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Abstract. Robotics researchers will be aware of Dexter Kozen’s contri-
butions to algebraic algorithms, which have enabled the widespread use
of the theory of real closed fields and polynomial arithmetic for motion
planning. However, Dexter has also made several important contribu-
tions to the theory of information invariants, and produced some of the
most profound results in this field. These are first embodied in his 1978
paper On the Power of the Compass, with Manuel Blum. This work has
had a wide impact in robotics and nanoscience.

Starting with Dexter’s insights, robotics researchers have explored
the problem of determining the information requirements to perform
robot tasks, using the concept of information invariants. This represents
an attempt to characterize a family of complicated and subtle issues
concerned with measuring robot task complexity.

In this vein, several measures have been proposed [14] to measure the
information complexity of a task: (a) How much internal state should
the robot retain? (b) How many cooperating robots are required, and
how much communication between them is necessary? (c) How can the
robot change (side-effect) the environment in order to record state or
sensory information to perform a task? (d) How much information is
provided by sensors? and (e) How much computation is required by the
robot? We have considered how one might develop a kind of “calculus”
on (a) — (e) in order to compare the power of sensor systems analytically.
To this end, information invariants is a theory whereby one sensor can
be “reduced” to another (much in the spirit of computation-theoretic
reductions), by adding, deleting, and reallocating (a) — (e) among col-
laborating autonomous robots. As we show below, this work steers using
Dexter’s compass.

1 The Power of the Compass

In 1978, Blum and Kozen wrote a ground-breaking paper on maze-searching
automata [2/38]. This chapter is devoted to a discussion of their results, On
The Power of the Compass [2], and we interpret their results in the context of
autonomous mobile robots and information invariants.

R.L. Constable and A. Silva (Eds.): Kozen Festschrift, LNCS 7230, pp. 50{65] 2012.
© Springer-Verlag Berlin Heidelberg 2012



The Compass That Steered Robotics 51

1.1 Notation

In this chapter, I use (a), (b), (c), ... to denote Resources, such as internal state,
number of robots, external state, and so forth (see Abstract for a complete
list). The numbers (1), (2), (3) denote a list of key results from Dexter’s pa-
per [2], which are introduced in Section Starred roman numerals I*, IT*,
IIT*, ... denote techniques in information invariants theory (such as Reduction,
Transformation, Universal Reduction, etc.); these are described in Section
Small roman numerals (i), (ii) denote resources for information invariants in
massively-parallel distributed manipulation and nanoscience (Section B.2)).

1.2 The Scales Fall from My Eyes

From 1987-1997, I taught at Cornell, just down the hall from Dexter. My health
was excellent. Every morning I drank Pepsi before teaching large undergraduate
programming lectures. Each afternoon I drank espresso and wrote papers, while
watching the sun set over Lake Cayuga from my office (which was the largest lair,
with the best view, in Upson Hall). In the evenings I would eat dinner with Dan
Huttenlocher or Ramin Zabih, and at night I played in Dexter’s band, The Steamin’
Weenies. 1 tended a large flock of enthusiastic graduate students and post-docs
working on robotics. In 1990, my student Jim Jennings and I posed the following:

Question 1. [35] “Let us consider a rational reconstruction of mobile robot pro-
gramming. There is a task we wish the mobile robot to perform, and the task is
specified in terms of external (e.g., human-specified) perceptual categories. For
example, these terms might be “concepts” like wall, door, hallway, or Professor
Hopcroft. The task may be specified in these terms by imagining the robot has
virtual sensors which can recognize these objects (e.g., a wall sensor) and their
“parameters” (e.g., length, orientation, etc.). Now, of course the physical robot
is not equipped with such sensors, but instead is armed with certain concrete
physical sensors, plus the power to retain history and to compute. The task-level
programming problem lies in implementing the virtual sensors in terms of the
concrete robot capabilities. We imagine this implementation as a tree of compu-
tation, in which the vertices are control and sensing actions, computation, and
state retention. A particular kind of state consists of geometric constructions;
in short, we imagine the mobile robot as an automaton, connected to physical
sensors and actuators, which can move and interrogate the world through its sen-
sors while taking notes by making geometric constructions on “scratch paper.”
But what should these constructions be? What program runs on the robot? How
may these computation trees be synthesized?”

