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Abstract: A shape-based Gaussian docking function is constructed which uses Gaussian functions
to represent the shapes of individual atoms. A set of 20 trypsin ligand–protein complexes are drawn
from the Protein Data Bank (PDB), the ligands are separated from the proteins, and then are docked
back into the active sites using numerical optimization of this function. It is found that by employing
this docking function, quasi-Newton optimization is capable of moving ligands great distances [on
average 7 Å root mean square distance (RMSD)] to locate the correctly docked structure. It is also
found that a ligand drawn from one PDB file can be docked into a trypsin structure drawn from any
of the trypsin PDB files. This implies that this scoring function is not limited to more accurate x-ray
structures, as is the case for many of the conventional docking methods, but could be extended to
homology models. © 2002 Wiley Periodicals, Inc. Biopolymers 68: 76–90, 2003

Keywords: docking; structure based drug design; Gaussian based docking function; electronic
screening of ligands

INTRODUCTION

The goal of any docking method is to find the best
candidate ligands, i.e., those with the highest binding
affinity, in the smallest possible list to be assayed.1

With molecular dynamics or Monte Carlo simula-
tions, it is theoretically possible to rigorously evaluate
the �G of binding, and hence the binding affinity of a
ligand.2,3 However, these methods are far too time-
consuming to be used for the screening of large cor-
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porate databases. To improve docking throughput,
scoring functions are employed that involve simpli-
fied approximations of the �G of binding dependent
on the position of the protein and ligand atoms.4–8

Docking methods attempt to find the optimum value
of the scoring function for each ligand interacting
with the protein as quickly and accurately as possible.
The time required to find the optimal value of a
scoring function depends strongly on the number of
degrees of freedom as well as the complexity of the
scoring function hypersurface. Due to large number of
atoms involved and the number of factors often ac-
counted for (e.g., steric fitting, hydrogen bonding,
electrostatics, torsional strain, etc.), the complexity of
the hypersurface is generally very high with many
locally optimal values.9–11 A typical approximation is
that of a rigid protein and a torsionally flexible li-
gand.12–22 The degrees of freedom are generally 3
rotation and 3 translations for the rigid ligand with
respect to the protein plus Ntor torsional degrees of
freedom for the ligands rotatable bonds. While it is
desirable to include additional degrees of freedom to
account for motion of some protein side chains, the
additional complexity is often prohibitively high and
the protein is usually treated as completely rigid. Even
with this simplification, searching for the optimal
value of the scoring function is time-consuming un-
less the search is initially close to the solution.12–22

Docking methods initially attempt the optimization
of two components, shape and chemical function
complementarity.8,23–26 What is described here is a
Gaussian Scoring Function (GSF) that has a simpler
hypersurface than traditional scoring functions be-
cause it accounts for shape alone and uses smooth,
analytical functions. This function can provide dock-
ing methods with a more tractable hypersurface to
search for likely docked positions of the ligand. An
ensemble of the most reasonable positions can then be
refined using more detailed scoring functions. Thus,
the purpose of the GSF is not to replace traditional
scoring function, but rather to act as a prefilter that
greatly reduces the search space docking methods
must explore with more complicated scoring func-
tions. Aside from being far more tractable to optimi-
zation, an advantage of a simplified hypersurface is
that the atomic positions are more tolerant to errors:
long-range interactions rather than short-range inter-
actions tend to dominate. This makes the assumption
of a rigid protein more tenable. The smoother surface
created by the Gaussian representation will be less
sensitive to small changes in the sidechain location
induced by the ligand. As a result, we are now able to
correctly dock inhibitors to crystal structures of pro-

teins solved without ligands (apo structures) or con-
servative homology models.

In this article we demonstrate how a GSF with only
two free parameters (a hardness and an exclusion
factor) can successfully distinguish crystal structure
poses, dramatically reduce the search space, and allow
minimization over large distances. Furthermore, we
show it can be used to dock ligands from closely
related proteins, supporting a role for docking as a
genomics tool.

