
Minimalism � Distribution � Supermodularity

Bruce Donald Jim Jennings

Department of Computer Science Department of Computer Science

Cornell University Tulane University

Ithaca� NY ����� New Orleans� LA �	���

Daniela Rus

Department of Computer Science

Dartmouth College

Hanover� NH 	����

April ��� �

�

Abstract

We have designed and implemented multi�agent
strategies for manipulation tasks by distributing
mechanically�based sequential algorithms across sev�
eral autonomous spatially�separated agents� such as
mobile robots� Our experience using mobile robots for
the manipulation of large objects �couches� boxes� �le
cabinets� etc�� leads us to recommend a minimalist
architecture for multi�agent programming� In particu�
lar� our methodology has led us to derive asynchronous
distributed strategies that require no direct communi�
cation between agents� and very sparse geometric and
dynamic models of the objects our robots manipulate�

We argue for a design principle called supermodu�
larity� which is orthogonal both to the notion of modu�
larity in cognitive AI and also to horizontal decompo�
sition �the non�modularity advocated in the subsump�
tion�connectionist literature��

Finally� we discuss a simple mobot�Scheme in�
frastructure to implement supermodular architectures�
In the past few years we have programmed many su�
permodular manipulation protocols and tested them ex�
tensively on our team of mobile robots� We describe
why we think the supermodular infrastructure results
in robust� simple� readable� manipulation strategies
that can be recycled and reused�

� Introduction

In robotics most manipulation algorithms are de�
signed to execute in a single process on a single com�
puter that takes input from all the sensors and con�
trols all the e�ectors� To develop distributed ma�
nipulation strategies� we began with a sequential but

mechanically�based robot algorithm for pushing and
grasping �e�g�� �Mas�	
�� While quite general in prin�
ciple� these o��line algorithms are usually designed for
robotics devices such as grippers or �ngers attached to
a traditional robot arm� To extend these results for
distributed manipulation �de�ned in this paper in Sec�
tion 	� there are several challenges� �
� Autonomous
mobile robots �mobots� have a suite of sensing and
control modalities that di�er across robot architec�
tures� ��� Mobots are often better suited to on�line
approaches and hence the algorithmsmust be adapted
to rely less extensively on geometrical and dynamical
models� ��� A host of di�culties arises when a task
must be performed by a distributed team instead of
a single agent�and hence the algorithms must com�
pensate by changing their communication� sensing�
or knowledge requirements�Don�	� DJR��� DJR��a�
RDJ�	
�

We have reported on several sets of manipulation
strategies �which we call protocols�� and also on the
methodology which generated them �Don�	� BBD��	�
RDJ�	� Jen�	
� Our most interesting protocols are
asynchronous and do not require communication be�
tween the agents� In this paper we address the ar�
chitecture and the programming environment we used
to develop our protocols� We also discuss how the
class of distributed manipulation algorithms we have
developed leads naturally to certain architectural con�
straints�

This paper is organized as follows� We begin with
a discussion on minimalism and supermodularity� We
continue by describing three di�erent minimalist ma�
nipulation protocols we have implemented and ana�

lyzed in the information invariants framework� and we
highlight their supermodular structure� Then we de�
scribe the infrastructure we used for developing our
strategies� Finally� we discuss how supermodularity
and minimalisma�ect distributed robot architectures�

� Minimalism
Minimalism pursues the following agenda� For a

given robotics task� �nd the minimal con�guration of
resources required to solve the task� Thus� minimal�
ism attempts to reduce the resource signature for a
task� in the same way that �say� Stealth technology de�
creases the radar signature of an aircraft� Minimalism
is interesting because doing task A without resource B
proves that B is somehow inessential to the informa�
tion structure of the task� We will discuss our experi�
mental demonstrations and show how their implemen�
tation relates to our theoretical proofs of minimalist
systems� In particular� we will describe our Mobot

Scheme system�a distributed� multi�threaded� high�
level robot programming environment�

In robotics� minimalism has become increasingly
in�uential� Marc Raibert showed that walking and
running machines could be built without static sta�
bility� Erdmann and Mason showed how to do dex�
trous manipulation without sensing� Tad McGeer
built a biped� kneed walker without sensors� com�
puters� or actuators� Rod Brooks has developed on�
line algorithms that rely less extensively on planning
and world�models� Canny and Goldberg have demon�
strated robot systems of minimal complexity� We have
taken a minimalist approach to distributed manipula�
tion �de�ned in this paper in Section 	� and also to
our choice of a software architecture for writing our
robot programs� We claim that the resulting proto�
cols consume a near�minimum amount of resources�
The accompanying software development� debugging�
and execution�time system are concomitantly parsi�
monious and lean�

� Supermodularity
This paper introduces the concept of supermodu�

larity� and in particular� it brings to the foreground
the supermodularity of our manipulation strategies�
In programming� it is natural to talk about units of
organization called subroutines� In mobile robotics�
particularly for distributed strategies�we have devel�
oped analysis and synthesis tools for units of orga�
nization called circuits �Don�	
� Intuitively� a circuit
is a sensori�computational unit consisting of sensors
and actuators connected by data paths� We model
our circuits as graphs� Vertices correspond to di�er�
ent sensori�computational components� Edges corre�

spond to the data paths through which the informa�
tion passes� Circuits can be transformed by changing
the edge or vertex structure of their graphs� Di�er�
ent immersions of the graphs correspond to di�erent
spatial allocations of resources� An important class
of transformations consists of permutations� A circuit
permutation is a vertex permutation followed by an
edge permutation of its graph�

Roughly speaking a subroutine is modular if it can
be reused without changing the interface� We say a
circuit is supermodular if it can be relocated to a di�er�
ent physical location and still function correctly even
in the absence of circuits that formerly surrounded it
and in the presence of new circuits at this new lo�
cation� In this paper we will describe supermodular
circuits according to the following hierarchy of circuit
transformations� A circuit is replicated when it is du�
plicated at the same� or at a di�erent location� A cir�
cuit is distributed when it is split up and the parts are
recombined to form di�erent circuits� A supermodular
permutation consists of moving circuits around while
respecting supermodular boundaries�

The chief debate between cognitive AI and archi�
tecturally constrained approaches� such as subsump�
tionism and connectionism� is as follows� cognitive AI
advocates that skills should be modular� Connection�
ism�subsumption enforces a particular architecture
above all else and this architecture may violate mod�
ularity� We maintain that this so�called dichotomy
opposes the wrong categories� the issue is not modu�
larity vs� non�modularity�this faux dichotomy arises
from only considering single�agent systems in which all
resources are physically co�located�in this case super�
modularity reduces �or more accurately� masquerades�
as simple� naked modularity�

On the other hand� in distributed systems� re�
sources are of course not physically co�located�

In order to achieve the following goals�

� simplicity

� ease of reuse

� performance guarantees

� fault tolerance

we choose the design constraint of supermodularity�
We will show how supermodularity achieves this goal�
Since this design constraint de�nes an architecture�
our architecture could also be called �supermodular�
ity��

As an example of a supermodular circuit illustrat�
ing these points� we discuss in detail two circuits

�

called �align� and �push�track� �see Section 	����
�align� is a virtual orientation sensor which by ac�
tively exerting compliant control changes the robot�s
heading to lie at a particular� desired angular relation
to a manipulated object� �push�track� is a virtual ef�
fector that given a velocity control� executes a guarded
move while in contact� to apply a force along a desired
line�of�pushing to a manipulated object� We will de�
scribe a supermodular protocol called Async�Online
that uses �push�track� for multi�robot reorienting of
large objects�

Supermodularity is a continuum� A circuit X is said
to be more supermodular than circuit Y if the region
C�X� of the con�guration space C in which X func�
tions correctly strictly contains C�Y�� A completely
supermodular circuit Z has C�Z� � C� Hence� super�
modularity is a partial order on circuits� In this paper
we will �informally� use the term �circuit X is often
supermodular� to connote that �C�X� is large�� This
concept may be quanti�ed precisely by measuring the
relative volume of C�X� in C �DRJ��
� In this paper
we describe a partial order on the circuits we describe
in detail� Some circuits are completely supermodular
for the manipulation tasks we consider� while other
circuits are not supermodular at all� We will show
that Async�Online is completely supermodular� and
more supermodular than �push�track�� which in turn
is more supermodular than �prim�push�� the circuit
for applying a force along a pre�speci�ed line of push�
ing�

Our mantra for this paper is as follows�

�Minimalism � Distribution � Supermodularity�

In other words� simplicity does not arise from su�
permodularity but rather� from minimalism� Simi�
larly� the transformations we permit circuits to un�
dergo are constrained by the information invariants
theory� That is� minimalism de�nes what it means for
circuits to be simple and information invariants de�ne
what it means for circuits to be distributed� When
the two are combined� the �optimal� kind of circuits
are the supermodular ones�

