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Abstract

It is well-known that a program’s memory access
pattern can leak information about its input. To
thwart such leakage, most existing works adopt the
technique of oblivious RAM (ORAM) simulation.
Such an obliviousness notion has stimulated much
debate. Although ORAM techniques have significantly
improved over the past few years, the concrete
overheads are arguably still undesirable for real-world
systems — part of this overhead is in fact inherent
due to a well-known logarithmic ORAM lower bound
by Goldreich and Ostrovsky. To make matters worse,
when the program’s runtime or output length depend
on secret inputs, it may be necessary to perform worst-
case padding to achieve full obliviousness and thus incur
possibly super-linear overheads.

Inspired by the elegant notion of differential privacy,
we initiate the study of a new notion of access pattern
privacy, which we call “(ε, δ)-differential obliviousness”.
We separate the notion of (ε, δ)-differential obliviousness
from classical obliviousness by considering several
fundamental algorithmic abstractions including sorting
small-length keys, merging two sorted lists, and range
query data structures (akin to binary search trees).
We show that by adopting differential obliviousness
with reasonable choices of ε and δ, not only can
one circumvent several impossibilities pertaining to full
obliviousness, one can also, in several cases, obtain
meaningful privacy with little overhead relative to the
non-private baselines (i.e., having privacy “almost for
free”). On the other hand, we show that for very
demanding choices of ε and δ, the same lower bounds
for oblivious algorithms would be preserved for (ε, δ)-
differential obliviousness.

1 Introduction

Suppose that there is a database consisting of sensitive
user records (e.g., medical records), and one would like
to perform data analytics or queries over this dataset
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in a way that respects individual users’ privacy. More
concretely, we imagine the following two scenarios:

1. The database is encrypted and outsourced to an
untrusted cloud server that is equipped with a
trusted secure processor such as Intel’s SGX [34, 2],
such that only the secure processor can decrypt and
compute over the data.

2. The database is horizontally partitioned across
multiple nodes, e.g., each hospital holds records for
their own patients.

To provide formal and mathematical guarantees
of users’ privacy, one natural approach is to require
that any information about the dataset that is disclosed
during the computation must satisfy differential privacy
(DP). Specifically, differential privacy is a well-
established notion first proposed in the ground-breaking
work by Dwork et al. [14]. Naturally, in the
former scenario, we can have the secure processor
compute differentially private statistics to be released
or differentially private answers to analysts’ queries. In
the latter scenario, since the data is distributed, we
can rely on multi-party computation (MPC) [19, 45]
to emulate a secure CPU, and compute a differentially
private mechanism securely (i.e., revealing only the
differentially private answer but nothing else). The
above approaches (assuming that the program is
executed in the RAM-model) indeed ensure that the
statistics computed by the secure processor or the
MPC protocol are safe to release. However, this is
not sufficient for privacy: specifically, the program’s
execution behavior (in particular, memory access
patterns) can nonetheless leak sensitive information.
Classical notion of access pattern privacy: full
obliviousness. To defeat access pattern leakage, a line
of work has focused on oblivious algorithms [23, 17, 32]
and Oblivious RAM (ORAM) constructions [20, 18].
These works adopt “full obliviousness” as a privacy
notion, i.e., the program’s memory access patterns
(including the length of the access sequence) must be
indistinguishable regardless of the secret database or
inputs to the program. Such a full obliviousness notion
has at least the following drawbacks:

1. First, to achieve full obliviousness, a generic
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approach is to apply an Oblivious RAM (ORAM)
compiler, an elegant algorithmic technique originally
proposed by Goldreich and Ostrovsky [20, 18].
Although ORAM constructions have significantly
improved over the past few years [38, 39, 43], their
concrete performance is still somewhat undesirable
— and some of this overhead is, in fact, inherent due
to the well-known logarithmic ORAM lower bound
by Goldreich and Ostrovsky [20, 18].

2. Second, to make matters worse, in cases where the
program’s output length or runtime also depends
on the secret input, it may be necessary to pad
the program’s output length and runtime to the
maximum possible to achieve full obliviousness.
Such padding can sometimes incur even super-linear
overhead, e.g., see our range query database example
later in the paper.

Our new notion: differential obliviousness. Recall
that our final goal is to achieve a notion of “end-
to-end differential privacy”, that is, any information
disclosed (including any statistics explicitly released
as well as the program’s execution behavior) must
be differentially private. Although securely executing
an oblivious DP-mechanism would indeed achieve this
goal, the full obliviousness notion appears to be an
overkill. In this paper, we formulate a new notion of
access pattern privacy called differential obliviousness.
Differential obliviousness requires that if the memory
access patterns of a program are viewed as a form of
statistics disclosed, then such “statistics” must satisfy
differential privacy too. Note that applying standard
composition theorems of DP [16], the combination of
statistics disclosed and access patterns would jointly be
DP too (and thus achieving the aforementioned “end-
to-end DP” goal).

Our differential obliviousness notion can be viewed
as a relaxation of full obliviousness (when both are
defined with information theoretic security). Clearly,
such a relaxation is only interesting if it allows for
significantly smaller overheads than full obliviousness.
Indeed, with this new notion, we can hope to overcome
both drawbacks for full obliviousness mentioned above.
First, it might seem natural that with differential
obliviousness, we can avoid worst-case padding which
can be prohibitive. Second, even when padding is a
non-issue (i.e., when the program’s runtime and output
length are fixed), an exciting question remains:

Can we asymptotically outperform full obliviousness
with this new notion? In other words, can we
achieve differential obliviousness without relying on
full obliviousness as a stepping stone?

The answer to this question seems technically
challenging. In the classical DP literature, we
typically achieve differential privacy by adding noise
to intermediate or output statistics [14]. To apply
the same techniques here would require adding noise
to a program’s memory access patterns — this seems
counter-intuitive at first sight since access patterns arise
almost as a side effect of a program’s execution.
Our results and contributions. Our paper shows
non-trivial lower- and upper-bound results establishing
that differential obliviousness is an interesting and
meaningful notion of access pattern privacy, and can
significantly outperform full obliviousness (even when
padding is a non-issue). We show results of the following
nature:

1. New lower bounds on full obliviousness. On
one hand, we show that for several fundamental
algorithmic building blocks (such as sorting,
merging and range query data structures), any
oblivious simulation must incur at least Ω(logN)
overhead where N is the data size. Our oblivious
algorithm lower bounds can be viewed as a
strengthening of Goldreich and Ostrovsky’s ORAM
lower bounds [20, 18]. Since the logarithmic ORAM
lower bounds do not imply a logarithmic lower
bound for any specific algorithm, our lower bounds
(for specific algorithms) are necessary to show a
separation between differential obliviousness and
full obliviousness.

2. Almost-for-free differentially oblivious algorithms.
On the other hand, excitingly we show for the
first time that for the same tasks mentioned above,
differentially oblivious algorithms exist which incur
only O(log logN) overhead (we sometimes refer to
these algorithms as “almost-for-free”).

3. Separations between various definitional variants.
We explore various ways of defining differential
obliviousness and theoretical separations between
these notions. For example, we show an intriguing
separation between ε-differential obliviousness and
(ε, δ)-differential obliviousness. Specifically, just
like ε-DP and (ε, δ)-DP, a non-zero δ term allows for
a (negligibly) small probability of privacy failure.
We show that interestingly, permitting a non-zero
but negligibly small failure probability (i.e., a non-
zero δ) turns out to be crucial if we would like to
outperform classical full obliviousness! Indeed, our
“almost-for-free” differential oblivious algorithms
critically make use of this non-zero δ term.

Intuitively, in ε-differential privacy, very little
privacy is preserved for large values of ε. Hence,
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it is surprising that most of our logarithmic full
obliviousness lower bounds will still apply, even
if we allow arbitrarily large ε for ε-differential
obliviousness.

Both our lower bounds and upper bounds require
novel techniques. Our lower bounds draw connections
to the complexity of shifting graphs [37] that were
extensively studied in the classical algorithms literature.
For upper bounds, to the best of our knowledge, our
algorithms show for the first time how to combine
oblivious algorithms techniques and differential privacy
techniques in non-blackbox manners to achieve non-
trivial results. Our upper bounds also demonstrate a
new algorithmic paradigm for constructing differentially
oblivious algorithms: first we show how to make certain
DP mechanisms oblivious and we rely on these oblivious
DP mechanisms to compute a set of intermediate DP-
statistics. Then, we design algorithms whose memory
access patterns are “simulatable” with knowledge of
these intermediate DP statistics — and here again, we
make use of oblivious algorithm building blocks.

1.1 Differential Obliviousness We formulate
differential obliviousness for random access machines
(RAMs) where a trusted CPU with O(1) registers
interacts with an untrusted memory and performs
computation. We assume that the adversary is able
to observe the memory addresses the CPU reads and
writes, but is unable to observe the contents of the
data (e.g., the data is encrypted or secret-shared by
multiple parties). This abstraction applies to both of
the motivating scenarios described at the beginning of
our paper.

Differential obliviousness can be intuitively
interpreted as differential privacy [14, 41], but now
the observables are access patterns. Informally, we
would like to guarantee that an adversary, after having
observed access patterns to (encrypted)1 dataset stored
on the server, learns approximately the same amount
of information about an individual or an event as if this
individual or event were not present in the dataset.
Basic definition of differential obliviousness. Let
M be an algorithm that is expressed as a RAM
program. We say that two input databases I and I ′

are neighboring iff they differ only in one entry. The
algorithm M is said to be (ε, δ)-differentially oblivious,
iff for any two neighboring input databases I and I ′, for

1Our differentially oblivious definitions do not capture the
encryption part, since we consider only the access patterns as

observables. In this way all of our guarantees are information
theoretic in this paper.

any set S of access patterns, it holds that
(1.1)
Pr[AccessesM (I) ∈ S] ≤ eε·Pr[AccessesM (I ′) ∈ S]+δ,

where AccessesM (I) denotes the ordered sequence
of memory accesses made by the algorithm M upon
receiving the input I. Therefore, (ε, δ)-differential
obliviousness can be thought of as (ε, δ)-DP but where
the observables are the access patterns.