THEORY

The GSF presented here is a modified version of that
proposed by Grant and Pickup.27,28 They observed
that replacing atomic hard-sphere functions with
Gaussians allowed analytically tractable calculation
of volumes and areas of small molecules. They ex-
tended this observation to a simple two-atom Gauss-
ian-based function that mimics van der Waals inter-
action. The “hardness” of this function, the degree of
interpenetrating allowed, could be adjusted by a sin-
gle parameter.

Gaussian Shape

Gaussian functions are of the form

g�r� � C exp� � �r2� (1)

where r is the distance from the Gaussian center, and
C and � are parameters controlling the magnitude and
distribution of the function, respectively. Gaussian
functions are fundamentally smooth because they
are infinitely differentiable. Numerical optimization
methods either implicitly or explicitly assume contin-
uous smooth functions, and while they are often ro-
bust enough to deal with small discontinuities, their
performance improves when used with truly smooth
functions. In general, the greater the number of
higher-order derivatives available the more efficient
the optimization (i.e., Quasi-Newton over Conjugate
Gradient over Simplex).

The present scoring function describes each atom
with a Gaussian function centered at the atom center.
The value of the Gaussian is a measure of how much
the atom occupies any particular position in space.
This description of shape is not binary; instead, any
given point in space is both partly inside and partly
outside the atom, and the degree of each varies
smoothly. Although there is no discrete surface that
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delineates the inside and outside of the atom, an
equivalent hard-sphere radius for the Gaussian atom
can be obtained by requiring the Gaussian atom’s
volume to be equal to that of a hard-sphere atom. The
shape of a hard sphere of radius R is given by a binary
function that has a value of 1 inside the sphere and 0
outside (r is the distance from the sphere center).

f�r� � �0, r � R
1, r � R (2)

The volume of the hard-sphere atom given by Eq.
(2) is

Vhs �
4

3
�R3 (3)

while the volume of the Gaussian given in Eq. (1) is

Vg � C��

��
3/2

(4)

Equating the hard-sphere and Gaussian volumes from
Eqs. (3) and (4) respectively gives

C �
4

3

��R2�3/2

��
(5)

It is convenient to define a dimensionless parameter:

� � �R2 (6)

Substituting Eqs. (5) and (6) into Eq. (1) yields the
final Gaussian expression for atom shape:

g�r� �
4

3��3

� � 1/2

exp��
�

R2 r 2� (7)

Here R is the radius of the equivalent hard-sphere
atom we wish the Gaussian function to represent, and
is hence determined by the properties of the atom. The
remaining parameter, �, is a freely adjustable param-
eter.

The parameter � controls the distribution of the
Gaussian. A � of 1.5 maximizes the value of the
Gaussian function at r � R and gives the most hard-
sphere-like behavior (Figure 1). Increasing the value
of � further draws more and more of the atom toward
the center, eventually becoming a � function at � ��.
Decreasing the value of � diffuses the atom (Fig-
ure 1).

The two critical aspects of our shape-based ap-
proach are error tolerance and robustness. By error
tolerance we mean the ability of the GSF to be toler-
ant of errors in the protein structure, whether intrinsic,
i.e., protein motion, or extrinsic, i.e., poor refinement,
inadequate homology modeling. By robustness, we
mean the ability of the function to accurately repro-
duce the effective shape of the pocket. By adjusting �,
the error tolerance vs robustness can be directly in-
fluenced. Lowering � spreads the distribution, and
makes the GSF less sensitive to atom coordinates and
therefore more tolerant of error. Conversely, increas-
ing � increases the function’s sensitivity to atomic
position, making it more robust. For example, the
shape functions of two identical atoms separated by a
given distance are more similar (i.e., the dot product
of the two functions are closer to one) at lower �
values (Figure 2). Therefore, an atom that is placed
incorrectly, as compared to the crystal structure, has a
shape that is more similar to the correct shape when
the � value is low. Thus, error tolerance comes at a
cost of robustness. Typically, however, atomic coor-
dinates are not known exactly and a highly robust
docking function may be of little use.