Supermodularity yields recyclable and portable
code� The greatest challenge is to formulate a method
for authoring optimal supermodular circuits with per�
formance guarantees� Our research agenda for perfor�
mance guarantees is �i� to ensure performance guaran�
tees for individual circuits� �ii� to show that a super�
modular circuit with performance guarantees retains
these guarantees when relocated� and �iii� to show that
a supermodular circuit with performance guarantees
retains these guarantees when distributed and paral�
lelized� More speci�cally� �i� ensures that a circuit

has a predictable functionality� for example it per�
forms to within speci�ed accuracy as in the case of the
�align� circuit discussed in Section 	��� In addition�
�ii� ensures that the circuit has the same functional�
ity when moved to a di�erent location� The goal here
is to show that under any permutation that respects
co�designation constraints ��Don�	
�� the supermodu�
lar circuits retain� at least locally� their performance
guarantees� Finally� �iii� ensures that the performance
guarantees of a supermodular circuit are preserved in
the presence of other circuits or agents that might �a
priori� interfere with its basic functionality�

We have already derived performance guarantees
for sequential and single agent circuits� An example
is �align� whose analysis is described in �JR��
 �see
Section 	���� Arguments that rely on geometry and
task mechanics can also be made about our other su�
permodular circuits� We believe that because our ma�
nipulation strategies are performed in quasi�static en�
vironments �Section ��
�� given velocity bounds� the
performance guarantees of single agent sequential cir�
cuits will be preserved when distributed� We tried to
demonstrate this point empirically by running a large
number of tests and experiments� While these results
are yet to be proved rigorously� we believe that the
supermodular framework is the right architecture for
addressing performance guarantees�

� Previous Work
There has been much work on cooperative systems

of robots� For an excellent review see �CFKM�	
�
Previous work on cooperative manipulation has fo�
cused mostly on pushing� usually in the context of
box�pushing by multiple mobile robots� e�g�� �Par��
�
�Nor��
�

��� Robotic Manipulation

�MS�	
 presents extensive analysis of grasping and
pushing operations under a quasi�static model� Ma�
son�s analyses of the mechanics of pushing and grasp�
ing have led to many practical manipulation strate�
gies implemented most often on anthropomorphic
robot arms with simple two��nger grippers� Simi�
larly� �Bro�	
 and others have analyzed the geometry
and mechanics of quasi�static pushing and squeeze�
grasping of planar objects with common �parallel jaw�
grippers�

Some work has been done on large�scale manipula�
tion using a single mobile robot� such as �LM��
 and
�OY��
� The former analyze the mechanics of planar
pushing with line contact �e�g�� a mobile robot with a
�xed �at blade pushing a box� and demonstrate a ma�
nipulation planner which maintains this contact con�
�guration�

�

��� Cooperating Mobile Robots

Other recent work investigates tasks in which mul�
tiple mobile robots cooperate� such as� �SB��
 �manip�
ulation of pallets by many small robots in simulation��
�Mat��
 �study of group behaviors such as dispersion
and �ocking�� �ABN��
 �simulation of foraging agents
with and without communication��

Work combining cooperation with mobot manipu�
lation includes �Nor��
� �Par��
� and �DJR��� DJR��a�
DJR��b� RDJ�	� Jen�	
� Each demonstrates the ma�
nipulation of a box or other large object using two
mobile robots� �Nor��
 describes a task in which one
robot pushes a box and another robot clears obstacles
out of the way� �Par��
 builds an architecture designed
to achieve fault�tolerant cooperation within teams of
heterogeneous mobile robots and applies that archi�
tecture to a number of tasks �mostly in simulation��
including �hazardous waste cleanup�� in which several
mobots cooperate to pick up a number of small objects
and move them near a designated site�

One task from �Par��
 implemented on real �phys�
ical� robots is a two�robot� box�pushing task� Each
robot pushes its own end of the box by some �xed
amount� then waits for the other robot to push its end�
This strategy can be executed by a single robot in the
event of failure of the other robot� the key feature of
the strategy� and indeed of Parker�s architecture� is its
fault�tolerance�

We note that although much work has been done
in simulation of cooperative manipulation� there is
little evidence that the results re�ect the behav�
ior of physical robots performing similar tasks� Of�
ten the mechanics and dynamics are poorly mod�
eled� and unreasonable assumptions are made about
available communication and sensing devices� How�
ever� Lynch and Mason ��LM��
� present a simulator
and motion planner for single�robot pushing that is
based in sound mechanics� and this simulator may yet
be extended to multiple�robot manipulation� Also�
�DJR��� DJR��a� DJR��c� DJR��b� Jen�	
 present
algorithms for two�robot pushing and for multi�robot
reorientation� They analyze their protocols with re�
spect to usage of such resources as computation� re�
tained state �e�g�� models�� sensors� and communica�
tion� Much of this work has the theme of minimalism�
asking such questions as �Can we design a manipula�
tion strategy that requires no communication between
the agents��

In the next section� we summarize our most in�
teresting implemented manipulation protocols� those
for multi�robot pushing� reorientation� and push�
ing�steering manipulation of large objects� In the sec�

tions that follow� we discuss our focus on minimalism�
our robot programming philosophy� and the nature of
the distributed manipulation algorithms we have im�
plemented�

� Three Distributed Minimalist Ma�
nipulation Protocols

This section describes our experience in building
minimalist distributed strategies for mobots that per�
formmanipulation tasks� We describe the circuits that
implement the protocols we developed for three ma�
nipulation tasks� and highlight their supermodularity�
We di�erentiate between the properties of manipula�
tion protocols by robots according to the following hi�
erarchy� In a manipulation task� robots use forces to
reorganize the robots� space� In a parallel manipula�
tion protocol� two or more robots apply forces to the
same coupled dynamical system� In a distributed ma�
nipulation protocol� the computation and control are
distributed among the robots in a way that quali�es
as a distributed computation�

We present three di�erent tasks� the protocols we
developed for these tasks� and two examples of super�
modular circuits that we recycled and reused for each
task protocol� The experiments provide empirical evi�
dence for our belief that code authored in supermodu�
lar architectures is simple� predictable� parallelizable�
and reusable�

Speci�cally� we describe protocols that allow a team
of small autonomous mobile robots to cooperate to
move large objects �such as couches�� The robots run
SPMD� and MPMD� manipulation protocols with
no explicit communication� We developed these pro�
tocols by distributing o��line� sequential algorithms
requiring geometric models and planning� The result�
ing parallel protocols are more on�line� have reduced
dependence on a priori geometric models� require no
communication� and are typically robust �resistant to
uncertainty in control� sensing� and initial conditions��

We will discuss the circuits needed to implement
the protocols� In particular� we will introduce the fol�
lowing circuits�

� �M�� the protocol for two�robot straight�line
pushing�

�� �prim�push�� the circuit for applying a force
along a speci�ed line of pushing�

�� �align�� the circuit that allows a robot to posi�
tion itself at a speci�ed relative orientation with
respect to a surface�

�SPMD �MPMD� � Single �Multiple� Program� Multiple
Data�

�

�a� �b�

Figure
� Two pushing tasks � the goal in each case is
to push the block in in the direction indicated by the
dashed arrows� �a� In the �two��nger� pushing task�
as seen from above� the �ngers �drawn as circles� are
kinematically connected in the common �parallel�jaw
gripper� con�guration� �b� Although similar in ap�
pearance� the �two robot� pushing task is quite dif�
ferent� Each of the mobile robots �drawn as circles�
is an autonomous machine� and there may be little or
no explicit communication between them�

�� �SPR�� the circuit for a single pushing robot�

	� Async�online� the protocol for two robot reori�
entation�

�� �push�track�� the circuit for compliant pushing
at an angle while sliding on the face�

 � Pusher�Steerer� the circuit for the MPMD
manipulation system�

We will discuss how we used these circuits to imple�
ment the protocols for our three manipulation tasks�
we will show how these circuits relate to each other�
and we will discuss their supermodularity�

For all of our protocols� the manipulated objects
have comparable size and dynamic complexity to the
robots� Objects used in our experiments are up to six
robot diameters in length� and up to twice the mass of
one of the robots� Repositioning and reorientation of
these objects may be possible only through active co�
operation of a team of mobile robots� Employing mul�
tiple robots may yield performance bene�ts� or other
advantages� such as ease of programming�

��� Pushing

Consider a task in which a single robot �manipu�
lator� must push a box in a straight line� Figure
a
depicts this task� posed for a two��nger robotic ma�
nipulator� We do not assume that the robot possesses
a complete model �geometric and physical� of the ob�
ject it is pushing� or of the supporting surface� With a
two��ngered push �see Figure
a�� the box will trans�
late in a straight line so long as the COF �the center

of friction� lies between the �ngers� �The actual con�
dition for stable straight�line pushing is slightly more
complicated� See �MS�	
 for a complete analysis�� An
advantage of the two��nger pushing strategy is that
the COF can drift around some and yet the robot can
keep pushing� since we only need ensure the COF lies
in some region between the lines of pushing of the �n�
gers �see Figure
a�� instead of on a line� If the COF
moves outside the region� then the �ngers can move
sideways to �capture� it again� We have implemented
a control loop for this task on our force�controlled
Puma manipulator� The basic idea is to sense the
reaction torque � about the point � in Figure
a� If
� � !� push forward in direction of the arrow� If � � !
move the �ngers to the right� else� move the �ngers to
the left�

