ubisag jo |jooyos Eo:__ DJS9 PJDAIDH
solydoug) 4ajndw o) 1o goT
p|jouoq a2n.g

"UdIsep [eanjoajiyode papre—rajnduioo

10J wreadoad fejdsip pue aseq-ejep y

Jaa1ng

—
—————

The BUILDER Program

A System for Representation and display of Design Problems
in Architecture and Urban Design

Contents:

Overview (2 pp.)

A BUILDER Glossary (35 pp.)

Changes and Updates (2 pp.)

Manipulating Properties in the BUILDER Data Base (15 pp.)

A BUILDER Problem Set: Urban Design (20 pp.)

Researcher and Author: Bruce R. Donald

Laboratory for Computer Graphics and
Spatial Analysis

Graduate School of Design

Harvard University

Cambridge, MA

(1981-1982)

The BUILDER Program: An Overview

(This overview was written for a GSD Exhibition by Bruce Donald
and Steve Oles).

The BUILDER program was written in the course of research into analytic
and computer-aided methods for architecture in the GSD’s Laboratory for
Computer Graphies. This exhibit features its graphic display
capabilities for visual analysis, and illustrates the appropriateness of
this approach for quickly generating any number of interior perspectives
by varying the station point, center of vision, and lens focal ratio.

A design 1is represented to the machine as an aggregation of
3-dimensional forms; these forms are positioned 1in space and have
geometriec properties (such as length, orientation, and volume) as well
as descriptive, functional, or structural properties (such as color,
construction materials, bearing surfaces, and connectivity).

Each individual form is represented by a process analogous to
"extrusion." First, a "die", or homogeneous cross-section is chosen.
These are usually simple 2-dimensional forms that the designer can
recognize in plan and section, such as the hase of a column or the
cross-section of a beam or frame. The "die" is positioned in space and

moved a certain distance: in moving it T'"sweeps out" a volume or
surface.

In practice, this process of creating the 3-dimensional representation
of the design involves:

1. "Digitizing," or Tracing plan and section representations

(projections) of the 3-dimensional forms from a complete set of
plan and section drawings of the design project.

2. For each 3-Dimensional element, or for each group of elements
(for 1instance, "all the columns™, ™all the steps") specifying
their position and "thickness".

Functional or structural properties may also be specified to allow such
operations as "drawing all the load-bearing walls." More complicated
geometric forms may be obtained by "tilting" or "splaying" the faces of
selected 3-dimensional cbjects.

Once the design is entered, any number of 1, 2, or 3-point perspective

views may be generated from any station point looking at any center of
vision.

The focal ratio of the lens is used to draw the perspectives as they
would 1look with normal, wide-angle, or telephoto lenses of various
sizes. The station point and center of vision can be given by
"digitizing" a vpoint on the plan or section of the design. (This is

done using cross-hairs to pick out the spot where vou wish to be
standing "in" the design).

BUILDER can draw views with hidden surfaces removed by determining, for
a particular viewpoint, what forms can be seen and what forms are
obscured. In these views, the value BUILDER computes for visible
surfaces 1is related to the angle of inecident 1light. However, this ts a
very primitive model of value delineation, and is used only to provide a

Page 2

"symbolic" reoresentation to make the spatial relationships apparent.

"Realistic", or "truye" shading for computer-generated interior
perspectives i3 particularly difficult. More complicated mathematical
models of light and shading would take into account the inherent color,
reflectance, and specularity of forms, and allow non-uniform, multiple
light sources. In addition, texture, shadows, and the 1ight reflected
from surrounding objects could modulate the value,

In order to perform hidden surface and shading calculations, the program
must be able to compute a geometric model from the design specified by
the architect. From this model, it must be able to recognize the
surfaces and facets that form the boundarv of 3-dimensional objects.
The problem can be considerably complicated by intersecting surfaces or
forms imbedded within or interfering with other forms.

Hidden surface analysis, and many other sophisticated operations require
a geometric model of the design that is free from topological anomalies.
Current laboratory research efforts are directed towards detecting and
correcting such anomalies. This work would also provide the architect
with powerful tools such as interference and connectivity analysis 1in
complex structures. The work exhibited here demonstrates the display
capabilities of such an approach for visual analysis.

This research is being conducted by Bruce Donald, a Research Analyst in
the Laboratory.

BUILDER Glossary

Bruce Donald, Research Analyst

Laboratory for Computer Graphics and Spatial Analysis
Graduate School of Design

Harvard University

Cambridge, MA

U.S.Ah

(617) 495 - 2526

January 31, 1982

Fﬁﬂﬁf&"-— Cormmenrs To Harhon

BUILDER Glossary

Page 2

1.0 CONTENTS

1. Contents
2. BUILDINGs and Fragments
3. Conventions
4. Evaluable Variables, and Defined Variables
5. Dialects
6. Verbs in BUILDER
7. DO
8. DRAW
9. DRAW parameter commands
10. DRAW commands that DRAW something
11. DIGITIZE '
12. Digitizing Notes
13. DEFINE and DELETE
14. OPEN
15. MAKE
16. SHOW
17. RESTORE
18. MOVE
19. KILL
20. FLIP
21. CREATE
22. END FILE or END IMAGE
23. COPY
24, REWIND
25. ROTATE
26. LIST INPUT;
27. PLOT
28. TRANSFORM
29. INSERT
30. HIDE
31. USE
32. QUIT
33. BUILDER Macro-Operations: Programming in BUILDER
34, BEGIN OPERATION
35. END OPERATION
36. LIST OPERATION
37. PERFORM OPERATION
38. The Selection Mode
39. PERFORM OPERATION ONCE
40. PERFORM OPERATION FOR BUILDING SET or RANGE
41. Examples of PERFORM commands
‘ 42, 1IF/ ELSE/ GOTO
43. IF / GOTO
44, The ECHO command
U5. Screen "Flashing" and waiting.
46. Examples of BUILDER macro-operations.
47. Lists of Builder Commands and Lexemes
48. Comments, Credits, and References

BUILDER Glossary Page 3

2.0 BUILDINGS AND FRAGMENTS

BUILDER was originally designed for site planning, Thus, each
individual form is called a BUILDING in the program. However, for
architectural applications, the term "entity", "structure” or

"fragment®™ is more appropriate to describe these sub-entities.

The language will be changed to reflect this and make both terms
acceptable.

3.0 CONVENTIONS

-

All commands to BUILDER are terminated with a semicolon:

DRAW SECTION;
PLOT PERSPECTIVE ALL;

Values (numbers, strings/text, filenames, etc.) must be preceded by a
colon:

MAKE FOCALRATIO: 4 ;

MAKE CENTEROFVISION HEIGHT: 553

CREATE IMAGE FILENAME: °SECTION.DSK®;

Strings/text must be in matched quotes. Tuples, or sequences of
numbers, must be enclosed in matched parentheses:

MAKE STATION POINT: (30,100,3000.3);

At any time in BUILDER, you may type a "question mark" (?) to see
what are valid words to say next. (Eg: " DRAW ?" will show you what

you can say after DRAW). If you must type a value, BUILDER will
respond "<valued>",

In this document, optiocnal portions of commands are enclosed within
brackets. Thus, in the command:

CREATE IMAGE [FILENAME: ‘image.dsk’]
The notation implies that the sentences:

CREATE IMAGE; and CREATE IMAGE FILENAME: ‘image.dsk’; are %both#
valid.

Most BUILDER parameters are "Evaluable Variables" -- that is they may
be used in value expressions. For example, if you have specified the
center of vision height, and wish to make the station point at the

BUILDER Glossary : Page U
Conventions

same height, you say:

MAKE STATION HEIGHT: CENTEROFVISION HEIGHT;

More complicated operations with "evaluable BUILDER variables" are
possible:

MARE STATION HEIGHT: CENTEROFVISION HEIGHT + 503
MAKE STATION HEIGHT: CENTEROFVISION HEIGHT * 2 «+ FH
MAKE STATION POINT: CENTEROFVISION POINT - (100,0,200);

OPEN INPUT FILE: OUTPUT FILE; -- Open as input the current output
file.

MAKE STATION POINT: 2%(CENTEROFVISION POINT - STATION POINT) +
(4, 50, STATION HEIGHT/2);

IF: (BUILDING BASE - BUILDING TOP) < § 3 DRAW BUILDING; FIN;
Any BUILDER word or command may be abbriviated to an unambiguous

"short form". Thus the sentence "DRAW PERSPECTIVEVIEW ALL;" can be
written "DR PER AL;"

3.1 Evaluable Variables, And Defined Variables

The Novice BUILDER user may wish to skip to the next section, and
learn about Evaluable varibles and defined BUILDER variables at a
later time. :

The BUILDER user ean "define" his own variables, which may be of any
kind. This is analogous to the "LET" statement in BASIC.

DEFINE HERE: STATION POINT + (0,0,50);
DEFINE THERE: (40,500,0);

DEFINE SCALE: 88.8;

DEFINE INVSCALE: 1/scale;

DEFINE THISFILE: “RICK.BAS";

DEFINE THATFILE: INPUT FILE;

Thee defined lexemes may be used in value/variable expressions:

BUILDER Glossary Page 5
Evaluable Variables, and Defined Variables

DEFINE FLOOR: 103;

MaKE BUILDING BASE: FLOOR;

MAKE BUILDING TOP: 2% floor + 5;

MAKE STATION POINT: HERE/2;

MAKE BUILDING EXTRUDEDFACE XTILT: 2 ® SCALE/16;

DEFINE FLOOR: FLOOR - 153

IF: BUILDING LENGTH<C Maxpts & Building top < MaxHeight; Copy Building; Fing

4.0 DIALECTS

There are two dialects in BUILDER, DRAWING and DIGITIZING. In
DRAWING, you &an have an input and output file open at once. The
Input fragments (or "BUILDINGS") are processed in a local buffer, or
storage space, one at a time. Then they can be written out, or
COPIED to the output file. Once copied, they remain in the buffer,
and can be transformed, flipped, edited, and so forth, and then
written out again as new buildings (instances of the original form).

In the DIGITIZING mode, you can create fragments ("BUILDINGS") from
scratch. No Input file can be opened in digitizing, ut if you swith
into this mode, your current input file remains in its same status
when you go back into DRAWING mode.

The modes are to distinguish between editing an exising supply for
the buffer (the file) and new data-- the graphic crosshairs as input.

Modes are switched with the DO command.

5.0 VERBS IN BUILDER

Most verbs are valid in both modes.

5.1 DO
Used to Switch operating modes:

DO DRAWING;

BUILDER Glossary Page 6
i |

DO DIGITIZING;

The input file in drawing mode is maintained, though unaccessible,
throughout DIGITIZING mode.

5.2 DRAW

The generic DRAW command is used to set up parameters for drawing,
and to actually draw objects and data bases.