Lowering � should also reduce the number of GSF
critical points (maxima or minima). This is significant
because many docking methods become trapped in

FIGURE 1 Plots of shape functions for an atom of radius
one. The Gaussian shape function with a higher � value (�
� 1.5) has a narrower, more hard-sphere-like, distribution
with more of the atoms volume drawn toward the atom
center, relative to the Gaussian shape function with a lower
� value (� � 0.5).
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local optima of the docking function while searching
for the global optimum. Therefore, provided the lo-
cation of the global optima is not significantly
changed, reducing the number of local maxima in a
docking function can greatly improve performance.

Docking Function

The Gaussian docking function originally suggested
by Grant and Pickup is a summation of pairwise
interactions between the ligand and protein atoms.
Each pairwise interaction, Fi,j, has a volume overlap,
Vi,j, and an area intersection component, Ii,j, which are
functions of the distance between atoms, di,j:

Fi,j�di,j� � Ii,j�di,j� � �Vi,j�di,j� (8)

The � is a constant determined as discussed later.
The volume overlap of two Gaussian atoms is

found by analogy with the hard-sphere model by
integrating the product of the shape functions. For two
Gaussian atoms in the form of Eq. (7), this integration
yields the following equation as a function of distance
between the atom centers:

Vi,j�di,j� � �16�3

9� �� �Ri
2Rj

2

�Ri
2 	 �Rj

2� 3/2

exp� �

Ri
2 	 Rj

2 di,j
2 �
(9)

where radii Ri and Rj are the radii of atoms i and j,
respectively, and di,j is the distance between the two
atom centers.

The area (Ai,j) of the intersection volume of two
atoms i and j with radii Ri and Rj and intersection
volume Vi,j is given by the following equation27:

Ai,j �

Vi,j


Ri
	


Vi,j


Rj
(10)

The component of the docking function, Eq. (8), re-
lated to the intersection area, is

Ii,j�di,j� � Ri


Vi,j�di,j�


Ri
	 Rj


Vi,j�di,j�


Rj
(11)

where the variables and function are the same as Eq.
(9). This function is similar to Eq. (10), but has the
desired dimensions of volume.

The � is selected to maximize the pairwise inter-
action at a particular distance Di,j. Grant and Pickup
proposed this function could serve both for internal
docking, i.e., partial shape matching and external
docking, i.e., complementarity discovery depending
on the choice of Di,j.

5,6 This work focuses on external
docking, i.e., fitting the ligand shape to the shape of a
negative image of the protein, and Di,j is therefore
selected as the sum of the hard-sphere radii.

Di,j � Ri 	 Rj (12)

The pairwise interaction then becomes

Fi,j�di,j� � �32�3

9� �� �Ri
2Rj

2

�Ri
2 	 �Rj

2� 3/2

� �1 	 �
di,j

2 � Di,j
2

Ri
2 	 Rj

2 � exp� �
�

R1
2 	 R2

2 di,j
2 � (13)

Finally, a normalized docking function is defined such
that

Ni,j�di,j� �
Fi,j�di,j�

Fi,j
max

This reduces to

FIGURE 2 Similarity of pairs of shape functions with
radius 1.5 separated by distance r, but otherwise identi-
cal. Similarity �ddd f1*f2/(ddd f1*dddf2).
A similarity value of one indicates that the functions are
identical while a value of zero indicates the functions are
orthogonal. At a separation distance of 1.75 the similarity
of hard spheres, Gaussians with � �1.5 and Gaussians with
� � 0.5, are 0.22, 0.36. and 0.71 respectively.
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Ni,j�di,j� � �1 	 ��di,j
2 � Di,j

2 ��exp� � ��di,j
2 � Di,j

2 ��

(14)

The � is defined as

� �
�

Ri
2 	 Rj

2 (15)

The total interaction, N, between a set of ligand atoms
A and a set of protein atoms B is then simply

N � �
i�A

�
j�B

Ni,j (16)