We now derive a di�erent version of this pushing
strategy with a parallel jaw gripper for a system of
two autonomous robots that can push an object� This
new strategy relies on the observation that the infor�
mation needed to determine the motion of the box
is present in the angle � between the normal to the
face of the box n and the direction of pushing p� See
Figure �� We wish the new protocol to run on two
autonomous mobile robots which will replace the �n�
gers� as in Figure
b� We can adapt the control loop to
servo on � instead of � because our robots can use their
pushbutton bumpers to measure the relative angle be�
tween their heading and the orientation of the face of
the box �JR��
� Actually� the robots �rst measure ��
�the initial angle between n and p�� and subsequently
compare this value to the angle ��t� measured at time
t in order to infer the direction of motion of the box�
A negative change in the value of this angle implies a
clockwise rotation of the box� A positive change im�
plies a counterclockwise rotation� The robots adjust
their pushing location along the face of the box accord�
ingly� This is an example of how the robots can use
the task dynamics� to determine their next actions�
Pseudo�code for this strategy �called Protocol �M�� is
shown in Figure � and the circuit for the protocol is
shown in Figure ��

This pushing protocol depends crucially on two re�
sources for the mobots� the ability to sense the rel�
ative orientation of the object at the point of con�
tact and the ability to apply a force along a speci�ed
line of pushing� The relative orientation sensor is im�
plemented by using the circuit �align� described in

�An alternative to using task dynamics is to use explicit
communication� The robots could exchange the sensed torque
at their points of contact to determine the best contact point
on the face of the object� A detailed description of this method
is presented in �DJR��	 DJR�
a��

	

Left robot Right robot

�� � ��!�
repeat�

push f
measure ��t�
g
until ��t� �� ��

if ��t� � ��
translate�left

else translate�right

�� � ��!�
repeat�

push f
measure ��t�
g
until ��t� �� ��

if ��t� � ��
translate�left

else translate�right

Figure �� Protocol �M�� A strategy for two au�
tonomous robots to push an object in a straight line
without communication�

�b�comm� �

run

sgn

init

case �s�

s

��

sgn

case �s�

s

��

init run

L R

��t�

Figure �� Sensor system for Protocol �M�� This is a
manipulation circuit for Protocol �M��

detail in Section 	�� and Figure �� Pushing is imple�
mented by a circuit called �prim�push� �described in
�RD��
��

����� Supermodularity in Pushing

�prim�push� gives us a simple version of pushing� it
applies a force at a �xed direction with respect to the
surface of the object� �prim�push� is a subcircuit that
implements Protocol �M� for cooperative straight�line
pushing� In other words� �prim�push� � �M��

A single robot system equipped with the circuit
�prim�push� is denoted by �SPR�� �SPR� e�ects trans�
lations� This circuit is related to �prim�push� by the
following information invariant equation�

�SPR� �� �align� � �prim�push�� �
�

p pn n

θ θ

θ

Figure �� The critical quantities for the servo loop in
Protocol �M��

B

A

Figure 	� A single pushing robot is not a supermodular
circuit� Relocating the circuit from A to B results in
the application of the wrong torque sign�

where the composition of �align� and �prim�push�

is parallel�

�SPR� is modular� it can be replicated on other
robots for the same functionality� In our lab we
have equipped three robots with similar but di�er�
ent architectures� Tommy� Lily� and Camel

�� with
�prim�push��

�prim�push� is not a supermodular circuit� as
its functionality �quanti�ed by the applied torque�
depends on its spatial location� When relocated�
�prim�push� does not impart the same torque �see
Figure 	�� Moreover� a multiple robot system where
each robot is �SPR� may e�ect translations� rotations�
or the null operation �i�e�� the object stays in place��
depending on their physical location� �prim�push�

is our �rst example of a modular circuit that is not
supermodular�

In contrast to �prim�push�� �align� is a super�
modular circuit� The e�ect of align is to position a
robot at a speci�ed relative orientation with respect
to a surface� �align� adapts to the surface normal to
determine the heading of the robot no matter where
the robot is located�

In the following section we describe circuits
that are supermodular� Speci�cally� we show how

�
Camel�s di
ers mechanically from Tommy and Lily in that

it is a treaded rather than wheel�based robot and it contact
bumpers are distributed on a line rather than a circular surface�

�

�prim�push� can be generalized to a circuit we call
�push�track� so that it can apply a force at any de�
sired orientation with respect to the surface of the
object� This generalization is achieved by combining
the circuits �prim�push� and �align� in a sequential�
rather than parallel fashion� The sequential composi�
tion of �align� and �prim�push� results in a circuit
su�cient for the reorientation task� the parallel com�
position of �align� and �prim�push� results in a cir�
cuit su�cient for the MPMD manipulation task� The
details of the compositions will be given in Sections 	��
and 	���

��� Reorientation

We are also interested in the reorientation of objects
by teams of mobile robots� Consider the task whose
goal is to change the orientation of a large object by
a given amount� This is called the reorientation task�
We have described and analyzed in detail the reori�
entation task in �RDJ�	
� Figure � depicts one robot
reorienting a large object� A robot can generate a ro�
tation by applying a force that is displaced from the
center of friction� This property relates the dynamics
and the geometry of reorientations �Mas�	
 and it can
be used to e�ect continuous reorientations with mo�
bile robots� The idea is to compliantly apply a sliding
force on the face of the object�� We call this action a
push�track step�

When the end of the face is reached� the robot may
turn around to reacquire contact and repeat the push�
tracking� A robot that has gone past the end of a face
e�ectively losing contact with the object has broken
contact with the object� A robot whose maximum
applied force �de�ned by a threshold� does not change
the pose of the object has encountered an impediment�

One robot may e�ect any desired reorientation by
repeated push�tracking steps if it can apply a large
enough force� but it may require a large workspace
area for the rotation� We are interested in multi�robot
strategies that can overcome such limitations�

We now present a robust� implemented reorienta�
tion protocol which relies on the ability of our robots
to execute push�tracking motions� The protocol is on�
line� does not rely on a priori geometric models� is
SPMD� asynchronous� and requires no communication
between the agents�

For this protocol �called Async�online�� two
robots su�ce� Assuming that the robots begin in con�
tact with the object� the following algorithm is exe�

�This strategy can be implemented by a force that forms an
acute angle on the contacting edge	 outside the friction cone�
This is similar to hybrid control �RC��� which would be used
for a dexterous hand �Rus����

(a)

COF

Y

X

x

y

(b)

push-track

end-of-face

spin

end-of-face

push-track spin

�a� �b�

Figure �� �a�� Reorientation by one robot executing
pushing�tracking� �b� A system of two robots reori�
enting a couch� The robot motions are shown in an
object�centered frame� Each robot executes a pushing�
tracking motion� Robots recognize when they reach
the end of a face by breaking contact� and execute a
spinning motion to turn around and reacquire contact�

cuted by each robot asynchronously and in parallel to
achieve the desired reorientation�
Each robot�

� �push�track� until contact break or impediment

�� if contact break then �spin�

�� if impediment then �graze�

The intuition is that the robots try to maintain
the push�tracking state� When the end of the face
is reached� the spinning motion is employed to reac�
quire contact �see Figure �b�� When an impediment
is encountered� the robot executes a guarded move
near�parallel to� but towards the face of the object�
e�ectively grazing the object� Graze terminates when
the robot recontacts the object or when it detects that
it has traveled past the end of the face� Hence� graze
terminates in �I� reacquiring the object at a contact
with a longer moment arm� or �II� missing altogether�
�I� is detected with a guarded move� �II� is detected
using a sonar�based wall�corner detection algorithm of
�JR��
� When �II� occurs� the robot executes �spin��
The composition of these three circuits constitutes the
circuit for a reorienting robot� Asynch�online con�
sists of two reorienting robot circuits�

We have executed this protocol on our robots to
reorient couches� �le cabinets� and large boxes� some�
times through more than three complete revolutions
��
!�! degrees� �

Figure � Two mobile robots cooperating to reorient
a couch� a snapshot taken from a couch reorientation
experiment�

This algorithm depends on the robust implemen�
tation of �push�track�� This is realized as the se�
quential composition of �align� and �prim�push�

�de�ned in Section 	�
�� �align� is invoked �rst to
orient the robot to the face and to choose the correct
pushing direction� Then� keeping that heading �xed�
�prim�push� is invoked�

Figure � describes in detail the �align� circuit� We
have run hundreds of experiments in which the robots
reliably execute �align� asynchronously and in par�
allel� We believe that reliability and ease of reuse of
our virtual orientation sensor come from its perfor�
mance guarantees� In �JR��
 we prove that �align�

is robust and reliable in that for the geometry of our
robots� the sensed angle is always accurate to within
three degrees� Our experiments provide empirical evi�
dence that these guarantees transfer when �align� is
immersed in di�erent fashions�

Similar analyses can be carried for the other circuits
used by the reorientation protocol �e�g�� �spin� and
�graze���

����� Supermodularity of Reorientation

Unlike �prim�push�� �push�track� is often su�
permodular� The reason is that when relocated�
�push�track� adapts to the local surface and chooses
a pushing direction �by using �align�� that imparts
the correct torque �see Figure ��� The relocation of
the �push�track� circuit from con�guration A to B
eventually results in the same net torque on the ob�
ject� as B will slide to B�� This assumes that the robot
slides� If the robot does not slide� then �push�track�

v ||

Bumpers

desired
contact

mode

contact
angle

{#t,#f}
Until

Rotate

contact
mode

Random

θ

initial
heading

Δθ

desired
change

{#t,#f}

contact
angle

Rotational
Odometry

=0?

