematically evaluated different features of DNase or ATAC
cleavage events in an attempt to avoid overfitting (Raj et al.
2015) and any possible influence of sequence bias arising from a
DNase- or ATAC-seq experiment. First, we tried extracting multire-
solution features of DNase digestion data using wavelet multireso-
lution decomposition. Wavelet methods provide a natural
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approach to extract the multiresolution information contained in
both DNase cut magnitude and detail profiles. We decomposed
DNase-seq data using Haar wavelets (Haar 1910) with the wave-
thresh package (version 4.6.8, https://cran.r-project.org/web/
packages/wavethresh/index.html) in R (R Core Team 2020). The
detail signals were extracted at different resolution levels through
the mother wavelet coefficients, whereas the scales of cuts at differ-
ent resolution levels were represented by the father wavelet coeffi-
cients. We started with windows of size 128 bp around the motif
center but later focused on 64-bp windows around the motif cen-
ters, because that was where the majority of the largest mother
wavelet coefficients were located. Then we fit regression models
with mother wavelet coefficients and log-transformed father wave-
let coefficients at multiple resolution levels as predictors, together
with PWM score, and conducted variable selection with Lasso.
Variable selection results suggested the scale of DNase cuts (repre-
sented by the father wavelet coefficients) was the most significant
feature for predicting TF occupancy (Supplemental Fig. S1), consis-
tent with previous findings (Cuellar-Partida et al. 2012; Luo and
Hartemink 2013; He et al. 2014). In contrast, very few spiky
DNase signals (represented by the mother wavelet coefficients)
were selected. Worse, some of the fine details in the DNase signal
in the motif region might arise from sequence-specific DNase
digestion bias (Cuellar-Partida et al. 2012; Luo and Hartemink
2013; He et al. 2014; Sung et al. 2014; Yardimac et al. 2014;
Martins et al. 2018).

In a previous work, we developed MILLIPEDE, a model that
divides the motif region and its flanking regions upstream and
downstream into various distinct bins (Supplemental Fig. S2A;
Luo and Hartemink 2013). Following the binning scheme of
MILLIPEDE, we compared different binning models, from the
most complicated M12 model to the simplest M1 model, and eval-
uated their performance in comparison to an optimally selected
wavelet model. Supplemental Figure S2B shows the prediction per-
formance of all these models for four TFs in K562 cells using five-
fold cross-validation. In summary, different binning models led to
roughly similar prediction performances and were generally com-
parable to a model using optimally selected wavelet features. Based
on these empirical observations of DNase digestion profiles
around motifs, we simplified the process of feature extraction by
using a more flexible binning scheme in place of the rigid dyadic
splitting of the wavelet framework. Based on these results, we
chose M5 binning—which effectively summarizes the number of
DNase cleavage events in the motif region, nearby flanking re-
gions, and distal flanking regions on both sides of the motif—to
capture the chromatin accessibility features. It is simple enough
to fit into the Bayesian hierarchical regression framework and still
yield easily interpretable TF-specific and TF-generic signatures.

Bayesian hierarchical regression model

We designed the hierarchical model to have three levels, with cell
types nested within TF branches. (In principle, we could expand
the hierarchical model to have an additional branch with parame-
ters for each cell type, i.e., a cell type-specific but TF-generic mod-
el. However, we expect a TF to have similar model parameters in
different cell types. Also, the majority of TFs have not been profiled
with ChIP-seq in many cell types, so we would likely have insuffi-
cient data to estimate cell type-specific parameters for most cell
types.)