This is the form of the GSF initially proposed by
Grant and Pickup.3 It has reasonable behavior for �
 1.0, favoring ligand positions where ligand atoms
are near parts of the protein surface with high curva-
ture. As the � value is decreased, however, the most
favorable position for the ligand atoms moves inside
the protein. This is obviously not desirable. The rea-
son is that at low � the pairwise interaction, Eq. (13)
does not sufficiently penalize atom clashes and the
most favorable position for the ligand atom moves
inside the protein. This effect is illustrated in (Figure
3), which shows the pairwise interaction of two atoms

at several � values. At a high � value, around 1.0 or
greater, the interaction becomes unfavorable once the
atoms significantly overlap, but at lower � values
even the most severe clashes have favorable scores
relative to the noninteracting spheres (zero score).
The interior of the protein becomes a more favorable
region for ligand atoms because there are more pro-
tein atoms making favorable surface contacts and no
significant penalty for atom clashes, and the interior
has more protein atoms with which to make favorable
interactions. To address this problem, Eq. (16) was
modified. An exclusion function, similar to that pro-
posed by Grant, Nicholls, and Pickup for dielectric
screening, was multiplied to the original GSF to give
the new to give a new expression:

GS � �
i�A

���
j�B

Ni,j��exp� � ��
j�B

Vi,j��� (17)

This is the form of the GSF reported in this article.
The functions Ni,j and Vi,j are given by Eqs. (14) and
(9), respectively, and � is a new parameter. The new
exponential term in Eq. (17) applies a clash penalty to
ligand atoms that are placed interior to the protein and
the parameter � controls the strength of the penalty.
An exponential form was chosen because it smoothly
decreases as the ligand moves away from the protein
interior. At � � 0, it becomes the original docking
function, Eq. (16).

Method

A simple docking method was used to explore the
properties of our GSF, i.e., a Quasi-Newton solid-
body optimization of the ligand position from random
starting positions near the receptor site. For each run
the center of mass of the ligand is randomly posi-
tioned within a box defined around the receptor site,
the ligand is randomly rotated and then optimized. No
attempt is made to avoid initial clashes between the
ligand and protein.

Two sets of ligand–protein complexes drawn from
the Protein Data Bank29 were used to examine the
properties of the GSF. The first is a set of 20 com-
plexes of ligands bound to trypsin and the second is a
set of 49 complexes of different ligands and proteins.
The first set was used to see if the method can over-
come a common criticism of rigid docking methods,
i.e., that “redocking” ligand and protein from the
same crystal structure is a form of “postprediction.” If
having the exact protein/ligand crystal structure is not
necessary, apo and homology structures can be used

FIGURE 3 Pairwise interaction score between two
Gaussian atoms [Eq. (13)] at three � values. High scores are
favorable interactions. The interaction is always most fa-
vorable at the sum of the hard-sphere distances. At a high �
values (� � 1.0) the interaction of 2 atoms is less than that
of noninteracting atoms (zero score) when the atoms are
very close. However, at low kappa values (� �0.25) the
interaction is never less than the noninteraction case (zero
score).
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with more confidence. The second test set was used to
determine how the GSF performs as a general scoring
function.

RESULTS

Optimum Parameters

The GSF optimal parameters (� the Gaussian dis-
tribution parameter and � the exclusion parameter)
were determined by an iterative process using the
trypsin complexes. For each � and � pair 1000
docking attempts were made for each ligand–recep-
tor complex. Ligands were only docked to their
own trypsin structure, not the trypsin structure of
other ligand–trypsin complexes. If the ligand opti-
mized to within 2.0 RMSD of the x-ray structure,
the run was considered a success, and by summing
the successes over all 1000 runs an average chance
of a success was obtained. The results are shown in
(Figure 4). An optimal value appear at � � 0.7 and
� � 4.5. These are the values used for the remain-
der of the docking runs.

The values selected (� � 0.7, � � 4.5) are on the
high-� edge of the optimal region because it was
found that the lower �, the more the optimal � varied
with ligand size (Figure 4).

Docking Ligands to Non-Native Protein
Structures

To test the sensitivity of the GSF to the protein
structure, the 20 trypsin complexes were aligned by

minimizing the RMSD between the residues near the
receptor site and those same residues of a reference
protein conformation. The reference trypsin structure
was chosen to be the 1AQ7 complex trypsin structure
and the residues used in the RMSD minimization
were selected by hand. The GLN 192 residue, near the
entrance to S1, was the most flexible side chain that
interacted with the ligands and adopted several com-
pletely different conformations with the atomic posi-
tions varying up to 4.5 Å. The remaining relevant
side-chain atoms aligned to within approximately 1.0
Å of the reference.

