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Supplementary Tables

Supplementary Table S1 appears on the following page. Supplementary Tables S2, S3, and S4 are

spreadsheets and have been uploaded separately.

Supplementary Table S1: Different modeling frameworks for predicting TF binding using

DNase-seq (or ATAC-seq) data.

Supplementary Table S2: Combinations of TFs (motifs) and cell types used for training and

testing TOP models with ATAC-seq and DNase-seq data as in Fig. 2.

Supplementary Table S3: All motifs used for making predictions and screening as in Figs. 5

and 6.

Supplementary Table S4: Pearson’s correlations between predicted TF occupancy and TF

expression as in Fig. 4C.
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Supplementary Figures
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Fig. S1. Details of wavelet decomposition of CTCF DNase digestion profiles. (A) Example DNase
digestion profile and Haar wavelet coefficients. (Left) Average DNase digestion profiles around CTCF
motif matches in K562 cell type in a window of size 64 bp. (Right) Haar wavelet coefficients at different
resolution levels for those DNase digestion profiles. (B) Selecting regression coefficients for CTCF in K562
cell line using Lasso with A equals 0.5, 0.1, 0.05, or 4;sg (largest value of A such that mean cross-validated
error is within one standard error of the minimum). Selected variables are ordered by the absolute value
of coefficients. PWM score is in gray, mother wavelet coefficients are in red, and log2-transformed father
wavelet coefficients are in blue. The names of the wavelet coefficients (bars) show the location indices of
the wavelet coefficients (e.g., ‘Father level 5.12° refers to the 12th father wavelet coefficient at resolution
level 5).
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Fig. S2. Details of MILLIPEDE binning and performance
Understanding the relationships between bins in various MILLIPEDE models. All bins are defined relative
to the strand orientation of the candidate binding site: green bins are within the binding site, blue bins are
upstream, red bins are downstream, and purple bins in the M1 model sum together cleavage events from
the M2 model’s blue and red bins. Models are arranged from most to least complex (Luo and Hartemink,
2013). In this work, we use model M5, which has two upstream bins, a bin spanning the motif site, and two
downstream bins. (B) Examples of prediction performances in 5-fold cross-validation using DNase wavelet
coefficients and different MILLIPEDE bins. The wavelet models used variables selected using Lasso with
A1sg (largest value of A such that mean cross-validated error is within one standard error of the minimum).
The M5 model outperforms the wavelet model in all these examples.
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Fig. S3. Bayesian hierarchical model structure. Our Bayesian hierarchical model aims to jointly estimate
multiple parameters from multiple TFs across multiple cell types. Instead of learning them separately by
fitting one TF in one cell type separately as in our earlier work (Luo and Hartemink, 2013), we regard the
parameters to be related by the hierarchical structure as shown in the figure. A key feature of Bayesian hier-
archical model is that by leveraging the grouping structure, model parameters are organized in a hierarchy to
allow for borrowing or sharing of information, and the observed data can be used to estimate the population
distribution even though the population level parameters may not be directly observed. Intuitively, from
our biological knowledge and empirical observations, a TF would have similar DNA binding signatures or
footprints among different cell types, therefore, the parameters of a TF in different cell types are very related
(cell type—generic). Similarly, different TFs also share similar DNA binding footprint profiles (TF-generic),
as we often observe a depletion in the motif region surrounded by evaluated DNase- or ATAC-seq signals
in the nearby flanking regions. In our hierarchical model structure, at the bottom level are regression pa-
rameters specific to a particular TF X cell-type combination. For each TF, the bottom level parameters are
themselves drawn from a shared distribution for the TF at the middle level. Likewise, the parameters asso-
ciated with each TF’s distribution at the middle level are themselves drawn from a single shared distribution
for all TFs at the top level.
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Fig. S4. Prediction performance evaluated with ChIP cell-average occupancy baseline. Prediction
performance of different methods was evaluated using quantitative TF occupancy at motif matches, similar
to Fig. 2B. Here we added into our benchmark a ChIP cell-average occupancy baseline, where the occupancy
of a TF in a cell type was represented by the measured ChIP occupancy of this TF in the other cell types. To
obtain the average ChIP occupancy from multiple cell types, we only included TFs with available ChIP-seq
data in at least three cell types (Supp. Table S2), thus, the TF X cell-type combinations included here are
slightly fewer than those included in Fig. 2B.