ChIP-seq count data are typically fit using a negative binomi-
al distribution, which uses an extra parameter to model the over-
dispersion in ChIP-seq data better than a Poisson distribution.
We found a Gaussian linear model on asinh-transformed ChIP-
seq data to be a better choice for fitting our Bayesian hierarchical

model (asinh transformation is similar to log transformation but
handles zero values more gracefully; we used it successfully in
our NucID model [Zhong et al. 2016]). This choice has the added
benefit of applying to noninteger data, which arise whenever we
average counts over replicate experiments or conduct data normal-
ization. It also performed well in predicting the ENCODE ChIP-seq
signal values, which are fold-over-control values (also nonin-
tegers). We compared the prediction accuracy of our Gaussian
linear model on asinh-transformed ChIP-seq data against the
alternative of negative binomial regression on ChIP-seq count
data and observed very close agreement. We ultimately decided
to use the Gaussian distribution because it has a nice conjugacy
property, allowing posteriors to be estimated through Gibbs sam-
pling and thereby providing a computational advantage over a
negative binomial distribution.

The basic regression model for modeling the asinh-trans-
formed ChlIP-seq occupancy y,; that is observed when TF f occu-
pies its candidate binding site i in cell type ¢ can be briefly
summarized as

Yeei ~ Normal(u, ;) Vi),

where

i
(0) j 1
Meei = Blr + ZB?)C x Dy + Bl x PWM,.
=1

D;.,i; represents DNase (or alternatively ATAC) feature j for site i of

TF tin cell type ¢, and ] is the number of DNase (or ATAC) features

in the model (in our final model, we use M5 binning so J=35).
The Bayesian hierarchical model is specified as follows:

B).~Normal(h?, 1) ¥ €{0,1, ...,j+1)
b” ~Normal(B, 1) Vi€ (0,1, ...,j+ 1)

B ~Normal(0,1) Vj€{0,1,...,j+1}

1
— ~Gamma(7Z, )
Vi
7 ~Gamma(T?, T)
T ~Gamma(l, 1).

We used the consensus Monte Carlo algorithm (Scott et al.
2016), a parallel technique to reduce the running time of the
Gibbs sampler while maintaining predictive performance.
Briefly, we split all data randomly into 10 equal parts. Gibbs sam-
plers were run on each part separately in parallel, and then poste-
rior samples from the ten Gibbs samplers were averaged to get the
final posterior samples for each model’s parameters. Once trained,
the model can be quickly applied to predict TF occupancy across
many conditions.

To evaluate model performance, we used odd chromosomes
for training and even chromosomes for testing. Figure 2 shows
the prediction performance of the TOP model using M5 binning
on the test data. For completeness, we also experimented with sev-
eral other versions of the Bayesian hierarchical model: (1) We test-
ed allowing the variances of the different beta parameters to be
learned from the data using an inverse gamma hyperprior, but
the results were essentially unchanged; (2) we implemented a
model with 12 bins (using the M12 binning scheme) (Luo and
Hartemink 2013) and observed very close prediction performance
with the MS model with five bins; (3) we tried a more complicated
version of the model with an extra level of the hierarchy to model
the heterogeneity of DNase- or ATAC-seq replicates and found very
similar performance with the simpler model trained with the rep-
licates pooled together; and (4) for cell types for which both
DNase- and ATAC-seq data were available, we tried jointly model-
ing both DNase and ATAC features, using five DNase bins and five
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ATAC bins together with PWM score as model covariates. The joint
model achieved only marginal improvement over models trained
by either DNase- or ATAC-seq data alone. This indicates collecting
both DNase- and ATAC-seq data from the same cell type or condi-
tion is not necessary to make more accurate predictions.

When we wanted to compare how TOP performs in predict-
ing binary TF binding (bound vs. unbound), we implemented a
separate hierarchical logistic version of the model. Instead of quan-
titative ChIP-seq occupancy, we trained this model with binary
ChlIP-seq peak labels. Under the logistic regression framework,
the binary statusy, ., ; of a TF t being bound at its candidate binding
site i in cell type ¢ follows a Bernoulli distribution with a binding
probability p, , it

Vi.ci ~ Bernoulli(py,.,i),

where

, I ,
log<7l 2 ‘;’ ) =B+ Y BY x Dy + B x PWM,.
— Pt ;.
/) =1

We used the same DNase (or ATAC) features and the same normal
priors for the beta regression coefficients as specified above.