Let us consider this question of state. Suppose the robot is given a particular
task. To accomplish this task, what should the robot record on its scratch pa-
per? What is necessary and sufficient? In robotics, necessity has rarely been
addressed. Sufficiency has been addressed but the bounds are extremely loose.
Specifically: in robotics, the answer for sufficiency is frequently either “nothing”
(i.e., the robot is reactive, and should not build any representations), or “a map”
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(namely, the robot should build a geometric model of the entire environment).
In particular, even schemes such as [41] require a worst-case linear amount of
storage (in the geometric complexity n of the environment). Can one do better?
Is there a sufficient representation that is between 0 and O(n)?

This seemed like a great question to work on. Dexter’s office was three doors
down down the hall (hear that, robot?), so we kicked it around. Dexter mentioned
he had “some results” on this problem, and gave me a copy of his 1978 paper.

“Some results” turned out to be a considerable understatement. His paper
laid out the foundations for the field, posing and solving its first and most
fundamental problems. As I read his paper, my excitement grew with each page.
Blum and Kozen provided precise answers to these questions in the setting of
theoretical, situated automata. The results provide substantial insight into the
Question [Tl above. His paper had a profound impact on my work [14].

This chapter didactically adopts the rhetorical “we” to compactly interpret
Dexter’s results. We define a maze to be a finite, two-dimensional obstructed
checkerboard. A finite automaton (DFA) in the maze may, in addition to its
automaton transitions, transit on each move to an adjacent unobstructed square
in the N, S, E, or W direction. We say an automaton can search a maze if
eventually it will visit each square. It need not halt, and it may revisit squares.
Hence, this kind of “searching” is the theoretical analog of the “exploration”
task that many modern mobile robots are programmed to perform. However,
note that in this entire section there is no control or sensing uncertainty.

We can consider augmenting an automaton with a single counter; using this
counter it can record state. Two counters would not be an interesting enhance-
ment, because then we obtain the power of a Turing machinel] The distinction
is that a DFA with two counters is as powerful as a Turing machine (which can
make a linear-sized map) so in some sense this augmentation of a DFA is naive,
or trivial. We wish to address the the question of whether or not there exists
a DFA space augmentation that lies in between ‘nothing’ and a ‘full Turing
machine.” In this manner we can explore whether or not tasks can be accom-
plished without making a linear-sized map. The question can be nicely explored
by asking: what is the power of giving the DFA a single counter?

We say two (or more) automata search a maze together as follows. The au-
tomata move synchronously, in lock-step, but at each step the DFAs can perform

L' A counter is like a register. A DFA with a counter can keep a count in the register,
increment or decrement it, and test for zero. A single counter DFA (introduced by
[30] in 1966) can be viewed as a special kind of push-down (stack) automaton (PDA)
that has only one stack symbol (except for a top of the stack marker). This means
we should not expect a single-counter machine to be more powerful than a PDA,
which, in turn, is considerably weaker than a Turing machine (see, eg., [33, Ch. 5]).
The proof that a two-counter DFA can simulate a Turing machine was first given
by Papert and McNaughton in 1961 [43] but shorter proofs are now given in many
textbooks, for example, see [33, Thm. 7.9]. However, our distinction of one counter
vs. two counters is motivated by theory, and is mathematical rather than practical.
In practice, one would not equip a robot with two counters to simulate a Turing
machine, because the simulation is not efficient.
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different internal state transitions and step in different directions on the maze.
This synchronization could be effected using global control, or with synchronized
clocks. When two automata land on the same square, each transmits its internal
state to the other.

Finally, we may externalize and distribute the state. Instead of a counter,
we may consider equipping an automaton with pebbles, which it can drop and
pick up. Each pebble is uniquely identifiable to any automaton in the maze. On
moving to a square, an automaton senses what pebbles are on the square, plus
what pebbles it is carrying. It may then drop or pick up any pebbles.

