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ABSTRACT

Motivation: Dead-End Elimination (DEE) is a powerful algorithm

capable of reducing the search space for structure-based protein

design by a combinatorial factor. By using a fixed backbone

template, a rotamer library, and a potential energy function, DEE

identifies and prunes rotamer choices that are provably not part of

the Global Minimum Energy Conformation (GMEC), effectively

eliminating the majority of the conformations that must be subse-

quently enumerated to obtain the GMEC. Since a fixed-backbone

model biases the algorithm predictions against protein sequences

for which even small backbone movements may result in a

significantly enhanced stability, the incorporation of backbone

flexibility can improve the accuracy of the design predictions.

If explicit backbone flexibility is incorporated into the model,

however, the traditional DEE criteria can no longer guarantee that

the flexible-backbone GMEC, the lowest-energy conformation when

the backbone is allowed to flex, will not be pruned.

Results: We derive a novel DEE pruning criterion, flexible-backbone

DEE (BD), that is provably accurate with backbone flexibility,

guaranteeing that no rotamers belonging to the flexible-backbone

GMEC are pruned; we also present further enhancements to BD for

improved pruning efficiency. The results from applying our novel

algorithms to redesign the �1 domain of protein G and to switch the

substrate specificity of the NRPS enzyme GrsA-PheA are then

compared against the results from previous fixed-backbone DEE

algorithms. We confirm experimentally that traditional-DEE is indeed

not provably-accurate with backbone flexibility and that BD is

capable of generating conformations with significantly lower ener-

gies, thus confirming the feasibility of our novel algorithms.

Availability: Contact authors for source code.

Contact: brd+ismb07@cs.duke.edu

1 INTRODUCTION

The main computational challenge for structure-based protein

design algorithms is the combinatorial nature of the problem

search space. In the standard formulation of the protein design

problem, by allowing sets of amino acids at each mutatable

position in a protein, a potential energy function (Gordon

et al., 1999) is used to redesign the initial protein structure and

sequence. Some form of protein flexibility is further included in

most design algorithms, in order to improve the accuracy of the

model (Dahiyat and Mayo, 1997a; Desjarlais and Handel,

1999; Jaramillo et al., 2001; Jin et al., 2003; Lilien et al., 2005;

Looger et al., 2003; Street and Mayo, 1999). Due to the

significantly increased computational complexity when explicit

backbone flexibility is incorporated into the model, the

majority of the design algorithms incorporate only side-chain

flexibility using a discrete rotamer library of low-energy side-

chain conformations (Dunbrack, 2002; Lovell et al., 2000;

Ponder and Richards, 1987) and aim at stabilizing the fixed

backbone template. Recent improvements have shown that

allowing side-chain dihedral energy minimization from the

initial rotamer conformations can result in the generation of

significantly lower-energy conformations and sequences

(Georgiev et al., 2006b). Some successful efforts of applying

different levels of backbone flexibility have also been reported

(Desjarlais and Handel, 1999; Kuhlman et al., 2003).
Protein design is NP-hard (Chazelle et al., 2004; Pierce and

Winfree, 2002). Hence, some provably-accurate algorithms, the

dominant of which is the Dead-End Elimination (DEE)

algorithm (Desmet et al., 1992; Gordon et al., 2003), apply

sophisticated techniques to significantly reduce the search

space of candidate conformations before the subsequent

generation of the optimal solution, the Global Minimum

Energy Conformation (GMEC). To increase the computational

efficiency, some DEE-like algorithms use heuristic pruning

techniques that no longer have guarantees about producing the

GMEC (Desmet et al., 2002; Shah et al., 2004). Alternatively,

different heuristic approaches, such as Monte Carlo sampling

and genetic algorithms, have been applied (Desjarlais

and Handel, 1999; Hellinga and Richards, 1991; Jin et al.,

2003; Kuhlman and Baker, 2000; Street and Mayo, 1999).

Although such heuristics can perform reasonably well

in practice, they have no guarantees about the accuracy of

the design predictions: in a recent study (Voigt et al., 2000), a

set of heuristic approaches (including Monte Carlo)

generated significantly incorrect solutions in some of the

test cases.

In contrast to the GMEC-based approaches discussed

above, partition functions for ensembles of low-energy

conformations are used in (Lilien et al., 2005; Stevens et al.,

2006) to compute a provably-accurate approximation, K*,

to the binding constant for a target protein-ligand complex; the

best-scoring mutation predictions are generated based on their

K* scores.

1.1 Fixed-backbone Dead-End Elimination

The traditional DEE criterion (Desmet et al., 1992; Lasters

and Desmet, 1993) is applied to a model with a fixed

backbone and a set of rigid rotamers (rotamers for which

the side-chain dihedrals are fixed); we will refer to this type of*To whom correspondence should be addressed.
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DEE as traditional-DEE. Using rotameric energy interactions,

the goal of traditional-DEE is to prune rotamers that

are provably not part of the fixed-backbone rigid-rotamer

GMEC (the GMEC when a fixed backbone and rigid rotamers

are used).
The total energy of a given conformation can be represented

as a sum of pairwise interactions:

ET ¼ Et0 þ
X

i

EðirÞ þ
X

i

X

j>i

Eðir; jsÞ; ð1Þ

where Et0 is the fixed template energy of the system; ir
represents rotamer identity r at position i; E(ir) is the

self-energy of ir (combining the intra-residue and

residue-to-template energies for ir); and E(ir, js) is the pairwise

energy between rotamers ir and js. Using Eq. (1), the initial

traditional-DEE criterion (Desmet et al., 1992) for rotamer ir is

defined as:

