
Cost-e�ective, Capable, and Con�gurable Multiple Robots:A Report to the ARPA ISAT Study Group, Summer, 1996Bruce Donald Jim JenningsDepartment of Computer Science Department of Computer ScienceCornell University Tulane UniversityIthaca, NY 14853 New Orleans, LA 70118Daniela RusDepartment of Computer ScienceDartmouth CollegeHanover, NH 03755AbstractWe have designed and implemented multi-agentstrategies for manipulation tasks by distributingmechanically-based sequential algorithms across sev-eral autonomous spatially-separated agents, such asmobile robots. Our experience using mobile robots forthe manipulation of large objects (couches, boxes, �lecabinets, etc.) leads us to recommend a minimalistarchitecture for multi-agent programming. In particu-lar, our methodology has led us to derive asynchronousdistributed strategies that require no direct communi-cation between agents, and very sparse geometric anddynamic models of the objects our robots manipulate.We argue for a design principle called supermodu-larity, which is orthogonal both to the notion of modu-larity in cognitive AI and also to horizontal decompo-sition (the non-modularity advocated in the subsump-tion/connectionist literature.)Finally, we discuss a simple mobot-Scheme in-frastructure to implement supermodular architectures.In the past few years we have programmed many su-permodular manipulation protocols and tested them ex-tensively on our team of mobile robots. We describewhy we think the supermodular infrastructure resultsin robust, simple, readable, manipulation strategiesthat can be recycled and reused.1 IntroductionIn robotics most manipulation algorithms are de-signed to execute in a single process on a single com-puter that takes input from all the sensors and con-trols all the e�ectors. To develop distributed ma-nipulation strategies, we began with a sequential butmechanically-based robot algorithm for pushing and

grasping (e.g., [Mas95]). While quite general in prin-ciple, these o�-line algorithms are usually designed forrobotics devices such as grippers or �ngers attached toa traditional robot arm. To extend these results fordistributed manipulation (de�ned in this paper in Sec-tion 5) there are several challenges. (1) Autonomousmobile robots (mobots) have a suite of sensing andcontrol modalities that di�er across robot architec-tures. (2) Mobots are often better suited to on-lineapproaches and hence the algorithmsmust be adaptedto rely less extensively on geometrical and dynamicalmodels. (3) A host of di�culties arises when a taskmust be performed by a distributed team instead ofa single agent|and hence the algorithms must com-pensate by changing their communication, sensing,or knowledge requirements[Don95, DJR93, DJR94a,RDJ95].We have reported on several sets of manipulationstrategies (which we call protocols), and also on themethodology which generated them [Don95, BBD+95,RDJ95, Jen96]. Our most interesting protocols areasynchronous and do not require communication be-tween the agents. In this paper we address the ar-chitecture and the programming environment we usedto develop our protocols. We also discuss how theclass of distributed manipulation algorithms we havedeveloped leads naturally to certain architectural con-straints.This paper is organized as follows. We begin witha discussion on minimalism and supermodularity. Wecontinue by describing three di�erent minimalist ma-nipulation protocols we have implemented and ana-lyzed in the information invariants framework, and we