The term δ can be thought of as a small probability
of privacy failure that we are willing to tolerate. For
all of our upper bounds, we typically require that δ be
negligibly small in some security parameter λ. When
δ = 0, we also say that M satisfies ε-differential
obliviousness.
Comparison with full obliviousness. It is
interesting to contrast the notion of differential
obliviousness with the classical notion of full
obliviousness [20, 18]. An algorithm M (expressed as a
RAM program) is said to be (statistically) δ-oblivious
iff for any input databases I and I ′ of equal length,

it holds that AccessesM (I)
δ≡ AccessesM (I ′) where

δ≡ denotes that the two distributions have statistical
distance at most δ. When δ = 0, we say that the
algorithm M satisfies perfect obliviousness. Note that
to satisfy the above definition requires that the length
of the access sequence be identically distributed or
statistically close for any input of a fixed length — as
mentioned earlier, one way to achieve this is to pad the
length/runtime to the worst case.

It is not difficult to observe that (ε, δ)-differential
obliviousness is a relaxation of δ-obliviousness; and
likewise ε-differential obliviousness is a relaxation of
perfect obliviousness. Technically the relaxation arises
from the following aspects:

1. First, differential obliviousness requires that the
access patterns be close only for neighboring inputs;
as the inputs become more dissimilar, the access
patterns they induce are also allowed to be more
dissimilar. By contrast, full obliviousness requires
that the access patterns be close for any input of a
fixed length.

2. Differential obliviousness permits a multiplicative eε

difference in the distribution of the access patterns
incurred by neighboring inputs (besides the δ failure
probability); whereas full obliviousness does not
permit this eε relaxation.

Later in the paper, we shall see that although
ε-differential obliviousness seems much weaker than
obliviousness, surprisingly the same logarithmic lower
bounds pertaining to full obliviousness carry over
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to ε-differential obliviousness for several algorithmic
abstractions we are concerned with. However, by
additionally permitting a non-zero (but negligibly
small) failure probability δ, we can achieve almost-for-
free differentially oblivious algorithms.
Definition of differential obliviousness for
stateful algorithms. We will also be concerned
about stateful algorithms where the memory stores
persistent state in between multiple invocations of the
algorithm. Concretely, we will consider range-query
data structures (akin to binary search trees), where the
entries of a database can be inserted dynamically over
time, and range queries can be made in between these
insertions. In such a dynamic database setting, we will
define an adaptive notion of differential obliviousness
where the adversary is allowed to adaptively choose
both the entries inserted into the database, as well
as the queries — and yet we require that the access
patterns induced be “close” by Equation (1.1) for
any two neighoring databases (inserted dynamically).2

Our notion of adaptive differential obliviousness is
akin to the standard adaptive DP notion for dynamic
databases [16], but again our observables are now
memory access patterns rather than released statistics.
We defer the full definition to later technical sections.

1.2 Our Results Equipped with the new
differentially oblivious notion, we will now try to
understand the following questions: 1) does differential
obliviousness permit asymptotically faster algorithms
than full obliviousness? 2) how do the choices of ε and
δ affect the asymptotical performance of differentially
oblivious algorithms? To this end, we consider a few
fundamental algorithmic abstractions including sorting,
merging, and data structures — these algorithmic
abstractions were not only extensively studied in
the algorithms literature, but also heavily studied
in the ORAM and oblivious algorithms literature as
important building blocks.

1.2.1 Sorting We consider (possibly non-
comparison-based) sorting in the balls-and-bins
model: imagine that there are N balls (i.e., records)
each tagged with a k-bit key. We would like to sort the
balls based on the relative ordering of their keys.3 If
how an algorithm moves elements is based only on the

2Roughly, we say two dynamic databases are neighboring if

the sequence of insert and query operations differ in at most one

position; see Section 6 for the precise definition of neighboring.
3For example, if the key is 1-bit, a non-balls-and-bins algorithm

could just count the number of 0s and 1s and write down an

answer; but a balls-and-bins algorithm would have to sort the
balls themselves.

relative order (with respect to the keys) of the input
elements, we say that the algorithm is comparison-
based; otherwise it is said to be non-comparison-based.
Unlike the keys, the balls are assumed to be opaque
— they can only be moved around but cannot be
computed upon. A sorting algorithm is said to be
stable if for any two balls with identical keys, their
relative order in the output respects that in the input.

First, even without privacy requirements, it is
understood that 1) any comparison-based sorting
algorithm must incur at least Ω(N logN) comparison
operations — even for sorting 1-bit keys due to the
well-known 0-1 principle; and 2) for special scenarios,
non-comparison-based sorting techniques can achieve
linear running time (e.g., radix sort, counting sort,
and others [3, 29, 25, 24, 40]) — and a subset of
these techniques apply to the balls-and-bins model. A
recent manuscript by Lin, Shi, and Xie [31] showed that
interesting barriers arise if we require full obliviousness
for sorting:

Fact 1.1. (Barriers for oblivious sorting [31])
Any oblivious 1-bit stable sorting algorithm in the balls-
and-bins model, even non-comparison-based ones, must
incur at least Ω(N logN) runtime (even when allowing
a constant probability of security or correctness failure).
As a direct corollary, any general oblivious sorting
algorithm in the balls-and-bins model, even non-
comparison-based ones, must incur at least Ω(N logN)
runtime.

We stress that the above oblivious sorting barrier is
applicable only in the balls-and-bins model (otherwise
without the balls-and-bins constraint, the feasibility or
infeasibility of o(n log n)-size circuits for sorting remains
open [7]). Further, as Lin, Shi, and Xie showed [31],
for small-length keys, the barrier also goes away if the
stability requirement is removed (see Section 1.3).
Differentially oblivious sorting. Can we use the
differential obliviousness relaxation to overcome the
above oblivious sorting barrier (in the balls-and-bins
model)? We show both upper and lower bounds.
For upper bounds, we show that for choices of ε and
δ that give reasonable privacy, one can indeed sort
small-length keys in o(N logN) time and attain (ε, δ)-
differential obliviousness. As a typical parameter choice,
for ε = Θ(1) and δ being a suitable negligible function
in N , we can stably sort N balls tagged with 1-bit
keys in O(N log logN) time. Note that in this case,
the best non-private algorithm takes linear time, and
thus we show that privacy is attained “almost for free”
for 1-bit stable sorting. More generally, for any k =
o(logN/ log logN), we can stably sort k-bit keys in
o(N logN) time — in other words, for small-length keys

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited



we overcome the Ω(N logN) barrier of oblivious sorting.
We state our result more formally and for

generalized parameters:

Theorem 1.1. ((ε, δ)-differentially oblivious
stable k-bit sorting) For any ε > 0 and any
0 < δ < 1, there exists an (ε, δ)-differentially
oblivious k-bit stable sorting algorithm that completes
in O(kN(log k

ε + log logN + log log 1
δ )) runtime.

As a special case, for ε = Θ(1), there exists an
(ε, negl(N))-differentially oblivious stable 1-bit sorting
algorithm that completes in O(N log logN) runtime
for some suitable negligible function negl(·), say,
negl(N) := exp(− log2N).

Note that the above upper bound statement allows
for general choices of ε and δ. Interestingly, we show
that our upper bound result is optimal up to log log
factors for a wide parameter range. We present our
lower bound statement for general parameters first, and
then highlight several particularly interesting parameter
choices and discuss their implications. Note that
our lower bound below is applicable even to non-
comparison-based sorting:

Theorem 1.2. (Limits of (ε, δ)-differentially
oblivious stable sorting in the balls-and-bins
model) For any 0 < s ≤

√
N , any ε > 0, and any

0 ≤ δ ≤ e−(2εs+log2N), any (ε, δ)-differentially oblivious
stable 1-bit sorting algorithm in the balls-and-bins
model must incur, on some input, at least Ω(N log s)
memory accesses with high probability.4

As a corollary, under the same parameters, any
(ε, δ)-differentially oblivious Ω(logN)-bit-key balls-and-
bins sorting algorithm, even a non-stable one, must
incur, on some input, at least Ω(N log s) memory
accesses with high probability.

First note that the lower bound tightly matches
the upper bound (up to log log factors) for ε = Θ(1)
and typical choices of δ, e.g., δ = exp(− log2N) or
δ = exp(−N0.1). Second, the lower bound allows a
tradeoff between ε and δ. For example, if ε = Θ( 1√

N
),

then we rule out o(N logN) stable 1-bit sorting for even
δ = exp(−Ω(log2N)).

The case of δ = 0 is more interesting: if δ is required
to be 0, then even when ε may be arbitrarily large, any
ε-differentially oblivious stable sorting algorithm must
suffer from the same lower bounds as oblivious sorting
(in the balls-and-bins model)! This is a surprising
conclusion because in some sense, very little privacy

4All lower bounds in this paper can be extended to handle
imperfect correctness as we show in the full verison [10].

(or almost no privacy) is attained for large choices of
ε — and yet if δ must be 0, the same barrier for full
obliviousness carries over!

1.2.2 Merging Two Sorted Lists Merging is also
a classical abstraction and has been studied extensively
in the algorithms literature (e.g., [30]). Merging in
the balls-and-bins model is the following task: given
two input sorted arrays (by the keys) which together
contain N balls, output a merged array containing
balls from both input arrays ordered by their keys.
Without privacy requirements, clearly merging can be
accomplished in O(N) time. Interestingly, Pippenger
and Valiant [37] proved that any oblivious algorithm
must (in expectation) incur at least Ω(N logN) ball
movements to merge two arrays of length N — even
when O(1) correctness or security failure is allowed5.
Differentially oblivious merging. Since merging
requires that the input arrays be sorted, we clarify
the most natural notion of “neighboring”: by the most
natural definition, two inputs (I0, I1) and (I ′0, I

′
1) are

considered neighboring if for each b ∈ {0, 1}, set(Ib) and
set(I ′b) differ in exactly one record. Given this technical
notion of neighboring, differential obliviousness is
defined for merging in the same manner as before.