EðirÞ þ
X

j 6¼i

min
s

Eðir; jsÞ > EðitÞ þ
X

j 6¼i

max
s

Eðit; jsÞ: ð2Þ

When Equation (2) holds, the lowest conformational energy

achievable when position i has the particular target rotamer

identity r is higher than the worst conformational energy

achievable when the same position i has the competitor rotamer

identity t. Thus, rotamer ir cannot be part of the fixed-

backbone rigid-rotamer GMEC and can therefore be pruned

from further consideration for position i.
A single DEE cycle loops through all positions and all target

and competitor rotamers, identifying subsets of rotamers for

each position that can be provably pruned from consideration

in the following DEE cycles. Thus, for a system with n residue

positions and at most q rotamers per position, the complexity

of applying Equation (2) for a single DEE cycle is O(q2n2).

DEE cycles are repeated until no more rotamers can be

pruned, at which point the remaining conformations can

be enumerated to obtain the fixed-backbone rigid-rotamer

GMEC. Several provably accurate extensions to the

original traditional-DEE criterion have been shown to sig-

nificantly increase the pruning efficiency of the algorithm

(Georgiev et al., 2006a; Goldstein, 1994; Lasters and Desmet,

1993; Pierce et al., 2000).
To increase the accuracy of the model while still keeping the

protein backbone fixed, rotamers may be allowed to energy-

minimize from their initial conformation in order to accom-

modate changes in the rotamer identities of surrounding

positions. Such a minimization can be achieved by allowing

conformation space voxel-constrained movement of the side-

chain dihedrals (Lilien et al., 2005). However, when rotameric

energy minimization is performed, the traditional-DEE criter-

ion can no longer guarantee that rotamers belonging to the

optimal solution, the fixed-backbone energy-minimized GMEC

(fixed-backbone minGMEC), will not be pruned. In Georgiev

et al., (2006b), MinDEE, a DEE-based algorithm that is

provably accurate with respect to the fixed-backbone

minGMEC, is derived. Georgiev et al., (2006b) showed

that traditional-DEE is indeed not provably accurate with

rotameric energy minimization; when MinDEE was

used instead, conformations and sequences with considerably

lower energies were generated, at the expense of slower

running times.

1.2 Backbone flexibility for protein design

Due to the greatly increased computational complexity when

backbone flexibility is incorporated into the protein model,

many algorithms keep the backbone fixed and aim at

optimizing the protein sequence and side-chain placement for

the fixed template. It has been shown, however, that backbone

movements can be significant for some systems (Lim et al.,

1994), although in other studies backbone movements are

deemed to be less significant than side-chain flexibility

(Najmanovich et al., 2000). In general, a fixed backbone

model biases the design predictions against sequences for which

even small backbone movements may result in significantly

improved conformational energies (Desjarlais and Handel,

1999). Hence, some sequences that are ranked low for a

fixed-backbone model may become top-ranked when a model

with a flexible backbone is used.
Some models implicitly incorporate a notion of backbone

flexibility by scaling the atomic van der Waals (vdW) radii,

thus allowing some overpacking (Dahiyat and Mayo, 1997b;

Looger and Hellinga, 2001). Several efforts of explicitly

incorporating different levels of backbone flexibility have also

been reported (Desjarlais and Handel, 1997; Fung et al., 2007;

Harbury et al., 1998; Kuhlman et al., 2003; Su and Mayo,

1997; Zanghellini et al., 2006). Harbury et al., (1995, 1998) used

algebraic backbone parameterization for coiled coils with

exhaustive rotamer enumeration but without provable rotamer

pruning. Backbone parameterization is also used in Su and

Mayo, (1997) to generate a discrete set of backbones; DEE is

applied to each backbone in that set to determine the respective

optimal structure. In Desjarlais and Handel, (1999), a Monte

Carlo/genetic algorithm is used to sample the backbone

dihedral space around an initial backbone structure and to

optimize the template, amino acid sequence, and side-chain

placements. A successful design of a novel protein fold is

reported in Kuhlman et al., (2003). The approach in that work

alternates between sequence optimization for a fixed backbone

and backbone optimization for a fixed sequence. The backbone

structures are obtained through random sampling of the

backbone dihedrals [similarly to Desjarlais and Handel

(1999)] and through dihedral substitution using dihedral

values from the PDB. Although the approaches above have

been successfully applied in practice, they can give no

guarantees about the identification of the optimal solution

over the backbone/sequence search space. In Fung et al.,

(2007), a promising new algorithm that incorporates backbone

flexibility by setting upper and lower bounds on pairs

of C��C� distances and on the backbone dihedral angles is

described. This approach does not require explicit sampling of

the (�,  ) space and guarantees the identification of the optimal

solution. However, the energy function used is quite simplified:

it is a function mainly of C��C� distances and there is no

explicit side-chain flexibility incorporated into the model.

Results in Kuhlman et al. (2003), however, showed that

backbone design without consideration of side-chain packing
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can lead to considerably higher energy states of the designed
structures. Moreover, a more accurate energy function and the
incorporation of explicit side-chain flexibility can significantly

increase the computational requirements of the design
problems.