highlight their supermodular structure. Then we de-scribe the infrastructure we used for developing ourstrategies. Finally, we discuss how supermodularityand minimalisma�ect distributed robot architectures.2 MinimalismMinimalism pursues the following agenda: For agiven robotics task, �nd the minimal con�guration ofresources required to solve the task. Thus, minimal-ism attempts to reduce the resource signature for atask, in the same way that (say) Stealth technology de-creases the radar signature of an aircraft. Minimalismis interesting because doing task A without resource Bproves that B is somehow inessential to the informa-tion structure of the task. We will discuss our experi-mental demonstrations and show how their implemen-tation relates to our theoretical proofs of minimalistsystems. In particular, we will describe our MobotScheme system|a distributed, multi-threaded, high-level robot programming environment.In robotics, minimalism has become increasinglyinuential. Marc Raibert showed that walking andrunning machines could be built without static sta-bility. Erdmann and Mason showed how to do dex-trous manipulation without sensing. Tad McGeerbuilt a biped, kneed walker without sensors, com-puters, or actuators. Rod Brooks has developed on-line algorithms that rely less extensively on planningand world-models. Canny and Goldberg have demon-strated robot systems of minimal complexity. We havetaken a minimalist approach to distributed manipula-tion (de�ned in this paper in Section 5) and also toour choice of a software architecture for writing ourrobot programs. We claim that the resulting proto-cols consume a near-minimum amount of resources.The accompanying software development, debugging,and execution-time system are concomitantly parsi-monious and lean.3 SupermodularityThis paper introduces the concept of supermodu-larity, and in particular, it brings to the foregroundthe supermodularity of our manipulation strategies.In programming, it is natural to talk about units oforganization called subroutines. In mobile robotics|particularly for distributed strategies|we have devel-oped analysis and synthesis tools for units of orga-nization called circuits [Don95]. Intuitively, a circuitis a sensori-computational unit consisting of sensorsand actuators connected by data paths. We modelour circuits as graphs. Vertices correspond to di�er-ent sensori-computational components. Edges corre-spond to the data paths through which the informa-

tion passes. Circuits can be transformed by changingthe edge or vertex structure of their graphs. Di�er-ent immersions of the graphs correspond to di�erentspatial allocations of resources. An important classof transformations consists of permutations. A circuitpermutation is a vertex permutation followed by anedge permutation of its graph.Roughly speaking a subroutine is modular if it canbe reused without changing the interface. We say acircuit is supermodular if it can be relocated to a di�er-ent physical location and still function correctly evenin the absence of circuits that formerly surrounded itand in the presence of new circuits at this new lo-cation. In this paper we will describe supermodularcircuits according to the following hierarchy of circuittransformations. A circuit is replicated when it is du-plicated at the same, or at a di�erent location. A cir-cuit is distributed when it is split up and the parts arerecombined to form di�erent circuits. A supermodularpermutation consists of moving circuits around whilerespecting supermodular boundaries.The chief debate between cognitive AI and archi-tecturally constrained approaches, such as subsump-tionism and connectionism, is as follows: cognitive AIadvocates that skills should be modular. Connection-ism/subsumption enforces a particular architectureabove all else and this architecture may violate mod-ularity. We maintain that this so-called dichotomyopposes the wrong categories: the issue is not modu-larity vs. non-modularity|this faux dichotomy arisesfrom only considering single-agent systems in which allresources are physically co-located|in this case super-modularity reduces (or more accurately, masquerades)as simple, naked modularity.On the other hand, in distributed systems, re-sources are of course not physically co-located.In order to achieve the following goals:� simplicity� ease of reuse� performance guarantees� fault tolerancewe choose the design constraint of supermodularity.We will show how supermodularity achieves this goal.Since this design constraint de�nes an architecture,our architecture could also be called \supermodular-ity".As an example of a supermodular circuit illustrat-ing these points, we discuss in detail two circuitscalled (align) and (push-track) (see Section 5.2).2