We show similar results for merging as those for
1-bit stable sorting as stated in the following informal
theorems.

Theorem 1.3. (Limits of (ε, δ)-differentially
oblivious merging in the balls-and-bins
model) For any 0 < s ≤

√
N , any ε > 0, and

any 0 ≤ δ ≤ e−(2εs+log2N), any (ε, δ)-differentially
oblivious merging algorithm in the balls-and-bins model
must incur, on some input, at least Ω(N log s) memory
accesses with high probability.

Theorem 1.4. ((ε, δ)-differentially oblivious
merging) For any ε > 0 and any 0 < δ < 1, there
exists an (ε, δ)-differentially oblivious merging algorithm
that completes in O(N(log 1

ε + log logN + log log 1
δ ))

runtime. As a special case, for ε = Θ(1), there exists an
(ε, negl(N))-differentially oblivious merging algorithm
that completes in O(N log logN) runtime for some
suitable negligible function negl(·).

The above theorems are stated for general choices
of ε and δ, below we point out several notable special
cases:

5Pippenger and Valiant’s proof [37] is in fact in a balls-and-bins
circuit model, but it is not too difficult, using the access pattern

graph approach in our paper, to translate their lower bound to
the RAM setting.
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1. First, assuming ε = Θ(1), if δ must be
subexponentially small, then the same lower bound
for oblivious merging will be preserved for (ε, δ)-
differentially oblivious merging.

2. Second, for ε = Θ(1) and δ negligibly small (but
not subexponentially small), we can achieve (ε, δ)-
differentially oblivious merging in O(N log logN)
time — yet another example of having privacy
“almost-for-free”.

3. Third, just like the case of 1-bit stable sorting, both
our upper and lower bounds are (almost) tight for a
wide parameter range that is of interest.

4. Finally, when δ = 0, surprisingly, the Ω(N logN)
barrier for oblivious merging will be preserved no
matter how large ε is (and how little privacy we get
from such a large ε).

1.2.3 Data Structures Data structures are stateful
algorithms, where memory states persist across
multiple invocations. Data structures are also of
fundamental importance to computer science. We thus
investigate the feasibilities and infeasibilities of efficient,
differentially oblivious data structures. Our upper
bounds work for range query data structures: in such a
data structure, one can make insertion and range queries
over time, where each insertion specifies a record tagged
with a numerical key, and each range query specifies
a range and should return all records whose keys fall
within the range. Our lower bounds work for point
query data structures that are basically the same as
range query data structures but each range query must
be “equality to a specific key” (note that restricting the
queries makes our lower bounds stronger).

The technical definition of differential obliviousness
for stateful algorithms is similar to the earlier notion for
stateless algorithms. We shall define a static notion and
an adaptive notion — the static notion is used in our
lower bounds and the adaptive notion is for our upper
bounds (this makes both our lower and upper bounds
stronger):

• Static notion: here we assume that the adversary
commits to an insertion and query sequence upfront;

• Adaptive notion: here we assume that the adversary
can adaptively choose insertions and range queries
over time after having observed previous access
pattern to the data structure. Our adaptive notion
is equivalent to the standard adaptive DP notion for
dynamic datasets [16] except that in our case, the
observables are memory access patterns.

We defer the full definitions to the main technical
sections. We note that for both the static and adaptive

versions, as in the standard DP literature, we assume
that the data records are private and need to be
protected but the queries are public (in particular the
standard DP literature considers the queries as part of
the DP mechanisms [16]).
The issue of length leakage and comparison with
oblivious data structures. Recall for the earlier
sorting and merging abstractions, the output length is
always fixed (assuming the input length is fixed). For
range query data structures, however, an additional
issue arises, i.e., the number of records returned can
depend on the query and the database itself. Such
length disclosure can leak secret information about the
data records.

In the earlier line of work on oblivious data
structures [44, 28, 35] and ORAM [20, 39, 43, 22, 18],
this length leakage issue is somewhat shoved under the
rug. It is understood that to achieve full obliviousness,
we need to pad the number of records returned to the
maximum possible, i.e., as large as the database size —
but this will be prohibitive in practice. Many earlier
works that considered oblivious data structures [44, 28,
35, 20, 39, 43, 22, 18] instead allow length leakage to
avoid worst-case padding.

In comparison, in some sense our differential
obliviousness notion gives a way to reason about such
length leakage. By adopting our notion, one can
achieve meaningful privacy by adding (small) noise to
the output length, and without resorting to worst-case
padding that can cause linear blowup.
Upper bound results. As mentioned, our upper
bounds work for range query data structures that
support insertion and range queries. Besides the
standard overhead metrics, here we also consider an
additional performance metric, that is, locality of the
data accesses. Specifically we will use the number of
discontiguous memory regions required by each query to
characterize the locality of the data structure, a metric
frequently adopted by recent works [9, 5, 4].

As a baseline, without any privacy requirement,
such a range query data structure can be realized with
a standard binary search tree, where each insertion
incurs O(logN) time where N is an upper bound on
the total records inserted; and each range query can be
served in O(logN+L) time and accessing only O(logN)
discontiguous memory regions where L denotes the
number of matching records. We show the following
results (stated informally).

Theorem 1.5. ((ε, δ)-differentially oblivious
data structures) Suppose that ε = Θ(1) and that
negl(·) is a suitable negligible function. There is
an (ε, negl(N))-differentially oblivious data structure
supporting insertions and range queries, where each of
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the N insertions incurs amortized O(logN log logN)
runtime, and each query costs O(poly logN + L)
runtime where L denotes the number of matching
records, and requires accessing only O(logN)
discontiguous memory regions regardless of L.

The best way to understand our upper bound
results is to contrast with oblivious data structures [44,
28, 35] and the non-private baseline:

1. We asymptotically outperform known oblivious data
structures that have logarithmic (multiplicative)
overheads [44, 28, 35] (even when length leakage is
permitted). Our algorithms are again “almost-for-
free” in comparison with the non-private baseline
mentioned earlier for both insertions and for queries
that match sufficiently many records, i.e., when L ≥
poly logN .

2. We address the issue of length leakage effectively
by adding polylogarithmic noise to the number of
matching records; whereas full obliviousness would
have required padding to the maximum (and thus
incurring linear overhead).

3. Our constructions achieve logarithmic locality for
range queries whereas almost all known oblivious
data structures or ORAM techniques require
accessing Ω(L) discontiguous regions of memory if
the answer is of size L.

4. Finally, although not explicitly stated in the
above theorem, it will be obvious later that our
constructions are also non-interactive when applied
to a client-server setting (assuming that the server
is capable of performing computation). By contrast,
we do not know of any oblivious data structure
construction that achieves statistical security and
non-interactivity at the same time.

In our detailed technical sections we will also
discuss applications of our differentially oblivious
data structures in designated-client and public-client
settings.
Lower bounds. In the context of data structures, we
also prove lower bounds to demonstrate the price of
differential obliviousness. As mentioned, for our lower
bounds, we consider point queries which is a special case
of range queries; further, we consider static rather than
adaptive differential obliviousness — these make our
lower bound stronger. We prove the following theorem.

Theorem 1.6. (Limits of (ε, δ)-differentially
oblivious data structures) Suppose that
N = poly(λ) for some fixed polynomial poly(·).
Let the integers r < s ≤

√
N be such that r divides

s; furthermore, let ε > 0 and 0 ≤ δ ≤ e−(2εs+log2N).
Suppose that DS is a perfectly correct and (ε, δ)-
differentially oblivious data structure supporting point
queries. Then, there exists an operational sequence
with N insertion and k := N

r query operations
interleaved, where each of k distinct keys from the
domain {0, 1, . . . , k − 1} is inserted r times, such that
the total number of accesses DS makes for serving
this sequence is Ω(N log s

r ) with probability at least
1− negl(N).

In the example of Theorem 1.6, the total number of
items returned is N . Hence, one immediate observation
we can draw is that our earlier range query upper
bound (Theorem 1.5) is optimal up to log logN factors
assuming that the number of records matching the
query is at least polylogarithmic in size. Moreover, the
parameters r and k also reflect the intuition that the
difficult case should be when the number k of distinct
keys is large; in the extreme case when r = s =

√
N ,

we only have the trivial lower bound Ω(N). We defer
more detailed technical discussions and proofs to the
full version [10].

1.3 Closely Related Work We are inspired by the
recent work of Kellaris et al.[27]. They also consider
differential privacy for access patterns for range query
databases. In comparison, our work is novel in the
following respects:

• Kellaris et al. [27] present a computational
differential privacy definition for the specific
application of statically outsourced databases in a
client-server setting.

In comparison, our differential obliviousness is
more general and is defined for any (stateless and
stateful) algorithms in the RAM model; and for
stateful algorithms, we define an adaptive notion
of differential obliviousness. Although Kellaris
et al. also describe a construction for dynamic
databases, they lack formal definitions for this case,
and they implicitly assume that the client can store
an unbounded amount of data and that metadata
operations are for free — in our model where
metadata storage and retrieval is no longer for
free, their dynamic database scheme would incur
on average Ω(N) cost per query, where N is the
database size.

• Second, to support a dynamic range (or point) query
database, Kellaris et al. rely on a blackbox ORAM
and add noise to the result length. This approach
is at least as expensive as generic ORAMs, and thus
they do not answer the main question in our paper,
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that is, can we achieve differential obliviousness
without incurring the cost of generic ORAM or
oblivious algorithms.

Another closely related work is by Wagh et al. [42],
where they proposed a notion of differentially private
ORAM — in their notion, neighboring is defined over
the sequence of logical memory requests over time for
a generic RAM program. Wagh et al. can rely on
composition theorems to support small distances in
memory access due to neighboring changes to the input.
Their main algorithm changes the way Path ORAM [39]
assigns blocks to random paths: they propose to make
such assignments using non-uniform distributions to
reduce the stash — and thus their approach can only
achieve constant-factor savings in comparison with Path
ORAM. In comparison, our notion compares the access
patterns of a RAM program on neighboring inputs —
this notion is more natural but the downside is that
the notion makes sense only for databases where entries
correspond to individuals, events, or other reasonable
privacy units.