There is no previous algorithm for protein design with
backbone flexibility admitting provable properties similar to

traditional-DEE’s for a fixed backbone. The two most
important characteristics of such an algorithm should

be: (1) efficient elimination of the majority of candidate
sequences and conformations and (2) provable guarantees that

the optimal solution, the flexible-backbone rigid-rotamer
GMEC (the lowest-energy conformation with rigid rotamers
and when the backbone is allowed to flex) will not be pruned

during the elimination stage in (1). Although traditional-DEE
efficiently eliminates the majority of candidate conformations,

it does not fulfill requirement (2), since this algorithm does not
take into account possible changes in the energy interactions

due to conformational changes in the protein backbone. In this
article, we present BD, a novel DEE-based algorithm for

backbone flexibility with rigid rotamers that fulfills both of
the requirements above. Interesting future work may

involve the derivation of a provable DEE-based algorithm
for backbone flexibility with rotameric side-chain dihedral

minimization—the marriage of MinDEE and BD (Table 1).
The term rigid-rotamer GMEC is a retronym; virtually

all previous DEE algorithms use rigid rotamers and have
provable guarantees only with respect to the fixed-backbone

rigid-rotamer GMEC (Table 1).

1.3 Contributions of the article

We make the following contributions in this article:

(1) BD: An efficient DEE-based criterion for provably

pruning rotamers that cannot be part of the flexible-
backbone rigid-rotamer GMEC;

(2) Similarly to the enhancements for traditional-DEE

and MinDEE, we present algorithmic enhancements
to the initial BD criterion for improved pruning

efficiency;

(3) We combine BD and the newly-derived enhancements
in a provably accurate algorithm for the identification of

the flexible-backbone rigid-rotamer GMEC;

(4) We apply our new algorithms in redesigns of the core of
the �1 domain of protein G (G�1) and of the adenylation

domain of the non-ribosomal peptide synthetase (NRPS)

enzyme Gramicidin Synthetase A (GrsA-PheA). G�1 is

a small protein (56 residues) that is commonly used to

test computational protein design algorithms

(Gordon et al., 2003; Pierce et al., 2000).

GrsA, in concert with GrsB, makes the natural antibiotic

gramicidin S, so computational redesigns of GrsA can be

an important step towards novel drug discovery (Stevens

et al., 2006). We compare the redesign results from BD to

those from traditional-DEE and MinDEE for the same

proteins.

2 APPROACH

A straightforward DEE-based approach for incorporating

backbone flexibility with rigid rotamers could involve the

generation of a discrete set S of backbone conformations and

running traditional-DEE separately for each backbone. The

fixed-backbone rigid-rotamer GMEC gb for each backbone

conformation b2S can then be identified, and the lowest-

energy conformation for all backbone conformations in S will

simply be argmin
b2S

EðgbÞ. Unfortunately, although such an

approach will be provably accurate with respect to S, it can

make no guarantees about the identification of the flexible-

backbone rigid-rotamer GMEC, unless the set S exhaustively

covers the space of possible backbone conformations.

The generation of the backbones in S would thus require

fine sampling of the backbone dihedral angles of each residue in

the protein. Hence, the size of the set S will be exponential

in the number n of residues, thus making the naive

approach computationally infeasible if provable guarantees

with respect to the flexible-backbone rigid-rotamer GMEC

are needed.
Instead of sampling the backbone dihedral angles and

explicitly generating a discrete set S of backbones, we use

both ranges of backbone angles and real-space restraint volumes

on backbone movement. This approach is similar both to

(Fung et al., 2007) and to the treatment of side-chains in Lilien

et al. (2005). Given a starting backbone conformation, we

place a restraining box around each residue in the

protein, which limits the displacement of that residue from its

original pose: effectively, through kinematics, the restraining

box also limits the range in the movement of backbone

dihedrals. We now derive a novel DEE-based criterion

Table 1. Flexibility in DEE Algorithms

Rotamer

Library

Side-chain Dihedral

Minimization

Backbone

Flexibility

Optimal

Solution

References

traditional-DEE � fixed-backbone rigid-rotamer GMEC (Desmet et al., 1992)

MinDEE � � fixed-backbone minGMEC (Georgiev et al., 2006b,a)

BD � � flexible-backbone rigid-rotamer GMEC this work

A � sign shows that the corresponding flexibility type (a rotamer library, side-chain dihedral minimization, or backbone flexibility) is incorporated into the respective

DEE algorithm (traditional-DEE, MinDEE, or BD).
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that uses upper and lower bounds on rotameric interaction

energies, within the specified ranges of backbone angles,

to prune rotamers that are provably not part of the flexible-

backbone rigid-rotamer GMEC.

2.1 Flexible-backbone DEE (BD)

Let the total energy of a conformation be defined as in

Equation (1). Now, let ET(irjBc) be the total energy of a

conformation that has the rotamer identity r at residue position

i, for a given backbone Bc; let ET(g0) be the total energy of the

flexible-backbone rigid-rotamer GMEC g0. Also, let Et0(Bc) be

the template energy for backbone Bc; let E(irjBc) be the self

(intra-residue and residue-to-template) energy for rotamer ir
when backbone Bc is assumed, and let E(ir, jsjBc) be the pairwise

interaction energy between rotamers ir and js, again for

backbone Bc. We will use a subscript g for rotamers belonging

to the flexible-backbone rigid-rotamer GMEC (ig, jg, etc.),

while Bg will be the backbone that gives the flexible-backbone

rigid-rotamer GMEC.
Now, consider two conformations: one is the flexible-

backbone rigid-rotamer GMEC, while the other differs from

the first in two ways. First, the rotamer identity at residue i is

changed from g to t (all other rotamers are the same). Second,

the backbone conformation is changed from Bg to Bc. We then

have:

ETðitjBcÞ � ETðg0
Þ: ð3Þ

First, let us define the following notation: let VðirÞ � R
3 be

a restraining box around rotamer ir, such that all atoms of ir
are confined to VðirÞ. Let C(ir) be the set of conformations

x of rotamer ir for which xðirÞ � VðirÞ. Similarly, we define

the restraining volume VðtÞ and the set of backbone conforma-

tions C(t) for the protein template t. C(y) is simply

the configuration space region, such that xðyÞ � VðyÞ, for y

2 {ir,t}. Then,

Et0
�
¼ min

Ba2CðtÞ
Et0 ðBaÞ;Et0

�
¼ max

Ba2CðtÞ
Et0 ðBaÞ;

Et0
�
¼ Et0

�
� Et0

�
;

Thus, Et0
�
represents a lower bound on the template energy

within the given backbone movement restraints. Similarly,

Et0
�
is an upper bound on the template energy and Et0

�
is the

interval of possible template energies.