5.2.,1 DRAW Parameter Commands -

1. DRAW PLAN; «- Draw (in the future) Plan projections.

2. DRAW SECTION or DRAW ELEVATION; -- draw (henceforth)
sections or elevations.

3. DRAW PERSPECTIVEVIEW; Draw Perspective views .
4. DRAW [NO] LABELS; - Draw identifier labels. -
5. DRAW [no] CONNECTINGENDSEGMENTS; «- Command to connect the

first and 1last die points. Globally specifies line or
polygonal dies. .

6. DRAW [NO] AWAYFACES; In hidden surface views, draw the
faces the point away from the eye.

5.2.2 DRAW Commands That DRAW Something -
1. DRAW BUILDING; -- Draw the current BUILDING or fragment 1in
the buffer.
2. DRAW BUILDING: 13;

Search the input file for building 13, and draw it. Used to
get a specific building/fragment into the local buffer.

3. DRAW NEXT; - Draw the next building/fragment in the input
file.

BUILDER Glossary Page 7
DRAW commands that DRAW something

4. DRAW ALL; == Draw all bulldings/fragments in the data base
(input file).

5. DRAW TEMPLATE ALL; -~ Draw all fragments and buildings in
the template file.

6. DRAW GRID; =- Draw a grid. Also :

DRAW GRID: (x - spacing , y- spacing) ;

5.3 DIGITIZE

In any mode, you may digitize the station point and center of vision
point. In DIGITIZING Mode, you may also digitize a new fragment die,
thus filling the building buffer and deleting whatever was in the
local buffer before.

DIGITIZE STATION POINT;
DIGITIZE CENTEROFVISION POINT;

DIGITIZE BUILDING; «- in DIGITIZING mode, this command lets you
digitize a new building/fragment die, in either plan or section
plane, depending on the setting of BUILDING PLANE. The graphie
crosshairs are used to digitize successive die points. The last
point is indicated by a "Q" (for Quit Digitizing). If the DRAW
CONNECTINGENDSEGMENTS; command has been given, the first and last
points of the die will be connected to create a polygonal die. (This
is also the default mode). A polygonal die will extrude a volume; a
"line die™ (DRAW NO CONNECTINGENDSEGMENTS;) will extrude a surface (a
"ourtainm).

5.3.1 Digitizing Notes -

The DIGITIZE command can be used to the exclusion of the MAKE command
to specify the station point and centerofvision point in
3-dimensional space. If the DRAWINGMODE is PLAN, BUILDER takes the
(X, Y) coordinates of the station/centerofvision point from the
graphic input. If the DRAWINGMODE is SECTION or ELEVATION, it reads
the (Y, 2) coordinates. Thus, to specify both points in

3-dimensional space relative to the existing plan and section, you
can either:

BUILDER Glossary Page 8
DIGITIZE

1. DRAW PLAN ALL;
DIGITIZE STATION POINT, CENTER POINT;

MAKE STATION HEIGHT: z-value, CENTEROFVISION HEIGHT:
z-value;

or
2. DRAW PLAN ALL;

DIGITIZE STATION POINT, CENTEROFVISION POINT;
DRAW SECTION ALL;

DIGITIZE STATION POINT, CENTEROFVISION POINT:

5.4 DEFINE And DELETE

Used to define and delete variables for BUILDER operations. Example:
DEFINE RICK: "THIS IS RICK'S FILE";

DEFINE SHIFT: (-5.4, 500);

Define length: 88.4% shift;

5.5 OPEN

Command used to open files.
OPEN INPUT FILENAME: ° Name °;

OPEN TEMPLATE FILENAME: ° Tname °;

The Input file buildings/fragments can be brought into the 1local
buffer for modification and copying, as well as drawing. The
Template file is a standard builder file or polygon file, but can
only be drawn: it is analogous to a "Graphic overlay" and is used to
compare current work to a template. The most useful command
referencing the template is DRAW TEMPLATE ALL; whiech draws the
template WITHOUT ERASING THE SCREEN, and leaves the local building
buffer intact and the input file position and status unchanged. Thus
a structure may be carefully fitted into a data base, by comparing it
again and again to the template as it is honed. The Template is
drawn with the same parameters as the input file.

BUILDER Glossary Page 9
OPEN

On friendly machines (VAX) the input file and template file may be
the SAME file, thus allowing new items to be created and compared to
the input file being copied with them.

5.6 MAKE

The MAKE command is used to assign values to BUILDER parameters. The
SHOW command is its converse-- anything you can MAKE can be SHOWN.

MAKE sets values to change views, coordinates, positions, and so on:

1. MAKE BUILDING NUMBER: 33 3 == Assign a 1label to the
building/fragment for identification.

2. MAKE BUILDING PLANE HORIZONTAL or VERTICAL; =- select the
plane on which the die is located, i.e., from which
extrusion will occur.

These planes (horizontal or vertical) are the plane or X-Y
plane, and a Section, or Elevation (Y-Z) plane.

3. MAKE BUILDING TOP or BASE: 25 § == Define where extrusion
will start and stop. Measured from the die plane.

4. MAKE BUILDING MODELFACE or EXTRUDEDFACE XTILT or YTILT: =10

Specify how the modelface and extruded faces are to be
tilted after extrusion takes place. This allows slanting
rooves and splayed walls. You can show all tilting with the

command SHOW BUILDING TILT;

For example, to create a "chalet" roof effect, you could
digitize the plan for a building envelope, extrude it to a
certain height, and then "tilt the roof:"

DO DIGITIZING;

MAKE BUILDING PLANE HORIZONTALg

DIGITIZE BUILDING;

DEFINE FLOOR: O, ROOF: 300;

MAKE BUILDING BASE: FLOOR, TOP: ROOF;

MAKE BUILDING EXTRUDEDFACE XTIPT: 20 3

These commands tilt the "top" (extruded) face at 20 degreed
from the horizontal.

BUILDER Glossary ' Page 10
MAKE

5. MAKE BUILDING LENGTH; -- Specify the number of points in
the die.

6. MAKE BUILDING COORDINATE [: 3] VALUE: (22.5, 55);
Make the value of the third coordinate of the die the tuple
shown. The current value of the x coordinate and y
coordinate are in the evaluable lexemes XVALUE and YVALUE.
The tuple (XVALUE, YVALUE) is in the evaluable tuple VALUE.
7. MAKE POINT COORDINATE: 105 ==
This command is used to 1load up the evaluable lexemes
XVALUE, YVALUE, and VALUE (the tuple) with the coordinates
of die coordinate 10. Thus, to multiply the third
coordinate of a building die by C, you would say:
MAKE POINT COORDINATE : 3;
MAKE BUILDING COORDINATE VALUE: VALUE ® ¢ H
Note that the last statement if equivalent to:
MAKE BUILDING COORDINATE: 3 VALUE: C ® (XVALUE, YVALUE);

These commands are useful for designing dies based on
equations, for modifying dies pointwise, or addressing
individual points of a die.

Scaling can also be done in this manner.

8. MAKE INPUT SCALEFACTOR: 4.5 == Scale all dinput
fragments/buildings by 4.5;

9. MAKE OUTPUT SCALEFACTOR: 10; -- Scale all fragments and
buildings by a factor of 10.

10. MAKE STATION POINT: (10,20,300);
Specify the observer’s station point as a point in 3-space.
11. MAKE STATION HEIGHT: 300;
Specify the Z (height) coordinate of the station point.
12. MAKE CENTEROFVISION POINT: (0,0,20);
Specify the center of vision point in 3-space.
13. MAKE CENTEROFVISION HEIGHT: 203

Specify the Z coordinate of the center of vision point.
(The height at which one is looking).

BUILDER Glossary Page 11

MAKE

14,

15.

16.

17,

Note: the lexemes CENTEROFVISION PDINT and HEIGHT, and
STATION POINT and HEIGHT are all evaluable, that is, they
may be used in expressions such as:

MAKE STATION HEIGHT: STATION HEIGHT + 20;
MAKE CENTEROFVISION POINT: (30, 40, STATION HEIGHT);

MAKE STATION POINT: 1.4® (STATION POINT-CENTEROFVISION
POINT) + (30,10,50);

The DIGITIZE command allows these parameters to be specified
graphically with the crosshairs.

Note that if the STATION HEIGHT and the CENTEROFVISON HEIGHT
are the same, BUILDER will draw 2-point perspectives.
Similarly, if 2 of the three coordinates for these points
are symmetrically the same, a 1-point will be drawn.

MAKE FOCALRATIO: 1.6;

Specify the focal ration for the view. The default is U4
(telephoto), and the human eye is about 1.5-2.

The focal ratio is defined as the ratio of the distance to
the picture plane and one half the width of the picture
plane. Thus it is closely related to the viewing angle
(width of cone of vision) and lens size of conventional
photography.

NOTE: the DIGITIZE CENTEROFVISION POINT, DIGITIZE STATION
POINT (in both plan and section) and then the MAKE

FOCALRATIO commands all affect the perspective view: they
are its parameters.

MAKE TERMINALSPEED: 960;

This sets the terminal speed in characters per second.
Necessary on fast devices so BUILDER will not clear the
screen too quieckly.

MAKE HITHERCLIPPING DISTANCE:100;

MAKE YONCLIPPINGDISTANCE:6000;

Specify the hither and yon clipping distances for hidden
surface views.

MARKE HIDDEN TOLERANCE: (0,1,1); == specify the tolerance
"box" for hidden surface processing in case there are
overlapping/interpenetrating faces. Reduces hidden failure

BUILDER Glossary Page 12

MAKE

cases--analagous to 'WHIRLPOOL tolerance.
18. MAKE HEIGHT or WIDTH SCREENSIZE: <value> ;
Change the screen size. Don‘t do it!
19. MAKE INPUT TYPE POLYGON FILE;
MAKE INPUT TYPE BUILDERFILE;

This specifies the type of input file. A BUILDERFILE is a
file created as an output file by BUILDER. A POLYGONFILE is
the generic term for an ODYSSEY polygon, chain, or 1line
file, which BUILDER can read.

The POLYGONFILE will contain the cartographic
representations of dies on a Plane. They then must be
assigned extrusion parameters and used to create 3-d forms.

(These parameters include: BUILDING PLANE, TOP, BASE, TILT,
ete.)

POLYGONFILES almost always need to be scaled with the MAKE
INPUT OFFSET and MAKE INPUT SCALEFACTOR commands.

To see how to scale it, DRAW BUILDING: <n>; and then SHOW
BUILDING COORDINATES.

The builder and polygon files, in general, contain
dies--lines, points, and polygons, that create 3=-d forms.
The polygon/chain/line files from ODYSSEY have no
information on how to create 3-d forms from them-- how to
extrude them. But BUILDERFILES do.