Lin, Shi, and Xie [31] recently showed that N balls
each tagged with a k-bit key can be obliviously sorted
in O(kN log logN/ log k) time using non-comparison-
based techniques — but their algorithm is not stable,
and as Theorem 1.1 explains, this is inevitable for
oblivious sort. Our results for sorting small-length
keys differentially obliviously match Lin et al. [31] in
asymptotical performance (up to log log factors) but we
additionally achieve stability, and thus circumventing
known barriers pertaining to oblivious sort.

Mazloom and Gordon [33] introduce a notion of
secure multi-party computation allowing differentially
private leakage (including differentially-private access
pattern leakage). They then show how to design an
efficient protocol, under this notion, for graph-parallel
computations. At the time of our writing, Mazloom
and Gordon [33] had results that achieved constant-
factor improvement over the prior work GraphSC [36]
that achieved full security. Subsequently, they
improved their result to obtain asymptotical gains
(see their latest version online [36]). Although the
two papers investigate related notions, the definitions
are technically incomparable since theirs focuses on
defining security for multi-party computation allowing
differentially private leakage (part of which can be
access pattern leakage). Their work also considers
parallelism in the computation model whereas our paper
focuses on a sequential model of computation6.

6A chronological note: Elaine Shi is grateful to Dov Gordon for

bringing to her attention a relaxed notion of access pattern privacy
back 3 years ago when she was in UMD. See “Acknowledgments”

2 Definitions

2.1 Model of Computation Abstractly, we
consider a standard Random-Access-Machine (RAM)
model of computation that involves a CPU and a
memory. We assume that the memory allows the CPU
to perform two types of operations: 1) read a value
from a specified physical address; and 2) write a value
to a specified physical address. In a cloud outsourcing
scenario, one can think of the CPU as a client and the
memory as the server (which provides only storage but
no computation); therefore, in the remainder of the
paper, we often refer to the CPU as the client and the
memory as the server.

A (possibly stateful) program in the RAM model
makes a sequence of memory accesses during its
execution. We define a (possibly stateful) program’s
access patterns to include the ordered sequence of
physical addresses accessed by the program as well as
whether each access is a read or write operation.

2.1.1 Algorithms in the Balls-and-Bins Model
In this paper, we consider a set of classical algorithms
and data structures in the balls-and-bins model (note
that data structures are stateful algorithms.) The
inputs to the (possibly stateful) algorithm consist of a
sequence of balls each tagged with a key. Throughout
the paper, we assume that arbitrary computation can be
performed on the keys, but the balls are opaque and can
only be moved around. Each ball tagged with its key is
often referred to as an element or a record whenever
convenient. For example, a record can represent a
patient’s medical record or an event collected by a
temperature sensor.

Unless otherwise noted, we assume that the RAM’s
word size is large enough to store its own address as well
as a record (including the ball and its key). Sometimes
when we present our algorithms, we may assume that
the RAM can operate on real numbers and sample from
certain distributions at unit cost — but in all cases these
assumptions can eventually be removed and we can
simulate real number arithmetic on a finite-word-width
RAM preserving the same asymptotic performance (and
absorbing the loss in precision into the δ term of (ε, δ)-
differential obliviousness). We defer discussions on
simulating real arithmetic on a finite-word-width RAM
to the Appendices.

2.1.2 Additional Assumptions We make the
following additional assumptions:

• We consider possibly randomized RAM programs
— we assume that whenever needed, the CPU has

section for additional thanks to Dov Gordon.
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access to private random coins that are unobservable
by the adversary. Throughout the paper, unless
otherwise noted, for any randomized algorithm we
require perfect correctness7.

• Henceforth in this paper, we assume that the CPU
can store O(1) records in its private cache.

2.2 Differentially Oblivious Algorithms and
Oblivious Algorithms We first define differential
obliviousness for stateless algorithms. Suppose that
M(λ, I) is a stateless algorithm expressed as a RAM
program. Further, M takes in two inputs, a security
parameter λ and an input array (or database) denoted
I. We say that two input arrays I and I ′ are neighboring
iff they are of the same length and differ in exactly one
entry.

Definition 2.1. (Differentially oblivious
(stateless) algorithms) Let ε, δ be functions in
a security parameter λ. We say that the stateless
algorithm M satisfies (ε, δ)-differential obliviousness,
iff for any neighboring inputs I and I ′, for any λ, for
any set S of access patterns, it holds that

Pr[AccessesM (λ, I) ∈ S] ≤
eε(λ) · Pr[AccessesM (λ, I ′) ∈ S] + δ(λ),

where AccessesM (λ, I) is a random variable denoting
the ordered sequence of memory accesses the algorithm
M makes upon receiving the input λ and I.

In the above, the term δ behaves somewhat like a failure
probability, i.e., the probability of privacy failure for
any individual’s record or any event. For our upper
bounds subsequently, we typically would like δ to be
a negligible function in the security parameter λ, i.e.,
every individual can rest assured that as long as λ
is sufficiently large, its own privacy is unlikely to be
harmed. On the other hand, we would like ε not to grow
w.r.t. λ, and thus a desirable choice for ε is ε(λ) = O(1)
— e.g., we may want that ε = 1 or ε = 1

log λ .
We also present the classical notion of oblivious

algorithms since we will later be concerned about
showing separations between differential obliviousness
and classical obliviousness.

Definition 2.2. (Oblivious (stateless)
algorithms) We say that the stateless algorithm
M satisfies δ-statistical obliviousness, iff for any inputs

7Jumping ahead, given an (ε, δ)-differentially oblivious

algorithm that incurs δ′ correctness error, as long as the algorithm
can detect its own error during computation, it can be converted
into an algorithm that is perfectly correct and (ε, δ + δ′)-
differentially oblivious: specifically, if an error is encountered, the
algorithm simply computes and outputs a non-private answer.

I and I ′ of equal length, for any λ, it holds that

AccessesM (λ, I)
δ(λ)
≡ AccessesM (λ, I ′), where

δ(λ)
≡

denotes that the two distributions have at most δ(λ)
statistical distance. For the δ = 0 special case, we say
that M is perfectly oblivious.

It is not hard to see that if an algorithm M
is δ-statistically oblivious, it must also be (ε, δ)-
differentially oblivious. In other words, (ε, δ)-
differentially obliviousness is a strict relaxation of δ-
statistical obliviousness. Technically speaking, the
relaxation comes from two aspects: 1) differential
obliviousness requires that the access patterns be close
in distribution only for neighboring inputs; and the
access patterns for inputs that are dissimilar are
allowed to be more dissimilar too; and 2) differential
obliviousness additionally allows the access pattern
distributions induced by neighboring inputs to differ by
an eε multiplicative factor.
Definitions for stateful algorithms. So far,
our definitions for differential obliviousness and
obliviousness focus on stateless algorithms. Later in
our paper, we will also be interested in differentially
oblivious data structures. Data structures are stateful
algorithms where memory states persist in between
multiple invocations. The definition of differential
obliviousness is somewhat more subtle for data
structures, especially when the adversary can adaptively
choose the entries to insert into the data structure, and
adaptively choose the queries as well. For readability,
we defer defining differentially oblivious data structures
(i.e., stateful algorithms) to later technical sections.

3 Differentially Oblivious Sorting: Upper
Bounds

We consider sorting in the balls-and-bins model: given
an input array containing N opaque balls each tagged
with a key from a known domain [K], output an array
that is a permutation of the input such that all balls
are ordered by their keys. If the sorting algorithm relies
only on comparisons of keys, it is said to be comparison-
based. Otherwise, if the algorithm is allowed to perform
arbitrary computations on the keys, it is said to be non-
comparison-based.

As is well-known, comparison-based sorting must
suffer from Ω(N logN) runtime (even without privacy
requirements) and there are matching O(N logN)
oblivious sorting algorithms [21, 1]. On the other hand,
non-private, non-comparison-based sorting algorithms
can sort N elements (having keys in a universe of
cardinality O(N)) in linear time (e.g., counting sort).

In this section, we will show that for certain cases
of sorting, the notions of differential obliviousness and
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obliviousness result in a separation in performance.

3.1 Stably Sorting 1-Bit Keys We start with
stably sorting 1-bit keys and later extend to more bits.
Stable 1-bit-key sorting is the following problem: given
an input array containing N balls each tagged with a
key from {0, 1}, output a stably sorted permutation of
the input array. Specifically, stability requires that if
two balls have the same key, their relative ordering in
the output must respect their ordering in the input.

We choose to start with this special case because
interestingly, stable 1-bit-key sorting in the balls-and-
bins model has a Ω(N logN) lower bound due to the
recent work by Lin, Shi, and Xie [31] — and the lower
bound holds even for non-comparison-based sorting
algorithms that can perform arbitrary computation on
keys. More specifically, they showed that for any
constant 0 < δ < 1 any δ-oblivious stable 1-bit-key
sorting algorithm must in expectation perform at least
Ω(N logN) ball movements.

In this section, we will show that by adopting
our more relaxed differential obliviousness notion, we
can circumvent the lower bound for oblivious 1-bit-
key stable (balls-and-bins) sorting. Specifically, for a
suitable negligible function δ and for ε = Θ(1), we
can accomplish (ε, δ)-differentially oblivious 1-bit-key
stable sorting in O(N log logN) time. Unsurprisingly,
our algorithm is non-comparison-based, since due to the
0-1 principle, any comparison-based sorting algorithm,
even for 1-bit keys, must make at least Ω(N logN)
comparisons.

3.1.1 A Closely Related Abstraction: Tight
Stable Compaction Instead of constructing stable 1-
bit-key sorting algorithm directly, we first construct
a tight stable compaction algorithm: given some
input array, tight stable compaction outputs an array
containing only the 1-balls contained in the input,
padded with dummies to the input array’s size. Further,
we require that the relative order of appearance of the
1-balls in the output respect the order in the input.