(align) is a virtual orientation sensor which by ac-tively exerting compliant control changes the robot'sheading to lie at a particular, desired angular relationto a manipulated object. (push-track) is a virtual ef-fector that given a velocity control, executes a guardedmove while in contact, to apply a force along a desiredline-of-pushing to a manipulated object. We will de-scribe a supermodular protocol called Async-Onlinethat uses (push-track) for multi-robot reorienting oflarge objects.Supermodularity is a continuum. A circuit X is saidto be more supermodular than circuit Y if the regionC(X) of the con�guration space C in which X func-tions correctly strictly contains C(Y). A completelysupermodular circuit Z has C(Z) = C. Hence, super-modularity is a partial order on circuits. In this paperwe will (informally) use the term \circuit X is oftensupermodular" to connote that \C(X) is large". Thisconcept may be quanti�ed precisely by measuring therelative volume of C(X) in C [DRJ96]. In this paperwe describe a partial order on the circuits we describein detail. Some circuits are completely supermodularfor the manipulation tasks we consider, while othercircuits are not supermodular at all. We will showthat Async-Online is completely supermodular, andmore supermodular than (push-track), which in turnis more supermodular than (prim-push), the circuitfor applying a force along a pre-speci�ed line of push-ing.Our mantra for this paper is as follows:\Minimalism + Distribution = Supermodularity"In other words, simplicity does not arise from su-permodularity but rather, from minimalism. Simi-larly, the transformations we permit circuits to un-dergo are constrained by the information invariantstheory. That is, minimalism de�nes what it means forcircuits to be simple and information invariants de�newhat it means for circuits to be distributed. Whenthe two are combined, the \optimal" kind of circuitsare the supermodular ones.Supermodularity yields recyclable and portablecode. The greatest challenge is to formulate a methodfor authoring optimal supermodular circuits with per-formance guarantees. Our research agenda for perfor-mance guarantees is (i) to ensure performance guaran-tees for individual circuits; (ii) to show that a super-modular circuit with performance guarantees retainsthese guarantees when relocated; and (iii) to show thata supermodular circuit with performance guaranteesretains these guarantees when distributed and paral-lelized. More speci�cally, (i) ensures that a circuit

has a predictable functionality; for example it per-forms to within speci�ed accuracy as in the case of the(align) circuit discussed in Section 5.2. In addition,(ii) ensures that the circuit has the same functional-ity when moved to a di�erent location. The goal hereis to show that under any permutation that respectsco-designation constraints ([Don95]), the supermodu-lar circuits retain, at least locally, their performanceguarantees. Finally, (iii) ensures that the performanceguarantees of a supermodular circuit are preserved inthe presence of other circuits or agents that might (apriori) interfere with its basic functionality.We have already derived performance guaranteesfor sequential and single agent circuits. An exampleis (align) whose analysis is described in [JR93] (seeSection 5.2). Arguments that rely on geometry andtask mechanics can also be made about our other su-permodular circuits. We believe that because our ma-nipulation strategies are performed in quasi-static en-vironments (Section 6.1), given velocity bounds, theperformance guarantees of single agent sequential cir-cuits will be preserved when distributed. We tried todemonstrate this point empirically by running a largenumber of tests and experiments. While these resultsare yet to be proved rigorously, we believe that thesupermodular framework is the right architecture foraddressing performance guarantees.4 Previous WorkThere has been much work on cooperative systemsof robots. For an excellent review see [CFKM95].Previous work on cooperative manipulation has fo-cused mostly on pushing, usually in the context ofbox-pushing by multiple mobile robots, e.g., [Par94],[Nor93].4.1 Robotic Manipulation[MS85] presents extensive analysis of grasping andpushing operations under a quasi-static model. Ma-son's analyses of the mechanics of pushing and grasp-ing have led to many practical manipulation strate-gies implemented most often on anthropomorphicrobot arms with simple two-�nger grippers. Simi-larly, [Bro85] and others have analyzed the geometryand mechanics of quasi-static pushing and squeeze-grasping of planar objects with common \parallel jaw"grippers.Some work has been done on large-scale manipula-tion using a single mobile robot, such as [LM94] and[OY92]. The former analyze the mechanics of planarpushing with line contact (e.g., a mobile robot with a�xed at blade pushing a box) and demonstrate a ma-nipulation planner which maintains this contact con-�guration.3