We further define

E�ðirÞ ¼ min
z2CðirÞ;Ba2CðtÞ

EðzjBaÞ;

E�ðir; jsÞ ¼ min
z12CðirÞ;z22CðjsÞ

Eðz1; z2Þ:

Here, E�(ir) represents a lower bound on the sum of:

(1) the energy interactions between the atoms of rotamer ir, and

(2) the energy interactions between the atoms of rotamer ir
and the template atoms. Similarly, E�(ir, js) is a lower bound on

the pairwise energy between rotamers ir and js within the

restraining boxes around those two rotamers. The max terms

E�(ir) and E�(ir, js) are defined analogously. We then define the

following interval terms:

E�ðirÞ ¼ E�ðirÞ � E�ðirÞ;
E�ðir; jsÞ ¼ E�ðir; jsÞ � E�ðir; jsÞ:

Now, using Equation (1) and taking the terms involving

residue i out of the summations, we obtain:

ETðitjBcÞ ¼ Et0 ðBcÞ þ EðitjBcÞ þ
X

j
Eðit; jgjBcÞ

þ
X

j
EðjgjBcÞ þ

X
j

X
k
Eðjg; kgjBcÞ;

ð4Þ

ETðg0
Þ ¼ Et0 ðBgÞ þ EðigjBgÞ þ

X
j
Eðig; jgjBgÞ

þ
X

j
EðjgjBgÞ þ

X
j

X
k
Eðjg; kgjBgÞ;

ð5Þ

where j,k 6¼ i, k4j.
Substituting Equations (4) and (5) into Equation (3), we

have:

Et0 ðBcÞ þ EðitjBcÞ þ
X

j
Eðit; jgjBcÞ

þ
X

j
EðjgjBcÞ þ

X
j

X
k
Eðjg; kgjBcÞ �

Et0 ðBgÞ þ EðigjBgÞ þ
X

j
Eðig; jgjBgÞ

þ
X

j
EðjgjBgÞ þ

X
j

X
k
Eðjg; kgjBgÞ;

ð6Þ

where j,k 6¼ i, k4j.
Using the definitions of the E� and E� terms, we transform

Equaiton (6) into:

Et0
�
þ E�ðitÞ þ

X
j
max

s
E�ðit; jsÞ

þ
X

j
E�ðjgÞ þ

X
j

X
k
E�ðjg; kgÞ

� Et0
�
þ E�ðigÞ þ

X
j
min
s

E�ðig; jsÞ

þ
X

j
E�ðjgÞ þ

X
j

X
k
E�ðjg; kgÞ;

ð7Þ

where j,k 6¼ i, k4j. Here, the range for the terms max
s

and min
s

is

over the set of rotamers Rj for a given residue j.

Using the E� definitions from above into Equation (7), we

obtain:

E�ðitÞ þ
X

j
max

s
E�ðit; jsÞ

þ Et0
�
þ
X

j
E�ðjgÞ þ

X
j

X
k
E�ðjg; kgÞ

� E�ðigÞ þ
X

j
min
s

E�ðig; jsÞ;

ð8Þ

where j, k 6¼ i, k4j.
We then define the BD criterion for a given rotamer ir to be:

E�ðirÞ þ
X

j
min
s

E�ðir; jsÞ

� Et0
�
�
X

j
max

s
E�ðjsÞ �

X
j

X
k
max
s;u

E�ðjs; kuÞ

> E�ðitÞ þ
X

j
max

s
E�ðit; jsÞ;

ð9Þ

where j, k 6¼ i, k4j and max
s;u

is over the sets Rj and Rk for given

residues j and k.

PROPOSITION 1. When Equation (9) holds, rotamer ir cannot be

a part of the flexible-backbone rigid-rotamer GMEC and can

thus be pruned from consideration for residue i.
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PROOF. We substitute the left-hand side of Equation (9) for

the first two terms in the left-hand side of Equation (8) to

obtain:

E�ðirÞ þ
X

j
min
s

E�ðir; jsÞ

� Et0
�
�
X

j
max

s
E�ðjsÞ �

X
j

X
k
max
s;u

E�ðjs; kuÞ

þ Et0
�
þ
X

j
E�ðjgÞ þ

X
j

X
k
E�ðjg; kgÞ

> E�ðigÞ þ
X

j
min
s

E�ðig; jsÞ;

ð10Þ

where j,k 6¼ i, k4j.