Given a tight stable compaction algorithm running
in time t(N), we can easily realize a stable 1-bit-key
sorting algorithm that completes in time O(t(N) + N)
in the following way:

1. Run tight stable compaction to stably move all 0-
balls to the front of an output array — let X be the
resulting array;

2. Run tight stable compaction to stably move all 1-
balls to the end of an output array — let Y be
the resulting array (note that this can be done by
running tight stable compaction on the reversed

input array, and then reversing the result again);

3. In one synchronized scan of X and Y , select an
element at each position from either X or Y and
write it into an output array.

Moreover, if each instance of tight stable compaction
is (ε, δ)-differentially oblivious, then the resulting 1-
bit-key stable sorting algorithm is (2ε, 2δ)-differentially
oblivious.

3.1.2 Intuition Absent privacy requirements,
clearly tight stable compaction can be accomplished
in linear time, by making one scan of the input array,
and writing a ball out whenever a real element (i.e.,
the 1-balls) is encountered. In this algorithm, there
are two pointers pointing to the input array and the
output array respectively. Observing how fast these
pointers advance allows the adversary to gain sensitive
information about the input, specifically, whether
each element is real or dummy. Our main idea is to
approximately simulate this non-private algorithm, but
obfuscate how fast each pointer advances just enough
to obtain differential obliviousness. To achieve this we
need to combine oblivious algorithms building blocks
and differential privacy mechanisms.

First, we rely on batching: we repeatedly read a
small batch of s elements into a working buffer (of size
O(s)), obliviously sort the buffer to move all dummies to
the end, and then emit some number of elements into the
output. Note that the pointers to the input and output
array could still reveal information about the number of
non-dummy elements in the batchs read so far. Thus,
the challenge is to determine how many elements must
be output when the input scan reaches position i. Now,
suppose that we have a building block that allows us to
differentially privately estimate how many real elements
have been encountered till position i in the input for
every such i — earlier works on differentially private
mechanisms have shown how to achieve this [12, 13, 15].
For example, suppose we know that the number of real
elements till position i is in between [Ci−s, Ci+s] with
high probability, then our algorithm will know to output
exactly Ci − s elements when the input array’s pointer
reaches position i. Furthermore, at this moment, at
most 2s real elements will have been scanned but have
not been output — and these elements will remain
in the working buffer. We can now rely on oblivious
sorting again to truncate the working buffer and remove
dummies, such that the working buffer’s size will never
grow too large — note that this is important since
otherwise obliviously sorting the working buffer will
become too expensive. Below we elaborate on how to
make this idea fully work.
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3.1.3 Preliminary: Differentially Private Prefix
Sum Dwork et al. [15] and Chan et al. [12, 13] proposed
a differentially private algorithm for computing all N
prefix sums of an input stream containing N elements
where each element is from {0, 1}. In our setting, we
will need to group the inputs into bins and then adapt
their prefix sum algorithm to work on the granularity
of bins.

Theorem 3.1. (Differentially private prefix
sum [12, 13]) For any ε, δ > 0, there exists an (ε, δ)-
differentially private algorithm, such that given a stream
in ZN+ (where neigboring streams differs in at most
one position with difference at most 1), the algorithm
outputs the vector of all N prefix sums, such that

• Any prefix sum that is outputted by the algorithm
has only O( 1

ε · (logN)1.5 · log 1
δ ) additive error (with

probability 1).

• The algorithm is oblivious and completes in O(N)
runtime.

We remark that the original results in [12, 13] is
an (ε, 0)-differentially private algorithm such that the
outputted prefix sum has at most O( 1

ε ·(logN)1.5 · log 1
δ )

addititive error with probability at least 1 − δ, which
clearly implies the above theorem (by just outputting
the non-private prefix-sum when the error in the output
is too large). We choose to state Theorem 3.1 since
bounded error is needed for our differentially oblivious
algorithms to achieve perfect correctness.

3.1.4 Detailed Algorithm We first describe a tight
stable compaction algorithm that stably compacts an
input array I given a privacy parameter ε and a batch
size s.

TightStableCompact(I, ε, s):

• Invoke an instance of the differentially private prefix
sum algorithm with the privacy budget ε to estimate
for every i ∈ [N ], the total number of 1-balls in the
input stream I up till position i — henceforth we use
the notation Ỹi to denote the i-th prefix sum estimated
by the differentially private prefix sum algorithm.

• Imagine there is a working buffer initialized to be
empty. We now repeat the following until there are
no more bins left in the input.

1. Fetch the next s balls from the input stream into
the working buffer.

2. Obliviously sort the working buffer such that all 1-
balls are moved to the front, and all 0-balls moved
to the end; we use the ball’s index in the input
array to break ties for stability.

3. Suppose that k balls from the input have been
operated on so far. If there are fewer than Ỹk − s
balls in the output array, pop the head of the
working buffer and append to the output array
until there are Ỹk − s balls in the output array.

4. If the working buffer (after popping) is longer than
2s, truncate from the end such that the working
buffer is of size 2s.

• Finally, at the end, if the output is shorter than N ,
then obliviously sort the working buffer (using the
same relative ordering function as before) and write
an appropriate number of balls from the head into the
output such that the output buffer is of length N .

Finally, as mentioned, we can construct stable 1-
bit-key sorting by running two instances of tight stable
compaction and then in O(N) time combining the two
output arrays into the final outcome. We state our
theorem below but defer the analysis and proofs to the
full version [10].

Theorem 3.2. (Stable 1-bit-key sorting) For
any ε > 0 and any 0 < δ < 1, there exists an (ε, δ)-
differentially oblivious algorithm such that for any input
array with N balls each tagged with a 1-bit key, the
algorithm completes in O(N log( 1

ε log1.5N log 1
δ ))

runtime and stably sorts the balls with perfect
correctness. As a special case, for ε = Θ(1), there exists
an (ε, δ)-differentially oblivious stable 1-bit-key sorting
algorithm such that it completes in O(N log logN)
runtime and has negligible δ.

Optimality. In light of our lower bound to be presented
in the next section (Theorem 4.4), our 1-bit-key stable
sorting algorithm is in fact optimal (up to log log
factors) as long as εs ≥ 2 log2N — note that this
includes most parameter ranges one might care about.
For the special case of ε = Θ(1), our upper bound

is Õ(N) runtime for δ = e− poly logN and Õ(N logN)

runtime for δ = e−N
0.1

where Õ hides a log log factor
— both cases match our lower bound.

3.2 Sorting More Bits Given an algorithm for
stably sorting 1-bit keys, we can easily derive an
algorithm for stably sorting k-bit keys simply using the
well-known approach of Radix Sort: we sort the input
bit by bit starting from the lowest-order bit. Clearly,
if the stable 1-bit-key sorting building block satisfies
(ε, δ)-differentially oblivious, then resulting k-bit-key
stable sorting algorithm satisfies (kε, kδ)-differentially
oblivious. This gives rise to the following corollary.

Corollary 3.1. (Stable k-bit-key sorting) For
any ε, δ > 0, there exists an (ε, δ)-differentially oblivious
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algorithm such that for any input array with N balls
each tagged with a k-bit key, the algorithm completes in
O(kN log(kε log1.5N log 1

kδ )) runtime and stably sorts
the balls with perfect correctness.

As a special case, for ε = Θ(1), there exists
an (ε, δ)-differentially oblivious stable k-bit-key sorting
algorithm that completes in O(kN log logN) runtime
and has negligible δ.

We point out that if k = o(logN/ log logN),
we obtain a stable k-bit-key sorting algorithm that
overcomes the Ω(N logN) barrier for stable δ-oblivious
sort in the balls-and-bins model — recall that Lin,
Shi, and Xie [31] show that for even δ = O(1),
any (possibly non-comparison-based) stable 1-bit-key δ-
oblivious sorting algorithm in the balls-and-bins model
must incur Ω(N logN) runtime. We stress that our
algorithm is non-comparison-based, since otherwise due
to the 0-1 principle, any comparison-based sorting
algorithm — even without privacy requirements and
even for 1-bit keys — must incur at least Ω(N logN)
runtime.

4 Limits of Differentially Oblivious Sorting

We showed earlier that for a suitably and negligibly
small δ and ε = Θ(1), by adopting the weaker notion
of (ε, δ)-differential obliviousness, we can overcome the
Ω(N logN) barrier for oblivious stable sorting for small
keys (in the balls-and-bins model). In this section,
we show that if δ must be subexponentially small
(including the special case of requiring δ = 0), then
(ε, δ)-differentially oblivious 1-bit stable sorting would
suffer from the same lower bound as the oblivious case.
Without loss of generality, we may assume that the
CPU has a single register and can store a single record
(containing a ball and an associated key) and its address
— since any O(1) number of registers can be simulated
by a trivial ORAM with O(1) blowup.

4.1 Definitions and Preliminaries We begin by
presenting some new notions and preliminaries that are
necessary for our lower bound.

4.1.1 Plausibility of Access Patterns among
Neighboring Inputs In order to derive our lower
bounds for differentially oblivious sorting, merging,
and data structures, we show that for a differentially
oblivious algorithm, with high probability, the access
pattern produced for some input I is “plausible” for
many inputs that are “close” to I.

Definition 4.1. (r-neighbors) Two inputs are r-
neighboring, if they differ in at most r positions.

Definition 4.2. (Plausible access pattern)
An access pattern A produced by a mechanism M is
plausible for an input I, if Pr[AccessesM (λ, I) = A] >
0; if Pr[AccessesM (λ, I) = A] = 0, we say that A is
implausible for I.

Lemma 4.1. Suppose I0 is some input for a mechanism
M that is (ε, δ)-differentially oblivious, and C is a
collection of inputs that are r-neighbors of I0. Then,
the probability that AccessesM (λ, I0) is plausible for all
inputs in C is at least 1− η, where η := |C| · e

εr−1
eε−1 · δ.