4.2 Cooperating Mobile RobotsOther recent work investigates tasks in which mul-tiple mobile robots cooperate, such as: [SB93] (manip-ulation of pallets by many small robots in simulation);[Mat93] (study of group behaviors such as dispersionand ocking); [ABN93] (simulation of foraging agentswith and without communication).Work combining cooperation with mobot manipu-lation includes [Nor93], [Par94], and [DJR93, DJR94a,DJR94b, RDJ95, Jen96]. Each demonstrates the ma-nipulation of a box or other large object using twomobile robots. [Nor93] describes a task in which onerobot pushes a box and another robot clears obstaclesout of the way. [Par94] builds an architecture designedto achieve fault-tolerant cooperation within teams ofheterogeneous mobile robots and applies that archi-tecture to a number of tasks (mostly in simulation),including \hazardous waste cleanup," in which severalmobots cooperate to pick up a number of small objectsand move them near a designated site.One task from [Par94] implemented on real (phys-ical) robots is a two-robot, box-pushing task. Eachrobot pushes its own end of the box by some �xedamount, then waits for the other robot to push its end.This strategy can be executed by a single robot in theevent of failure of the other robot; the key feature ofthe strategy, and indeed of Parker's architecture, is itsfault-tolerance.We note that although much work has been donein simulation of cooperative manipulation, there islittle evidence that the results reect the behav-ior of physical robots performing similar tasks. Of-ten the mechanics and dynamics are poorly mod-eled, and unreasonable assumptions are made aboutavailable communication and sensing devices. How-ever, Lynch and Mason ([LM94]) present a simulatorand motion planner for single-robot pushing that isbased in sound mechanics, and this simulator may yetbe extended to multiple-robot manipulation. Also,[DJR93, DJR94a, DJR94c, DJR94b, Jen96] presentalgorithms for two-robot pushing and for multi-robotreorientation. They analyze their protocols with re-spect to usage of such resources as computation, re-tained state (e.g., models), sensors, and communica-tion. Much of this work has the theme of minimalism,asking such questions as \Can we design a manipula-tion strategy that requires no communication betweenthe agents?"In the next section, we summarize our most in-teresting implemented manipulation protocols, thosefor multi-robot pushing, reorientation, and push-ing/steering manipulation of large objects. In the sec-

tions that follow, we discuss our focus on minimalism,our robot programming philosophy, and the nature ofthe distributed manipulation algorithms we have im-plemented.5 Three Distributed Minimalist Ma-nipulation ProtocolsThis section describes our experience in buildingminimalist distributed strategies for mobots that per-formmanipulation tasks. We describe the circuits thatimplement the protocols we developed for three ma-nipulation tasks, and highlight their supermodularity.We di�erentiate between the properties of manipula-tion protocols by robots according to the following hi-erarchy. In a manipulation task, robots use forces toreorganize the robots' space. In a parallel manipula-tion protocol, two or more robots apply forces to thesame coupled dynamical system. In a distributed ma-nipulation protocol, the computation and control aredistributed among the robots in a way that quali�esas a distributed computation.We present three di�erent tasks, the protocols wedeveloped for these tasks, and two examples of super-modular circuits that we recycled and reused for eachtask protocol. The experiments provide empirical evi-dence for our belief that code authored in supermodu-lar architectures is simple, predictable, parallelizable,and reusable.Speci�cally, we describe protocols that allow a teamof small autonomous mobile robots to cooperate tomove large objects (such as couches). The robots runSPMD1 and MPMD1 manipulation protocols withno explicit communication. We developed these pro-tocols by distributing o�-line, sequential algorithmsrequiring geometric models and planning. The result-ing parallel protocols are more on-line, have reduceddependence on a priori geometric models, require nocommunication, and are typically robust (resistant touncertainty in control, sensing, and initial conditions).We will discuss the circuits needed to implementthe protocols. In particular, we will introduce the fol-lowing circuits:1. 2M�, the protocol for two-robot straight-linepushing,2. (prim-push), the circuit for applying a forcealong a speci�ed line of pushing,3. (align), the circuit that allows a robot to posi-tion itself at a speci�ed relative orientation withrespect to a surface,1SPMD (MPMD) = Single (Multiple) Program, MultipleData.4