Hence, a pure automaton is a theoretical model of a “reactive,” robot-like
creature. (Many simple physical robot controllers are based on DFA’s). The
exchange of state between two automata models local communication between
autonomous robots. The pebbles model the “beacons” often used by mobile
robots, or, more generally, the ability to side-effect the environment (as opposed
to the robot’s internal state) in order to perform tasks. Finally, the single counter
models a limited form of internal state (storage). It is much more restrictive than
the tape of a Turing machine. Quantifying communication between collaborating
mobile robots is a fundamental information-theoretic question. In manipulation,
the ability to structure the environment through the actions of the robot (see,
eg, [I3I1423l48]) or the mechanics of the task (see, eg,. [42]) is a fundamental
paradigm. How do these techniques compare in power?

We call automata with these extra pebbles or counters enhanced, and we
will assume that automata are not enhanced unless noted. All automata are
deterministic, and there is no randomization unless explicitly noted. Given these
assumptions, Blum and Kozen demonstrate the following results. First, they
note a result of Budach that a single automaton cannot search all mazesiq Next
they prove the following:

1. There are two (unenhanced) automata that together can search all mazes.
2. There is a two-pebble automaton that can search all mazes.
3. There is a one-counter automaton that can search all mazes.

We will show below that these results are crisp information invariants. It is clear
that a Turing machine could build (a perfect) map of the maze, that would be
linear in the size of the maze. This they term the naive linear-space algorithm.
This is the theoretical analog of most map-building mobile robots—even those
that build “topological” maps still build a linear-space geometric data structure
on their “scratch paper.” But (3) implies that there is a log-space algorithm
to search mazes—that is, using only an amount of storage that is logarithmic
in the complexity of the world, the maze can be searched. Why? Here is the
idea: First, [2] show how to write a program whereby an unenhanced DFA can
traverse the boundary of any single connected component of obstacle squares.
Now, suppose the DFA could “remember” the southwesternmost corner (in a
lexicographic order) of the obstacle. Next, [2] show how all the free space can
then be systematicically searched. It suffices for a DFA with a single counter
to record the y-coordinate ypyi, of this corner. We now imagine simulating this

% See [2] for references.
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algorithm (as efficiently as possible) using a Turing machine, and we measure
the bit-complexity. If there are n free squares in the environment then yui, < n,
and the algorithm consumes O(logn) bits of storage. For details, see [2]. This is
a precise answer to part of our Question [II

However, the results (1-3) also demonstrate interesting information invariants.
(1) = (2) demonstrates the equivalence (in the sense of information) of beacons
and communication. Hence, side-effecting the environment is equivalent to col-
laborating with an autonomous co-robot. In other words, the augmentations to
the DFA of (1) and (2) are equivalent in power, in that either (1) or (2) allows
the robot to accomplish the maze-searching task. The equivalence of (1) = (2)
= (3) suggests an equivalence (in this case) and a tradeoff (in general) between
communication, state, and side-effecting the environment. We credit [2] with
these founding examples of information invariants.

1.3 The Power of Randomization

Michael Erdmann’s Ph.D. thesis was an investigation of the power of random-
ization in robotic strategies [26]. The idea is similar to that of randomized
algorithms—by permitting the robot to randomly perturb initial conditions (the
environment), its own internal state, or to randomly choose among actions, one
may enhance the performance and capabilities of robots, and derive probabilistic
bounds on expected performanceﬁ This lesson should not be lost in the context
of the information invariants above. For example, as Erdmann points out, one
finite automaton can search any maze if we permit it to randomly select among
the unobstructed directions. The probability that such an automaton will even-
tually visit any particular maze square is 1. Randomization also helps in finite
3D mazes (see Section [[I4] for more on the problems that deterministic (as op-
posed to randomized) finite automata have in searching 3D mazes), although
the expected time for the search increases some.