Predicting occupancy across TFs in K562
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Fig. S5. Prediction performance for cross-cell type predictions. Comparing the performance of TOP with
other methods in cross-cell type prediction setting. Similar to Fig. 2C, a ‘held-out’ version of the TOP model
was trained after holding out the K562 cell type from training set. Predictions were then made for all TFs in
K562 in the test chromosomes using TOP model (middle level parameters) trained with the held-out training
set. Results were compared with predictions in K562 made by CENTIPEDE, msCentipede, MILLIPEDE, and
BinDNase trained with HepG?2 data, total chromatin accessibility, as well as TOP model trained using the
full training set. Each dot represents the Pearson’s correlations between predicted and measured occupancy
for one TF. Shown are results from UW DNase-seq data. Duke DNase-seq and ATAC-seq results are similar.
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Fig. S6. Prediction performance for held-out TFs and cell types. Similar to Figs. 2C,D, ‘held-out’
versions of the TOP model were trained after holding out a subset of TFs (JUND and GABPA, along with all
related TF family members with similar motifs) and cell types (MCF-7 and HepG2) from training sets. Then
predictions were made for the TFs and cell types in the test chromosomes using the held-out models. Results
were compared with TOP model (bottom level) trained using full training set, BinDNase, and MILLIPEDE
trained with these TFs and cell types, as well as CENTIPEDE and msCentipede. The TFs and cell types
holding out from training set are in purple. Note, BinDNase and MILLIPEDE (by default) do not make
predictions for held-out TFs. They were include here simply as ‘upper bound’ references when training data
of the exact same TFs and cell types of interest are available.
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Fig. S7. Prediction performance in the binary TF binding setting. Though the main focus of the paper
is on quantitative occupancy predictions, a logistic version of the TOP model was trained for binary TF
binding prediction. Specifically, candidate sites were labeled as bound if they overlapped with ChIP-seq
peaks, and unbound otherwise. A logistic version of the TOP model was trained using binary ChIP labels.
Predictions of different methods in the test chromosomes were evaluated with binary ChIP labels using the
area under ROC curve (AUROC) in panel A and the area under precision recall curve (AUPR) in panel B.
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Fig. S8. Prediction accuracy (bottom level) as a function of DNase depletion ratio. DNase depletion
ratio was calculated as the log ratio of the average number of DNase cleavage events in the 60 bp proximal
flanking regions divided by the average number of DNase cleavage events within the motif itself. Each dot
represents one TF X cell-type combination in the Duke DNase data.
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Fig. S9. Examples of DNase digestion profiles on both strands around a motif, showing TF X cell-type
combinations with high to low prediction accuracy. DNase profiles were averaged over 1000 binding sites
with the highest occupancy measured by ChIP-seq. The TF X cell-type combinations that achieved higher
prediction accuracy tend to show much clearer DNase depletion patterns (depletion of DNase cleavage
events within the motif region, coupled with elevation in the proximal flanking regions).

13



Average DNase cuts Average DNase cuts

Average DNase cuts

CEBPB A549

Relative position (bp)

FOSL1 K562

1.4 -
1.2 R =0.83
1.0
0.8 4
0.6 -
0.4 -
0.2 4
0.0-

~100 a
Relative position (bp)
NFE2 K562

1.5+
R=0.76

1.0 4

0.5 1

0.0-

100

-100
Relative position (bp)

100

CEBPB GM12878

0.20 - — Forward strand
R=0.41 — Reverse strand

Relative position (bp)

FOSL1 H1-hESC

Relative position (bp)

NFE2 GM12878

Relative position (bp)

Fig. S10. Examples of DNase digestion profiles for TF x cell-type combinations with higher prediction
accuracy in one cell type (left) but lower prediction accuracy in a different cell type (right). Note that
scales on left and right differ. Consistent with Fig. S9, cell types with higher prediction accuracy often show

much clearer DNase depletion patterns.
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Fig. S11. Scatter plot comparing the correlation of measured TF occupancy with total number of
nearby DNase cleavage events vs. the correlation of measured TF occupancy with PWM score. X-axis
shows Pearson’s correlations of log2(measured TF occupancy) with log2(total number of nearby DNase
cleavage events). Y-axis shows Pearson’s correlations of log2(measured TF occupancy) with PWM score.
Overall level of nearby DNase cleavage is more correlated with measured TF occupancy than PWM score
is—and typically markedly so—for nearly all TFs, with REST and MAFF being exceptions.

15



HNF4A FOSL1

R=0.714 S [ ~1 R=0.706 sdoe

Average predicted occupancy

~4 R=064 e R=0.615 «4{ R=0.585

Average predicted occupancy

6.5 7.0 75

~

R=0.559 i 1 R=0476

R =0.562

4.5 5.0 55
! |

4.0
!