(a) (b)Figure 1: Two pushing tasks { the goal in each case isto push the block in in the direction indicated by thedashed arrows. (a) In the \two-�nger" pushing task,as seen from above, the �ngers (drawn as circles) arekinematically connected in the common \parallel-jawgripper" con�guration. (b) Although similar in ap-pearance, the \two robot" pushing task is quite dif-ferent. Each of the mobile robots (drawn as circles)is an autonomous machine, and there may be little orno explicit communication between them.4. (SPR), the circuit for a single pushing robot,5. Async-online, the protocol for two robot reori-entation,6. (push-track), the circuit for compliant pushingat an angle while sliding on the face,7. Pusher-Steerer, the circuit for the MPMDmanipulation system.We will discuss how we used these circuits to imple-ment the protocols for our three manipulation tasks,we will show how these circuits relate to each other,and we will discuss their supermodularity.For all of our protocols, the manipulated objectshave comparable size and dynamic complexity to therobots. Objects used in our experiments are up to sixrobot diameters in length, and up to twice the mass ofone of the robots. Repositioning and reorientation ofthese objects may be possible only through active co-operation of a team of mobile robots. Employing mul-tiple robots may yield performance bene�ts, or otheradvantages, such as ease of programming.5.1 PushingConsider a task in which a single robot (manipu-lator) must push a box in a straight line. Figure 1adepicts this task, posed for a two-�nger robotic ma-nipulator. We do not assume that the robot possessesa complete model (geometric and physical) of the ob-ject it is pushing, or of the supporting surface. With atwo-�ngered push (see Figure 1a), the box will trans-late in a straight line so long as the COF (the center

of friction) lies between the �ngers. (The actual con-dition for stable straight-line pushing is slightly morecomplicated. See [MS85] for a complete analysis.) Anadvantage of the two-�nger pushing strategy is thatthe COF can drift around some and yet the robot cankeep pushing, since we only need ensure the COF liesin some region between the lines of pushing of the �n-gers (see Figure 1a), instead of on a line. If the COFmoves outside the region, then the �ngers can movesideways to \capture" it again. We have implementeda control loop for this task on our force-controlledPuma manipulator. The basic idea is to sense thereaction torque � about the point � in Figure 1a. If� = 0, push forward in direction of the arrow. If � < 0move the �ngers to the right; else, move the �ngers tothe left.We now derive a di�erent version of this pushingstrategy with a parallel jaw gripper for a system oftwo autonomous robots that can push an object. Thisnew strategy relies on the observation that the infor-mation needed to determine the motion of the boxis present in the angle � between the normal to theface of the box n and the direction of pushing p. SeeFigure 4. We wish the new protocol to run on twoautonomous mobile robots which will replace the �n-gers, as in Figure 1b. We can adapt the control loop toservo on � instead of � because our robots can use theirpushbutton bumpers to measure the relative angle be-tween their heading and the orientation of the face ofthe box [JR93]. Actually, the robots �rst measure �0(the initial angle between n and p), and subsequentlycompare this value to the angle �(t) measured at timet in order to infer the direction of motion of the box.A negative change in the value of this angle implies aclockwise rotation of the box. A positive change im-plies a counterclockwise rotation. The robots adjusttheir pushing location along the face of the box accord-ingly. This is an example of how the robots can usethe task dynamics2 to determine their next actions.Pseudo-code for this strategy (called Protocol 2M�) isshown in Figure 2 and the circuit for the protocol isshown in Figure 3.This pushing protocol depends crucially on two re-sources for the mobots: the ability to sense the rel-ative orientation of the object at the point of con-tact and the ability to apply a force along a speci�edline of pushing. The relative orientation sensor is im-plemented by using the circuit (align) described in2An alternative to using task dynamics is to use explicitcommunication. The robots could exchange the sensed torqueat their points of contact to determine the best contact pointon the face of the object. A detailed description of this methodis presented in [DJR93, DJR94a].5