sign

x

Figure �� Circuit for �align�� The robot has a ring
of contact bumpers and the goal is to position the
robot so that the two front bumpers �for example� are
compressed� The robot reads its bumper con�gura�
tion and either terminates� rotates clockwise� rotates
counterclockwise� or randomly repositions itself on the
face of the object depending on the bumper values� If
the two front bumpers are compressed it terminates�
If a subset of the right bumpers are compressed it ro�
tates counterclockwise� If a subset of the left bumpers
are compressed it rotates clockwise� If the robot fails
to align after several rotates� it reacquires contact by
randomization�

may not apply the correct torque� This only happens
when the friction between the robot and the object
is such that no sliding is possible on the object sur�
face� �push�track� can be extended to be completely
supermodular always in the following manner� An in�
dependent sensor can be added to detect the situation
where the robot applies a force that is within the fric�
tion cone at the point of contact� �graze�� which
moves the robot without contact� can then be invoked
to place the robot to B�� for a better lever arm�

Let us consider now the circuit Async�online�
Async�online consists of �push�track�� �spin��
and �graze�� replicated on two spatially separated
robots� Async�online is more supermodular than
�push�track�� it is guaranteed to reorient the ob�
ject no matter what the starting con�guration of the
two robots is �RDJ�	
� Async�online is thus more
supermodular than �push�track� since there are no
constraints on where this circuit can be relocated� so
long as it is on the body of the object�

We can quantify the supermodularity of a circuit by

�

B’ B

A

Figure �� The supermodularity of the �push�track�

circuit� In the left image� the robot A executes
�push�track� and imparts the torque shown in the
�gure� The right image shows �push�track� relo�
cated to B� Eventually� B will slide to B� resulting
in the correct torque�

(align)ASYNC-ONLINE

(push-track)

(prim-push)

SU
PE

R
M

O
D

U
L

A
R

IT
Y

Figure
!� A partial order with respect to supermod�
ularity� The arrow indicates �more supermodularity��
�prim�push� is not supermodular� �push�track�

is often supermodular� and �align� and Async�

Online are always supermodular�

the fraction of con�guration space where the circuit
can be relocated and still function correctly� In our
forthcoming work we will characterize this property
algebraically �DRJ��
� Here we develop the follow�
ing partial order on supermodular circuits� We have
given examples of circuits that are not supermodular
at all �such as �prim�push��� circuits that are often
supermodular �such as �push�track��� and circuits
that are always supermodular �such as �align� and
Async�Online�� The partial order on these circuits
with respect to supermodularity is shown in Figure
!�

��� MPMD Manipulation

Section 	�� presents an implemented and tested
SPMD manipulation protocol� We now present an
MPMD protocol called the Pusher�Steerer system�
A detailed description and analysis of this system is

given in �BJ�	� Bro�	
�
The system consists of two robots� Each of the two

robots executing this protocol either takes on

the role of the Pusher� in which

� Torque�controlled translations push the object in
front of the robot�

�� the robot follows the object by continually turn�
ing to align its front bumpers with the rear face of
the object �the rotational and translational mo�
tions here are decoupled and occur in parallel��
and

�� the robot does not know the path that the object
is supposed to follow�

or the role of the Steerer� in which

�� The robot knows a path that it is supposed to
follow�

	� the robot is translationally compliant �it controls
the heading of its wheels� but does not control
their rate of rotation�� and

�� the robot moves forward as a result of being
pushed by the object �which is itself being pushed
by the Pusher��

Figure

 shows two robots moving a rectangular
object through a circular arc�

Now� it is sometimes possible to navigate an object
in a straight line or along a circular arc using a single
robot� If the object�s center of friction �COF� is known
and �xed� and the robot has little control error� then
the robot can plan a control strategy to manipulate
the object along a desired trajectory with acceptably
small error� However� if the location of the COF is not
known precisely� or changes with time �generally the
case�� then the robot cannot simply plan and execute
a reliable trajectory� but must continually sense the
object�s relative orientation and position and compen�
sate for drift� On the other hand� the forces exerted
by the robots in the two�robot Pusher�Steerer system
can constrain the object reliably in the presence of
greater uncertainties� e�g�� in the location of the COF�
and under coarser control and sensing�

In his monograph on information invariants
�Don�	
� Donald claims that the spatial distribution
of resources has a critical e�ect on the capabilities of
a system� The Pusher�Steerer system validates that
claim� Consider a single�robotmanipulation algorithm
such as� �LM��
� As implemented on the Cornell mo�
bile robots� the execution system consists of the fol�
lowing resources� each of which can be represented as
a circuit�

�

�a� �b� �c� �d�

�e� �f� �g� �h�

Figure

� This series of �gures depict a box being
guided through a �! degree arc by a steering robot �in
front� following the arc�� and a pushing robot� The
box begins with its front and rear faces approximately
perpendicular to the path� In �b� and �c�� the box ro�
tates in the wrong direction� due to poor initial place�
ment of the Pusher relative to the Steerer� By �d�� the
Pusher� with no model of the box or the path and with
no communication� has compensated for the poor ini�
tial con�guration� By �h�� the box has traversed the
arc and rotated until its front and rear faces are ap�
proximately perpendicular to the path�

� a pushing primitive� �prim�push� �see Sec�
tion 	�
��

� �align� �see Section 	����

� a steering primitive� �steer�� and

� a priori path information�

����� Supermodularity in the Pusher�Steerer
System

The Pusher�s �entire� control system is obtained by
the parallel composition of the circuits �align� and
�prim�push�� The robot skill represented by the cir�
cuit �push�track� used in Section 	�� consists of the
sequential composition of �align� and �prim�push��
Thus the Pusher is equivalent to a single pushing robot
��SPR� in Section 	�
�� This constitutes another exam�
ple of supermodularity� here� the �vertex� immersion
for the �align� circuit is the same as in the reorien�
tation circuit� but the graph permutation is di�erent�

The Steerer�s �entire� control system consists of the
�steer� circuit and path information�

If all the circuits listed above are co�located� that
is� implemented on a single robot� and if the �align�

circuit and the �prim�push� circuit are composed in
parallel� then the resulting supercircuit is su�cient to
implement a single pushing robot that can� for exam�
ple� push a couch along a path� When the circuits
are distributed across two robots�broken up as de�
scribed above�then neither robot alone can manip�
ulate a couch� but both robots together can manip�
ulate large objects dexterously along a path� In ad�
dition� the resulting distributed system reaps bene�ts
in terms of greater controllability and reduced sensing
and knowledge requirements�

����� Role Trading

In the Pusher�Steerer system� the manipulated object
sits between the robots� One feature of this system
is that there is no direct communication between the
two robots� they interact with indirect communica�
tion through the mechanics of the robots�and�object
system� The con�guration is conceptually similar to a
rear�wheel�drive automobile that has been sliced into
three sections� the rear wheels push the passenger
compartment forward in a direction determined by
the front wheels� The challenge to this con�guration
is that the pieces are separate�the robots have to
be programmed to allow �exible trajectory following�
while keeping the object between them� The advan�
tage is that the robots can trade roles�the Pusher
can become the Steerer and vice�versa� This increases
the �exibility of the protocol by allowing such maneu�
vers as the �back�and��ll� that automobile drivers use
for turning cars around on narrow roads� It also per�
mits the robots�and�object system to reverse direction
without the robots having to move to di�erent faces
on the object�

Role trading adds �exibility to the system but dou�
bles the resource requirements� Each robot has to be
equipped with all the circuits necessary for the Pusher
role and for the Steerer Role� A system so equipped it
is supermodular� so long as the Pusher and the Steerer
have the same direction of action�

We have performed over
!! manipulation experi�
ments using the Pusher�Steerer protocol running on
several pairs of Cornell mobile robots� In these ex�
periments� boxes and similar objects of varying size�
mass� mass distribution� and material properties were
manipulated along complicated paths up to 	! feet
in length� On the basis of these experiments� along
with others which are described in �Bro�	
� we have
observed the system to be quite robust in practice�
In each case� the code that each robot executed re�
mained the same�there was no recoding or �tuning�
for di�erent objects or paths� Additional experiments

!

using on�line navigation methods �human guidance in
one case and visual landmark recognition in another�
have demonstrated the �exibility of the system�

Despite conventional wisdom regarding the com�
plexities of programming a multi�robot system� a key
feature of the Pusher�Steerer system is its ease of
use�the actual robot code is simple and elegant� and
yet there remains great �exibility in methods of path
speci�cation�

� Infrastructure
The programs that implement our distributed ma�

nipulation strategies were easy to generate and are
robust� In this section we discuss our development
infrastructure�

We begin with two architectural decisions that we
�rst reported in our paper �Program mobile robots
in Scheme� �RD��
� For details see �RD��
� These
decisions concern�

� Why extend a general�purpose programming lan�
guage instead of using or inventing a special�
purpose robot language such as ALPHA �Gat�

�
or the behavior language �Bro�!
 �

�� Of the general�purpose languages� why Scheme�

We regard robots as computers that can exert
forces� In particular� we are interested only in the
case these forces are external to the robot system�
this excludes devices like clocks from being consid�
ered robots� More speci�cally� we focus on devices
where these external forces are programmable� this
excludes devices like VCRs� which are electronically�
but not mechanically� programmable� Most speci��
cally� we are interested in using these programmable
external forces for manipulation tasks�that is� to re�
arrange the environment external to the robot �e�g�� to
move furniture� perform assemblies� sort parts� etc���
Naturally� such robots typically use internal state to
encode assumptions� models� and expectations about
the external physical world� Equally often� sensors
are employed not only to build such internal state but
also to compensate for errors in actuation and a priori
models�

As such� the internal state and control strategies
can range from very simple to arbitrarily complex�
The language must support the following operations�

� access to e�ectors�

�� access to sensors�

�� ability to satisfy real�time constraints�

�� synchronization and communication between pro�
cesses�

Since robot control algorithms can be quite general
we chose a general programming language in which
to express them and provide architectural support for
the points above as follows�

�
� and ���� library calls

��� and ���� light�weight processes �threads� im�
plemented using continuations� Locks and condi�
tion variables provide synchronization�

Automatic memory management with garbage
collection of a �xed physical address space �no
virtual memory��

The last point yields a �xed upper bound for
garbage collection delays� permitting rigorous reason�
ing about real�time programs�

This section describes how well our design decisions
worked� and their implications for the infrastructure
of manipulation protocols� We will describe domain
constraints that must be satis�ed to makes the use of
Scheme practical� The programming infrastructure
has resulted in a particular set of manipulation idioms
which permeate our code� We will describe how� using
higher�order functions� we can implement termination
predicates� control parameter caches� action cues� and
event�based exception handling�

��� Mobot Scheme	 The Software Logic
Analyzer

In Sections 	�
�	�� above� we described several dis�
tributed systems in which a team of mobots cooper�
ates in manipulation tasks� The programs that imple�
ment the strategies for Pushing� Reorientation� and
Pusher�Steerer are written in Mobot Scheme� a
customized Scheme�� designed by Jonathan Rees for
the Cornell Mobile Robots �RD��
� Mobot Scheme

code for Protocol �M� �Section 	�
� is shown in Fig�
ure
�� The most interesting feature from a develop�
ment standpoint is the distributed nature of the pro�
gramming environment� The robots act as Scheme
servers� our workstations run a Scheme�� byte�code
compiler and maintain serial connections to the robots
by wire or by radio modem� The serial connection
is used only during debugging�the robots are oth�
erwise completely autonomous� possessing complete
Scheme�� virtual machines on board�

A typical robot experiment session consists of in�
teracting with the robot by typing on the worksta�
tion� The user works in an interactive Scheme en�
vironment� usually running inside GnuEmacs� The

Both Robots Execute�

�define ���M�theta�

�let ��initial�angle �measure�theta���

�let repeat ��

�if �positive�

�push �until

�lambda �theta�

�if �not �approx�� theta

initial�angle��

�sign �� theta initial�angle��

�f����

�translate�left�

�translate�right��

�repeat����

Figure
�� Protocol �M�� code for two mobile robots
with relative orientation sensing capability to execute
the straight�line pushing task� This code is an imple�
mentation of the circuit shown in Figure �

user has access to both the workstation facilities �e�g��
graphics� sound� �lesystems�� and the mobile robot�
Interaction with the robot begins by invoking the
mobot read�eval�print loop� Scheme forms are
typed interactively at the workstation� which compiles
them and sends them to the robot for evaluation� The
reply is interpreted by the workstation and displayed
on the screen� Therefore� the read and print steps
occur on the workstation� while the eval is performed
by the robot� While a program is being executed�
the serial communications link between the robot and
workstation is not required� It can be disconnected
at anytime� and the robot will continue to run inde�
pendent of the workstation� Of course� debugging in�
formation cannot be displayed during this time� and
the robot�s program cannot be altered� But both of
these activities may resume any time the communica�
tions cable is reconnected� The design of the program�
ming environment also permits remote procedure calls
to take place between the robot and workstation� in
either direction� The end result is that the full de�
bugging facilities of the workstation are available for
development� and yet the robot remains autonomous�
able to execute programs untethered�

Our choice ofMobot Scheme for development re�
�ects a minimalist approach to multi�robot program�
ming� As a programming language� Scheme is con�
sidered minimal� Scheme comprises of a small set of
functions that enable the programmer to build layers
of abstraction by evaluating lambda expressions and

remove layers of abstraction by applying a procedure
to its arguments� The entire language de�nition� in�
cluding its history� code examples� macro documenta�
tion� formal syntax and semantics� and extensive bibli�
ography �ts into 		 pages �CR��
� Scheme is a modern
high�level functional language with automatic mem�
ory management� �rst�class functions� block structure�
static scoping� closures� polymorphism� and dynamic
typing�

Early manipulation programs for commercial an�
thropomorphic robot arms were written in a Basic�
like language which lacked virtually every desirable
feature of modern programming languages�� More re�
cently� manipulators and mobile robots have been pro�
grammed in the C language�� The application of lan�
guages like Scheme� Lisp� or ML to robot control may
have been primarily hindered by one particular fea�
ture� automatic memory management� Systems with
this feature require periodic garbage collection� which
often stalls or at least slows other processing� Since
robot programming was assumed to require real�time
response� garbage collecting systems were avoided�
The reasons were� �	� Robots need programs which
meet real�time constraints� and �
� A language that
garbage collects can introduce arbitrarily long delays�

For many robots and many tasks� these reasons are
not valid� First� many robots execute tasks which do
not require real�time responses to sensory input� For
example� most mobile robots do not need to dodge
tra�c on busy streets or play tennis� In particular�
much manipulation work can be modeled as �quasi�
static�� meaning that inertial e�ects are negligible�
When this is the case �largely because speeds are low
and friction is signi�cant�� objects in the task stop
moving as soon as the robot stops� And so the robot
may �stop and think� for arbitrarily long periods with�
out upsetting the task� Thus� pausing for garbage col�
lection does not break the strategy� but instead merely
slows it down�

Now� there are quasi�static tasks in which the
robots cannot pause for arbitrary periods of time� In
a dynamic environment� a robot may have to respond
to conditions �e�g�� the presence of a human being� or
the sudden appearance of an obstacle� in the world
apart from the actual manipulation� �The interaction

�The most common example is the VAL II language which
runs the Unimation Puma series of manipulators�

�The Zebra Zero manipulator arm is supplied with a C li�
brary of robot control functions	 and many mobile robots are
programmed in C due to the abundance of C compilers for
small microprocessors� The Intel ����� family and the Motorola
����� family of processors	 including embedded controller vari�
ations	 are frequently used�

�

between the robot and the manipulated object may
remain accurately described as quasi�static�� We have
found that garbage collection does not vitiate the ro�
bustness or even signi�cantly degrade the performance
of distributed manipulation protocols� a close exami�
nation of current mobile robots reveals that very few
employ processors with virtual memory� In most cases�
memory size is �xed� and is often small by worksta�
tion standards� As we pointed out in �RD��
� with a
constant amount of memory needing garbage collec�
tion� we can easily calculate an upper bound on how
long this process could possibly take� Thus� we know
in advance how long a pause may occur as the robot
executes its strategy� and so we can predict just how
e�ectively �in the worst case� the robot could react to
changing conditions�	

A robot running a garbage collecting programming
system can execute complex coordinated strategies
in dynamic environments� Each cooperative strategy
presented in this paper is an example� The programs
that implement our strategies must of course access
motors and sensors on our robots� In the next setion
we describe this interface�

��� Higher Order Functions

The most critical features of our Mobot Scheme

system are higher order functions� sensor�based con�
trol structures� and event�based exception handling�
In this section we describe how using higher order
functions we can implement termination predicates�
control parameter caches� and action cues� Figure
�
is an example of how higher order functions are used
in Mobot Scheme�

����� Termination Predicates

In our system� the robot programmer can write pro�
grams in which arbitrary termination predicates �func�
tions� are passed as arguments to motion control rou�
tines� Intermediate layers of the motion control sys�
tem build more complicated predicates out of these�
and pass along the resulting functions to the next
lower layer� As described in �RD��
� we use higher
order function to implement termination predicates�

�Moreover	 robots like the Cornell MobileRobots	 which con�
tain a loosely connected network of � or more �on average� pro�
cessors	 have a distinct advantage in that time�critical processes
may be o�oaded to a processor which does not garbage collect�
Our robot�s impediment sensor	 for example	 detects when a
speci�ed amount of current would have to be applied to the
motors in order for the robot to continue moving� The pro�
cessor which detects this situation and shuts down the motors
executes a simple feedback loop at a high frequency	 and does
not garbage collect�

Termination predicates have been introduced in the
pre�image motion planning framework of �LPMT��
�
An extensive discussion of the relative power of these
termination predicates in the context of motion plan�
ning may be found in �Erd��
�

In the �LPMT��
 framework� actions are pairs of
the form �v� tp�� where v is a velocity vector� and tp

is a termination predicate� The motion continues in
the direction v until the termination predicate returns
true� The predicate� then� is a function of all of the
information available to the robot through sensors and
a priori models� In the idealized model� the predicate
is evaluated continuously in the background�

All of our motion control functions follow the
same style for any e�ector �including� e�g�� a camera
which may pan or tilt �Bro�	
�� Examples of Mobot