Since

E�ðjgÞ � max
s

E�ðjsÞ;E�ðjg; kgÞ � max
s;u

E�ðjs; kuÞ;

then Equation (10) becomes:

E�ðirÞ þ
X

j
min
s

E�ðir; jsÞ

� Et0
�
�
X

j
max

s
E�ðjsÞ �

X
j

X
k
max
s;u

E�ðjs; kuÞ

þ Et0
�
þ
X

j
max

s
E�ðjsÞ þ

X
j

X
k
max
s;u

E�ðjs; kuÞ

> E�ðigÞ þ
X

j
min
s

E�ðig; jsÞ;

where j,k 6¼ i, k4j.
Simplifying, we obtain:

E�ðirÞ þ
X

j
min
s

E�ðir; jsÞ > E�ðigÞ þ
X

j
min
s

E�ðig; jsÞ;

where j 6¼ i.

Thus, when Equation (9) holds, then ir 6¼ ig, so rotamer ir can

be provably pruned from further consideration when

Equation (9) holds, since it cannot belong to the flexible-

backbone rigid-rotamer GMEC. œ

For a given compact space of backbone conformations,

Equation (9) compares a lower bound on the energy achievable

when residue i has the specific rotamer identity r against an

upper bound on the energy achievable with a competing

rotamer t for the same residue. Similarly to the fixed-backbone

DEE algorithms, Equation (9) is evaluated for each residue,

for each ir and against different competitors, in order to identify

as many dead-ending rotamers as possible. In contrast to both

the fixed-backbone traditional-DEE and MinDEE criteria, BD

takes into account possible changes in the energy interactions

due to backbone conformational changes. These changes are

represented by the E� terms in Equation (9). The E� terms in

Equation (9) are a function only of the residue numbers and can

thus be precomputed, so computing Equation (9) has the same

complexity as Equation (2).

2.2 Extensions to BD

Analogously to the extensions for the fixed-backbone tradi-

tional-DEE and MinDEE, we derived (Fig. 1) four extensions

to the initial BD criterion (Equation 9) for improved pruning

efficiency; like BD, all of these extensions are provably-accurate

with respect to the flexible-backbone rigid-rotamer GMEC.

3 ALGORITHM

The protein redesign algorithm for the identification of the

flexible-backbone rigid-rotamer GMEC consists of two stages:

pruning and enumeration. In the pruning stage, the BD analogs

of the simple Goldstein ( Fig. 1b), conformational splitting

(Fig. 1e), and Goldstein pairs (Fig. 1d) criteria, as well as the

MinBounds criterion and the DACS algorithm (Georgiev et al.,

2006a) are used to provably prune the majority of rotamer

choices, thus reducing significantly the set of candidate

conformations. The remaining conformations are then

extracted in order of increasing lower bounds (Section 4) on

their energies using the A* algorithm (Georgiev et al., 2006b;

Leach and Lemon, 1998). The use of A* eliminates the necessity

to enumerate all remaining conformations. Since A* generates

conformations in order of increasing lower bounds on their

energy, we are guaranteed to have obtained the flexible-

backbone rigid-rotamer GMEC once the lower bound on the

next conformation generated by A* is greater than the

minimum conformational energy computed in the search so

far [see Proposition 2 in Georgiev et al. (2006b)].
For a given structural model, energy function, and rotamer

library, the BD criterion and extensions (Fig. 1) guarantee that

Fig. 1. Extensions to BD. (a) The initial BD criterion (Equation 9). (b) The fixed-backbone traditional-DEE Goldstein analog (Goldstein 1994)

for BD. (c), (d), and (e) are the generalizations to BD of the (c) general and (d) dead-ending pairs Goldstein criteria (Goldstein, 1994),

as well as (e) conformational splitting (Pierce et al., 2000). Here, E� ¼ ðEt0
�
þ
P

j max
s

E�ðjsÞ þ
P

j

P
k max

s;u
E�ðjs; kuÞÞ, for j,k 6¼ i; k4j. Also, E� ¼

ðEt0
�
þ
P

h max
t

E�ðhtÞ þ
P

h

P
k max

t;w
E�ðht; kwÞÞ, where h,k 6¼ i,j; k4h. Finally, E}ð½irjs	Þ ¼ E}ðirÞ þ E}ðjsÞ þ E}ðir; jsÞði 6¼ jÞ, E}ð½irjs	; htÞ ¼

E}ðir; htÞ þ E}ðjs; htÞði; j 6¼ hÞ, where E} 2{E�, E�}.
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pruned rotamers are provably not part of the flexible-backbone

rigid-rotamer GMEC. These criteria are provably correct

assuming the lower (E�) and upper (E�) energy bounds are

computed correctly. A lower bound E�(ir, js) for two rotamers

ir and js is sound if E�ðir; jsÞ � min
c2Y

Eðir; jsjcÞ, where Y is the set

of conformations for which: (1) residue positions i and j assume

the particular rotamer identities ir and js, respectively, and (2)

all conformations in Y are restrained by the dihedral-angle

bounds and Vð
Þ real-space bounds. That is, E�(ir, js) is sound if

its value is lower than the minimum pairwise energy between

rotamers ir and js observed in conformations in Y.

The soundness of the other E� terms is defined analogously.

Several global optimization techniques are available to

compute these bounds (Carr and Wales, 2005; Wales and

Scheraga, 1999). For more efficient lower-bound computation,

we use an approximation to steepest-descent minimization

(Sec. 4). Empirically, we observe not only that the computed

lower bounds are sound, but also that they are overly

conservative, i.e. E�ðir; jsÞ � min
c2Y

Eðir; jsjcÞ. This observation

can be explained by the fact that the pairwise lower bounds are

computed in the absence of some other side-chains (see Sec. 4).

The soundness of the upper bounds E� is defined analogously

to the lower-bounds case. In particular, since soft steric overlap

between atoms is allowed (Sec. 4), it is unlikely that the energy

between a pair of rotamers will increase from their initial energy

upon conformation minimization. We thus compute E�(ir, js) as

the initial energy between ir and js; the other E� terms are

computed analogously (Section 4).