Each ligand was then docked into all 20 aligned
trypsin proteins 1000 times. A docking run was con-
sidered a success if the optimized ligand structure was
within 2.0 or 1.5 RMSD of the x-ray structures. The
numbers of successful runs are shown in Tables I
and II.

The average chance of docking any of the 20
ligands into any of the 20 trypsin x-ray structures and
obtaining a result within either 2.0 or 1.5 RMSD of
the x-ray structure is 4 and 3%, respectively. These
optimizations move the ligand on average 7 Å. This is
an extremely long distance for numerical optimiza-
tions that rarely result in motions greater than 2 or 3
Å when more traditional docking functions are used.
The average chance of optimizing to the correct x-ray
structure as a function of how far from the x-ray
structure the docking run started is shown in Figure 5.
As seen even starting from a distance of over 6 Å
RMSD, there is still greater than a 10% chance that
simple optimization will locate the x-ray structure,
based on a simple shape-matching scoring function.

FIGURE 4 The number of docking runs, out of 1000, which resulted in a structure within 2.0
RMSD of the x-ray structure. These results are averaged over all 20 trypsin ligands. X marks the
parameters selected for the dock run. The parameters were selected from the upper edge of the
optimal region because this gave the best results for both large and small ligands.
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The chance of the GSF optimizing near the correct
structure is almost completely invariant to the partic-
ular trypsin structure used, as seen in Tables I and II.
This indicates a good tolerance for errors in the pro-
tein structure. There is, however, significant variation
across the different ligands. Ligands from 1AQ7 and
1XUK fail to dock near the crystal structure at all. The
reason for this is seen in the x-ray structures; the
ligands lie on top of the protein, not in any pocket.
Thus, since the GSF is a shape-based function, it fails
when the shape complementarity of ligands and pro-
tein is low. The x-ray structure and the highest scoring
docked structure of the 1XUK ligand docked into the
1XUK protein are shown in (Figure 6a). The high
scoring structure is somewhat similar to the x-ray
structure in the S1 pocket; however, the other end of
the ligand has been shifted to fit into a nearby pocket
with good shape complementarity. This is due to the
lack of solvent consideration. As seen in Figure 6b,
crystallographic waters and a sulfate group block the
pocket, preventing the ligand from fitting down into it.
This could be corrected by using a model that includes
the waters and phosphate group.

The method was then extended by averaging the
GSF around all the trypsin structures. The 20 ligands
were then docked using this averaged scoring field as

FIGURE 5 Average chance for any trypsin ligand dock-
ing successfully into any one of the trypsin structures as a
function of how far it starts from the x-ray structure. Suc-
cess is defined as docking to within with 1.5 or 2.0 RMSD
of the x-ray structure.

FIGURE 6 (a) The highest scoring (red) docked structure and the x-ray structure (blue) of the
complex 1XUK. (b) The original PDB complex 1XUK with all crystallographic waters and the
sulfate ion.
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a severe test of the robustness of a GSF, i.e. can such
an averaged field still contain enough information to
reproduce crystal-like poses. This is in the spirit of the
MCSS where atoms may move in the field of many
copies of the protein structure.

The outcome was nearly the same as docking to
individual trypsin structures (see Table III). This re-
markable result suggests a means to dock to clusters
of related structures, for instance, to the kinase family.
In addition, docking to inherently noisy structures,

FIGURE 7 Score vs RMSD of significant local minima
(over 50% of random optimizations locate one of these
minima). Results are for ligands 1PPH, 1TNH, and 1XUK
docked into there own enzyme x-ray structure. Dark circles
are optima that contain at least 2.5% of the docking runs,
open circles are optima that contain between 1.3 and 2.5%
of the docking runs, and dots are optima that contain be-
tween 0.6 and 1.3% of the docking runs. Optima that con-
tain less than 0.5% of runs are not shown. (a) Results for the
ligand of complex 1PPH. (b) Results for the ligand of
complex 1TNH. (c) Results for the ligand of complex
1XUK.