Left robot Right robot�0  �(0)repeat:push fmeasure �(t)guntil �(t) 6= �0if �(t) > �0translate-leftelse translate-right �0  �(0)repeat:push fmeasure �(t)guntil �(t) 6= �0if �(t) > �0translate-leftelse translate-rightFigure 2: Protocol 2M�. A strategy for two au-tonomous robots to push an object in a straight linewithout communication.
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Figure 3: Sensor system for Protocol 2M�. This is amanipulation circuit for Protocol 2M�.detail in Section 5.2 and Figure 8. Pushing is imple-mented by a circuit called (prim-push) (described in[RD92]).5.1.1 Supermodularity in Pushing(prim-push) gives us a simple version of pushing: itapplies a force at a �xed direction with respect to thesurface of the object. (prim-push) is a subcircuit thatimplements Protocol 2M� for cooperative straight-linepushing. In other words, (prim-push) � 2M�.A single robot system equipped with the circuit(prim-push) is denoted by (SPR). (SPR) e�ects trans-lations. This circuit is related to (prim-push) by thefollowing information invariant equation:(SPR) =0 (align) + (prim-push); (1)

p pn n

θ θ

θFigure 4: The critical quantities for the servo loop inProtocol 2M�.
B

AFigure 5: A single pushing robot is not a supermodularcircuit. Relocating the circuit from A to B results inthe application of the wrong torque sign.where the composition of (align) and (prim-push)is parallel.(SPR) is modular: it can be replicated on otherrobots for the same functionality. In our lab wehave equipped three robots with similar but di�er-ent architectures, Tommy, Lily, and Camel3, with(prim-push).(prim-push) is not a supermodular circuit, asits functionality (quanti�ed by the applied torque)depends on its spatial location. When relocated,(prim-push) does not impart the same torque (seeFigure 5). Moreover, a multiple robot system whereeach robot is (SPR) may e�ect translations, rotations,or the null operation (i.e., the object stays in place),depending on their physical location. (prim-push)is our �rst example of a modular circuit that is notsupermodular.In contrast to (prim-push), (align) is a super-modular circuit. The e�ect of align is to position arobot at a speci�ed relative orientation with respectto a surface. (align) adapts to the surface normal todetermine the heading of the robot no matter wherethe robot is located.In the following section we describe circuitsthat are supermodular. Speci�cally, we show how3Camel's di�ers mechanically from Tommy and Lily in thatit is a treaded rather than wheel-based robot and it contactbumpers are distributed on a line rather than a circular surface.6