5.7 SHOW

The SHOW command is used to display parameters and status within
BUILDER. "Anything you can make you can show". There are also :

1. SHOW BUILDING HEADER, COORDINATES;
2. SHOW BUILDING TILT;

3. SHOW FILESTATUS;

4. SHOW ANNOTATION;

5. SHOW DRAWINGMODES

BUILDER Glossary Page 13
SHOW '

6. SHOW BUILDING LENGTH;

T. SHOW POINT COORDINATE; -- See which die point has been

loaded into the evaluable BUILDER variables XVALUE, YVALUE,
and VALUE.

8. SHOW VALUE, XVALUE, YVALUE;

(Note that VALUE = (XVALUE, YVALUE) of the current POINT
COORDINATE).

5.8 RESTORE

The RESTORE command is used to reset BUILDER parameters to their
initial, or "default" values. You can restore most things you can
make.

Default values are used so that you can "get" views and information

without having to set a lot of parameters. You then change them to
get the views (etc.) that you want.

5.9 MOVE

The MOVE command moves one point in a die, or else moves the whole
building/fragment in 3-d. To edit a die, you must be in the same
drawing-mode (i.e., DRAW PLAN or DRAW SECTION) as the die.

1. MOVE POINT; <~ using the graphic crosshairs, move a point
on the die somewhere.

2. MOVE BUILDING; == using the crosshairs, move the whole
structure somewhere. You can move fragments in plan or in
section.

5.10 KILL

The command KILL POINT; 4s used to delete one point in the die with
the crosshairs. If the point you specify is ambiguous, it will ask
you which point you mean (which coordinate pair).

ﬁ

BUILDER Glossary Page 14
KILL

5.11 FLIP

The FLIP BUILDING; command switches the extrusion process to the
other plane (section to plan, or vice versa), while keeping the mass
centroid in 3-D in the same position.

5.12 CREATE

The CREATE command is used to create new files. BUILDER ecan create
BUILDERFILES, which are in the standard BUILDER data base format -for
BUILDER to read and draw, or "image files" (plot files) containing
graphics commands to specific devices. You specify a file name:

CREATE OUTPUT FILENAME: ‘HOUSE.BAS®;
CREATE IMAGE FILENAME: ‘PLOT.DSK 3

By leaving off the filename, you get the default file, or the last
filename you specified. (Eg., "CREATE IMAGE;" will create a file
called "IMAGE.PLT".)

5.13 END FILE Or END IMAGE

The END FILE command (END FILE;) is used to close an output file or
an image file prior to writing (creating) another, or leaving
BUILDER. Essentially, you CREATE an output file, COPY buildings into

it from either the local buffer (editor/digitizer) or the input file,
and then END the FILE.

In writing image files, you CREATE an image file with the command
CREATE 1IMAGE;. Then, you DRAW to it--all plotting commands will go
to the file, not to the screen. Then you END IMAGE:

5.14 COPY

The COPY command is used to copy the input file fragments/buildings,

and/or the building currently in the local processing BUILDER buffer
to the output file.

1. COPY BUILDING;

Write the building currently in the buffer to the output
file. Once written, its number (the BUILDING NUMBER) is
incremented, but the building, die, extrusion parameters,
and 3-d representation is unchanged, and it may now be

BUILDER Glossary Page 15
COPY

instanced, transforméd, etc., and then COPIED again.

2. COPY REST;

Copy the building currently in the buffer, and the "rest" of
the input file to the output file. The buffer will contain
the last building in the input file after this operation

3. COPY UNTIL BUILDING: 153
Copy the building in the buffer, and all buildings in the
input file to the output file, until building 15 is

encountered. Place building 15 in the buffer and return to
the user for commands,

NOTE: the COPY command is valid only in DRAWING mode. In DIGITIZING
mode, use the END BUILDING; command to write the current buffer
fragment out to the output file:

END BUILDING;

Write the building currently in the buffer to the output file. Once
written, 1its number (the BUILDING NUMBER) is incremented, but the
building, die, extrusion parameters, and 3-d representation is
unchanged, and it may now be instanced, transformed, etc., and then
written out (with the END BUILDING; command) again.

5.15. REWIND

The REWIND command is NOT like HOMER's!! In BUILDER, input files are
sequential, and you frequently want to get back to a
building/fragment that was earlier in the file. The REWIND command
will close the input file and re-open it at the begining. Thus, when
in the middle of a file, you can draw the first building/fragment
(and bring it into the buffer) with the commands:

REWIND; DRAW NEXT;

Similarly, to search the whole file for building/fragment 66, you
say:

REWIND; DRAW BUILDING: 66;

Note that some commands perform an automatic rewind: any command
with ALL in it, LIST INPUT, and HIDE.

BUILDER Glossary ' pPage 16
REWIND

5.16 ROTATE

The ROTATE command is used to rotate an entire fragment/building die
about an arbitrary point. the command form is: ROTATE BY: U5;

The Angle specified may be negative or positive. BUILDER will
compute the die’s centroid, and plot it for you. You can then use
it, or any point, to serve as the center of rotation.

5.17 LIST INPUT

The LIST INPUT; command lists the headers of all fragments/buildings
in the input file.

5.18 PLOT -

PLOT is exactly the same as DRAW, except that it instructs BUILDER to
plot on the Houston Instruments plotter instead of the screen.

5.19 TRANSFORM

The TRANSFORM BUILDING; command is used to transform {(rubber sheet)
a building die with up to 10 control points. You digitize the input
"window" control points, and then the points to which they are
stretched. The MAKE TRANSFORMATION POWER: <m> § command will
affect the transformation in certain complex ways (see Morehouse’s
memc on "Rubber Sheeting with Inverse Power Constants", which
addreses the problems of perverting the manifold).

The TRANSFORM BUILDING; command will take the original "™window
points® (up to 10) and stretch them towards theeir new positions.
The die points near the window points (control points, in some
terminologies) will be "pulled™ along with them, as a function of the
transformation power and their distance to the control points. This
command is useful for cases where you want to "twist" a part of a die
somewhere. It can lead to non-planar results.

BUILDER Glossary Page 17
TRANSFORM

5.20 INSERT

The INSERT SECMENT; command is used in editing Dies. Using the
crosshairs, the first and 1last points of the inserted segment are
fitted to the nearest points in the previous die. The rest of the
new segment points replace the old points they surround
(topologically). The segment may have more or fewer points than the
segment it replaces, and thus can either "add on" or "remove" a wing
to a structure.

$.21 HIDE

This command is used to generate hidden surface perspective views.
The view is generated from the current station point, with the focal
ratio and <center of vision wunchanged. The command is

EXPERIMENTAL--it is still being debugged. The following commands
influence the HIDE; command:

1. USE AED512; or USE Tu027;
Specifies the raster device to use.

2. MAKE HITHERCLIPPINGDISTANCE or YONCLIPPINGDISTANCE
Specifies the hither and yon clipping planes

3. MAKE HIDDEN TOLERANCE: (dx, dy, dz);

Specifies a tolerance "box"™ (topologically a ball) for data
with overlaps.

5.22 USE

The use command specifies the device to draw on. To plot on the
Houston 1Instruments plotter, simply employ the PLOT command wherever
you would say DRAW. For raster devices, say:

USE T4027; -- use the Tektronix 4027 terminal

USE AED512; <= use the AED 512 raster terminal

BUILDER Glossary - Page 18
USE

5.23 QUIT

Exit from BUILDER with the QUIT; command.

6.0 BUILDER MACRO-OPERATIONS: PROGRAMMING IN BUILDER

BUILDER is actually a programming language. You «can write
"operations", or "macro-operations" which contain lists of commands
for BUILDER to execute. These commands can be written either with
the system text editor, or from within BUILDER.

The most useful commands pertaining to operations are:

1. BEGIN OPERATION -- start defining (typing a BUILDER
“"program", or operation).

2. Eﬂﬁ OPERATION; -~ used to mark the end of an operation.

3. PERFORM OPERATION -- perform (do) a BUILDER operation that
is previously defined.

4, IF / ELSE -- Conditional statement for operations.

5. IF/GOTO -- Conditional branch within an operation

6. LIST OPERATION -- display (type out) a previously defined
operation. "

6.1 BEGIN OPERATION

This command is used to start (define) an operation to BUILDER. You
type in the operation, and end with a "control-Z" (The "control key"
is like the "shift key" and is used to create special characters for
special operations. You send the character "control-z" by holding
down the "control®™ ("CTRL") key, and typing Z while "CTRL" is still
depressed). The BEGIN OPERATION command can take the name of the
operation (a filename) as its argument:

BEGIN OPERATION § =~ use the default, or last operation name.

BEGIN OPERATION: °INSTANCE’; -- begin a named opeation.

BUILDER Glossary Page 19
BEGIN OPERATION

6.2 END OPERATION

The END OPERATION; command MUST be contained within an operation.
It may occur anywhere, and causes BUILDER to ‘"pop" from the
operation, back to the previous command level.

6.3 LIST OPERATION

The LIST OPERATION command is used to list (display, or type out) the
cperation you have Jjust defined or executed, or else a perviously
defined operation. The LIST OPERATION; command with no argument
lists the 1last operation you defined (or the default operation,

MACRO.MAC). If you have just executed (PERFORMED) an operation, then
LIST will 1list it.

The argument to LIST OPERATION 4is the filename of a previously
defined operation. LIST will display its contents.

LIST OPERATION;

LIST OPERATION : “INSTANCE®; LIST OPERATION: ‘REFLECT’;

6.4 PERFORM OPERATION

The perform operation command causes BUILDER to execute a command

procedure (operation). PERFORMS may be "nested™ (on operation may
PERFORM another).

There are three arguments to PERFORM. 1If any are unspecified, the

operation is performed in the last way specified, or in the dafault
way.

The parameters are: what operation to perform, what selection
eriteria to use for buildings/structures to be input to the
procedure, and a list or range of buildings/fragments for which the
operation will be performed. The input file is searched

(sequentially, from the current position) for the specified set of
buildings.

BUILDER Glossary Page 20
PERFORM OPERATION

6.4.1 The Selection Mode -

You can perform operations just one time, for a "set" (list) of
BUILDING NUMBERS (identifiers), or for a "range" of BUILDING NUMBERS
(identifiers). These modes are specified as:

PERFORM OPERATION [: "name"™] ONCE ;

FOR BUILDING SET [: (20,32,1,4,55,6,12,3)]
FOR BUILDING RANGE [: (1,100)] ;

Note, as always, that the portions of commands in brackets (L,

indicate optional phrases. If these portions left out, the operation
is performed with the last parameter used, or else with the default
values.

The following SHOW operations are useful:
1. SHOW OPERATION; -- display the current operation name

2. SHOW BUILDING SELECTIONMODE; -- show the mode for selecting

buildings/ fragments on which the operation will be
performed.