Comparison of prediction accuracy with existing methods in a
site-centric framework

We compared TOP with four existing methods in a site-centric
framework. CENTIPEDE and msCentipede predict TF binding
probabilities using an unsupervised generative framework to mod-
el the DNase- or ATAC-seq footprint profiles around candidate sites
(motif matches) without ChIP-seq training data. msCentipede im-
proves on CENTIPEDE by using a multiscale model framework to
better model heterogeneity across sites and replicates. We ran
CENTIPEDE and msCentipede on DNase- or ATAC-seq data in
each TF-cell type combination under default parameter settings.
CENTIPEDE was run on DNase or ATAC data after pooling the rep-
licate samples. msCentipede was run on individual DNase or ATAC
replicates to better capture heterogeneity (its investigators showed
that replicates are beneficial to its accuracy). Because the
CENTIPEDE paper showed a substantial correlation between its
TF binding predictions (posterior log odds) and ChIP-seq read
counts (sqrt transformed), we used posterior log odds of TF binding
probabilities as predicted quantitative occupancy. In contrast to
CENTIPEDE and msCentipede, MILLIPEDE (Luo and Hartemink
2013) adopts a supervised learning strategy using a logistic regres-
sion framework with binary ChIP-seq peaks as training labels and
TF-generic binning to extract DNase digestion features (similar to
TOP). BinDNase (Kdhara and Lahdesmaki 2015) is a later method
that is very similar to MILLIPEDE but allows each TF to have its
own DNase binning scheme. We ran MILLIPEDE (with M5 bin-
ning) and BinDNase on DNase or ATAC data in each TF-cell type
combination under default parameter settings. As with
CENTIPEDE and msCentipede, we used the log odds of TF binding
probabilities as predicted quantitative occupancy.

For all the comparisons shown in Figures 2 and 3, we trained
models using data from the odd chromosomes and evaluated the
prediction performance using data from the even chromosomes
as the test set. We used Pearson’s correlations between predicted
and measured TF occupancy (asinh transformed) to evaluate pre-
diction performance. In the binary (bound vs. unbound) context,
we evaluated the prediction results using binary ChIP labels and
computed metrics of area under ROC curve (AUROC) and area un-
der precision recall curve (AUPR) (Supplemental Fig. S7).

We did not include PIQ (Sherwood et al. 2014) in our compar-
ison, because msCentipede has already been shown to signifi-

cantly outperform PIQ when it has access to DNase replicates
(Raj et al. 2015). GERV (Zeng et al. 2016) is a statistical method
that learns a k-mer-based model to predict TF binding using
ChIP-seq and DNase-seq data and scores genetic variants by quan-
tifying the changes of predicted ChIP-seq reads between the refer-
ence and alternative allele. Like TOP, it tries to predict quantitative
TF occupancy, but its main goal is to score genetic variants that af-
fect TF binding, and it treats DNase signals as a binary feature
(open vs. closed), which would not be effective in capturing quan-
titative changes in DNase signals across dynamic conditions. Also,
as a k-mer-based method, it does not adopt the site-centric frame-
work that we and the other methods do. For these reasons, we did
not include GERV in our comparison. We focused our attention on
methods within the site-centric framework that use only chroma-
tin accessibility data (and DNA sequence information). Thus, we
did not include methods from the ENCODE DREAM Challenge,
as they use additional training features including gene expression
(RNA-seq) and in vitro DNA shape parameters, and predict binary
TF binding events based on ChIP-seq peaks.

Differential occupancy comparison across cell types

We used the edgeR package (Robinson et al. 2010) to identity sites
with significantly differential occupancy across cell types. For each
TF at each candidate binding site, we tested the cell type effect by
contrasting the predicted occupancy in each cell type (using
DNase replicate samples) against the cell type mean. Sites with pre-
dicted occupancy of less than one read per million across the cell
types were filtered out from the test, and then sites with a signifi-
cant cell type effect (FDR < 10%) were selected.