4.1.2 Access Pattern Graphs under the Balls-
and-Bins Model Recall that we assume a balls-and-
bins model and without loss of generality we may
assume that the CPU has a single register and can store
a single ball and its key.
Access pattern graph. We model consecutive t
memory accesses by an access pattern graph defined as
follows. Let N index the CPU register together with
the memory locations accessed by the CPU in those t
accesses. The t memory accesses are represented by t+1
layers of nodes, where the layers are indexed from i = 0
to t. The nodes and edges of the access pattern graph
are defined precisely as follows.

(a) Nodes. For each 0 ≤ i ≤ t, layer i consists of nodes
of the form (i, u), where u ∈ N represents either the
CPU or a memory location. Intuitively, the node
(i, u) represents the opaque ball stored at u after
the i-th memory access.

(b) Edges. Each edge is directed and points from a
node in layer i− 1 to one in layer i for some i ≥ 1.
For u ∈ N , there is a directed edge from its copy
(i − 1, u) in layer i − 1 to (i, u) in layer i. This
reflects the observation that if a ball is stored at u
before the i-th access, then it is plausible that the
same ball is still stored at u after the i-th access.

Suppose the CPU accesses memory location ` in
the i-th access. Then, we add two directed edges
((i−1, CPU), (i, `)) and ((i−1, `), (i, CPU)). This
reflects the balls stored in the CPU and location `
can possibly move between those two places.

Compact access pattern graph (compact graph).
Observe that in each layer i, any node that corresponds
to a location not involved in the i-th access has in-degree
and out-degree being 1. Whenever there is such a node
x with the in-coming edge (u, x) and the out-going edge
(x, v), we remove the node x and add the directed edge
(u, v). This is repeated until there is no node with
both in-degree and out-degree being 1. We call the
resulting graph the compact access pattern graph, or
simply the compact graph. The following lemma relates
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the number of memory accesses to the number of edges
in the compact graph.

Lemma 4.2. (Number of edges in a compact
graph) Suppose N is the set indexing the CPU
together with the memory location accessed by the CPU
in consecutive t accesses. Then, the compact graph
corresponding to these t accesses has 4t + |N | − 2 ≤ 5t
edges.

4.1.3 Preliminaries on Routing Graph
Complexity We consider a routing graph. Let I
and O denote a set of n input nodes and m ≥ n output
nodes respectively. We say that A is an assignment
from I to O if A is an injection from nodes in I to
nodes O. A routing graph G is a directed graph, and
we say that G implements the assignment A if there
exist n vertex-disjoint paths from I to O respecting the
assignment A.

Let A := (A1, A2, . . . , As) denote a set of
assignments from I to O. We say A is non-overlapping
if for every input x ∈ I, the assignements map x to
distinct outputs, i.e., Ai(x) 6= Aj(x) for every i 6= j ∈
[s]. Pippenger and Valiant proved the following useful
result [37].

Fact 4.1. (Pippenger and Valiant [37]) Let A :=
(A1, A2, . . . , As) denote a set of assignments from I to
O where n = |I| ≤ |O| Let G be a graph that implements
every Ai for i ∈ [s]. If A is non-overlapping, then the
number of edges in G must be at least 3n log3 s.

In our lower bound proofs, we shall make use of
Fact 4.1 together with Lemma 4.2 to show that the
number of memory location accesses is large in each
relevant scenario. A useful set of non-overlapping
assignments are shift assuments, defined as follows.

Definition 4.3. (Shift assignment) We say
that A is a shift assignment for the input
nodes I = {x0, x1, . . . , xn−1} and output nodes
O = {y0, y1, . . . , yn−1} iff there is some s such that
for any i ∈ {0, 1, . . . , n − 1}, xi is mapped to yj where
j = (i + s) mod n — we also refer to s as the shift
offset.

4.2 Lower Bounds for Differentially Oblivious
Sorting Warmup and intuition. As a warmup, we
consider a simple lower bound proof for the case δ = 0
and for general sorting (where the input can contain
arbitrary keys not just 1-bit keys). Suppose there
is some ε-differentially oblivious balls-and-bins sorting
algorithm denoted sort. Now, given a specific input
array I, let G be such a compact graph encountered

with non-zero probability p. By the requirement of ε-
differential obliviousness, it must be that for any input
array I ′, the probability of encountering G must be at
least p · e−εN > 0. This means G must also be able
to explain any other input array I ′. In other words,
for any input I ′ there must exist a feasible method
for routing the balls contained in the input I ′ to their
correct location in the output locations in G. Recall
that in the compact graph G, every node (t, i) can
receive a ball from either of its two incoming edges:
either from the parent (t′, i) for some t′ < t, from the
parent (t − 1, CPU). Let T be the total number of
nodes in G, by construction, it holds that the number
of edges in G = Θ(T ). Now due to a single counting
argument, since the graph must be able to explain all
N ! possible input permutations, we have 2T ≥ N !.
By taking logarithm on both sides, we conclude that
T ≥ Ω(N logN).

The more interesting question arises for δ 6= 0.
We will now prove such a lower bound for δ 6= 0.
Instead of directly tackling a general sorting lower
bound, we start by considering stably sorting balls with
1-bit keys, where stability requires that any two balls
with the same key must appear in the output in the
same order as in the input. Note that given any
general sorting algorithm, we can realize 1-bit-key stable
sorting in a blackbox manner: every ball’s 1-bit key is
appended with its index in the input array to break
ties, and then we simply sort this array. Clearly, if
the general sorting algorithm attains (ε, δ)-differential
obliviousness, so does the resulting 1-bit-key stable
sorting algorithm. Thus, a lower bound for 1-bit-key
stable sorting is stronger than a lower bound for general
sorting (parameters being equal).

Theorem 4.4. (Limits of differentially
oblivious 1-bit-key stable sorting) Let
0 < s ≤

√
N be an integer. Suppose ε > 0 and

0 ≤ δ ≤ e−(2εs+log2N). Then, any (randomized) stable
1-bit-key sorting algorithm (in the balls-and-bins model)
that is (ε, δ)-differentially oblivious must have some
input, on which it incurs at least Ω(N log s) memory
accesses with probability at least 1 − negl(N) for some
negligible function negl(·).

Proof. We assume that the input is given in N specific
memory locations Input[0..N−1], and the stable sorting
algorithm M must write the output in another N
specific memory locations Output[0..N − 1].

For each 0 ≤ i ≤ s, we define the input scenario Ii
as follows, such that in each scenario, there are exactly
s elements with key value 0 and N − s elements with
key value 1. Specifically, in scenario Ii, the first s − i
and the last i elements in Input[0..N −1] have key value
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0, while all other elements have key value 1. It can be
checked that any two scenarios are 2s-neighboring.

Moreover, observe that for 0 ≤ i ≤ s, in scenario
Ii, any ball with non-zero key in Input[j] is supposed to
go to Output[j + i] (where addition j + i is performed
modulo N) after the stable sorting algorithm is run.

Observe that a stable sorting algorithm can only
guarantee that all the elements with key 0 will appear
at the prefix of Output according to their original
input order. However, after running the stable sorting
algorithm, we can use an extra oblivious sorting network
on the first s elements to ensure that in the input
scenario Ii, any element with key 0 in Input[j] originally
will end up finally at Output[j + i]. Therefore, the
resulting algorithm is still (ε, δ)-differentially oblivious.

Therefore, by Lemma 4.1, with probability at least

1 − η (where η := s · e
ε·2s−1
eε−1 · δ = ¬(N)), running the

algorithm M on input I0 produces an access pattern A
that is plausible for Ii for all 1 ≤ i ≤ s. Let G be the
compact graph (defined Section 4.1.2) corresponding to
A.

Observe that A is plausible for Ii implies that G
contains N vertex-disjoint paths, where for 0 ≤ j <
N , there is such a path from the node corresponding
to the initial memory location Input[j] to the node
corresponding to the final memory location Output[j+i].

Then, Fact 4.1 implies thatG has at least Ω(N log s)
edges. Hence, Lemma 4.2 implies that the access
pattern A makes at least Ω(N log s) memory accesses.
Since our extra sorting network takes at most O(s log s)
memory accesses, it follows that the original sorting
algorithm makes at least Ω(N log s) accesses.

Notice that given any general sorting algorithm
(not just for 1-bit keys), one can construct 1-bit-key
stable sorting easily by using the index as low-order tie-
breaking bits. Thus our lower bound for stable 1-bit-key
sorting also implies a lower bound for general sorting as
stated in the following corollary.

Corollary 4.1. Let 0 < s ≤
√
N be an integer.

Suppose ε > 0 and 0 ≤ δ ≤ e−(2εs+log2N).
Then, any (randomized) sorting algorithm that is (ε, δ)-
differentially oblivious must have some input, on which
it incurs at least Ω(N log s) memory accesses with
probability at least 1 − negl(N) for some negligible
function negl(·).

Finally, just like our upper bounds, our lower
bounds here assume that the algorithm must be
perfectly correct. In the full version [10], we show how
to generalize the lower bound to work for algorithms
that can make mistakes with a small probability.

5 Differentially Oblivious Merging: Upper
Bounds

Merging in the balls-and-bins model is the following
abstraction: given two input arrays each of which
contains at most N balls sorted by their tagged keys,
merge them into a single sorted array. Pippenger
and Valiant [37] showed that any oblivious merging
algorithm in the balls-and-bins model must incur at
least Ω(N logN) movements of balls.

In this section, we show that when ε = O(1) and δ
is negligibly small (but not be subexponentially small),
we can accomplish (ε, δ)-differentially oblivious merging
in O(N log logN) time! This is yet another separation
between obliviousness and our new notion of differential
obliviousness.
Clarifications: definition of neighboring inputs
for merging. In merging, both input arrays must be
sorted. As a result, to define the notion of neighboring
inputs, it does not make sense to take an input array
and flip a position to an arbitrarily value — since
obviously this would break the sortedness requirement.
Instead, we say that two inputs (I0, I1) and (I ′0, I

′
1) are

neighboring iff for each of b ∈ {0, 1}, the two (multi-
)sets set(Ib) and set(I ′b) differ in exactly one record.
Based on this notion of neighboring, (ε, δ)-differentially
obliviousness for merging is defined in the same manner
as in Section 2.2.