3. SHOW BUILDING SET; and SHOW BUILDING RANGE; -- Show the
set or range of buildings to be used for the SELECTIONMODE:
RANGE or SET modes.

6.4.2 PERFORM OPERATION ONCE -

The ONCE selection mode is useful for péfforming a command procedure
one time only. Such procedures might set up views or open files for
views, or contain a 1ist of commands to be applied selectively.

6.4.3 PERFORM OPERATION FOR BUILDING SET Or RANGE -

The building/fragment SET or RANGE indicates a set (1ist) of building
identifiers, or an inclusive ' -ange" (min, max) for which the
operation will be applied. This selection mode is most useful for
specifying an operation or procedure which will be applied to at
least several buildings/fragments in the input data base, for
example: "make all the columns in the data base 4 feet shorter",
"instance all the steps on both sides of the auditorium, and copy
them to the output file."

BUILDER Glossary Page 21
PERFORM OPERATION FOR BUILDING SET or RANGE

6.5 Examples Of PERFORM Commands

PERFORM OPERATION : °NAME’ ONCE;
PERFORM OPERATION FOR BUILDING RANGE: (1,20);
PERFORM OPERATION: °SHIFT’ FOR BUILDING SET: (5,6,22,3);

PERFORM OPERATION: ‘ROTATE’ FOR BUILDING SET;
PERFORM OPERATION;

6.6 IF/ ELSE/ GOTO

The IF statement can be used in operations to specify conditionally
performed sets of commands. the format is:

IF : <logical expression>

<list of commands to be performed if the expression is true>

[ELSE;

<list of commands to be performed if the expression is falsed]

FIN;

The ELSE clause is optional. The FIN; ("end if statement™) command
is not. If statements may be nested (inside another IF clause). The
list of commands to be evaluated when the expression is clause is
true or else false may be any BUILDER commands, in the usual format,
ending with semi-colons, etc. There may be as many as you like.

The logical expression is an expression which is either true or
false: for example:

IF: A = B;
IF: BUILDING BASE < 100;

IF

BUILDING TOP - BUILDING BASE > 1005;
Th

following operators can be used in ANY logical expression:

& e AND
% = OR

BUILDER Glossary

Page 22
IF/ ELSE/ GOTO
- NOT

Example: IF: A=B & B + Building base > 50 ;

6.6.1 IF / GOTO -

There is also an IF/GOTO statement in BUILDER. The form is:

IF: <logical expression> GOTO LINE: "START" ;

Here, the "line" parameter is a text label. In BUILDER operations,
Comments and Statement labels begin with a dollar-sign ($). The

statemet label start would be Somewhere within the operation as:

$ START:

Statement labels must be capitalized, in a 1ine beginning with a
dollar - sign, and IMMEDIATELY followed by a colon.

Remember to end your if statments with a FIN; This is erucial, since
if the IF evaluates to FALSE, then no staments will be executed until
a FIN (or an ELSE) is reached.

However, the statements WILL be checked for validity. If an error
occurs, BUILDER will “"pop"™ the macro operations, and return to
interactive command mode.

6.7 The ECHO Command

Ordinarily, BUILDER will "echo", or type back the response to a
command. Thus the command "Ma sta p: st p/2;" [i.e., make the
station point half the vector that it is now] will be echoed as:

=+ MAKE STATION POINT : (34,556.5, 70.25) 3

You can turn the echo off at any point, with the ECHO OFF; command .
ECHO ON; will turn it back on.

This is useful if you have an operation which draws, and you don‘t
want to see the commands fly by you, overwriting the drawing.

BUILDER Glossary Page 23
The ECHO command

6.8 Screen "Flashing" And Waiting.

The Command DRAW PERSPECTIVEVIEW or HIDE will erase the screen before
drawing. DRAW SECTION, PLAN, or TEMPLATE will not, even if a
perspective of the template is to be drawn (this 1is useful, for

example, to compare the local buffer fragment/building, or the input
file data base, in perspective to a template).

After any plan, section, hidden surface, or perspective drawing,
BUILDER waits for a carriage return before asking for more commands
with the BUILDER "prompt" (the question mark: "?")., However, when
performing a macro-operation, or when plotting on the plotter,
BUILDER does not wait, since in a repetitive drawing macro this would

require frequent intervention to proceed, and since the prompt will
not mar a plot.

6.9 Examples Of BUILDER Macro-operations.

_DNA1: [DONALD .HOOTI . BUILDING JBEAU.DAT; 1

$ MACRO-OPERATION BEAU

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 9DECB1
$

do dr;

open in fi:°dnO:[studio.beaultheatre.bas’;

ma s p:(730,701,247), ¢ p:(426,397,87), fo:1.5;

end op;

_DNA1: [DONALD.HOOTI . BUILDING JBRUCE.DAT; 1

do drg

per op: setr’;

op in fi:’dnO:[studio.bruceltheatre.bas’;
end op;

_DNA1: [DONALD.HOOTI .BUILDING JCIRCLE.DAT; 4

$ MACRO-OPERATION CIRCLE
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 23NOVS81
$
Define Numpt:0;
Define R2: rép;
Define Delta: 2%r/Numptsg f
Define XX: -r - Deltag
$ LOOP:

Define Numpt: Numpt + 13

Define XX: XX + Delta;

Define YY: (R2 - XX®XX)“(.5);

Make Building Coordinate: Numpt

Value: (XX « r, YY + r);

BUILDER Glossary Page 24
Examples of BUILDER macro=operations.

If: XX < r Goto Line: ‘loop”s
Fing
End Op;

_DNA1: [DONALD.HOOTI . BUILDING JCOPY .DAT; 1

$ MACRO-OPERATION COPY

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 18DECS1
$

DO DR; REW; DR NE; COPY REST;

DO DIG; END OP;

_DNA1: [DONALD.HOOTI .BUILDING JCUBE .DAT; 1

$ MACRO-OPERATION CUBE

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 16DECS81
$

$ MAKE A CUBE AT COORDINATES: (X1,Y1) OF HEIGHT "CUBE"
$

MA BU LEN:4, BASE:Z1, TOP:Z1 + CUBE;

MA BU COORD:1-VAL:(X1,Y1);

MA BU COORD:2 VAL:(X1+CUBE,Y1);

MA BU COORD:3 VAL:(X1+CUBE,Y1+CUBE);

MA BU COORD:4 VAL:(X1,Y14CUBE);

END OP;

_DNA1: [DONALD .HOOTI . BUILDING JDEMO.DAT; 2

$ MACRO-OPERATION DEMO

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 22NOVB1
$

DEFINE XMIN:200,XMAX:T00,F:.009;

DEFINE NUMPTS:20,NUMPT:0, YOFF: 0,XOFF:450,;

PERFORM OPERATION: “BUILD:PARA® ONCE;

DRAW PLAN BU;

END OP;

_DNA1: [DONALD .HOOTI .BUILDING JDRAW.DAT; 1

$ MACRO-OPERATION SELECT
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 25JAN82

$
dr bu; end op;

_DNA1:[DONALD .HOOTI .BUILDING JENO.DATS 1

$ MACRO-OPERATION ENO _
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 11DECS81
$

DO DR; O I F: ENO.BAS"; MA FO:7, S H: S H®1,.5;

END OP;

_DNA1: [DONALD.HOOTI . BUILDING JHEADER.DAT; 1

BUILDER Glossary : Page 25
Examples of BUILDER macro=zoperations.

$ MACRO-OPERATION HEADER
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 25JANB2

$
SHO BU HEAD;

END OP;
_DNA1: [DONALD.HOOTI .BUILDINGJLAND.DAT;8

$ MACRO-OPERATION LAND
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 20JANS2
$
do dr; o 1 f:°popko.bas’;
ma fo:2, s p:(24,184,200), ¢ p:(754,579,6);
define dif: s p - ¢ p3
ma s p: cp+ dif # 33
define dif: s p = ¢ p3
define inc: dif/numinec;
DEFINE ZINC: STA H/NUMINC;
$ numinc = number of views for landing
dr per allj;
$ LOOP:
make sta p: sta p = inej
dr all;
IF: STA H- ZINC > 0. GOTO LINE :°LOOP’;
Fing
End op;

_DNA1:[DONALD.HOOTI .BUILDING JPARA.DAT; 4

$ MAKE PARABOLA. NEED

$

DEFINE XX: XMIN;

DEFINE DELTA: (XMAX - XMIN) /NUMPTS;
-$ LOOP:

DEFINE NUMPT: NUMPT +1;

DEFINE T : XX - XOFF;

DEFINE YY: (T®T) ® F - YOFF;

MAKE BUILDING COORD: NUMPT VALUE: (XX,YY);
DEFINE XX: XX + DELTA;

IF: XX <= XMAX GOTO LINE: °LOOP‘;
FIN;

END OP;

_DNA1: [DONALD .HOOTI . BUILDING JPLOT.DAT; 3

$ MACRO-OPERATION PLOT

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 24NOV81
$

create plot:

draw alls

end plotg;

end op;

BUILDER Glossary Page 26
Examples of BUILDER macro=operations.

_DNA1:[DONALD.HOOTI.BUILDING]?UB.DAT;“

$ MACRO-OPERATION PUB

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 14JANB2
$

do drg

dr no ¢

o i f:°(donald.hooti.buildinglrick.bas’;

ma ¢ p:(U485,486,102);

ma s p:(2000,453,380);

end op:

_DNA1:[DONALD.HOOTI.BUILDING]HENUMBER.DAT;1

$ MACRO-OPERATION RENUMBER

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 18DECS1
$

DEF N: N + 13

MA BU NUM:N;

COPY BU;

END OP;

_DNA1: [DONALD.HOOTI .BUILDING JRICK .DAT; 1
$ MACRO-OPERATION RICK

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 9DEC81

$
do dr;

_pNA13[DONALD.HOOTI.BUILDING]SCALE.DAT;1h

$ MACRO-OPERATION SCALE
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 23NOV81

$
define numpt:1;
$ START:
Make Point Coord: numpt;
Make Building Coord Val:
(Tx*Xvalue - Ox, Ty%Yvalue - Oy);
Define Numpt: Numpt + 13
If: Numpt <= Building Length Goto Line: START';
Fing
End Op;

_DNA1: [DONALD.HOOTI .BUILDING JSELECT.DAT; 2

- $ MACRO-OPERATION SELECT
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 25JANS2

$
PER OP: OP; END OP;

$ PERFORM THE OP FOR DEFINED VAR "OP"

DNA1: [DONALD .HOOTI . BUILDING JSET .DAT; 1

BUILDER Glossary Page 27
Examples of BUILDER macro=operations.