(prim-push) can be generalized to a circuit we call(push-track) so that it can apply a force at any de-sired orientation with respect to the surface of theobject. This generalization is achieved by combiningthe circuits (prim-push) and (align) in a sequential,rather than parallel fashion. The sequential composi-tion of (align) and (prim-push) results in a circuitsu�cient for the reorientation task; the parallel com-position of (align) and (prim-push) results in a cir-cuit su�cient for the MPMD manipulation task. Thedetails of the compositions will be given in Sections 5.2and 5.3.5.2 ReorientationWe are also interested in the reorientation of objectsby teams of mobile robots. Consider the task whosegoal is to change the orientation of a large object bya given amount. This is called the reorientation task.We have described and analyzed in detail the reori-entation task in [RDJ95]. Figure 6 depicts one robotreorienting a large object. A robot can generate a ro-tation by applying a force that is displaced from thecenter of friction. This property relates the dynamicsand the geometry of reorientations [Mas95] and it canbe used to e�ect continuous reorientations with mo-bile robots. The idea is to compliantly apply a slidingforce on the face of the object.4 We call this action apush-track step.When the end of the face is reached, the robot mayturn around to reacquire contact and repeat the push-tracking. A robot that has gone past the end of a facee�ectively losing contact with the object has brokencontact with the object. A robot whose maximumapplied force (de�ned by a threshold) does not changethe pose of the object has encountered an impediment.One robot may e�ect any desired reorientation byrepeated push-tracking steps if it can apply a largeenough force, but it may require a large workspacearea for the rotation. We are interested in multi-robotstrategies that can overcome such limitations.We now present a robust, implemented reorienta-tion protocol which relies on the ability of our robotsto execute push-tracking motions. The protocol is on-line, does not rely on a priori geometric models, isSPMD, asynchronous, and requires no communicationbetween the agents.For this protocol (called Async-online), tworobots su�ce. Assuming that the robots begin in con-tact with the object, the following algorithm is exe-4This strategy can be implemented by a force that forms anacute angle on the contacting edge, outside the friction cone.This is similar to hybrid control [RC81] which would be usedfor a dexterous hand [Rus92].
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(a) (b)Figure 6: (a): Reorientation by one robot executingpushing-tracking. (b) A system of two robots reori-enting a couch. The robot motions are shown in anobject-centered frame. Each robot executes a pushing-tracking motion. Robots recognize when they reachthe end of a face by breaking contact, and execute aspinning motion to turn around and reacquire contact.cuted by each robot asynchronously and in parallel toachieve the desired reorientation.Each robot:1. (push-track) until contact break or impediment2. if contact break then (spin)3. if impediment then (graze)The intuition is that the robots try to maintainthe push-tracking state. When the end of the faceis reached, the spinning motion is employed to reac-quire contact (see Figure 6b). When an impedimentis encountered, the robot executes a guarded movenear-parallel to, but towards the face of the object,e�ectively grazing the object. Graze terminates whenthe robot recontacts the object or when it detects thatit has traveled past the end of the face. Hence, grazeterminates in (I) reacquiring the object at a contactwith a longer moment arm, or (II) missing altogether.(I) is detected with a guarded move. (II) is detectedusing a sonar-based wall/corner detection algorithm of[JR93]. When (II) occurs, the robot executes (spin).The composition of these three circuits constitutes thecircuit for a reorienting robot. Asynch-online con-sists of two reorienting robot circuits.We have executed this protocol on our robots toreorient couches, �le cabinets, and large boxes, some-times through more than three complete revolutions(> 1080 degrees) .7



Figure 7: Two mobile robots cooperating to reorienta couch: a snapshot taken from a couch reorientationexperiment.This algorithm depends on the robust implemen-tation of (push-track). This is realized as the se-quential composition of (align) and (prim-push)(de�ned in Section 5.1). (align) is invoked �rst toorient the robot to the face and to choose the correctpushing direction. Then, keeping that heading �xed,(prim-push) is invoked.Figure 8 describes in detail the (align) circuit. Wehave run hundreds of experiments in which the robotsreliably execute (align) asynchronously and in par-allel. We believe that reliability and ease of reuse ofour virtual orientation sensor come from its perfor-mance guarantees. In [JR93] we prove that (align)is robust and reliable in that for the geometry of ourrobots, the sensed angle is always accurate to withinthree degrees. Our experiments provide empirical evi-dence that these guarantees transfer when (align) isimmersed in di�erent fashions.Similar analyses can be carried for the other circuitsused by the reorientation protocol (e.g., (spin) and(graze).)5.2.1 Supermodularity of ReorientationUnlike (prim-push), (push-track) is often su-permodular. The reason is that when relocated,(push-track) adapts to the local surface and choosesa pushing direction (by using (align)) that impartsthe correct torque (see Figure 9). The relocation ofthe (push-track) circuit from con�guration A to Beventually results in the same net torque on the ob-ject, as B will slide to B0. This assumes that the robotslides. If the robot does not slide, then (push-track)
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AFigure 9: The supermodularity of the (push-track)circuit. In the left image, the robot A executes(push-track) and imparts the torque shown in the�gure. The right image shows (push-track) relo-cated to B. Eventually, B will slide to B0 resultingin the correct torque.
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Figure 10: A partial order with respect to supermod-ularity. The arrow indicates \more supermodularity".(prim-push) is not supermodular. (push-track)is often supermodular, and (align) and Async-Online are always supermodular.the fraction of con�guration space where the circuitcan be relocated and still function correctly. In ourforthcoming work we will characterize this propertyalgebraically [DRJ96]. Here we develop the follow-ing partial order on supermodular circuits. We havegiven examples of circuits that are not supermodularat all (such as (prim-push)), circuits that are oftensupermodular (such as (push-track)), and circuitsthat are always supermodular (such as (align) andAsync-Online). The partial order on these circuitswith respect to supermodularity is shown in Figure 10.5.3 MPMD ManipulationSection 5.2 presents an implemented and testedSPMD manipulation protocol. We now present anMPMD protocol called the Pusher/Steerer system.A detailed description and analysis of this system is