5.1 Intuition The näıve non-private merging
algorithm keeps track of the head pointer of each
array, and performs merging in linear time. However,
how fast each head pointer advances leaks the relative
order of elements in the two input arrays. Oblivious
merging hides this information completely but as
mentioned, must incur Ω(N logN) runtime in the balls-
and-bins model. Since our requirement is differential
obliviousness, this means that we can reveal some
noisy aggregate statistics about the two input arrays.
We next highlight our techniques for achieving better
runtimes.
Noisy-boundary binning and interior points.
Inspired by Bun et al. [8], we divide each sorted input
array into poly log λ-sized bins (where λ is the security
parameter). To help our merging algorithm decide how
fast to advance the head pointer, a differentially private
mechanism by Bun et al. [8] is used to return an interior
point of each bin, where an interior point is defined to
be any value that is (inclusively) between the minimum
and the maximum elements of the bin. Technically, the
following components are important for our proofs to
work.

1. Random bin loads and localization: each bin must
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contain a random number of real elements padded
with dummies to the bin’s maximum capacity Z =
poly log λ — this is inspired by Bun et al. [8]. The
randomization in bin load allows a “localization”
technique in our proofs, since inserting one element
into the input array can be obfuscated by local noise
and will not significantly affect the distribution of
the loads of too many bins.

2. Secret bin load. For privacy, it is important that the
actual bin loads be kept private from the adversary.
This raises a technical challenge: since the adversary
can observe the access patterns when the bins are
constructed, how can we make sure that the access
patterns do not reveal the bins’ loads? One näıve
approach is to resort to oblivious algorithms — but
oblivious sorting in the balls-and-bins model has a
well-known Ω(N logN) lower bound [31] and thus
would be too expensive.

Creating the bins privately. To answer the above
question of how to construct the bins securely without
disclosing the bins’ actual loads, we again rely on a
batching and queuing technique similiar in spirit to our
tight stable compaction algorithm. At a high level,
for every iteration i : 1) we shall read a small, poly-
logarithmically sized batch of elements from the input
stream into a small, poly-logarithmically sized working
buffer; 2) we rely on oblivious algorithms to construct
the i-th bin containing the smallest Ri elements in the
buffer padded with dummies, where the load Ri has
been sampled from an appropriate distribution. These
elements will then be removed from the working buffer.

The key to making this algorithm work is to ensure
that at any time, the number of elements remaining in
the buffer is at most polylogarithmic (in the security
parameter). This way, running oblivious algorithms
(e.g., oblivious sorting) on this small buffer would incur
only log log overheads. To this end, we again rely on
a differentially private prefix sum mechanism (which
must be made oblivious first) to estimate how many
real elements will be placed in the first i bins for every
choice of i. Suppose that the number of real elements
in the first i bins is in the range [Ci, C

′
i] (except with

negligible probability); then when constructing the i-th
bin, it suffices to read the input stream upto position
C ′i.

It would seem like the above idea still leaks some
information about each bin’s actual load — but we
will prove that this leakage is safe. Concretely, in
our Appendices, we will prove a binning composition
theorem, showing that with our noisy-boundary
binning, it is safe to release any statistic that is
differentially private with respect to the binning

outcome — the resulting statistic would also be
differentially private with respect to the original input.

Putting the above together, we devise an almost
linear-time, differentially oblivious procedure for
dividing input elements into bins with random bin loads,
where each bin is tagged with a differentially private
interior point — henceforth we call this list of bins
tagged with interior points thresh-bins.
Merging lists of thresh-bins. Once we have
converted each input array to a list of thresh-bins, the
idea is to perform merging by reading bins from the
two input arrays, and using each bin’s interior point
to inform the merging algorithm which head pointer to
advance. Since each bin’s load is a random variable, it
is actually not clear how many elements to emit after
reading each bin. Here again, we rely on a differentially
private prefix sum mechanism to estimate how many
elements to emit, and store all the remaining elements
in a poly-logarithmically sized working buffer. In this
manner, we can apply oblivious algorithm techniques to
the small working buffer incurring only log log blowup
in performance.

5.2 Preliminaries Oblivious bin placement.
Oblivious bin placement is the following abstraction:
given an input array X, and a vector V where V [i]
denotes the intended load of bin i, the goal is to place
the first V [1] elements of X into bin 1, place the next
V [2] elements of X into bin 2, and so on. All output
bins are padded with dummies to a maximum capacity
Z. Once the input X is fully consumed, all remaining
bins will contain solely dummies.

We construct an oblivious algorithm for solving
the bin placement problem. Our algorithm invokes
building blocks such as oblivious sorting and oblivious
propagation constant number of times, and thus it
completes in O(n log n) runtime where n = max(|X|, Z ·
|V |). We present the theorem statement for this
building block and defer the details to the Appendices.

Theorem 5.1. (Oblivious bin placement)
There exists a deterministic, oblivious algorithm
that realizes the aforementioned bin placement
abstraction and completes in time O(n log n) where
n = max(|X|, Z · |V |).

Truncated geometric distribution. Let Z > µ
be a positive integer, and α ≥ 1. The truncated
geometric distribution GeomZ(µ, α) has support with
the integers in [0..Z] such that its probability mass
function at x ∈ [0, Z] is proportional to α−|µ−x|. We
consider the special case µ = Z

2 (where Z is even)

and use the shorthand GeomZ(α) := GeomZ(Z2 , α). In
this case, the probability mass function at x ∈ [0..Z] is
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α−1
α+1−2α−Z

2
· α−|Z2 −i|.

5.3 Subroutine: Differentially Oblivious
Interior Point Mechanism Bun et al. [8] propose
a differentially private interior point algorithm: given
an array I containing sufficient samples, they show
how to release an interior point that is between
[min(I),max(I)] in a differentially private manner.
Unfortunately, their algorithm does not offer access
pattern privacy if executed in a näıve manner. In
the Appendices, we show how to design an oblivious
algorithm that efficiently realizes the interior point
mechanism — our approach makes use of oblivious
algorithm techniques (e.g., oblivious sorting and
oblivious aggregation) that were adopted in the design
of ORAM and OPRAM schemes [20, 18, 22, 6, 11, 36].
Importantly, since our main algorithm will call this
oblivious interior point mechanism on bins containing
dummy elements, we also need to make sure that our
oblivious algorithm is compatible with the existence of
dummy elements and not disclose how many dummy
elements there are. We present the following theorem
while deferring its detailed proof to the Appendices.
In the Appendices, we also discuss how to realize the
oblivious interior point mechanism on finite-word-
length RAMs without assuming arbitrary-precision real
arithmetic.

Theorem 5.2. (Differentially private interior
point) For any ε, δ > 0, there exists an algorithm such
that given any input bin of capacity Z consisting of n
real elements, whose real elements have keys from a
finite universe [0..U − 1] and n ≥ 18500

ε · 2log∗ U · log∗ U ·
ln 4 log∗ U

εδ , the algorithm

• completes consuming only O(Z logZ) time and
number of memory accesses.

• the algorithm produces an outcome that is (ε, δ)-
differentially private;

• the algorithm has perfect correctness, i.e., the
outcome is an interior point of the input bin with
probability 1; and

• the algorithm’s memory access pattern depends only
on Z, and in particular, is independent of the
number of real elements the bin contains.

5.4 Subroutine: Creating Thresh-Bins In the
ThreshBins subroutine, we aim to place elements in
an input array X into bins where each bin contains a
random number of real elements (following a truncated
geometric distribution), and each bin is padded with
dummies to the maximum capacity Z. The ThreshBins

will emit exactly B bins. Later when we call ThreshBins
we guarantee that B bins will almost surely consume
all elements in X. Logically, one may imagine that X is
followed by infinitely many ∞ elements such that there
are always more elements to draw from the input stream
when creating the bins. Note that ∞’s are treated as
filler elements with maximum key and not treated as
dummies (and this is important for the interior point
mechanism to work).

ThreshBins(λ,X,B, ε0):

Assume:

1. B ≤ poly(λ) for some fixed polynomial poly(·).

2. ε0 < c for some constant c that is independent of λ.

3. The keys of all elements are chosen from a finite
universe denoted [0..U − 1], where log∗ U ≤ log log λ
(note that this is a very weak assumption).

4. Let the bin capacity Z := 1
ε0

log8 λ, and s = 1
ε0
·log3 λ

Algorithm:

• Recall that the elements inX are sorted; if the length
of the input X is too small, append an appropriate
number of elements with key∞ at the end such that
it has length at least 2BZ.

This makes sure that the real elements in the input
stream do not deplete prematurely in process below.

• For i = 1 to B, let Ri = GeomZ(exp(ε0)) be
independently sampled truncated geometric random
variables. Denote the vector R := (R1, R2, . . . , RB).

• Call D := PrefixSum(λ,R, ε04 , δ0) ∈ ZB+ , which
is the ( ε04 , δ0)-differentially private subroutine in
Theorem 3.1 that privately estimates prefix sums,
where δ0 is set so that the additive error is at most
s. We use the convention that D[0] = 0.

• Let Buf be a buffer with capacity Z + s = O(Z).
Initially, we place the first s elements of X in Buf.

• For i = 1 to B:

– Read the next batch of elements from the input
stream X with indices from D[i − 1] + s + 1 to
D[i] + s, and add these elements to the buffer Buf.

This is done by temporarily increasing the capacity
of Buf by appending these elements at the end.
Then, oblivious sorting can be used to move any
dummy elements to the end, after which we can
truncate Buf back to its original capacity.

– Call ObliviousBinPlace(Buf, (Ri), Z) to place the
first Ri elements in Buf into the next bin and
the bin is padded with dummies to the maximum
capacity Z.
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– Mark every element in Buf at position Ri or
smaller as dummy. (This is done by a linear scan
so that the access pattern hides Ri and effectively
removes the first Ri elements in Buf in the next
oblivious sort.)

• Tag each bin with its estimated prefix sum from
vector D. Moreover, we use the ( ε04 , δ)-differentially
oblivious interior point mechanism in Section 5.3
to tag each bin with an interior point, denoted
by a vector P = (P1, . . . , PB), where δ :=
1
4 exp(−0.1 log2 λ).