3.5

Average predicted occupancy

3.0

R =-0.398 R R =-0.405 o d e e R =-0.521

e

Average predicted occupancy

8 9 5 6
TF expression TF expression TF expression
(Exon array signal value) (Exon array signal value) (Exon array signal value)

Fig. S12. Examples showing strong relationships between TF occupancy and TF expression in dif-
ferent cell types. (A) The nine TFs exhibiting the strongest positive correlation between predicted TF
occupancy and measured TF expression level (which serves as a rough but imperfect proxy for active nu-
clear TF concentration). X-axis shows TF expression signal values (normalized gene expression value) from
ENCODE Affymetrix Exon Array data generated by Crawford group. Y-axis shows predicted occupancy
averaged across candidate sites along the genome. (B) The three TFs exhibiting statistically significant
negative correlation between predicted TF occupancy and measured TF expression level.
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Fig. S13. TF occupancy dynamics in response to hormone stimulation. The three panels are analogous
to the ones shown in Fig. 5, depicting the same analysis but here conducted at the level of individual TF
motifs rather than RSAT TF motif clusters. Motif identifiers are displayed in parentheses next to motif

names.
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Fig. S14. Further details of TF occupancy dynamics in response to hormone stimulation. (A) Under
androgen stimulation, AR and FOXAT sites increase in occupancy gradually over the time course, revealing
the importance of a quantitative perspective on occupancy. Yellow lines highlight the average trends of
those sites. (B) For GR in glucocorticoid stimulation, AR in androgen stimulation, and ER in estrogen
stimulation, sites with significantly increased occupancy possess significantly higher average PWM scores
than sites with unchanged occupancy. This is not true for CEBPB, FOXA1, or NFYA, the second-most
responsive TFs in the respective treatment conditions. (C) Specificity of increased occupancy. Bar plots on
the left show the response of AR and FOXAL, revealing that their increased occupancy is highly specific to
androgen induction. Bar plots on the right show the response of ER and NFYA, revealing that their increased

Estrogen Androgen

occupancy is highly specific to estrogen induction.
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Average DNase cuts
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Fig. S15. Average DNase digestion profiles around 1000 high occupancy and 1000 low occupancy
NFYA sites in K562 and GM12878 cell types. In both cell types, the oscillation patterns of DNase cleavage
events in the flanking regions of NFYA high occupancy sites (top row) are similar to the DNase oscillation
patterns previously observed within nucleosomes (Zhong et al., 2016), suggesting that NFYA is perhaps
more likely to bind flanked by nucleosomes.
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CEBPB sites with increasing occupancy along the 12 time points of glucocorticoid treatment
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Fig. S16. Measured and predicted occupancy or binding probabilities for CEBPB sites with increasing
occupancy along the 12 time points of glucocorticoid (GC) treatment. Following glucocorticoid (GC)
treatment, CEBPB sites display gradual increasing trends of occupancy over the time course. Left panel
shows measured occupancy, TOP (bottom level model) predicted occupancy, and total DNase accessibility
along the 12 time points of GC treatment. Right panel shows CEBPB binding probabilities from four other
computational methods, which predict TF binding from a binary perspective. Yellow lines highlight the
average trends of those sites.

20



NF-kB bQTLs (FDR < 10%)
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Fig. S17. Agreement between topQTLs and bQTLs for NF-kB, SPI1, and JUND. (A) Among SNPs that
are both significant topQTLs (FDR < 10%) and bQTLs (FDR < 10%), a large percentage of them show
directionality agreement on high occupancy alleles. STAT1 and POU2F1 were not included because very
few SNPs are both significant topQTLs and bQTLs when using a 10% FDR cutoff. (B) Many bQTLs are
observed to be topQTLs for different motifs; only the most frequent ten topQTL motifs are shown here, but
more than 10% of bQTLs correspond to topQTLs (p < 0.05) for different motifs.
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Yeast Reb1 candidate sites
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Fig. S18. Predicting quantitative Reb1 occupancy in yeast. (Non-hierarchical) regression model was
trained on ChIP-exo read counts around Rebl candidate binding sites in yeast. Rows in the left panels
correspond to candidate binding sites and were ordered by the measured number of ChIP-exo read counts
(column 4). Darker colors mean higher PWM score, higher number of DNase cleavage events, or higher
occupancy (ChIP-exo read counts).

22



References

Luo, K. and Hartemink, A. J., 2013. Using DNase digestion data to accurately identify transcrip-
tion factor binding sites. In Pac. Symp. Biocomputing, pages 80-91. World Scientific, Hacken-

sack, NJ.

Zhong, J., Luo, K., Winter, P. S., Crawford, G. E., Iversen, E. S., and Hartemink, A. J., 2016.

Mapping nucleosome positions using DNase-seq. Genome Res., 26(3):351-364.

23