$ MACRO-OPERATION SET

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 1DECS81
$

make ¢ p:(202,626,289), s p:(560,626,289), fo:1.63

end op;

_pNAI:[DONALD.HOOTI.BUILDING]SETR.DAT;3

$ MACRO-OPERATION SETR

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 1DECB1
$

open in fi:“dn0:[studio.rick]THEATRE.bas’;

ma fo:1.6, s p:(207,750,111), ¢ p:(139, 58 y81)3;
end op;

_DNA1: [DONALD .HOOTI . BUILDING JSHRINK .DAT; 1

$ MACRO-OPERATION SHRINK
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 18DEC81
$

MA BU BA: BU BA» 1, BU TOP: BU TOP -1;
COPY BU; END OP;

_pNA1z[DON&LD.HOOTI.BUILDING]STACK.DAT;3

$ MACRO-OPERATION STACK ?
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 16DECS81
$
$ CREATE "N" CUBES OF HEIGHT "CUBE".
$ TO USE THIS: DEFINE N AND CUBE, THEN
$ CREATE AN OUTPUT FILE. THEN SAY "PERFORM OPERATION t “STACK "§"
$
DEFINE MAX: N®CUBE;
DEF X1: 03
$ XLOOP:
DEF X1: X1 +« CUBE;
DEF Y1: 03
$ YLOOP:
DEF Y1:Y1 + CUBE;
DEF Z1: 0O;
$ ZLOOP:
DEF Z1:Z1 + CUBE;
PERFORM OPERATION : °CUBE’;
COPY BUILDING;

IF : (21 < MAX) GOTO LINE: °“ZLOOP°;
FIN;
IF : (Y1 < MAX) GOTO LINE :°YLOOP’;
FIN;
IF : (X1 < MAX) GOTO LINE: "XLOOP";
FIN;

END OP;

‘PNA1:[DONALD.HOOTI.BUILDING]SWAP.DAT;G

BUILDER Glossary Page 28
Examples of BUILDER macro=operations.

$ MACRO-OPERATION SWAP

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 22NOV81
$

DEF NUMPT:1;

$ A:

MA PO CO: NUMPT;

MA BU CO VAL: (YVAL, XVAL);

DEF NUMPT : NUMPT + 1;

IF : NUMPT <= BUILDING LENGTH GOTO LI:’A°;
FIN;

END OP;

_DNA1: [DONALD.HOOTI .BUILDING JSWITCH.DAT; 1

$ MACRO-OPERATION BUILD:SWITCH

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 28JANS2
$

define here: stat poig

make stat poi: cent poi:

make cent poi: hereg

delete here:

end op;

_DNA1:[DONALD.HOOTI .BUILDING JTEMPLATE.DAT; 1

$ MACRO-OPERATION TEMPLATE

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 18DECS81
$

DO DR; COPY BU; END FI;

OIF: OF, TEM FI: O F;

DO DIG; END OP;

_DNA1:[DONALD .HOOTI .BUILDING JWEED.DAT; 1

$ MACRO-OPERATION WEED
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 14JANS2 ')
$
if: building length>2 ;
Copy bug
Fing
End ops

_DNA1: [DONALD.HOOTI.BUILDING JWHOLE10.DAT; 1

$ MACRO-OPERATION WHOLE10

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 20DEC81
$

DO DR;

MA HID TOL:(0,0,1);

OP IN FI: WHOLE10.BAS®;

MA S P:(301,775,1025), C P:(302,194,6), FO:2;

END OP;

BUILDER Glossary
Examples of BUILDER macro=operations.

_DNO:[STUDIO.STEVE 1BOTTOM.DAT ;1

$ MACRO-OPERATION BOTTOM

¢ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 2FEB82
$

ma bu base: 103 , top: 103 + ¢ ® 35;

end op;

_DNO:[STUDIO.STEVE]DEPTH.DAT;3

$ MACRO-OPERATION DEPTH
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 26JAN82
$

ma bu basnear, top:far; cop buj end opj;
_DNO:[STUDIO.STEVEJFULL.DAT;1

$ MACRO-OPERATION FULL

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 2FEB82
$

ma bu nt=-bu nj_
ma bu ba:103 , top: 103 + ¢ ® 69;
end ops

_DNO: [STUDIO.STEVE JINSTANCE.DAT;1

$ MACRO-OPERATION INSTANCE

¢ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 26JANB2
$

make bu ba:39%e, top:S5i¥e;

copy bug

ma bu ba:1U4T7%c, top:159%c;

make build num: build num+100;

copy buj

end op;

_DNO: [STUDIO.STEVE JMERGE.DAT; 1

$ MACRO-OPERATION MERGE

¢ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 26JANB2
$

$ merge the defined name "which"™ onto the output

$

open in fi: which;

dr sec nextj;

copy rest;

end op;

_DNO: [STUDIO.STEVE JMIRROR.DAT; 1

$ MACRO-OPERATION MIRROR

¢ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 26JANS82
$

make build ba: max - build baj

Page 29

BUILDER Glossary Page 30

Examples of BUILDER macro=operations.

ma build top: max - build top;
copy bu;
end op;

_pNO:[STUDIO.STEVE]MDVE.DAT;1

$ MACRO-OPERATION MOVE
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 26JANB2
$

MOVE BU; DR BU; END OP;
_pNO:[STUDIO.STEVE]OFFSET.DAT;1

$ MACRO-OPERATION OFFSET
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 26JANB2
$

MAKE INPUT OFF:(688,0); END OP;
$ TO RECTIFY THE REFLECTION...

_DNO:[STUDIO.STEVE]REFLECT.DAT;2

$ MACRO-OPERATION REFLECT

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 26JANB2

$

def numpt:1;

$ A:

make point co: numpt ;

ma bu co val:(-x,y);

def numpt: numpt <+ 13

if : numpt <= building length goto line:‘A’;
fing

end op:

_DNO:[STUDIO.STEVE]SECTION.DAT;1

$ MACRO-OPERATION SECTION
$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 26JAN82
$

do dr; ma in ty polg

ma in off:(-521,0), sc:40.5;
oi f:‘section.lds‘;

end op;

_pNO:[STUDIO.STEVE]SREFLECT.D&T;1

$ MACRO-OPERATION SREFLECT

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 26JANB2
$

PER OP:°REFLECT ONCE;

COPY BUg

END OP;

—DNO: [STUDIO.STEVE }SWOPY . DAT; 1

BUILDER Glossary
Examples of BUILDER macro=operations.

$ MACRO-OPERATION SWOPY

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 26JANB2
$.

$ swap and copy...

per op:‘build:swap’ once;

copy buj

end op;

_DNO:[STUDIO.STEVE]TOP.DAT; 1

$ MACRO-OPERATION TOP

$ FOR THE BUILDER 3-D DISPLAY PROGRAM, DEFINED 2FEB82
$

make bu n: - bu nj
make bu base: 103 + ¢ ® U5, top: 103 + c® 69;
end ops

7.0 LISTS OF BUILDER COMMANDS AND LEXEMES

In this section, all user input is in lower case, and
echos and answers is in upper case,

$ Builder
=== WELCOME TO BUILDER!

$ List the valid verbs in intial mode (after DO)
do ?

== DRAWING
s= DIGITIZING
r

a2 n o

H
. DO DRAWING
list the valid verbs in DRAWING mode

DO

DRAW
DIGITIZE
DEFINE
DELETE
OPEN
MAKE
MOVE
CREATE
copY
SHOW
END
ECHO
ELSE
QUIT
RESTORE

[T I

" on
1]

n

"

Page 31

all BUILDER

v e bl e U
BUILDER Glossary Page 32 |
Lists of Builder Commands and Lexemes

REWIND
ROTATE
LIST
TRANSFORM
KILL
INSERT
IF
FLIP
FIN
HIDE
USE
BEGIN
PERFORM
PLOT
ist the things you can make in DRAWING mode
e 7
QUTPUT
CENTEROFVISION
STATION
TRANSFORMATION
TERMINALSPEED
INPUT
FOCALRATIO
HIDDEN
HITHERCLIPPINGDISTANCE
HEIGHT
BUILDING
BASEDRAWING
POINT
YONCLIPPINGDISTANCE
WIDTH
List the BUILDING attributes you can make
lding ?
MODELFACE
COORDINATE
EXTRUDEDFACE
LENGTH
TOPELEVATION
BASEELEVATION
PLANE
NUMBER
do dig;
$ list the valid verbs in DIGITIZING mode

(T I T]
Womonmowoowowonow NN NN
Howowonon

"
1]

wou o Ben o owowouwow

"
LTI T T O T T T [||
Howowonwwnuwn X u

How wow N
"
"

o
|

"
Mo e onononon NN

(T T T]
wonow NN

1]
L]

== DO
=== DRAW

=== DIGITIZE
DEFINE
DELETE
OPEN
MAKE
MOVE
CREATE

BUILDER Glossary Page 33
Lists of Builder Commands and Lexemes

SHOW
END
ECHO
ELSE
QUIT
RESTORE
ROTATE
LIST
TRANSFORM
KILL
INSERT
IF
FLIP
FIN
HIDE
USE
BEGIN
PERFORM
PLOT

ist all the lexemes (words) in BUILDER

ine ? E
< NEW WORD NOT IN FOLLOWING LIST >
DO
DRAW
DRAWING
DRAWINGMODE
DRAWINGPLANE
DIGITIZE
DIGITIZING
DEFINE
DELETE
OPEN
OPERATION
ON
ONCE
OFF
OFFSET
OUTPUT
OUTPUTFILE
MAKE
MOVE
MODELFACE
CREATE
COPY
COORDINATES
COORDINATE
CONNECTINGENDSEGMENTS
CENTEROFVISION
SHOW
STATION
SCREENSIZE
SCALEFACTOR
SEGMENT
SECTION

e

LI I T | T M T TR |
wowonow o
R T T T T TR

wonn
nw o
LU L LI T I T]

(U RO TR T T I T T T I T T I T 1]
LI R O T I O T T I T T T I T]
LU LR R LI I | T T T I T T T T

I o s e ot T ST T R

BUILDER Glossary Page 34
Lists of Builder Commands and Lexemes

SET
SELECTIONMODE
SPACING

END

ECHO
ECHOLEVEL
ELSE
ELEVATION
EXTRUDEDFACE
QuUIT

RESTORE

REST

REWIND
ROTATE

RANGE

LIST

LINE

LENGTH
LABELS
TRANSFORM
TRANSFORMATION
TRUE
TERMINALSPEED
TEMPLATEFILE
TEMPLATE
TOPELEVATION
TOLERANCE
TYPE

T4027

TILT

KILL

INSERT

INPUT
INPUTFILE

IF

IMAGE
IMAGEFILE
FLIP

FIN

FILENAME
FILE
FILESTATUS
FOCALRATIO
FOR

HIDE

HIDDEN
HITHERCLIPPINGDISTANCE
HEADER
HEIGHT

= HORIZONTAL
USE

UNTIL

BEGIN

==z BUILDING

w uw 0w nw N oW onoww

How ow o on

1]
(L T TR T I T T I T T T T
LU LU LI | R T I IR T T T I T T I 1}

"
(1]
n

1]
1]
W nn

wn
wouowown
" ou o

BUILDER Glossary Page 35
Lists of Builder Commands and Lexemes

BUILDINGPLANE
BUILDERFILE
BASEELEVATION
BASES
BASEDRAWING
BY
PERFORM
PERSPECTIVEVIEW
PLOT
PLANE
PLAN
POWER
POINT
POLYGONFILE
GOTO
GRID
ACTION
ALL
== AWAYFACES

= ANNOTATION_
=== AEDS512
=== NOTHING
=== NO
=== NUMBER
NEXT
VALUE
VERTICAL
XVALUE
XTILT
YVALUE
YTILT
YONCLIPPINGDISTANCE
WIDTH

W owonowow N own
"

(I B]
wowouw N
"o

H

|

8.0 COMMENTS, CREDITS, AND REFERENCES

BUILDER was written as a research tool towards geometriec modeling and
as a design tool for previsualizing interior space. It was designed
and implemented by Bruce R. Donald at the Laboratory for Computer
Graphics and Spatial Analysis of the Harvard Graduate Sehool of

Design.
There are two important references for BUILDER users, both by Donald:
"Computing the Topology of 3-Dimensional Forms™ (80 pp).