• Output the B bins.

5.5 Subroutine: Merging Two Lists of Thresh-
Bins We next describe an algorithm to merge two lists
of thresh-bins. Recall that the elements in a list of
thresh-bins are sorted, where each bin is tagged with
an interior point and also an estimate of the prefix sum
of the number of real elements up to that bin.

MergeThreshBins(λ, T0, T1, ε0):

Assume:

1. The input is T0 and T1, each of which is a list
of thresh-bins, where each bin has capacity Z =
1
ε0

log8 λ size. For b ∈ {0, 1}, let Bb = |Tb| be the
number of bins in Tb, and B := B0 +B1 is the total
number of bins. Recall that the bins in T0 and T1 are
tagged with interior points P0 and P1 and estimated
prefix sums D0 and D1, respectively.

2. The output is an array of sorted elements from
T0 and T1, where any dummy elements appear at
the end of the array. The length of the array is
M := BZ.

Algorithm:

• Let s = 1
ε0

log3 λ.

• Initialize an empty array Output[0..M − 1] of length
M := BZ.

Initialize count := 0, the number of elements already
delivered to Output.

• Initialize indices j0 = j1 = 0 and a buffer Buf with
capacity K := 6(Z + s) = O(Z). Add elemnts in
T0[1] and T1[1] to Buf.

• Let L be the list of sorted bins from T0 and T1
according to the tagged interior points. (Observe
that we do not need oblivious sort in this step.) We
will use this list to decide which bins to add to Buf.

• For i = 1 to B:

– Update the indices j0, j1: if the bin L[i] belongs
to Tb, update jb ← jb + 1. (This maintains that
L[i] = Tb[jb].)

– Add elements in bin Tb[jb + 1] (if exists) to Buf.
This is done by appending elements in Tb[jb + 1]
at the end of Buf to temporarily increase the size
of Buf, and then use oblivious sorting followed
by truncation to restore its capacity. (Note that
Tb[jb + 1] may not be the next bin in the list L.)
Note that the elements in Buf are always sorted.

– Determine safe bins k0, k1: For b ∈ {0, 1}, let kb
be the maximal index k such that the following
holds: (i) Tb[k] is inserted in Buf, (ii) there
exists some bin T1−b[u] from T1−b that has been
inserted into Buf and whose interior point is at
least that of Tb[k + 1], i.e., P1−b[u] ≥ Pb[k + 1].
(Observe that any element with key smaller than
that of an element in a safe bin has already been
put into the buffer.) If there is no such index, set
kb = 0. Note that the last bin Bb cannot be safe.

– Remove safe bins from Buf: Set newcount :=
D0[k0]+D1[k1]−2s. Remove the first (newcount−
count) elements from the Buf and copy them into
the next available slots in the Output array. Then
update count← newcount.

• Output the remaining elements: Let newcount =
min{D0[B0] + D1[B1] + 2s,BZ}. Copy the first
(newcount − count) into the next available slots in
the Output array.

5.6 Full Merging Algorithm Finally, the full
merging algorithm involves taking the two input arrays,
creating thresh-bins out of them using ThreshBins, and
then calling Merge to merge the two lists of thresh-bins.
We defer concrete parameters of the full scheme and
proofs to the Appendices.

Merge(λ, I0, I1, ε):

Assume:

1. The input is two sorted arrays I0 and I1.

2. We suppose that ε < c for some constant c,
log∗ U ≤ log log λ, and |I0| ≤ poly0(λ) and |I1| ≤
poly1(λ) for some fixed polynomials poly0(·) and
poly1(·).

Algorithm:

1. First, for b ∈ {0, 1}, let Bb := d 2|Ib|Z (1 + 2
log2 λ

)e, call

ThreshBins(λ, Ib, Bb, 0.1ε) to transform each input
array into a list of thresh-bins — let T0 and T1 denote
the outcomes respectively.
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2. Next, call MergeThreshBins(λ, T0, T1, 0.1ε) and let
T be the sorted output array (truncated to length
|I0|+ |I1|).

3. Do a linear scan on T, I0, I1 to check if T contains
the same number of non-dummy elements as in the
input (I0, I1). If so, output T . Otherwise (this can
happen when the bin load in the thresh-bins are too
small so that some elements are dropped), perform a
non-private merge to output a correct merged array.

Theorem 5.3. (Differentially oblivious
merging) The Merge(λ, I0, I1, ε) algorithm
is (ε, δ)-differentially oblivious, where δ =
exp(−Θ(log2 λ)). Moreover, its running time is
O((|I0| + |I1|)(log 1

ε + log log λ)) and it has perfect
correctness.

We defer the proofs of the above theorem to the
Appendices.

5.7 Limits of Differentially Oblivious Merging
In this section, we prove a lower bound regarding the
performance of differentially oblivious merging.

Theorem 5.4. (Limits of (ε, δ)-differentially
oblivious merging) Consider the merging problem,
in which the input is two sorted lists of elements and
the output is the merging of the two input lists into a
single sorted list.

Let 0 < s ≤
√
N be an integer. Suppose ε > 0 and

0 ≤ δ ≤ e−(εs+log2N). Then, any merging algorithm
that is (ε, δ)-differentially oblivious must have some
input consisting of two sorted lists each of length N ,
on which it incurs at least Ω(N log s) memory accesses
with probability at least 1− negl(N).

Proof. We consider two input lists. The first list
Input1[0..N − 1] is always the same such that Input1[j]
holds an element with key value j + 1.

We consider s+ 1 scenarios for the second list. For
0 ≤ i ≤ s, in scenario Ii, Input2[0..N − 1] contains i
elements with key value 0 and N − i elements with key
value N + 1. It follows that any two such scenarios are
s-neighboring.

By Lemma 4.1, on input scenario I0, any merging
algorithm that is (ε, δ)-differentially oblivious produces
an access pattern A that is plausible for all Ii’s (1 ≤ i ≤
s) with all but probability of s · e

εs−1
eε−1 · δ = negl(N).

We assume that the merging algorithm writes the
merged list into the memory locations Output[0..2N−1].
Hence, for all 0 ≤ i ≤ s, in scenario Ii, for all 0 ≤ j <
N , the element initially stored at Input1[j] will finally
appear at Output[i+ j].

Therefore, any access pattern A that is plausible
for Ii must correspond to a compact graph G that
contains N vertex-disjoint paths, each of which goes
from the node representing the initial Input1[j] to the
node representing the final Output[i+ j], for 0 ≤ j < N .

Hence, Lemma 4.1 implies that if A is plausible for
all scenarios Ii’s, then the corresponding compact G has
Ω(N log s) edges, which by Lemma 4.2 implies that the
access pattern A must make at least Ω(N log s) memory
accesses.

6 Differentially Oblivious Range Query Data
Structure

6.1 Data Structures A data structure in the RAM
model is a possibly randomized stateful algorithm
which, upon receiving requests, updates the state in
memory and optionally outputs an answer to the request
— without loss of generality we may assume that the
answer is written down in memory addresses [0..L− 1],
where L is the length of the answer.

As mentioned, we consider data structures in the
balls-and-bins model where every record (e.g., patient
or event record) may be considered as an opaque ball
tagged with a key. Algorithms are allowed to perform
arbitrary computations on the keys but the balls can
only be moved around.

We start by considering data structures that
support two types of operations, insertions and queries.
Each insertion inserts an additional record into the
database and each query comes from some query family
Q. We consider two important query families: 1) for
our lower bounds, we consider point queries where each
query wants to request all records that match a specified
key; 2) for our upper bounds, we consider range queries
where each query wants to request all records whose
keys fall within a specified range [s, t].
Correctness notion under obfuscated lengths.
As Kellaris et al. [26] show, leaking the number of
records matching each query can, in some settings, cause
entire databases to be reconstructed. Our differential
obliviousness definitions below will protect such length
leakage. As a result, more than the exact number of
matching records may be returned with each query.
Thus, we require only a relaxed correctness notion: for
each query, suppose that L records are returned — we
require that all matching records must be found within
the L records returned. For example, in a client-server
setting, the client can retrieve the answer-set (one by
one or altogether), and then prune the non-matching
records locally.
Performance metrics: runtime and locality. For
our data structure construction, besides the classical
runtime metric that we have adopted throughout the
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paper, we consider an additional locality metric which
was commonly adopted in recent works on searchable
encryption [9, 5] and Oblivious RAM constructions [4].
Real-life storage systems including memory and disks
are optimized for programs that exhibit locality in
its accesses — in particular, sequential accesses are
typically much cheaper than random accesses. We
measure a data structure’s locality by counting how
many discontiguous memory regions it must access to
serve each operation.

6.2 Defining Differentially Oblivious Data
Structures We define two notions of differential
obliviousness for data structures, static and adaptive
security. Static security assumes that the data
structure’s operational sequences are chosen statically
independent of the answers to previous queries;
whereas adaptive security assumes that the data
structure’s operational sequences are chosen adaptively,
possibly dependent on the answers to previous queries.
Notice that this implies that both the queries and
the database’s contents (which are determined by
the insertion operations over time) can be chosen
adaptively.

As we argue later, adaptive differential
obliviousness is strictly stronger than the static
notion. We will use the static notion for our lower
bounds and the adaptive notion for our upper bounds
— this makes both our lower- and upper-bounds
stronger.

Due to space limit, the following contents are
deferred to the full version [10]:
• Formal definitions of static and adaptive

differential obliviousness for data structures.
• Range Query from Thresh-Bins. We use the

differentially oblivious algorithmic building blocks
thresh-bins introduced in earlier parts of the paper
to design an efficient differentially oblivious data
structure for range queries.
• Range Query Data Structure Construction. We

use a hierarchical data structure that is inspired
by hierarchical ORAM constructions [20, 18, 22].
However, we will accomplish rebuilding a level in
almost linear time by using the MergeThreshBins
procedure described earlier.
• Lower bounds for differentially oblivious data

structures.
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