These observations about randomizing automata can be even extended to
unbounded mazes (the mazes we have considered so far in this chapter are finite).
However, in a 2D unbounded maze, although the automaton will eventually
visit any particular maze square with probability 1, the expected time to visit
it is infinite. In 3D, however, things are worse: in 3D unbounded mazes, the
probability that any given “cube” will be visited drops from 1 to about 0.37.

1.4 What Does a Compass Give You?

Thus we have given precise examples of information invariants for tasks (or for
one task, namely, searching, or “exploration.”) However, it may be less clear
what the information invariants for a sensor would be. Again, Blum and Kozen
provide a fundamental insight. We motivate their result with the following

3 While the power of randomization has long been known in the context of algorithms
for maze exploration, Erdmann was able to lift these results to the robotics domain.
In particular, one challenge was to consider continuous state spaces (as opposed to
graphs).
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Question 2. Suppose we have two mobile robots, named TomMmy and LiLy, con-
figured as described in [14]. Suppose we put a flux-gate magnetic compass on
Liry (but not on Tommy). How much more “powerful” has LiLy become? What
tasks can LiLy now perform that ToMmMmy cannot?

Now, any robot engineer knows compasses are useful. But what we want in
answer to Question [2 is a precise, provable answer. Happily, in the case where
the compass is relatively accurateﬂp [2] provide the fundamental insight:

Consider an automaton (of any kind) in a maze. Such an automaton effectively
has a compass, since it can tell directions N,S,;E;W apart. That is, on landing on a
square, it can interrogate the neighboring N,S,E.W squares to find out which are
unobstructed, and it can then accurately move one square in any unobstructed
compass direction.

By contrast, consider an automaton in a graph (that need not be a maze). Such
an automaton has no compass; on landing on a vertex, there are some number
g > 0 of unordered edges leading to “free” other vertices, and the automaton
must choose one.

Hence, as Blum and Kozen point out, “Mazes and reqular planar graphs appear
similar on the surface, but in fact differ substantially. The primary difference is
that an automaton in a maze has a compass: it can distinguish N,S,E,W. A
compass can provide the automaton with valuable information, as shown by the
second of our results” [2]. Now, assume all automata are deterministic, and no
randomization is permitted. Recall result (1) in Section (1) There are two
(unenhanced) automata that together can search all mazes. Blum and Kozen
show, that in contrast to (1), no two automata together can search all finite
planar cubic graphs (in a cubic graph, all vertices have degree g = 3). They then
prove no three automata suffice. Later, Kozen showed that four automata do
not suffice [38]. Moreover, if we relax the planarity assumption but restrict our
cubic graphs to be 3D mazes, it is known that no finite set of finite automata
can search all such finite 3D mazes [3]!

Hence, [2I38] provide a lower bound to the question, “What information does
a compass provide?” We close by mentioning that in the flavor of Section [[3]
there is a large literature on randomized search algorithms for graphs. As in
Section [[L3] randomization can improve the capability and performance of the
search automata.

2 Measuring Information Invariants

Blum and Kozen gave us the basic tools and concepts behind information in-
variants. We illustrated by example how such invariants can be analyzed and
derived. We made a conceptual connection between information invariants and
trade-offs. Tradeoffs also arise naturally in kinodynamic settings [24], in which

4 In considering how an accurate sensor can aid a robot in accomplishing a task, Dex-
ter’s methodology anticipates, as it were, Erdmann’s work on developing “minimal”
sensors [27].
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performance measures, planning complexity, and robustness (in the sense of resis-
tance to control uncertainty) are traded-off [2421)22]. We noted that Erdmann’s
invariants are of this ilk [26]. More generally, in optimization problems (shortest
path, fastest path, etc.) it is natural to define trade-offs using these performance
measures (e.g., path-length, -time, or -cost) as a kind of common currency. In-
deed, such trade-offs form the basis of online algorithms and polynomial-time
approximation schemes.

However, without a performance (cost) measure, it is substantially more dif-
ficult to develop information invariants. This is where the beauty of Dexter’s
approach is evident. Measures of information complexity are fundamentally dif-
ferent from performance measures. Our interest in this chapter lies in the former
(for more on performance measures see [14], and [24]).