4 METHODS

A subset of the GrsA-PheA residues, consisting of 9 active site residues,

a steric shell, the substrate ligand, and the AMP cofactor, (PDB id:

1amu; Conti et al., 1997) was used in our experiments. In general, the

choice of flexible residues is a user-specified parameter. The choices that

we made are designed to capture the important motions of the enzyme

active site. The active site residues are (D235, A236, W239, T278, I299,

A301, A322, I330, C331); these positions are allowed to either mutate to

the set GAVLIFYWM of hydrophobic amino acids or to keep their

wildtype amino acid identity. The side-chains for the active site residues

are modeled using the Richardsons’ rotamer library (Lovell et al.,

2000). The backbone (�,  ) dihedrals for these residues are also allowed

to change during conformation energy minimization. Backbone

conformational changes are restrained by allowing a maximum

displacement of 1.5 Å for each C� atom from its initial position in the

PDB file and a maximum change of �3
 from the initial values for the

flexible (�,  ) angles. The steric shell consists of 32 residues: the 30

residues with at least one atom within 8 Å of the ligand (Lilien et al.,

2005) and residues 277 and 298 (which are included so that the (�,  )

dihedrals for active site residues 278 and 299 can be properly defined).

All residues in the steric shell have fixed side-chains and can only move

from their initial position due to changes in the (�,  ) angles of the

active site residues. The ligand is modeled using rotamers and is allowed

to rotate and translate.

Similarly to Shah et al. (2004) and Georgiev et al. (2006a), the 12 core

residues (3, 5, 7, 9, 20, 26, 30, 34, 39, 41, 52, 54) in G�1 (PDB id: 1pga)

(Gallagher et al., 1994) are modeled as flexible using the same rotamer

library and backbone flexibility procedure as for GrsA. The set

AVLIFYW of hydrophobic amino acids, as well as the wildtype amino

acid identity, is allowed at these core positions. The remainder of the

G�1 residues are modeled as part of the steric shell.

A lower bound on a conformational energy is computed as a sum of

lower bounds on pairwise energy interactions (Georgiev et al., 2006a).

For a pair of rotamers ir and js, a lower bound E�(ir, js) on the pairwise

energy (Equation 9) is computed by performing a finite-differencing

approximation to steepest-descent minimization of the (�,  ) backbone

dihedrals subject to the Vð
Þ bounds in R
3 (Section 2), and returns the

minimum pairwise energy between ir and js. So that ir and js will have

less steric constraint during minimization for the pairwise energy lower

bound computation, all other flexible residues, except for Pro and Gly,

are set to Ala. The upper bound E�(ir, js) is computed as the pairwise

energy between ir and js for the initial backbone conformation. This

bound is much more conservative and is much faster to compute than

the upper-bound algorithm in Georgiev et al., (2006c). The energies

involving the template are computed in a similar manner. The same

restraints on backbone movement (as described above) are used. The

computation of the side-chain dihedral lower and upper bounds is

described in Georgiev et al., (2006c).

A change in the � angle for residue i rotates the whole structure

between the N-terminus and residue i accordingly. Similarly, a change

in the  angle for residue i rotates the structure between residue i and

the C-terminus. Conformations are energy-minimized using a finite-

differencing approximation to steepest-descent minimization. The

energy function consists of the AMBER electrostatic and vdW terms

(Cornell et al., 1995; Weiner et al., 1984) and the EEF1 pairwise

solvation energy term (Lazaridis and Karplus, 1999). A dielectric of 20

and a solvation-energy scaling factor of 0.05 were used to make

the computed energies predominantly dependent on vdW terms.

For the redesign with MinDEE, rotamer dihedrals are assumed to be

near the bottom of an energy well; dihedral energies are computed using

the AMBER dihedral terms. Rotamers with a lower bound on the

self-energy (intra-residue and residue-to-template energies) greater than

20 kcal/mol are pruned due to incompatibility with the template

(De Maeyer et al., 1997). Conformations for which at least one pair of

atoms has a steric overlap of more than 1.5 Å before minimization

are pruned from consideration. All experiments were performed on

a 18-processor cluster.

5 RESULTS AND DISCUSSION

In this section we report the results from the application of our

BD algorithm (Section 3) to redesign the core of G�1 and

to switch the substrate specificity of GrsA towards a novel

substrate, Leucine. We further compare the BD results to

traditional-DEE and MinDEE.

5.1 Backbone flexibility with traditional-DEE

When backbone flexibility is incorporated into the design

model, the traditional-DEE criteria can be used instead of the

BD criteria derived in Section 2, although in such a case the

results are not provably-accurate. We now confirm via

computational experiments that when traditional-DEE is used

with backbone flexibility, the identification of the lowest-energy

conformation, the flexible-backbone rigid-rotamer GMEC, can

no longer be guaranteed. For the G�1 redesign, we applied the

BD algorithm (Section 3) to generate the flexible-backbone

rigid-rotamer GMEC. When traditional-DEE was used instead,

the rotamer belonging to the flexible-backbone rigid-rotamer

GMEC at residue position 7, Leu rotamer 5 from the

Richardsons’ rotamer library (with � angles � 65
 and 175
),

was pruned, in favor of an Ile rotamer for the

same residue. Thus, the flexible-backbone rigid-rotamer
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GMEC 30L/39L/52W (Table 2y) is erroneously eliminated by

traditional-DEE during the pruning stage, confirming that

traditional-DEE is not provably accurate with backbone

flexibility.