When comparing predicted occupancy across cell types, po-
tential influences from copy number variation (CNV) could lead
to false positives. However, because our method predicts TF occu-
pancy using DNase data and because CNV affects both DNase-seq
and ChIP-seq counts in a consistent manner (CNV would lead to
higher occupancy in both measured and predicted ChIP-seq reads
in a higher copy number region), our predictions should still agree
with measured occupancy. To deal with CNV influences while
comparing across cell types, instead of directly correcting CNV
on both DNase-seq and ChIP-seq data within the regression
model, it is easier to do CNV adjustment as a postprocessing proce-
dure on the predicted occupancy using input ChIP-seq data.
However, because not all these cell types have input ChIP-seq
data available, we did not perform CNV corrections in this study
(input correction could be performed in those cell types for which
input ChIP-seq data are available).

DNase-seq data across hormone treatment conditions

DNase-seq data from LNCaP cells exposed to androgen were col-
lected in our laboratories. Data from before induction (time point
0) and after 12 h were previously published (Tewari et al. 2012) and
are available from the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) repository under accession
GSE34780. DNase-seq data from the 45-min and 4-h treatments,
along with more samples from before induction, were generated
for this study (see Data access).

LNCaP cells were obtained from ATCC. Cells were maintained
using the protocol described at http://genome.ucsc.edu/ENCODE/
protocols/cell/human/LNCaP_Crawford_protocol.pdf. Before
stimulation with either androgen (R1881, methyltrienolone) or
vehicle (ethanol) for varying time durations, cells were grown in
RPMI-1640 medium with 10% char-coal:dextran-stripped medi-
um for 60 h. Androgen was added to the culture medium for a final
concentration of 1 nM in all experiments. Isolation of total DNA,
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cleavage with DNase I (henceforth, DNase), and subsequent prep-
aration of sequencing libraries were performed as previously de-
scribed (Song and Crawford 2010). Replicates from 12 h of
androgen exposure were previously sequenced on the Illumina
GAIIx platform, whereas replicates from the 45-min and 4-h
time points were sequenced for this study on the Illumina HiSeq
2000 platform. Sequenced reads were aligned to the genome and
further processed as previously described (Boyle et al. 2008;
Tewari et al. 2012; Yardimci et al. 2014).

DNase-seq data from A549 cells exposed to the GC hormone
dexamethasone were collected in our laboratories. Detailed meth-
ods are provided in our paper (McDowell et al. 2018).

DNase-seq data from Ishikawa and T-47D cells before and af-
ter estrogen exposure were collected by others and previously pub-
lished (Gertz et al. 2013); we downloaded their published data.

Differential occupancy comparison across hormone treatment
conditions

In the androgen treatment analysis, we combined DNase-seq data
from an earlier study (Tewari et al. 2012) with three replicates of
uninduced samples and two replicates of 12-h androgen-induced
samples (using the Illumina GAIIx sequencing platform), and
DNase-seq data generated in this study with two replicates of unin-
duced samples, two replicates of 45-min induced samples, and two
replicates of 4-h induced samples (using the Illumina HiSeq 2000
sequencing platform). AR ChIP-seq data collected in an earlier
study with 4-h androgen induction in LNCaP cells (Massie et al.
2011) matched with our DNase-seq data of 4-h androgen induc-
tion were included in the training data set for AR in the hierarchi-
cal model. To screen for TFs showing dynamic occupancy changes,
we predicted genome-wide TF occupancy at approximately 1500
JASPAR motifs. For each motif, we used edgeR to test linear, qua-
dratic, and cubic trends of TF occupancy changes over the time
course of uninduced and 45-min, 4-h, and 12-h induced condi-
tions, adjusting for the batch effect from different sequencing plat-
forms (GAIlx vs. HiSeq sequencing). Sites with a predicted
occupancy of less than one read per million across the conditions
were filtered out from the test, and then sites with significant lin-
ear, quadratic, or cubic trend of TF occupancy over the time course
(FDR < 10%) were selected. Very few sites were found to have a sig-
nificant quadratic or cubic trend, so we focused on sites with a sig-
nificant linear trend.