"A Survey of Internal and Input Representations for Geometrie
Modeling® (15 pp.)

Changes and Updates:

A list of new and changed BUILDER commands.

3.

11.

12.

13.

ASSIGN PROPERTY : "NAME" STRING "COLUMN";
ASSIGN PROPERTY: °SHEAR RESISTANCE® SCALAR: Uul4,5/ C;

ASSIGN PROPERTY: "CONFIGURATION SPACE REFERENCE’ VECTOR:
(X,Y,2,THETA); ’

GET PROPERTY: ‘NAME®; ;)
Get the specified property. If it does not exist, set EYISTS
to false. When the property does exist, set EXISTS to true,
and place the value of the property, according to type;, in the
evaluable BUILDER variables SCALAR, STRING, or VECTOR,
depending on their type. These variables may be used in
expressions and if statements.

IF: (EXISTS) & STRING = "DOOR"™
(EXISTS is an evaluable lexeme set to true if the property
exists),

SHOW FRAGMENT PROPERTIES;
MAKE DIE DIMENSIONALITY: 1 or 23

STORE MEMORY: n

RECALL MEMORY: h; Where n is an integer 1-10 (like a pocket
calculator).

MAKE PLOTTERWIDTH: <inches)> ;
specify the width of the hi plotter.

DRAW [NO] BOX;
DRAW [NO] CLEARSCREEN;

HIDE QUICKLY:

(Poor man’s hidden surface algorithm on the raster devices),
HIDE; should , with the HIDDEN TOLERANCE set reasonably, and
the HITHER and YONCLIPPINGDISTANCE chosen correctly, produce a
quality (correct) hidden surface view on the raster devices.

SHOW DIE COORDINATES;

FRAGMENT can be used instead of, or interchangably with,
BUILDING.

Once you define (DEFINE) a variable, you have declared its type
and given it a value. Subsequently, you should MAKE it, unless
you want to redefine its type or length. In other words, MAKE
"binds", or assigns value. DEFINE declares type and length,
and then does a MAKE for the value you give.

Advanced Commands:

For Shaded views on the AED 512 terminal:

MAKE SHADES: 50;

Controls the number of grey-tone shades the AED terminal
will use for value delineation (shading) of surfaces.

MAKE SUNPOSITION: (2000, 500,3000);

Specifies a new position for the light source which
illuminates the surfaces.

To position fragments at arbitrary angles and positions:
ASSIGN PROPERTY: 'ORIENTATION' VECTOR: (20,-10, 45);
BUILDER computes the center (or centroid) of the
fragment. Tt will rotate the object successively about

3 axes, the x,y, and z starting at the fragment's centroid.

The above orientation will tilt the fragment 20 degrees
about the x axis, -10 about the y, and 45 about the z.

This is really pretty intuitive when you use it, and lets you
position the fragments in any position whatsoever.

v ﬁ__‘.,_,.‘.'_,_._ Tt o o SR S B o

Manipulating Properties in the BUILDER Data Base

Internal Memo (Not for Distribution)

Bruce Donald
Lab for Computer Graphics
GSD

February 18, 1982 ‘

Drefr— Commerrs 1o & arhoy

Any "fragment", or entity in the BUILDER data base, can be assigned
general "properties" or attributes. These attributes consist of
@ property name, which is a text string, and a property "value",

which can be a scalar, vector, or another text string,
PROPERTY command is used:

ASSIGN PROPERTY: "NAME® STRING: "COLUMN";
assign property:'thickness' scalar: 45;

assign property:'origin' vector: (xvalue, yvalue);

The ASSIGN

Once a data base with Properties has been obtained or Created, you
can "get", or look at these properties. They are evaluable (in other
words, they can be used in expressions) to create or select subsets

of the data base.

You "get" (retrieve) a property by its name. The GET command will

set the BUILDER variable EXISTS to "true" ("NOW SET") if the property
exists. It will also retrieve the value of the property, and place

it in the appropriate variable, STRING, VECTOR or SCALAR, depending on

its type.

GET PROPERIY:'NAME';
IF: Exists & String = "column" 3

GET PROPERTY: 'span';
If: Exists & scalar = 25;
Get Property:'thickness';
If :Exists & scalar = 50;

You can look at all the properties for a fragment with
PROPERTIES; command. .

the SHOW FRAGMENT

o"3usudea3 3yl aeap uayl , Sujaveq-peo] 189FIA9,, Sujays
3yl s} £3aedoad 38yl jo °nTEa 3yl pue ‘juswdeaj sTy3l I0J S83I8TXx3 INIuvid L3aedoad ayj3 31,

i8® 68TY3 sasvayd adenduey YHUTINY @Yl "UABIp 339m Sulie9q-pROT [EIFIISA 2I9M YIFym sjuauleay

?s0Yy] °9sBq BIBP VIFIuld 3Yy3 o3 pafrdde 10 ‘pawiojaad sem (a0qQB) FAUIYIAY UOF3IBaado-oadew ayj

-no!.n

g
- ud--'-!-_ RBIP -
14004-pR0] |9ITIIGN, o 149 § S387x0 3}
2 5 _. -_-.-lo.i .-lw

'I-iq-
1430 °uviiD0ld AVIJSIA O0-C ¥3A1ING 3L ¥04 ©

é

f{do macjas

INITVLN suhcgmﬁo“ﬂa“ Y

i

1
".'__ _
i

\
f
/

‘ /)
R

.

ViR
\

\

\
ia

e/
AVAY,

"major

m the data base (thosge fragments whose
)

shell fro
rior."

e exterior

nnectivity" is "exte

"988q BlEp 3y3 uj suunyoo Y3 1[e meap o3 uoy3evaado-oaoey

ide pus

-:-h
i u.-._ul-....- nRap
weRjed, « Bursys eixe
S

2883441 a3n1d3g ‘WVI00¥d AVIdSIG G-€ H307INE L ¥03 .

tdo waoja

‘uUlnTod e jo satrijaadoad ayg

&

HOIMILXI ¢ ALINLADBN0D BOrv
ONIMYIE-GY0T TWILLNIN NO140004
ONIWV3E-GV0T WITLNIN ¢ SNIwv3g
NeT03 o E o

(00F°019) t NI :.5 3ia
fseyyandoad .—-L-s._ oye

&

fatssyuenbesy 208 ap
&

11

.q-

tde

‘judu8ely joox ayj jo sayjasdoad a3 Leydsyq

&

DNINVIE-GUOT TWANOZINOW © DNINvVIg
BOINALKI & ALINILOBMNOD NOMWM
3008 @ I

s2s- ' Wuds

(voE*5000-916) 1 MI9T80 31G
TR Lo TS o

.

ETF 1 INIWOWY4 Nwag °-°
ety

*83F3aadoad sy PU® juswdeaj ssaife uy
¢doop y

é
§ i WNOILoMNS
53493 i b

(EOT°ETL) = t t-gr 31a
$3T4M340u4 jw& ﬁhw hﬂh
&

dN3ova 4 _-._ wm-.mi

« 583139, 8T uorjlounj esoym sjusuleay ay3 118 aBag

fde !_m

fu
; :cmlun.- nasp *
seeals, uyIgE eTED 3
° .co-“o-uuﬂ..-no.l ao—

3NITuL3N s-ggu-

8034LT G430 “WWEd0dd AVIJSIE G-C ¥IAIING 3L bO4 .
D &

(9L5°@) 1 39wy °~-*

AN3IWOvH 4 =t

403 zomhctuao WYOI43d °-
fross’0)184 Jusebea) 40 ds -uo.a-u

"

o e e
T *

"pakerdsyp
Sa73jaadoad s3} pue UaBap ST Juauwdeaj suo ‘aoTey

“ulPRBA Jutals sey , 4, £31adoad yorys aoj
sjuswdea Smeip pue .4, £319doad jo JJUIISTX
943 103 3833 jeY]l UOF3Ieiado-01dBW easuad y

&

863493 NOTLONNS

¥00Q ¢ e

(101 °v61) s 1 Nl :.B 3lq
-.o-cblo.l o..ilm!: oa-

d

forsiquenbes; ueyd nesp

tdo 1..»
tup)
{queabuasy neap

Ia o Buyaye wsdﬂwnt."-
8
8

2883487 OINIJI0 ‘WWND0Nd AVIASIG G-C ¥307ING 3HL ¥OJ §

THINID -Bnhz.w&lwmott]
fdo qe7)

&

é

«$63493. 1N AOHS °-°

MOLMY: 179

[
aNif3d -
ing

T e b e i

data

entire

ric of the

section

r.ﬁ--"'\\\;'_

/) "//

NN T

‘@seq BIEp ay3 jo
MITA @ATIoedsaad
d0Fa9ajuy uy

s

Lol

Appendix I

No fragment has properties unless they are explicitly specified, or unless
an external program computes and assigns them in the BUILDER
data base.

However, given the metric information that every fragment has, and

by knowing the fragment identifiers ("FRAGMENT NUMBER" in the BUILDER
language, the properties can be assigned with a BUILDER macro-operation--
@ program in the BUILDER programming language.

What follow are two BUILDER macro-operations that were used in

conjunction to assign properties to all the elements in Piper
auditorium,

The shorter operation was used to set up the environment for
assignment. The longer one was applied to each fragment to determine
and assign its properties.