5.2 Results with BD

In contrast to traditional-DEE, BD has provable guarantees

with respect to the flexible-backbone rigid-rotamer GMEC.

The application of the BD-based pruning algorithm (Section 3)

efficiently reduced the number of conformations that had to be

subsequently considered in the A* enumeration stage by a

factor of more than 107 (from the initial 8.39� 1017) for the

G�1 redesign and 105 (from the initial 4.78� 1015) for GrsA.

The generation of the G�1 flexible-backbone rigid-rotamer

GMEC 30L/39L/52W took approximately one week. The

generation of the two-point mutation flexible-backbone rigid-

rotamer GMEC A236M/A322M for GrsA required more than

1.5 days (in a k-point mutation sequence, k residues are allowed

to mutate simultaneously; A* is easily modified to generate only

up to k-point mutations). In both cases, the DEE pruning stage

took around a minute and the remainder of the time was spent

in the A* enumeration stage. In comparison, the running time

of traditional-DEE for the identification of the fixed-backbone

rigid-rotamer GMEC was less than 1 min for both G�1 and

GrsA, while the generation of the fixed-backbone minGMEC

by MinDEE took approximately one day for G�1 and 5 h. for

GrsA. Thus, although BD is capable of pruning a significant

fraction of the possible conformations, its provable guarantees

come at the expense of reduced pruning efficiency and

considerably increased running time. In particular, there are

three factors that influence the speed of the BD algorithm. (1)

The inclusion of the E� terms in Equation (9) reduces the

pruning efficiency of BD compared to traditional-DEE, since

fewer rotamers can be provably pruned. This significantly

increases the size of the input for the A* conformation

enumeration stage. (2) Whereas with traditional-DEE the first

conformation generated by A* is guaranteed to be the fixed-

backbone rigid-rotamer GMEC, BD requires that a set of

conformations be generated before the search can be provably

halted (Section 3). Since the provable halting condition

described in Section 3 depends on the computed lower

bounds on the conformational energies, so does the size of

the set of generated conformations. Currently, however, the

computed lower energy bounds are too conservative (i.e. the

gap between the computed lower bound on a conformational

energy and the actual energy of the conformation can be

considerable; data not shown). Consequently, the size of the set

of generated conformations increases significantly, resulting in

an increased running time of the algorithm. This problem,

although to a slightly lesser extent, is also present in MinDEE

(Georgiev et al., 2006b). Hence, an approach that uses more

constraint to compute the lower energy bounds would prove

beneficial both for BD and MinDEE designs. (3) The current

implementation of the backbone minimizer is much slower than

side-chain dihedral minimization. Although this is expected, a

faster backbone minimization algorithm that does not sacrifice

accuracy can significantly speed up the computation of the

designs.

The significance of BD lies in its ability to generate lower-

energy conformations than traditional-DEE. As Table 2 shows

for the GrsA redesign, even after performing backbone

minimization, the energy of the fixed-backbone rigid-rotamer

GMEC is significantly higher (by more than 4 kcal/mol) than

the energy of the flexible-backbone rigid-rotamer GMEC.

Thus, for models that incorporate backbone flexibility, the BD

criterion should be used instead of traditional-DEE when

accuracy is preferred over speed.
Interestingly, for the GrsA redesign, the flexible-backbone

rigid-rotamer GMEC identified by BD and the fixed-backbone

minGMEC identified by MinDEE are obtained from the

same sequence and initial rotamer identities (Table 2).

From that initial conformation, flexible-backbone minimiza-

tion and side-chain dihedral minimization resulted in virtually

equal energies. In the G�1 redesign, differences of almost

10 kcal/mol were observed between the energies resulting from

side-chain and backbone minimization (Table 2). Experiments

on a set of surface residues of G�1 [a description of this system

can be found in (Georgiev et al., 2006a)] showed that in

some cases side-chain minimization can achieve lower

Table 2. Minimum energy conformations with different types of minimization

Optimum Computed Mutations

from wildtype

No minimizationa Side-chain dihedral

minimizationb
Backbone flexibilityc,d

i. fixed-backbone rigid-rotamer GMEC 7I/30L/39L/52W �204.98* �205.63 �214.58 (0.11)

fixed-backbone minGMEC 7I/39L/52W/54L �198.63 �208.88* �209.35 (0.12)

flexible-backbone rigid-rotamer GMEC 30L/39L/52Wy
�202.33 �205.97 �215.47* (0.15)

ii. fixed-backbone rigid-rotamer GMEC A236M/A301G �148.03* �154.59 �155.98 (0.14)

fixed-backbone minGMEC A236M/A322M �139.74 �160.28* �160.26 (0.16)

flexible-backbone rigid-rotamer GMEC A236M/A322M �139.74 �160.28 �160.26* (0.16)

After computing the rotamer sequences for the fixed-backbone rigid-rotamer GMEC, fixed-backbone minGMEC, and flexible-backbone rigid-rotamer GMEC for the

redesigns of (i) G�1 and (ii) GrsA-PheA, the energy for each of these rotamer sequences was computed for three cases: awith no minimization (the energy of the initial

structure), bafter side-chain dihedral minimization, or cafter minimization with backbone flexibility. The computed energies are in kcal/mol. The energies of the fixed-

backbone rigid-rotamer GMEC, fixed-backbone minGMEC, and flexible-backbone rigid-rotamer GMEC, each of which is guaranteed to be the respective minimum

energy by the traditional-DEE, MinDEE, and BD algorithms, are starred (‘*’). dThe backbone RMSD (in Å) between the ainitial structure and the cbackbone-minimized

structure is shown in parentheses.
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energy levels than backbone minimization, while in others

backbone minimization performs better (data not shown).