Here are some measures of the information complexity of a robotic task: (a)
How much internal state should the robot retain? (b) How many cooperating
robots are required, and how much communication between them is necessary?
and (¢) How can the robot change (side-effect) the environment in order to record
state or sensory information to perform a task? Examples of these categories
include: (a) space considerations for computer memory, (b) local line of sight
communication such as infra-red (IR) communication between collaborating au-
tonomous mobile robots, and (c) dropable beacons. With regard to (a), we note
that, of course, memory chips are cheap, but in the mobile robot design space,
most investigations seem to fall at the ends of the design spectrum. For example,
(near) reactive systems use (almost) no state, while “map builders” and model-
based approaches use a very large (linear) amount. Natarajan [44] considered
an invariant complexity measure analogous to (b), namely the number of robot
“hands” required to perform an assembly task. This quantifies the interference
kinematics of the assembly task, and assumes global synchronous control. With
regard to (c), one easily-imagined physical realization consists of coded IR bea-
cons; however, “external” side-effects could be as exotic as chalking notes on the
environment (as parking police do on tires), or assembling a collection of ob-
jects into a configuration of lower “entropy” (and hence, greater information).
Calibration is an important form of external state (or, more generally a way to
synchronize internal state, robot configuration, and external state), which we
explore in [I4].

Dexter proved automata-theoretic results to explore invariants that trade-off
internal state, communication, and external state. His work first concentrates
on information invariants for tasks. It then shows how information invariants
for sensors can be integrated into the discussion. In particular, Dexter gave a
precise way to measure the information that a compass gives an autonomous
mobile robot. Remarkably, trading off the measures (a)-(c) proved sufficient to
quantify the information a compass supplies!

The compass invariant illustrates the kind of result that we wish to prove
for more general sensors. Thus, we add a measure to quantify the informa-
tion provided by sensors. To push this framework further, we had to intro-
duce additional machinery to include two additional important measures of the
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information complexity of a robotic task: (d) How much information is provided
by sensors?, and (e) How much computation is required of the robot? In [14],
we described how one might develop a kind of “calculus” on measures (a) — (e)
in order to compare the power of sensor systems analytically. To this end, we
developed a theory whereby one sensori-computational system can be “reduced”
to another (much in the spirit of computation-theoretic reductions), by adding,
deleting, and reallocating (a) — (e) among collaborating autonomous robots.

3 Impact on Robotics and Nanoscience

Dexter’s ideas and their offspring in the information invariants literature [14]
have had a wide impact on robotics in general and microrobotics in particular. I
give three examples. Videos of these implemented robotic systems can be found
online at: [I5/16].

3.1 Microscale Assembly

[20] describe top-down microassembly using groups of non-holonomic, highly
under-actuated micro-robots. A detailed description of an individual robot can
be found in [19]. Such an assembly would be rather easy at the macroscopic scale
but the individual robots are about 200 by 60 microns in size, making control
and assembly challenging. These robots demonstrate information invariant trade-
offs in terms of control and design. The control is encoded in the power-delivery
signal, which must be demultiplexed by the robots. All the robots receive the
same global power delivery and control signal but respond differently not only
because of their different internal states, but also due to engineered differences
in their physics.

Since even a single robot [19] is under-actuated and non-holonomic, informa-
tion invariants-based design was necessary to prove global controllability. The
robots in the papers and videos [20] exhibit an unprecedented degree of indi-
vidual control, for things that are so tiny. The robots are intentionally simple
in design to minimize their individual size, and groups of such microrobots are
highly underactuated when directed using a broadcast control signal. The con-
trol algorithms reconfigure this highly underactuated n-microrobot system using
a non-holonomic control scheme. This was the first example of parallel (simulta-
neous) operation and cooperation of multiple untethered microelectromechanical
system (MEMS) microrobots.