$ assign properties to piper
$

def n: fragment number;
define light: n<99;
define door: n=99 % n=100 §% n=140 % n=141 ¢ n=166 ¢ n=165;
define pipe: n=101 % n=118 ¢ n=119 % (n>141 & n<165);
define column: n>102 & n<113;
define step: n>120 & n<138;
make point coordinates:1;
assign prop:‘die origin’ vector: value;
make span: fragment top - fragment base;

if: span < 0; _

make span: =span;

fing
assign prop: °‘span’ scalar: -span;
$

define other: #(1ight % door ¢ Pipe % column % step);
if:light: ;
assign prop: ‘name’ str:light”;
ass prop: ‘Major Connectivity”’ str:‘ceiling’;
else;
if:door;
assign prop: ‘name’ str: “door”;
assign prop: “function’ str:‘egress’;
else;
ol if: (pipe) ;
assign prop:‘name’ str: ‘pipe railing’;
make fx: xvalue; -
make fy: yvalue;
make point coord:fragment len;
" make dx: fx - xval; make dy: fy-yvalj
make len: (dx*dx + dy*dy) * (.5);
assign prop: ‘length’ scalar:len;
else; |
if:column;
assign prop: ‘name’ str:“column’;
assign prop: “bearing’ str: ‘vertical load-bearing’;
assign prop: “function’ str:‘vertical load-bearing”;
ass prop: ‘Major Connectivity’ str:“exterior”;
else;
if: step;
ass prop: ‘name’ str:’step (sma11)”;
ass prop: ‘Major Connectivity’ str:’large r4ep contours
$
fin; fin; fin; fin; fin:
$ special cases (one of a kind)
if: other;
if: n = 139;
ass prop: ‘name’ string: ‘entrance’;
ass prop: ‘function’ str:‘egress’;
ass prop: ‘major connectivity’ str: ‘exterior’;
elses;
if: n = 102;)
ass prop: ‘name’ str:’back wall“s
ass prop: ‘bearing’ str:‘vertical load-bearing’s
ass prop: ‘Major Connectivity’ str: exterior’;
else; -
if: n = 113; _
ass prop: ‘name”’ str: ‘roof‘;
ass prop: ‘Major Connectivity”’ str: “exterior”;

ass prop: ‘bearing’ str:“horizontal load-bearing’;
else;
if: n

115;
ass prop: ‘name’ str:’interior volume s
ass prop: ‘Major Connectivity”’ str:‘exterior’;

T o s d = - R WRTLMLM et ER
T A T e % - it e s 0 i)

ass prop: “location’ str:‘side/front';

ass Prop: ‘bearing str: ‘vertical load-bearing?';
else;

fin; fin; fin; fin; fing
$

define done: n=139 2 n = 102 ¢ - 113 %n = 115;
if: other & #done;
if: n = 1173
a8ss prop: ‘name” Str:’interior volume“;
ass prop: “location” str: rear’;
ass prop: “Major Connectivity” str:'exterior';
else;
if: n = 120;
ass prop: ‘name”’ str:’large step contours ‘s
ass prop: ‘orientation’ str:‘diagonal';

ass prop:'Major Connectivity' str:‘exterior':
else:

if: n = 114,
ass prop: ‘name’ str: ‘Floor/Front wall‘s
aSs prop: “bearing’ strs ‘vertical load-bearing’;

ass prop: “Major Connectivity” str:’exterior’;
else;

if: n = 116; -

a3s prop: ‘name”’ str: ‘step wall’s
ass Prop: “bearing* str: ‘vertical 1oad-bearing';
ass prop: ‘Major Connectivity® str:‘exterior';

fin; fin; fin; fin; Tfin;

$

show fragment header, properties;

copy fragment;

end op; :

i: : do dr;
2 $ declare variables to give properties to piper

open in fi:'an:[studio.steve]piper3.bas';
. define which: (1,170); -
define fx:0,fy:0,dx:0, dy:O,span:U,len:O;
~Create out fi:“piper.bap’;
per op:‘giveprop’ for fragment range: which;
end file:
quit;
end op;

BT T A e s s i s s v Nt s siane mee s maa e P e -

PP

L b TP,

Appendix TI

What follows is a
entire data base,

selection from the

fragments in the data base--
is easy to produce,.

pProperty list of the

SPAN : - =200 ~ B e

NAME ¢ COLUMN
BEARING VERTICAL LOAD-BEARING
FUNCTION ¢ VERTICAL LOAD-BEARING
MAJOR CONNECTIVITY . EXTERIOR
Fragment 109 WRITTEN TO OUTPUT FILE.
Fragment PLANE # POINTS BASE ELEV TOP ELEY
110 X-Y 10 234 303
DIE ORIGIY . (608, 157)
SPAN =69
NAME : COLUMN
BEARING . VERTICAL LOAD-BEARING

FUNCTION ¢ VERTICAL LOAD-BEARING
MAJOR CONNECTIVITY EXTERIOR

Fragment 110 WRITTEN TO ouTpyr FILE.

Fragment PLANE # POINTS BASE ELEV TOP ELEV
1M X-Y 1 103 303

DIE ORIGIN : (610, 400) ,

SPAN =200

NAME ¢ COLUMN

BEARING s VERTICAL LOAD-BEARING

FUNCTION ¢ VERTICAL LOAD-BEARING_
MAJOR CONNECTIVITY ¢ EXTERIOR

Fragment 111 WRITTEN TO OUTPUT FILE,

Fragment pLANE # POINTS BASE ELEV 70p prey
112 X-Y 10 103 303

DIE ORIGIN : (612,642)

SPAN : =200

NAME ¢ COLUMN

BEARING ¢ VERTICAL LOAD-BEARING
FUNCTION ¢ VERTICAL LOAD-BEARING
MAJOR CONNECTIVITY . EXTERIOR

Fragment 112 WRITTEN TO OUTPUT FILE.
Fragment PLANE # POINTS BASE ELEV TOP ELEV
1 Y-z 16 610 81
DIE ORIGIN (910.0001,304)
SPAN =529

NAME ¢ ROOF
MAJOR CONNECTIVITY ¢ EXTERIOR
BEARING HORIZONTAL LOAD-BEARING

Fragment 113 WRITTEN TO QUTPUT FILE.

Fragment PLANE # POINTS BASE ELEV TOP ELEV
114 Y-Z 3 . -610 81

DIE ORIGIN H (34”,101)

SPAN =529

NAME ¢ FLOOR/FRONT WALL
BEARING VERTICAL LOAD-BEARING
MAJOR CONNECTIVITY EXTERIOR

Fragment 114 WRITTEN TO OUTPUT FILE.

Fragment PLANE # POINTS BASE ELEV TOP ELEV
1185 Y-2 T 148 81

DIE ORIGIN (191,139)

SPAN =67

NAME ¢ INTERIOR VOLUME
MAJOR CONNECTIVITY EXTERIOR

LOCATION ¢ SIDE/FRONT
" BEARING VERTICAL LOAD-BEARING?
Fragment 115 YRITTEN TO OUTPUT FILE.
Fragment PLANE # POINTS BASE ELEV TOP EL®V
116 Y-2 4 508 4g7
DIE ORIGIN (365,102)
SPAN : -11

NAME ¢ STEP WALL

BEARING VERTICAL LOAD-BEARING

MAJOR CONNECTIVITY EXTERIOR

Fragment 116 WRITTEN TO OUTPUT FILE.

Fragment PLANE # POINTS BASE ELEY

17 Y-2 3 610
DIE ORIGIN . (352,101) '
SPAN -102
- NAME "t INTERIOR VOLUME
LocaTIoN ¢ REAR :
MAJOR CONNECTIVITY EXTERIOR
Fragment 117 WRITTEN ToO OUTPUT FILE.
Fragment PLANE # POINTS BASE ELEV
1 Y-2 2 610
DIE ORIGIN . (349,264)
SPAN : -102
NAME ¢ PIPE RAILING
LENGTH . 1
Fragment 118 WRITTEN 1o OUTPUT FILE.
Fragment PLANE # POINTS BASE ELEV
19 Ye2 2 610
DIE ORIGIN - (349,248)
SPAN -102
NAME ¢ PIPE RAILING -
LENGTH -0
Fragment 119 WRITTEN To OUTPUT FILE.
Fragment PLANE # POINTS' ppsp ELEV
120 Y-2 1 4ot .
DIE ORIGIN . (101,233)
SPAN 3 =349

NAME ¢ LARGE STEP CONTOURS
ORIENTATION DIAGONAL
MAJOR CONNECTIVITY ¢ EXTERIOR

Fragment 120 WRITTEN To OUTPUT FILE.

Fragment PLANE # POINTS BASE ELEY
121 Y-2 5 497

DIE ORIGIN . (101,228)

SPAN =35

NAME ¢ STEP (SMaLL)
MAJOR CONNECTIVITY ¢ LARGE STEP CONTOURS

Fragment 121 WRITTEN 10 OUTPUT FILE,

Fragment PLANE # POINTS BaASE pLpy
122 Y-2 5 183

DIE ORIGIN (101,228)

Sp s =35

NAME : STEP (SMALL)

MAJOR CONNECTIVITY ¢ LARGE STEpP CONTOURS

Fragment 122 WRITTEN TO OUTPUT FILE,

Fragment PLANE # POINTS Basp gLpy
23 - y.z g 497

DIE ORIGIN . (130,214)

SPAN -35 '

NAME * STEP (SMALL)
MAJOR CONNECTIVITY ¢ LARGE STEP CONTOURS

Fragment 123 WRITTEN TO OUTPUT FILE,

Fragment PLANE # POINTS BASE ELEV
124 Y-2 5 183

DIE ORIGIN . (130,214)

SPAN =35

NAME : STEP (SMALL)

- MAJOR CONNECTIVITY ¢ LARGE STEp CONTOURS

Fragment 124 yRITTEN TO OUTPUT FILE.