Table III Using an Average Interaction Score Over
All 20 Trypsin Structures, the Chance That a
Randomly Placed Ligand Will Optimize to Within a
Given RMSD of the X-Ray Structure

Ligand
Within 2.0 RMSD

(%)
Within 1.5 RMSD

(%)

1AQ7 0 0
1AVW 5 5
1CE5 7 7
1JRS 5 5
1JRT 4 1
1MTS 2 1
1MTU 5 4
1MTV 2 1
1MTW 2 0
1PPC 6 6
1PPH 8 8
1TNG 13 6
1TNH 14 6
1TNI 0 0
1TNJ 8 7
1TNK 11 6
1XUI 3 2
1XUK 0 0
2BZA 12 5
2TBS 7 7

Overall average 6 4
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such as produced by homology models, may be ade-
quate. Research is ongoing in this area.

The GSF Hypersurface

One of the assumptions of the GSF is that the scoring
hypersurface will be much simpler the more error
tolerant, i.e., the lower �. To test this hypothesis, we
performed a high-resolution exhaustive scan of the
GSF of the 1TNI trypsin complex. The center of mass
of the ligand was placed on each point of a grid of
0.75 Å resolution and every 3° rotation about each
principle axis was sampled. Local optima were deter-
mined when any translation or rotation about a par-
ticular pose led to a uniformly less favorable scores.
At (� � 1.0, � � 7.5) there were 45,676 local optima
(Figure 7a). By lowering the �, and adjusting � to (�
� 0.2, � � 1.5), the number of optima was reduced to
1463 (Figure 7b). Although these exhaustive sam-
plings were time-consuming, the observation that
even a low �, with a very smooth GSF, minima were
still found near the x-ray structure has led to the
development of an exhaustive search protocol com-
petitive with stochastic methods.8

Although the number of optima found might seem
large, the number of practical minima, i.e., that might
typically be found by minimizing from random starting
points, is much smaller. We investigated this by per-
forming 5000 random optimizations we obtained results
on the number of “significant” local optima in the GSF’s
hypersurface vs the � and � parameters. A “significant”
optima is one that has at least a 1% chance of being
located by a docking run. These results averaged over all
20 trypsin complexes and are reported in Figure 7a. The
chance of locating any significant local optima is shown
in Figure 7b. At high � there are large number of
different local optima; thus there are few local optima
that are frequently located (Figure 7a) since most runs
fall into optima that are less than 1% likely (Figure 7b).
As � is decreased many small local optima near to each
other tend to coalesce into a significant optima. The
number of significant local optima increases (Figure 7a)
as well as the probability that any significant optima will
be located (Figure 7b). Thus lowering the value of �
does reduce the number of critical points on the GSF’s
hypersurface.

The number of significant local optima (Figure 7a)
and the probability of locating any significant local

FIGURE 8 The highest scoring (red) docked structure and the x-ray structure (blue) of the
complex 1PPH. Panels (a) and (b) are identical other than the presence or absence of the protein
surface in the figure and the angle of the view.
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optima (Figure 7b) do not depend strongly on the �
parameter. However, changing � does alter the posi-
tion of local optima and only particular values of �
will allow the GSF to locate positions near the x-ray
structure (Figure 4). At very low � and � values many
local optima move outside of the scoring grid used.
This leads to the number (Figure 7a) and probability
(Figure7b) of significant optima changing with � at �
	 1.0, which is an artifact of the limits of our scoring
grid not a property of the GSF.

We examined the results of 10,000 random
dockings to 3 of the aligned trypsin complexes
(1PPH, 1TNH, and 1XUK) more closely to deter-
mine the probability of finding the crystal pose.
When an optima was defined as an RMSD cluster of
less than 0.1 RMSD, approximately 1000 unique
optima were typically located. However, in all 9

cases over 50% of the docked orientations fell into
less than 50 local optima. For the ligands of 1PPH,
1TNH and 1XUK docked into their respective en-
zyme structures; the scores vs RMSD of any opti-
mum populated more than 0.5% are shown in Fig-
ure 8. While the best binding position is usually
found, it is often not the optimal GSF. The function
is too simple to also discriminate between reason-
able orientations. A more comprehensive scoring
function should obtain better a RMS correlation.