3.2 Provable Constraints on Architecture and Dynamics for
Massively Parallel, Distributed Manipulation

Background. We now discuss an interesting application, also in microassem-
bly. Part manipulation is an important but also time-consuming operation in
microscale automation. Micro-parts need to be sorted and oriented before as-
sembly. It is a difficult problem to manipulate, orient, singulate, and assemble
such parts at the microscale.
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One possibility is to use a massively parallel array of distributed microactu-
ators in order to perform distributed manipulation [BIOIGITOTTI49/4]. The mi-
croactuators are controlled using programmable force fields. The basic idea is
the following: the field is realized on a planar surface on which the part is placed.
The forces exerted on the contact surface of the part translate and rotate the
part to an equilibrium configuration. The manipulation requires no sensing.
Current technology permits the implementation of certain force fields in the
microscale with ‘ciliary’ actuator arrays built in MEMS technology, and in the
macroscale with transversely vibrating plates. The flexibility and dexterity that
programmable force fields offer has led researchers to investigate the extent to
which these fields can be useful. Some work [SI9J6ITOITTI49/4/7] analyzes the prop-
erties of force fields that are suitable for sensorless manipulation and proposes
novel manipulation strategies. These strategies typically consist of temporally
discrete sequences of force fields that cascade the parts through multiple equi-
libria until a desired goal state is reached.

For example, one may develop a sequence of steps (a sequence of vector fields)
to orient a polygonal part. Programmable force fields allow us to shift the com-
plexity of parts-feeding from the design of mechanical tracks, filters, and cutouts,
to control algorithms and circuitry. No sensors or feeder redesign is required.
However, the first designs required control software, a clock, and, to some ex-
tent, synchronization between distributed actuators. In three papers [7J95], we
addressed the information invariants trade-offs in such devices, specifically the
trade-off between (i) having a clock and communication for sequencing, versus
(ii) using a more complex vector field that obviates the necessity of a clock for
synchronization and sequencing [7]. Finally, we showed that, surprisingly, one
of the more complex components of the vector field can be implemented by a
coupling with the world (gravity) in combination with a relatively simple MEMS
array [9J4915].

Significance and Generalizability. We now discuss the relevance to a gen-
eral methodology of information invariants for control and manipulation in a
distributed setting. Suppose we take the view of an architect seeking to simplify
a massively-parallel distributed system, namely our microscale parts feeder. For
discussion, we will adapt a perspective that has been profitable in distributed
systems, and try to remove the clock from the distributed system (this sys-
tem comprises the massively parallel microfabricated actuator array, together
with its control, communication, and computation). Specifically: typical MEMS
arrays for programmable force fields require control lines for programmability,
plus a clock to switch between control strategies. In addition, control hardware
and software are required, for example in computer(s) connected to the actua-
tor array. Let us ask the ‘minimalist’ question: In what ways can the system be
simplified?

One direction to explore is the following: can the clock be removed? Some-
what remarkably, this question proves to be equivalent to the conjecture: Does
there exist a single vector field U in which every part P has ezxactly one stable
equilibrium x,, (up to part symmetry)? The reason for equivalence is: unless such
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a unique equilibrium exists, then a clock will be needed to cascade and collapse
the multiple equilibria by switching after some time to a subsequent vector field
strategy.

Specifically: If such a ‘universal’ field exists, part orientation can be effected
without sensing and without a clock, achieving a minimal solution in terms of
resources. It is surprising that a purely architectural question can reduce to
a proving a conjecture about geometric dynamics. Details of the proof can be
found in [7]. It also illustrates the interplay of continuous methods to prove
bounds from, and on, discrete architectural constraints. This example illustrates
information invariants between clock synchronization and vector field complex-
ity. While much work has been done in the complexity of various branches of
computational mathematics (algebra, geometry, topology), the complexity of
vector fields on manifolds has only recently been considered. Now that these
vector fields are a programming paradigm for massively-parallel distributed ma-
nipulation, systematic theoretical investigations have born fruit, to prove these
counterintuitive and powerful results [SJOJ6ITOJTTI4I7].