Scheme code for various modes of translation �for�
ward motion� are in Figure
�� We deviated from
typical Scheme style by introducing keyword argu�
ments which modify the e�ects of the motion� Hence�
a set of defaults must be maintained� and there are
set�default� and get�default functions for this
purpose� Default values are used for any argument
not given explicitly in the call to translate�

Our motion control functions represent sensor�
based control loops� They initiate the robot�s motion�
which is usually controlled by another processor� and
at the same time evaluate the appropriate termination
predicate� The motion is halted when the termination
predicate returns a value other than false� In order
for access to the motors to remain completely general�
many keywords exist� and may be used in arbitrary
combinations� �See Figure
���

As indicated by the examples in the �gure� key�
words such as �by and �vel �for velocity� are followed
by integer values� On the other hand� keywords such
as �until are followed by functions� In the speci�c
case of �until� a function of one argument is given�
and the robot�s motion stops when this function eval�
uates to something other than false� The argument
to the predicate is supplied by the system when the
predicate function is called and represents the cur�
rent knowledge of the status of the motion� The mo�
tion controller �a separate processor� reports this sta�
tus information to Mobot Scheme� In one example
from Figure
�� we check to see whether the robot�s
bumpers have contacted an obstacle� in another� we
check to see if sonar unit � reports a value that ex�

�On a real robot	 the frequency at which the termination
predicate is evaluated will of course critically a
ect its accu�
racy� However	 the pre�image planning framework anticipated
the general problem of control error from the start� Control
error is already part of the input to the problem�

�

Example Distance Velocity Termination Predicate

�translate� indet� default �impediment��

�translate �by 	
�� ���mm default �or �impediment��

�lambda �status�

�stopped�

status���

�translate �vel ���� indet� ���mm�s �impediment��

�translate �by ���� �vel
��� �m ���mm�s �or �impediment��

�lambda �status�

�stopped�

status���

�translate �until indet� default �or �impediment��

�lambda �status� �lambda �status�

�not �not

�zero� �zero�

�read�bumpers����� �read�bumpers�����

�translate �until ���mm ���mm�s �or �impediment��

�lambda �status� �lambda �status�

�� �threshold� �or �� �threshold�

�read�sonar ���� �read�sonar ���

�by �
� �stopped�

�vel

�� status����

Figure
�� Mobot Scheme motion control examples using the translate function� For simplicity� only three
keyword arguments are shown� Any or all of the valid arguments may be combined� however� When no distance
argument is given �using the �by option�� the distance the robot will travel is indeterminate� When a distance is
speci�ed� the termination predicate consists of a check for the status of the motor controller� which is triggered
by checking odometry� Note that the system always checks for the impediment condition� The action taken when
�impediment�� returns true is to invoke the impediment handler �see Section �����

ceeds �threshold��

Keyword Description Default value

�by distance to travel �mm� none
�vel velocity �mm�s� �!!
�accel acceleration �mm�s�� ��	
�dir direction to travel

�forward is positive�
�torque motor torque limit
�!

�in obscure units�
�until termination predicate �impediment��

�on�exit termination action �stop�

halt the robot

Figure
�� Motion control system keywords� The key�
words may be used in arbitrary combinations� and
each has a reasonable �and changeable� default value�

The default termination predicate� �impediment���
reports whether the robot�s motors are stalled� due to
contact with an immovable obstacle� The action taken

	The level of motor current that must be exceeded to meet
the stalled conditionmay be set by software� an additional key�
word argument	 �torque	 exists for this purpose�

when an impediment is detected is speci�ed by the im�
pediment handler� because the situation is treated as
an exception �see Section ����� The system always
checks for the impediment condition� Since the user
may supply several other terminating conditions �such
as a speci�ed distance traveled� or some other arbi�
trary predicate�� the system constructs� at run time�
the proper predicate to use�

����� Write	through Cache

We may use higher�order functions to modify the low�
level behavior of individual processors in the robot
while still maintaining the single Scheme processor ab�
straction at the user level� The mechanism we use is a
write�through cache� which can be implemented to be
transparent to higher levels of code� Its sole utility is
to boost performance� and works as follows�

Each robot contains� on average� more than nine
individual processors� each of which is directly con�
nected to a small number of sensors or motors�
This heterogeneous collection of computers are pro�
grammed to make each sensor or motor �smart�� As
much processing as possible is done locally� with every

�

sensori�motor module providing a high�level interface
to the rest of the robot� Consequently� the robot�s
critical system parameters are distributed across many
processors� When a Scheme program accesses a sen�
sor or motor� at the lowest level a form of remote
procedure call �RPC� is executed to the processor
which controls the hardware of interest� The inter�
processor communication and RPC are of course hid�
den to higher levels of Scheme programs� such as
the the user programming level� Each time an RPC
occurs� many parameters may be needed� which in�
creases the amount of communication necessary and
slows down the system� As a result� most proces�
sors store their own state variables� and the remote
�calling� machine needs only pass along the changes
in state�

We now present a brief case�study of using Mobot

Scheme to tune a control library� thereby improv�
ing real�time performance� In our initial library� any
Scheme function invoking a wheelbase motion would
�rst set each parameter in turn and then �nally start
the motion� This was ine�cient� We observed that al�
most always the parameters remain the same through
many successive motions� Therefore� we decided to
cache them on the Scheme computer using a standard
write�through cache� We implemented a simplemacro�
cache� �see Figure
	�� which accepts as its argument
the function used to set a parameter� It modi�es this
function to use the cache� and also constructs a func�
tion to read the current value of the parameter from
the cache� Its use is illustrated in Figure
�� What
is interesting is that even this kind of low�level op�
timization may be done in Mobot Scheme� using
higher�order procedures�

The cache� macro takes two arguments� the func�
tion which sets the parameter to be cached and the
table to use� Two things happen� �a� the set function
is modi�ed to set the current value in the cache table�
and then the original set function is called� and �b� a
get�value function �thunk� is returned� Each entry in
the cache table has a key and an entry� The key is
the new set function� and the entry is always a pair
��value� 	 original�set�fcn�� The value is kept
in a one�element list so that it will be null if no value
has been set� The original set function is kept around
so that �i� we can get it back if we need it� and �ii� we
can call it to write the cache out �to force a write��

Because we used a modern general purpose pro�
gramming language with higher order functions� im�
plementing cache� was easy� The cache is transpar�
ent to the low�level layers of the robot control sys�
tem� which performs the necessary communications

�define �wb�state�table� �make�table��

�define �write�wb�state�

�write�cache �wb�state�table���

�define translate�speed

�cache� set�translate�speed�

�wb�state�table���

�define translate�accel

�cache� set�translate�accel�

�wb�state�table���

�define translate�torque

�cache� set�translate�torque�

�Wb�State�Table���

Figure
�� Examples of using a simple write�through
cache� implemented using a macro and higher or�
der functions�

between processors� and also to the higher levels of
the system� such as the user programming environ�
ment� The cache may be trivially removed in the event
that we decide not to trust the remote processor to
retain its state between successive motions �e�g�� due
to a suspected faulty piece of hardware���� On the
other hand� the macro is general enough to be used
in other caching applications� Our cache� illustrates
that standard software design techniques are also ap�
plicable to robot programming� We are far from the
days of programming a single ��bit processor in as�
sembly language in order to make our robots move�

����� Action Cues

Our �nal example of higher order functions lies in the
interface to the Cornell Mobile Robots� set of push�
buttons which� along with multi�colored LEDs� re�
side on top of the robot for interaction with users�
Especially when operating untethered� the informa�
tion displayed by the lights and entered via the but�
tons provides useful communication between the robot
and the researcher� At the user programming level�
the set�button�action� procedure takes two argu�
ments� the �rst identi�es a particular button on the
robot� and the second is a function of no arguments
�technically a thunk�� When the appropriate button
is pressed� the associated function is executed in its
own thread� concurrently with whatever other threads
�processes� are running on the robot� The mechanism

�
On the Cornell Mobile Robots	 the Scheme processor can
detect when the wheelbase processor resets	 and a complete
cache write automatically occurs after those events	 along with
a warning message displayed on the workstation�

	

�define�syntax cache�

�lambda �exp rename compare�

�let ��set�fcn �cadr exp��

�state�table �caddr exp���

��let ��original�set�fcn �set�fcn��

�set� �set�fcn �lambda �x�

�let ��value �table�ref �state�table �set�fcn���

�if �or �null� �car value�� �not �equal� �car value� �list x����

�original�set�fcn x��

�table�set� �state�table �set�fcn �cons �list x� �cdr value������

�if �not �table�set� �state�table �set�fcn �cons ��� original�set�fcn���

�begin

�set� �set�fcn original�set�fcn�

�error �Cache error� table full�� ��set�fcn ��state�table��

�lambda ��

�let ��value �table�ref �state�table �set�fcn���

�if �null� �car value��

�error �Cache error� the referenced value has not been set�� ��set�fcn ��state�table�

�car �car value����������

�define �write�cache cache�table�

�table�walk

�lambda �set�fcn value�

�if �not �null� �car value���

�apply �cdr value� �car value����

cache�table��

Figure
	� A simple write�through cache implemented using a Scheme macro�

allows complete freedom in deciding what the buttons
should do� The �exibility is provided by the passing
of an arbitrary Scheme function directly into the next
lower layer of the sensor control system� In fact� many
of our sensors are programmed in this manner� includ�
ing the pushbutton bumpers that detect collisions with
objects and measure the relative orientation of object
faces with respect to the robot�s heading� In writ�
ing a program which polls the bumpers� we �rst write
a function which� when a bumper button is pressed�
simply updates a global dynamic variable� The polling
process then reads this variable to determine the cur�
rent state of the bumper sensor�

��� Collisions as Exceptions

We say a contact change occurs at time t when the
robot is in contact with a di�erent number of surfaces
before t than after t� We say the contact change is pos�
itive when the number of contacting surfaces increases�
Hence� a contact change is an external event to the
robot �in other words� ground truth��observable to
an outsider but potentially undetectable by the robot�

An impediment� on the other hand �see Sec�
tion ����� is an internal event signaled by and for the
robot itself� We de�ne a collision as a special kind

of event that convolves the �internal� impediment and
the �external� contact change� More precisely� a colli�
sion is the special case of an impediment caused by a
positive contact change�

Unexpected collisions should be treated as excep�
tions� The idea is straightforward�we can either �ll
our programs with conditionals which check for unex�
pected situations� or we can invoke the exception han�
dler and make our programming task that much easier�
Also� we must be able to easily modify this behavior
for those circumstances under which the programmer
fully expects that a given situation might occur� and
wishes to trap it so that the program can continue to
execute� taking appropriate action�

A global variable called impediment�handler is de�
�ned as a function which is called when the motion
control system detects the impediment condition� The
default value for the handler is a function which �rst
stops the robot�s motors and then calls the system ex�
ception handler� presenting all relevant information to
the user� and leaving them in the symbolic debugger
�see Figure
 Example ��� From within the debug�
ger� the user may continue �e�g�� after removing the
o�ending obstacle from the robot�s path�� abort� or

�

perform almost any other action� such as recompiling
a piece of code� or using the inspector to examine the
stack�

So� the default reaction to a collision is for the robot
to stop and the user to be presented with status in�
formation displayed through the debugger� In other
words� the situation is treated as any other run�time
error would be� such as division by zero or a type mis�
match� It remains to be explained how the user may
write a program which traps expected collision errors�

 Example �	

 Move until the bumpers detect a collision

Lily� �translate �until

�lambda �s�

�not �zero� �read�bumpers�����

t

 Example �	

 Move forever monitoring the motor current

 against a current threshold	

 Here we grab the robot and force it to stop�

 which invokes the debugger that allows us

 us to examine variables� redefine functions�

 etc	 �a aborts out of the debugger	

Lily� �translate�

Error� Impediment

translate

���

�Debugging job number ���

Lily�� �a

 Example �	

 Expected collisions can be trapped	 We use

 a tolerate�impediments wrapper around the

 function that might generate a collision	

 The impediment handling system will stop

 the robot and the motion function return

 �impediment	

Lily� �tolerate�impediments �translate��

�impediment

Figure
 � Three examples of impediments han�
dling� It is straight�forward to substitute an arbi�
trary function for the impediment handler�

The mechanism we use replaces the impediment

handler with a di�erent function while a collision is
a predicted possibility and should be trapped� In
our experience� the most common alternative to the
function which calls the exception handler is a func�
tion which simply returns the symbol �impediment�
The user program needs only check for this symbol to
be returned by a motion control routine in order to
branch on whether a collision occurred or some other
situation terminated the motion� Because we use this
mechanism frequently� we have de�ned a macro� called
tolerate�impediments �see Figure
 Example ���
which replaces the default impediment handler with a
function that returns �impediment while the body of
the macro is being executed� Consequently� one may
modify any motion control function call by wrapping
tolerate�impediments around it� as shown in the ex�
ample�

The �exibility of Mobot Scheme permits the use
of this mechanism� which can be seen in virtually ev�
ery manipulation program our robots run� All we have
done was to adapt a traditional technique to our ap�
plication of programming robots� Our programs are
short and simple as a result of this technique�

� Architecture
When the minimalist philosophy is applied to robot

manipulation algorithms it yields protocols with sur�
prisingly low resource consumption�that is� the re�
sulting protocols often dispense with a resource �such
as sensing� communication� or geometric models� that
a naive analysis would have predicted was essential
�DJR��� DJR��a� RDJ�	� DJR��b
� When applied to
the programming environment and architectural sup�
port for robot manipulation� minimalism results in a
development and execution system that is spare and
lean�in other words� somethingmore like Scheme and
less like C�� �Section ��� In this section we discuss
the use of our Scheme�based minimalist infrastructure
in supermodular architectures�

The greatest challenge for supermodular architec�
tures is to support code distribution across multiple
spatially separated robots� It is di�cult to ensure
code portability across robot architectures� and the
result of the execution in distributed systems of mul�
tiple robots is even harder to predict� Even for sin�
gle robot systems that are mechanically similar �such
as our robots Tommy and Lily�� it is not trivial to
share code� as this often entails adjusting constants
that involve mass� gear ratios� etc� Furthermore� for
manipulation tasks� the output of a distributed sys�
tem of robots often depends on the number of robots
and their relative positions�

Consider� for example� a system in which a robot

pushes an object to e�ect a desired translation and
the circuit implementation of this system we describe
in Section 	�
� This system is modular but not su�
permodular� The reason is that when distributed on
multiple robots� the output of the system depends in�
timately on the location of the robots� To see this�
imagine a two robot system consisting of the original
robot and a second robot that acts on a face of the
object opposite to the �rst robot� The presence of
the second robot interferes with the action of the �rst
robot �e�g�� it may cause the box to rotate�� This is not
a supermodular system� in other words �prim�push�
�Section 	�
� is modular but not supermodular�

A contrasting example is the reorientation task�
Here� one robot alone can cause reorientations by ex�
ecuting �push�track� �Section 	���� but this may re�
quire a large workspace area� When the same code
is distributed over multiple robots� the output of the
system is the same �e�g�� the object rotates�� but per�
haps at a faster rate� The resulting circuit� Async�
Online is completely supermodular� In our hierarchy
of supermodular examples� Async�Online is more
supermodular than �push�track�� which is more su�
permodular than �prim�push��

This is a supermodular system� in other words
�push�track� is modular and supermodular�

Supermodularity has made it easy for us to share
and distribute code across similar�but not identical�
robots that operate in parallel� This is because the
�abstract� principles of supermodularity translate into
concrete bene�ts in terms of code recycling and pre�
dictability in distributed robot systems� By de�ni�
tion� supermodular circuits can be relocated to di�er�
ent physical locations and still function correctly� In
addition� we believe that the performance guarantees
of supermodular circuits transfer when the circuits are
distributed�

The pushing vs� reorienting example described
above shows that supermodularity and distribution
impact architecture� We now discuss this connection
with emphasis on the following questions�

� What architectural support is required to dis�
tribute the circuits over several agents�

We cannot begin to answer this question until we
understand what it means to distribute a circuit
over several agents� The installation and calibra�
tion of resources must be speci�ed� and commu�
nications pathways across spatially separate loca�
tions must be available� �The precise de�nition
of these operations is given in the information in�
variants theory �Don�	
�� But for a distributed

circuit to achieve the same task� we must demon�
strate that the embedded circuits e�ect the same
strategy�

For our particular domain of manipulation tasks�
we must account for the mechanical interactions
between the robots and their environment� On
a robot such as Camel� whose bumper geome�
try is essentially a �at blade� the e�ect of push�
ing against an object may be di�erent from that
of� say� Tommy� whose bumper is in the shape
of a semi�circle� For manipulation� then� we ob�
serve that compatible mechanical architectures
are required when distributing a circuit across
several agents� However� by transforming circuits
into other equivalent circuits� we have �ported�
our strategies without di�culty from Tommy to
Camel

�� and vice�versa� The transformation op�
erates at the circuit level� so in the �nal analysis
we are still moving a �transformed� circuit from
one robot to another�

We have identi�ed that the robot�s mechanical
architecture may limit supermodularity for ma�
nipulation tasks� because di�erent strategies are
required for di�erent mechanical interfaces to the
world� An important line of inquiry remains�
which is to ask how the necessary architectural
support for supermodularity varies with the task
domain�

�� What development environment best supports the
authoring of supermodular circuits and protocols�

Our authoring environment is developed on top of
an intrastructure �Section �� that enforces min�
imal constraints on programming� The system
we advocate is orthogonal both to the notion of
modularity in cognitive AI and also to the hori�
zontal decomposition of Subsumptionism� Specif�
ically� our development environment is structured
by the following categories� modular circuits� su�
permodular circuits� and strategies composed of
supermodular circuits �or supercircuits��

The �rst category comprises the modular circuits
for the interaction between robots and objects
and for navigation� Conceptually� these circuits
can represent a wide range of robot skills of vary�
ing degree of abstraction and complexity� A cir�
cuit in this category is a single�agent circuit that
is safe for relocation on other single�agent sys�
tems� but there are no �degrees of freedom�� the

��
Camel is a Cornell mobile robot that uses treads instead of

wheels for locomotion�

�

circuit must be immersed identically� An example
of a modularmanipulation circuit in this category
is �prim�push��

The second category comprises the manipulation
circuits that are often supermodular� In our
hierarchy measured by the fraction of the con�
�guration space that allows relocation� Async�
Online and �align� are completely supermod�
ular� �push�track� is often supermodular� A
circuit in this category is safe for relocation even
when the circuit is immersed in a di�erent fash�
ion� The �degrees of freedom� of this immersion
are controlled by the kinds of permutations per�
mitted in the information invariants theory �in
the form of co�designation constraints��

The third category comprises the circuits for ma�
nipulation strategies� A circuit in this category is
a multiple agent circuit consisting of supermod�
ular circuits� The resulting supercircuit may or
may not be supermodular� Examples are Proto�
col �M�� protocol Async�Online� and Pusher�
Steerer� which are supermodular�

�� How can the architectural support and authoring
environment be realized in such a way that the
overall development system can also be regarded
as minimalist�

The development environment we outlined above
makes it easy to synthesize distributed manipu�
lation strategies �i�e�� circuits for manipulation
strategies� by combining and composing super�
modular circuits� Since each supermodular cir�
cuit translates into lean code with performance
guarantees� predictable parallel protocols can eas�
ily be generated by combing existing and trusted
circuits� The resulting circuit strategy can be an�
alyzed in the information invariant theory with
respect to resource consumption� This analysis
leads to equivalent minimalist circuits and trade�
o�s between di�erent resources� The resulting
circuit also translates into a statement about the
minimal architectural support for the protocol�
the circuit describes all the needed resources�

In summary� the architecture we advocate for au�
thoring supermodular circuits arises from systemati�
cally distributing simple and parsimonious manipula�
tion circuits on spatially separated robots� We argued
that circuits authored in a supermodular architecture
translate into code that is simple� reusable� portable�
predictable� parallelizable� and �near�optimal� from
the point of view of resource consumption �BBD��	
�

We have experimental evidence for these properties�
for example the reuse of �align� in the reorientation
protocols and the Pusher�Steerer protocols� Similarly�
we have performance guarantees� For example� for
�align�� the performance guarantees transfer nicely
once �align� in immersed in a di�erent fashion�
the �degrees of freedom� of the new immersion are
controlled by the kinds of permutations permitted in
the information invariants theory �in the form of co�
designation constraints� and the niceness of the trans�
fer is ensured by supermodularity�

Acknowledgements
This paper describes research done in the Robotics and

Vision Laboratory at Cornell University� Russell Brown is
one of the developers of the Pusher	Steerer system� We
thank Jonathan Rees for developing the Mobot Scheme

system� We thank Jean
Claude Latombe for his hospitality
at the Stanford Robotics Laboratory�

Support for our robotics research was provided in part
by the National Science Foundation under grants No� IRI

�����
�� IRI

������� IRI

����

� and by a Presidential
Young Investigator award to Bruce Donald� and in part
by the Air Force O�ce of Sponsored Research� the Math

ematical Sciences Institute� Intel Corp�� and AT�T Bell
laboratories�

References
�ABN
�� R�C� Arkin� T� Balch� and E� Nitz� Commu

nication of behavioral state in multi
agent re

trieval tasks� In Proc� of the ���� IEEE Inter�
national Conference on Robotics and Automa�
tion� volume �� pages �����
�� Atlanta� Ga�
�

��

�BBD�
�� K� Bohringer� R� Brown� B� Donald� J� Jen

nings� and D� Rus� Distributed robotic ma

nipulation�experiments in minimalism� In Pro�
ceedings of the International Symposium on
Experimental Robotics� Stanford� CA� July
�

��

�BJ
�� R� Brown and J� Jennings� Manipulation by
a pusher	steerer� In Proceedings of Intelligent
Robot Systems� Pittsburgh� PA� August �

��

�Bro��� R� C� Brost� Planning robot grasping mo

tions in the presence of uncertainty� Carnegie

Mellon Robotics Institute technical report
CMU
RI
TR
��
��� Computer Science De

partment and The Robotics Institute� July
�
���

�Bro
�� R� Brooks� The behavior language user�s guide�
Technical report� Memo ����� MIT AI Lab�
�

��

�Bro
�� R� G� Brown� Algorithms for Mobile Robot Lo�
calization and Building Flexible� Robust� Easy
to Use Mobile Robots� PhD thesis� Cornell Uni

versity� Ithaca� NY� �

��

�

�CFKM
�� Y� Cao� A� Fukunaga� A� Kahng� and F� Meng�
Cooperative mobile robots� Antecedents and
directions� Technical report� UCLA Depart

ment of Computer Science� �

��

�CR
�� W� Clinger and J� Rees� Revised� report on
the algorithmic language scheme� Technical re

port� Cornell University Department of Com

puter Science� �

��

�DJR
�� B� R� Donald� James S� Jennings� and D� Rus�
Towards a theory o�nformation invariants for
cooperating autonomous mobile robots� In In�
ternational Symposium on Robotics Research
�ISRR	� Hidden Valley� PA� �

��

�DJR
�a� B� Donald� J� Jennings� and D� Rus� In

formation invariants for distributed manipula

tion� The First Workshop on the Algorithmic
Foundations of Robotics� eds� K� Goldberg� D�
Halperin� J��C� Latombe� and R� Wilson� pages
������
� �

��

�DJR
�b� B� R� Donald� James S� Jennings� and D� Rus�
Analyzing teams of cooperating mobile robots�
In Proceedings of the ���
 IEEE Interna�
tional Conference on Robotics and Automa�
tion� pages ��
���
��� San Diego� CA� �

��

�DJR
�c� B� R� Donald� James S� Jennings� and D� Rus�
Information invariants for distributed manipu

lation� In Proceedings of the ���
Workshop on
the Algorithmic Foundations of Robotics� San
Francisco� CA� �

��

�Don
�� B� Donald� Information invariants in robotics�
Arti�cial Intelligence� ����������� �

��

�DRJ
�� B� R� Donald� D� Rus� and J� Jennings� Quan

tifying supermodularity in dostributed manip

ulation circuits� In forthcoming paper� �

��

�Erd��� M� Erdmann� On motion planning with un

certainty� Master�s thesis� Massachusetts In

stitute of Technology� �
���

�Gat
�� Erann Gatt� Alpha�a language for program

ming reactive robotics control systems� In Pro�
ceedings of the ���� IEEE International Con�
ference on Robotics and Automation� pages
���������� �

��

�Jen
�� J� S� Jennings� Distributed Manipulation with
Mobile Robots� PhD thesis� Cornell University�
�

��

�JR
�� J� Jennings and D� Rus� Active model acquisi

tion for near
sensorless manipulation with mo

bile robots� In IASTED International Con�
ference on Robotics and Manufacturing� pages
��
����� Oxford� England� September �

��

�LM
�� Kevin M� Lynch and Matthew T� Mason� Sta

ble pushing� Mechanics� controllability� and
planning� In Proceedings of the ���
 Workshop

on the Algorithmic Foundations of Robotics�
San Francisco� CA� �

��

�LPMT��� T� Lozano
P�erez� M� T� Mason� and R� H�
Taylor� Automatic synthesis of �ne
motion
strategies for robots� International Journal of
Robotics Research� ����� �
���

�Mas
�� M� Mason� Manipulator grasping and pushing
operations� International Journal of Robotics
Research� ����������� �

��

�Mat
�� Maja J� Mataric� Kin recognition� similarity�
and group behavior� In Proc� of the Fifteenth
Annual Cognitive Science Society Conference�
Boulder� Colorado� �

��

�MS��� Matthew T� Mason and J� Kenneth Salisbury�
Robot Hands and the Mechanics of Manipula�
tion� MIT Press� London� England� �
���

�Nor
�� Fabrice R� Noreils� Toward a robot archi

tecture integrating cooperation between mo

bile robots� Application to indoor environ

ment� International Journal of Robotics Re�
search� ����
�
�� �

��

�OY
�� Yoshikuni Okawa and Ken Yokoyama� Con

trol of a mobile robot for the push
a
box oper

ation� In Proceedings of the ���� IEEE Inter�
national Conference on Robotics and Automa�
tion� pages �������� Nice� France� �

��

�Par
�� Lynne E� Parker� Heterogeneous Multi�Robot
Cooperation� PhD thesis� Massachusetts Insti

tute of Technology� �

��

�RC��� M� Raibert and J� Craig� Hybrid position	force
control of manipulators� Journal of Dy�
namic Systems� Measurement� and Control�
���� �
���

�RD
�� J� A� Rees and B� R� Donald� Program mobile
robots in scheme� In Proc� of the ���� IEEE
International Conference on Robotics and Au�
tomation� Nice� France� �

��

�RDJ
�� D� Rus� B� Donald� and J� Jennings� Moving
furniture with mobile robots� In Proceedings
of Intelligent Robot Systems� Pittsburgh� PA�
August �

��

�Rus
�� D� Rus� Fine motion planning for dexterous
manipulation� PhD thesis� Cornell University�
Ithaca� NY� August �

��

�SB
�� Daniel J� Stilwell and John S� Bay� Toward the
development of a material transport system us

ing swarms of antlike robots� In Proceedings
of the ���� IEEE International Conference on
Robotics and Automation� pages �������� At

lanta� GA� �

��

�!