This said, in the case of the ligand of 1PPH for
each of the 3 trypsin structures the highest scoring
optimum is also the closest to the x-ray structure
(Figure 8a). This optimum for the 1PPH ligand
docked into the 1PPH-trypsin and the x-ray struc-
ture are shown in Figure 9. In the case of the ligand
of 1TNH (Figure 8b), the optimum closest to the

FIGURE 9 (a) The x-ray structure of 1TNH. (b) The x-ray structure of the 1TNH ligand (blue)
and the highest scoring (best shape fit) docked structure (white). (c) The x-ray structure of the 1TNH
ligand (blue) and docked structure (red) closest to the x-ray (i.e., the structure that should have the
best shape and function fit).
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x-ray structure is not the highest scoring. The rea-
son for this is that the ligand is symmetric with the
exception of a single tail atom and the highest
scoring structure is a 180° rotation that is the same,
due to symmetry, as the x-ray structure with the
exception of the single tail atom. This is shown in
Figure 10. This effect tends to occur more often in
smaller ligands, which overall have more positions
that complement the receptor site than larger li-
gands. The ligand from 1XUK interestingly has
high-scoring optima that are also the optima closest
to the x-ray structure (Figure 8c). However these
optima are still poor fits to the x-ray because, as
explained earlier, the ligand and receptor shape do
not compliment each other well.

Docking of Other Ligand Receptor
Complexes

To test targets other than trypsin, a set of 49 ligand–
receptor complexes were docked. Each ligand was

separated from its protein and docked back 1000
times using (� � 0.7, � � 4.5) and the method
described at the beginning of this section. The success
rates are listed in Table IV and have the same overall
success rate (4 and 3% for docking within 2.0 RMSD
and 1.5 RMSD of the x-ray structure, respectively) as
the trypsin complexes.

Only 6 of the 49 complexes (1cil, 1glp, 1gst,
1hdc, 1icn, and 1tbd) tested have a success rate less
than 1%. The x-ray structures of these complexes
do score well. However, while these positions score
well they are not optimal with respect to the GSF.
A physical interpretation is that the x-ray structure
fits well, but a nearby position is a better fit, and
due to the smoothness of the GSF there is no
“energy barrier” between the two positions. Opti-
mization therefore does not locate the x-ray struc-
ture. A different type of docking mechanism that
looks for good-scoring positions, rather than op-
tima, would be more likely to locate the x-ray
structure in these 6 cases.

FIGURE 10 (a) Number of significant optima vs the � and � parameters. A significant optimum
is one that has at least a 1% chance of being located by a docking run. (b) The probability that a
docking run will locate a significant optima.
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CONCLUSION

A Gaussian docking function has been developed that
simplifies the simulation of protein–ligand interac-
tions. Simple docking tests indicated that this function
is tolerant of deviations in the crystal structure while
still being able to locate ligand positions that closely
approximate the crystal structure. Specifically, 20 li-
gand–receptor complexes of trypsin were separated
and then redocked to each of the 20 structures of the
trypsin protein. The results of these docking runs
showed no significant dependence on which structure
of the trypsin protein was used when the ligand was
docked. These runs successfully reproduced the x-ray
structure for 18 out of 20 ligands. The method also
shows utility across the spectrum of protein–ligand
complexes.

While the docking function is too simple for reli-
able determination of the most likely pose of a ligand,
it shows remarkable promise in guaranteed sampling
of such poses, the hope being that other, more sophis-
ticated, scoring functions may then provide this level
of discrimination. Even so, this, and subsequent work,
has shown that when an active site has a very specific
shape the GSF can actually find the crystal structure
as the rank one pose.

Finally, the computational times for docking are
not presented here as no attempt was made to opti-
mize the methods. In a subsequent paper we will
describe using our GSF in a highly optimized imple-
mentation that exhaustively samples search space and
yet is still faster than any stochastic method previ-
ously reported.

The authors wish to thank Geoff Skillman for useful com-
ments and help with this paper.

REFERENCES

1. Kuntz, I. D. Science 1992, 257, 1078.
2. Åqvist, J.; Medina, C.; Samuelsson, J.-E. Protein Eng

1994, 7, 385.
3. Kollman, P. Chem Rev 1993, 93, 2395.
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