Dexter’s results on information invariants for multiple cooperating DFAs not
only inspired a generation of researchers to work on parallel and distributed
robotics, but also showed them how robotics can be approached as a science, with
provable resource trade-offs driving a rigorous analysis of complexity, sound-
ness, and completeness. When his approach was understood by roboticists in
the 1990s, they were working with (at most) small handfuls of laboriously hand-
crafted mobile robots (4, 5, or possibly 10). Since simulations were doomed to
success, Dexter’s work motivated robotics researchers to find a domain where
questions of parallel and distributed robotics could be explored experimentally
for tens of thousands, if not millions of cooperating actuators. MEMS provided
an ideal testbed for such theories, since bulk fabrication allows the construction
of huge numbers of microactuators (in the same way that IC circuits are fabri-
cated using VLSI). However, the pioneers who moved from robotics to MEMS
were explicitly trying to generalize Dexter’s results and obtain crisp theoretical
information invariants that could be experimentally validated. In some sense,
the migration from robotics to nanoscience was a multi-university physics ex-
periment, designed to determine how Dexter’s laws of parallel robotics would
scale and generalize to massively-parallel distributed manipulation. The fruit of
this research is the theory of programmable vector fields, which we have reviewed
briefly in this chapter.

The theory of programmable vector fields for micro- and nano-scale manipu-
lation has yielded numerous interesting theoretical results and predictions, that
have been confirmed by extensive experimental validation [BI9UGITOITTIA94[7].
The theory grew out of information invariants analysis, and represents a pow-
erful technique for massively-parallel distributed manipulation. The degree of
parallelism and distribution in these manipulation tasks is much higher than in
other branches of robotics: tens of thousands of microactuators can easily be
controlled and coordinated, in sophisticated manipulation tasks, and there is
no reason it shouldn’t work for millions or billions. There are many theories of
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multi-robot and multi-actuator control. There are also theories of manipulation,
and sometimes even theories for parallel and distributed manipulation. Typically,
even the best of these theories break down as the number of actuators increases.
But the algorithmic theory of programmable vector fields for massively-parallel
distributed manipulation is the only technique for multi-robot control that be-
comes more robust and more accurate as the actuators become more numerous,
smaller, and denser. And at this point, the algorithms that Dexter’s work in-
spired have been implemented in hardware using silicon, polyimide, and metal,
leveraging a dizzying array of 215%-century surface chemistry and nanofabrication
technologies. This is no small feat.

3.3 Trade-Offs, Robot Complexity, and Information Invariants

Information invariants as a theory have been used generate and analyze inter-
esting experiments in the field of mobile robotics. For example, in the 1990s
this methodology was used in a significant demonstration of a distributed multi-
mobile-robot team to push an object into place [2348]. These explorations into
information invariants have had impact on the multi-robot research community.
It also led to a careful analysis of the trade-offs in massively-parallel distributed
manipulation using microfabricated actuator arrays, described above in Sec.
Perhaps more important, the work on information invariants in the solution to
robot tasks made precise what had previously been only an inchoate notion,
namely: that robots can gain information by action or by sensing or by internal
state, and that the sources of information are to some extent interchangeable.
Of particular power are the method of sensor reductions and the construct of
permutation for reallocating resources [I4]. Sensor reductions are analogous to
computation-theoretic reductions in that they allow mobile sensor networks to
be rigorously compared, and induce a hierarchy of complexity over the class
of sensori-computational systems. But because sensor networks are embedded
in Whitney stratifications (i.e., composed of differentiable algebraic manifolds),
many questions about them can, in principle, be decided computationally. Hence,
in contrast to computation-theoretic reductions, the reduction (i.e. complexity)
hierarchy of information invariants on sensory networks is effectively computable.

Four key techniques are made possible in the information invariants frame-
work:

I* Given two sensori-computational systems, we can ask which is more pow-

erful (can one be reduced to the other)?

II* We can also ask, can one sensori-computational system be transformed into
another, and if not, what resources must be added to make it equivalent?

IIT* Given a collection of “parts” (resources) and a specification of a sensori-
computational system, can the parts be configured to implement that spec-
ification?