Hence, in order to further improve the accuracy of the

model, both minimization types could be incorporated

simultaneously.

A somewhat surprising result (Table 2) is that even very small

changes in the backbone can result in a significant improvement

in the conformational energy. Since the ligand in the GrsA

system is also allowed to rotate, translate, and flex, however, it

was not certain to what extent the energy improvement was due

to protein backbone movements. In order to determine whether

small backbone perturbations can lead to considerably lower

energies, we generated and energy-minimized (using flexible-

backbone minimization) 1,000 conformations of our GrsA

structural model without a ligand. The relationship between the

magnitude of the backbone movement and the corresponding

change in energy for the best 30 conformations (with lowest

initial energy) is shown in Figure 2. This figure confirms that

conformational energies indeed can be very sensitive to

backbone movements. Since the non-minimized structures

may contain some unoptimized interactions (e.g. some steric

overlap between atoms), large energy decreases after minimiza-

tion (such as the ones seen in the top right-hand corner of

Figure 2) are not unexpected.

Another important observation is that all conformations

plotted in Figure 2 have backbone RMSDs from their

respective initial structures less than 0.3 Å, even though C�
atoms are allowed to move up to 1.5 Å (Section 4). The goal of

the BD algorithm is not the design of novel backbone

conformations, so significant backbone deviations should not

be expected. Instead, the essence of BD is to allow small

modifications to the backbone in order to adopt conformations

that would otherwise score low (or even be erroneously

pruned, like the G�1 flexible-backbone rigid-rotamer GMEC

30L/39L/52W) by a fixed-backbone model.

6 CONCLUSION

In this article we presented BD, a novel provably accurate

DEE-based algorithm for protein design with backbone

flexibility. We also gave extensions to the initial BD criterion

for improved pruning efficiency. When applied in redesigns of

core residues of G�1 and the active site of the NRPS enzyme

GrsA-PheA, BD significantly reduced the set of candidate

conformations for obtaining the flexible-backbone rigid-

rotamer GMEC. The provable guarantees of BD, however,

come at the expense of decreased pruning efficiency and

increased running time compared to traditional-DEE. We

showed experimentally that traditional-DEE is indeed not

provably-correct with backbone flexibility, generating higher

energy structures than BD. We can thus conclude that when

improved accuracy is required, BD must be used instead of

traditional-DEE. The different GrsA GMECs computed in

Section 5 are currently being tested in our wetlab.
For a given structural model, energy function, and rotamer

library, provably accurate algorithms such as traditional-DEE

(for a fixed-backbone) and BD (for a flexible-backbone model),

can guarantee the identification of the optimal solution for that

model. In contrast, heuristic techniques such as Monte Carlo

and genetic algorithms do not have such guarantees. It has been

shown that when compared to experimental data, some

heuristic predictions may have comparable quality to the

predictions from a provably accurate algorithm (Desmet et al.,

2002). Heuristic approaches, however, cannot decouple the

inaccuracy of the model from the inaccuracy of the algorithm.

With a provably-accurate algorithm, the discrepancy between

predictions and experimental data can be exclusively attributed

to deficiencies in the model. Experimental feedback for

improving the model can thus be more reliably incorporated

with provably accurate algorithms.
The goal of the backbone flexibility model discussed in this

article is not to identify novel backbone conformations that are

significantly different from the initial protein backbone.

Rather, our model allows small movements of the backbone

in order to adapt for sequences and conformations that would

otherwise be discarded by a fixed-backbone model.

By increasing the maximum backbone movement allowed

(Section 4), larger deviations from the initial backbone could

be obtained. Increasing the bounds on the backbone move-

ment, however, will also increase the magnitude of the lower

energy bounds and the interval terms in Equtaion (9), which

presents an added challenge for pruning efficiency. Improving

the approach for computing the lower/upper energy bounds

will thus be essential for enhancing the pruning and computa-

tional efficiency of the algorithm.
Similarly to MinDEE, BD can be used as a pruning filter

in K*, the ensemble-based protein design algorithm of

(Lilien et al., 2005), with incorporated backbone flexibility.

This obtains a provably-good approximation algorithm for

computing partition functions over ensembles simultaneously

containing side-chain, backbone, and ligand flexibility.

Moreover, since the backbone is allowed to flex, a negative

design procedure can also be incorporated into the model, so

that the design goal can not only improve a desired function but

also impede certain functionality (e.g. to redesign GrsA so that

Fig. 2 . Backbone RMSD versus decrease in energy. The decrease in

energy (in kcal/mol) resulting from backbone minimization of 30

conformations is plotted against the backbone RMSD values between

the corresponding non-minimized and minimized structures.
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the specificity towards Leu is improved, but the specificity for

other substrates is significantly reduced).
Since both side-chain dihedral minimization and backbone

flexibility improve the accuracy of the model, interesting future

work could simultaneously use both minimization mechanisms,

while remaining provably accurate with respect to the

corresponding optimal solution, the flexible-backbone

minGMEC. The theoretical framework for BD will still be

valid for such an algorithm, since the E� terms in Equation (9)

account for possible energy changes during minimization.

However, the restraining boxes for the computation of the

lower and upper energy bounds must be modified to

incorporate possible rotamer movements when both minimiza-

tion types are allowed. The major challenge for such an

algorithm would thus be the increased computational require-

ments. However, the benefits of such a marriage could be

substantial.
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