In the estrogen treatment analysis, we used previously pub-
lished DNase-seq and ChIP-seq data generated in Ishikawa (endo-
metrial cancer cell line; previously mislabeled as ECC-1) and T-47D
(breast cancer cell line) cells before and after estrogen induction
(Gertz et al. 2013). ER (ESR1) ChIP-seq data from estrogen induced
conditions were matched with the corresponding DNase data and
included in the training data set in the hierarchical model.
Occupancy predictions were made for each TF using its middle-lev-
el parameters in DNase-seq replicate samples in Ishikawa and T-
47D, before and after estrogen stimulation. For each TF, we used
edgeR to test for differential occupancy, where we considered
both cell type effect (Ishikawa vs. T-47D) and treatment effect (es-
trogen induced vs. uninduced). Sites with a predicted occupancy
of less than one read per million across the conditions were filtered
out from the test, and then sites with treatment effect significantly
higher or lower than zero (FDR < 10%) were selected.

In the GC treatment analysis, we used DNase-seq data collect-
ed in our laboratories from A549 cells (human alveolar adenocarci-
noma cell line) over 12 time points from O to 12 h following
exposure to the GC hormone dexamethasone (McDowell et al.
2018). For each TF, we used edgeR to test linear, quadratic, and cu-
bic trends of TF occupancy changes over the 12 time points of GC

treatment. Sites with a predicted occupancy of less than one read
per million across the conditions were filtered out from the test,
and then sites with significant linear, quadratic, or cubic trend of
TF occupancy over the time course (FDR<10%) were selected.
Very few sites were found to have a significant quadratic or cubic
trend, so we focused on sites with a significant linear trend.

After selecting sites with significant differential occupancy,
we ranked TF motifs based on the percentage of sites showing sig-
nificantly increased or decreased occupancy in response to treat-
ment. Similar motifs were grouped together using RSAT (Castro-
Mondragon et al. 2017) to simplify downstream interpretation
and visualization.

topQTL mapping

We predicted genome-wide TF occupancy for about 1500 JASPAR
motifs using previously published genotype information and
DNase data generated from LCLs from 70 individuals (Degner
et al. 2012). For each motif, we focused on those motif matches
that had a SNP inside (we scanned for motif matches with P-val-
ue <107 in this analysis to include more candidate genomic loca-
tions). When making predictions across the 70 LCLs using both
PWM scores and DNase data, we fixed the PWM scores for candi-
date sites to be the average of the PWM scores calculated from
the two homozygous genotypes for that SNP, in order to avoid us-
ing PWM scores twice: in both occupancy predictions and QTL as-
sociation testing. We mapped topQTLs by testing the associations
between genotypes and predicted TF occupancy across the 70 indi-
viduals using a linear model with R package MatrixEQTL (Shabalin
2012). For each TF motif, we selected the top 10% of candidate sites
with the highest predicted occupancy for QTL mapping and
downstream analysis (we tested the top 10%, 20%, ..., 100% sites,
and found the top 10% sites tended to maximize the number of
QTLs detected after multiple testing correction). To facilitate com-
parison with dsQTLs, we followed the same data processing proce-
dures as described by Degner et al. (2012), including z-score
standardization, GC content correction, quantile normalization,
and regressing out four principal components (PCs). We mapped
cis-topQTLs by testing SNPs within motif matches. For each TF mo-
tif, genetic variants with significant associations to predicted TF
occupancy (FDR<10%) were identified as topQTLs for that motif
and were the basis of all subsequent analysis in Figure 6. Similar
motifs were grouped together using RSAT (Castro-Mondragon
et al. 2017) to simplify downstream interpretation and
visualization.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE157473. TOP is implemented in R, and is available at GitHub
(https://github.com/HarteminkLab/TOP) and as Supplemental
Code. Precomputed genome-wide quantitative TF occupancy, pre-
trained TOP model parameters, and links to other code resources
are available via http://users.cs.duke.edu/~amink/software/.
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