IV* Universal reduction: can the components of one sensori-computational sys-
tem always perform the job of a second sensori-computational system?
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It is also remarkable that, again, in principle, all four of these decision prob-
lems have been shown to be effectively computable [I4]. One of the difficult
and challenging aspects of theoretical computer science and structural complex-
ity theory is that the reductions that leverage many theorems must be crafted
by humans, since the existence and form of these reductions is not effectively
computable. By this we mean the following. Suppose we have two computation-
theoretic problems. Can one be reduced to the other? There is no algorithm for
deciding this. Instead, a proof must be constructed by a human. The contrast we
wish to make is that in the domain of parallel and distributed robotics, there is
an algorithm to decide whether or not one sensori-computational system can be
reduced to another. Moreover, the algorithm is constructive and the reduction
can be effectively computed.

Hence, distributed and parallel robotics provides a domain with a rich com-
plexity hierarchy, in which, unlike in the general theory of computation, reduc-
tions between sensori-computational systems can be effectively computed. The
ability to compute these reductions comes directly from information invariants,
namely from the embedding of the physical robot systems into real semialgebraic
sets. Apart from its importance to robotics, this means that some difficult ques-
tions of hierarchy, equivalence, hardness, and classification, all of which interest
theoretical computer science, can be explored in a more tractable alternative
domain.

Despite this progress, there is much to be done in developing and applying
the information invariants theory. First, the theory is perhaps most powerful
at quantifying trade-offs between communication and sensing. For example, the
machinery can be used to eliminate explicit communication between robots in
order to allow them to communicate through the task [23/48]. The information
invariants mechanism uses a hierarchy of reductions (that satisfy ‘graded transi-
tivity’) to compare the power of sensori-computational systems and to compute
transformations between them [14]. However, the theory is still not fully elabo-
rated for manipulation tasks and action/motion in general. In its present state,
the information invariants theory can apply to a sensory system which is em-
bedded like a graph, or whose vertices are constrained to lie in sets within a
configuration space. While clearly this represents a kind of dynamics or mo-
tion, the theory does not exploit the motion as encoded in trajectories, and the
mechanics of manipulation is not explicitly represented.

For this reason, [T4J59I6I23I48ITOITTIZ9/4I7/45/T9/20] studied, by specific ex-
amples, a series of challenging distributed manipulation problems that would
foreground the issues of distribution, parallelism, manipulation, and mechanics
(this is embodied in our work on massively-parallel distributed manipulation
using microfabricated actuator arrays, and subsequent other MEMS microrobot
work). In this domain, the scale of the parallelism is large and therefore an
appealing test case. The manipulation tasks must be coordinated and there-
fore provide an interesting coupled configuration space to integrate mechanics,
sensing, control, computation, and communication. Our work, over the past 20
years, has explicitly measured and quantified experimental trade-offs between
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these resources (clock, planning/computation, synchronization, mechanics, sens-
ing, communication) and also in removing or minimizing these resources. This
has resulted in a series of novel devices, based on MEMS, for distributed manip-
ulation surfaces, which represent design points with minimal resource profiles.
A major challenge is the integration of mechanics, planning, manipulation, and
control into the (currently) sensori-computational framework of information in-
variants. In short, information invariants can be seen as a theory of robot com-
plexity when the robots are essentially mobile sensor networks. This results in
a series of challenging and thought-provoking results, namely trade-offs in re-
sources, and the ability to engineer systems that accomplish sophisticated tasks
with surprisingly low resource-complexity in their design. A specific example,
where we removed explicit communication and, instead, harness the ability of
(multiple) robots to communicate through the task, is discussed in [23/48], for
one application (moving large objects such as furniture). A key issue was remov-
ing synchronization to obtain an asynchronous distributed protocol (analogous
to transformation ([I), above). The intellectual roots of this work spring from
Dexter’s 1978 paper, where he showed the equivalence of communication, inter-
nal state, and external state for maze-searching automata.

Acknowledgments. I would like to thank referees for their helpful suggestions
on this article.
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