Fragment PLANE # POINTS BASE ELEV
125 Y-2 5 ' 497

DIE ORIGIN . (161,200)

SPAN : -35

NAME : STEP (sMALL) '

MAJOR CONNECTIVITY ¢ LARGE STEP CONTOURS

Fragment 125 WRITTEN 10 OUTPUT FILE.
Fragment PLANE - # POINTS BASE _ELEV

TOP

Top

ToP

TOP

TOP

Top

Top

ToP

TOP

TOP

ELEV
508

ELEV
508

ELEV
508

ELEV
148

ELEV
462

ELEY
148

ELEV
462

ELEY
148

ELEV
462

ELEV

NAME H

MAJOR CONNECTIVITY

STEP (SMALL)
LARGE STEP CONTOURS

Fragment 135 WRITTEN TO OUTPUT FILE.
Fragment PLANE # POINTS BASE ELEVY
136 Y-2 .] 183
DIE ORIGIN : (315,126)
SPAN : -
NAME ¢ STEP (SMALL)
MAJOR CONNECTIVITY ¢ LARGE STEP CONTOURS
Fragment 136 WRITTEN TO OUTPUT FILE.
Fragment PLANE # POINTS BASE ELEV
137 Y-2 5 497
DIE ORIGIN : (344,111)
SPAN =35
NAME ¢ STEP (SMALL)
MAJOR CONNECTIVITY ¢ LARGE STEP CONTOURS
Fragment 137 WRITTEN To OUTPUT FILE.
Fragment PLANE # POINTS BASE ELEV
138 ¥-2 5 183
DIE ORIGIN : (3“",111)
SPAN : =35
Fragment 138 WRITTEN TO OUTPUT FILE.
Fragment PLANE # POINTS BASE ELEV
139 Y-z 5 81
DIE ORIGIN (322,102)
SPAN ¢ -
NAME ¢ ENTRANCE
FUNCTION ¢ EGRESS
MAJOR CONNECTIVITY EXTERIOR
.Fragment 139 WRITTEN TO OUTPUT FILE.
Fragment - PLANE # POINTS BASE ELEV
140 Y-2 4 6
DIE ORIGIN : (194,101)
SPAN -
NAME ¢ DOOR
FUNCTION ¢ EGRESS
Fragment_ 140 WRITTEN TO OUTPUT FILE.
Fragment PLANE # POINTS BASE ELEV
141 Y=-Z L} 6
DIE ORIGIN : (259,102)
SPAN ¢ =
NAME ¢ DOOR
FUNCTION ¢ EGRESS :
Fragment 141 WRITTEN TO OUTPUT FILE.
Fragment _ PLANE # POINTS BASE ELEV
) 142 -2 2 Loy
DIE ORIGIN : (102,263)
SPAN : -
NAME ¢ PIPE RAILING
LENGTH 259.8558
Fragment_ 142 WRITTEN TO OUTPUT FILE.
Fragment PLANE # fDINTS BASE ELEV
143 Y=-2 2 151
DIE ORIGIN : (102,263)
SPAN : =
NAME ¢ PIPE RAILING
LENGTH : 259,.8558
Fragment 143 WRITTEN TO OUTPUT FILE.
Fragment PLANE # POINTS BASE ELEV
144 1-Z 2 151
DIE ORIGIN : (103,247)
SPAN -1
NAME ¢ PIPE RAILING
LENGTH : 258.5209
Fragment 144 WRITTEN TO OUTPUT FILE. .
Fragment PLANE # POINTS BASE ELEY

TOP

TOP

ToP

TOP

TOP

TOP

TOP

TOP

TOP

TOP

ELEV
148

ELEV
462

ELEV
148

ELEV

ELEV

ELEV

ELEV
493

ELEV
152

ELEV
152

ELEV

BUILDER
A Graphics System for Spatial Analysis

Problem Set 4

Heuristics in Urban Design
Edward Popko Lecturer
Bruce Donald Research Associate
Urban Design Program
Graduate School of Design
Harvard University
Cambridge, Ma. 02139

April 16, 1982

Acknowledgements:

This problem set could not have been compiled without the
support of the staff of the Laboratory for Computer Graphics
and Spatial Analysis. I would like to thank Bruce Donald
and Hugh Keegan in particular for their suggestions and

technical assistance in preparing data and computer accounts
for everyone.

Background

Boston is undergoing unprecedented center-city
redevelopment. In the last 5 years alone, more than &4
square miles of land have been redeveloped. The city's
Public Facilities Group scehdules all long term capital
improvement projects and often uses architectural
competitions as a way of obtaining quality designs for
schools, parks, community centers, and parking structures.

Problem Statement

You have been commissioned by the city to develop a
building envelope for a new parking structure to be located
east of Quincy Market. Your envelope defines the outer-most
limits of any design built on the site and it will be be
used as the basis for evaluating submissions for city-wide
urban design competition; submissions must fit within your
envelope and respect the circulation points that you
indicate.

Figure 1 shows the general site of the proposed
structure. The site is approximately 2 acres with potential
access from Commercial Street, State Street, and the South-
East express service drive. Your envelope must meet the
following specifications:

1) four (4) feet setback from the lot boundaries for
sidewalks.

2) maximum height of 50 feet. Note that the portion of
the site under the expressway can not exceed 38 feet.

3) two points of ingress/egress (four total) fer
automobile circulation.

4) four points for pedestrian access to building.

Use the BUILDER program to create one or more buildings (or
fragments) that meet the above requirements. You may need
to stack several fragements to achieve the desired envelope.
Figure 2 shows an aerial perspective of the entire Quincy
Market redevelopment project. The proposed parking
structure is site 2. Figure 2 also lists the base and height
of each of the buildings in the area. !

Document your building envelopes with one plan view

perspective of the entire site and five time-series
perspectives using the view-points and station-point

! The basic site plan is contained in file "quincy.bld".

3

indicated in Figure 3. 2 For extra credit, create

animations of the site using BUILDER options for color,
hidden=-line, or focal ratio options.

? Five perspectives are required, one from station points
27, 28, 29, 30, and 31 looking at center of vision point 26.

4

=Y

Figure 1 - Quincy Market Redevelopment Area

=2
sl
-
>
wd
=
-
=
o
X wa
€ =g, 3
=l Y Lad
wd o OF 3B o)
-t E il T d
¢¢&-JC
‘-l:lﬂa
-l I
Gﬁﬂg
ZEwaa
Eﬂ.
@t 0
=2 * s s

LEV

..............g:....'....

8 POINTS BASE E

TV IO TracemMe -a..ﬂ.'-“-.
L. - -

M
o= LIst 1weuT

?
LIST I

Figure 2 - Perspective View of Redevelopment Site

Bibliography

Donald, Bruce. "BUILDER: A Data-Base and Display Program
for Computer-Aided Architectural Design." Cambridge:
Harvard University, Graduate School of Design,
Laboratory for Computer Graphics .and Spatial Analysis,
1982.

Donald, Bruce. '"Manipulating Properties in the BUILDER
Data Base." Cambridge: Harvard University, Graduate
School of Design, Laboratory for Computer Graphics and’
Spatial Analysis, 1982.

Donald, Bruce and Paul Stevenson Oles. "A Familiar Space
in Two Dimensions." Cambridge: Harvard University,
Graduate School of Design, Laboratory for Computer

Graphics and Spatial Analysis, 1982.

/,

|

Q@J

/v/w/w%& - /

.
!
1

L
T

Wi

wayy

Ciry
]
=
\‘ .‘ . l-
v % o
it

PARKING

-"cﬂllr'
Sany
b
AL

e
T?

2 e T -~ —

S

;"\};\: g

builder

== VELCOME TO BUILDER!
do drew
«=s DO Mlm

’

[

in file?’quincy.bld’
o2, OPEN InNPUT FILENARE’s *QUINCY.BLD®

s DRAU NO CLEARSCREEN

draw ne clear

1
’ﬂl.l.

al

s5 DleirIzE ceremoruzeton 3“_.._. .
¢ DIGITIZE CENTER OF VISION POINT ¢

P—

W NT

ouInweg od *--

~
DRAW

mpccnw ALy -
el 1 ’Ec‘"‘ I“

™ Dm .L

.-. DO DRAUING

.. DO DRAUING
~

e,

[
e

|

v=. RECALL REmoRy : 100

?

REC REMs100

?

-

b 844

£
3

.m“ 4 04 N3LLIWA €8
. u iNdiN0 OL NILLIMA Juonbuay
*3113 1NdiNO OL NILLINA § quesbBuay
*3114 LNdLINO OL NILLINA quenfesy
*3114 LNdLNO OL NILLIWA u quesbesy
*3114 LNGiNO OL NILLINA 81 quesfuag
*3114 4NdiN0 OL NILLINA LT quenbeay
*3114 4NN O4 NILIINA 95 quoaesy
*3114 ANdLINO OL NILLINA 87 quenbeay
*3114 ANdLNO OL NILLINA #3 quesbesy
*3114 AN4INO 0L NILLIWA €1 quenbaay
*3114 iNdLN0 OL N: ¥n 0 quenlesy
°3114 ANdLNO OL N3LLINA T3 quenfesy
*3114 iNdLN0 OL N3LlIwA @ quosalesy
*3113 iN4LNO OL NILLINA § quonbeay
*3114 iNdLNO OL NILLIwA OF tuenfeay
°3114 LN4IN0 0L N3LLINA @ quoabeay
*I11d ANdLNO OL N3LLIGA 8 quenlesy
*3114 INdLN0 OL NILLIWA L quealeay
*3114 LN4LNO OL NILLINA 9 quesfuay
*3114 INdINO 0L N3LLINA § quesbuay
*311J LNdINO OL NILLINA ¢ quenbedy
*3114 LNdINO OL NILLINA € quenlesy
*3114 LNdiN0 0L NILLINA IE quesfeuy
*3114 INdINO OL N3LLINA OF quenbesy
*3114 INdlNO 0L NILLINA 62 quemBesy
*31134 ANdLNO OL W3LLIGA 88 qusnleay
*3114 LNdINO OL NILLINA L3 qussbeay
*3114 ANdLNO 0L NALLINA S8 i a..-uusm
u‘aqon Adoo
.
hj&ﬂ“ﬂﬁ!‘
anl 4
pf
)
s
‘anoqe W []

uBreep 4anof jo juseBedsy yowe Adod puw j1e3ey 180N §
%

&

*3114 ANdLNO OL N3LLINA @07 oud n“mm-msm

.—zﬂn“._.lnln.— fdea

¢

o0 19038 *-*

901 1m0m ||e30a

[

onlnyua od -

. uyneJdp op

314 aN3 - ;

®17) pue e

L0168 XKX. 1 IWYNINIS LN4LNO 31¥IHD *-°

¢ 1,P19° XXX, 181 1) Andyno @je04d
*3114 LNdLN0 OL NILLISA 2E quesfeay

*3114 AN4LNO OL NILLINA §2 tuenbuay ¢
‘3104 ANLNO 0L NALLINA b2 qusabesy

epen -.ﬁao falet ' XXX.bid’p
o=« OPEN INPUT FILENANE ¢ °XXX.BLD®

i g
%, 4
e Fonmn L [i « . . —— B
. . . : _ 5 oy
i = - ! e ’ £r s -
= : 2 : E i i g .
- * 3 + e i : o ;
" - , st ot + 4 . e 1
s . . g Tmm fagore 4
= ; —— £, ., islod NOISIAJONBINDO B21il0ld *-
.) g . N F Ay . * "
.. 3 o . ; 7 T ¥
) : i :

 —

e, S P ——

1Y Aveg °-°
g‘ z L
f1ye ve)d neap

4]

11

1oy sef38ye eyem

I3H_NOILVLS Il -
g8

&
P |

s

4 I -
§°17rg20) oyem

$°1 s oIl

¢

gl

i v
; !
L

¥
BR e T
&
b
4
x

° 1 1N34VT NOA 338
fyinb

§

	BUILDER
	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57

	appendix
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	031
	032