given in [BJ95, Bro95].The system consists of two robots. Each of the tworobots executing this protocol either takes onthe role of the Pusher, in which1. Torque-controlled translations push the object infront of the robot,2. the robot follows the object by continually turn-ing to align its front bumpers with the rear face ofthe object (the rotational and translational mo-tions here are decoupled and occur in parallel),and3. the robot does not know the path that the objectis supposed to follow,or the role of the Steerer, in which4. The robot knows a path that it is supposed tofollow,5. the robot is translationally compliant (it controlsthe heading of its wheels, but does not controltheir rate of rotation), and6. the robot moves forward as a result of beingpushed by the object (which is itself being pushedby the Pusher).Figure 11 shows two robots moving a rectangularobject through a circular arc.Now, it is sometimes possible to navigate an objectin a straight line or along a circular arc using a singlerobot. If the object's center of friction (COF) is knownand �xed, and the robot has little control error, thenthe robot can plan a control strategy to manipulatethe object along a desired trajectory with acceptablysmall error. However, if the location of the COF is notknown precisely, or changes with time (generally thecase), then the robot cannot simply plan and executea reliable trajectory, but must continually sense theobject's relative orientation and position and compen-sate for drift. On the other hand, the forces exertedby the robots in the two-robot Pusher/Steerer systemcan constrain the object reliably in the presence ofgreater uncertainties, e.g., in the location of the COF,and under coarser control and sensing.In his monograph on information invariants[Don95], Donald claims that the spatial distributionof resources has a critical e�ect on the capabilities ofa system. The Pusher/Steerer system validates thatclaim. Consider a single-robotmanipulation algorithmsuch as, [LM94]. As implemented on the Cornell mo-bile robots, the execution system consists of the fol-lowing resources, each of which can be represented asa circuit:9



(a) (b) (c) (d)(e) (f) (g) (h)Figure 11: This series of �gures depict a box beingguided through a 90 degree arc by a steering robot (infront, following the arc), and a pushing robot. Thebox begins with its front and rear faces approximatelyperpendicular to the path. In (b) and (c), the box ro-tates in the wrong direction, due to poor initial place-ment of the Pusher relative to the Steerer. By (d), thePusher, with no model of the box or the path and withno communication, has compensated for the poor ini-tial con�guration. By (h), the box has traversed thearc and rotated until its front and rear faces are ap-proximately perpendicular to the path.� a pushing primitive, (prim-push) (see Sec-tion 5.1);� (align) (see Section 5.2);� a steering primitive, (steer); and� a priori path information.5.3.1 Supermodularity in the Pusher/SteererSystemThe Pusher's (entire) control system is obtained bythe parallel composition of the circuits (align) and(prim-push). The robot skill represented by the cir-cuit (push-track) used in Section 5.2 consists of thesequential composition of (align) and (prim-push).Thus the Pusher is equivalent to a single pushing robot((SPR) in Section 5.1). This constitutes another exam-ple of supermodularity: here, the (vertex) immersionfor the (align) circuit is the same as in the reorien-tation circuit, but the graph permutation is di�erent.The Steerer's (entire) control system consists of the(steer) circuit and path information.If all the circuits listed above are co-located, thatis, implemented on a single robot, and if the (align)

circuit and the (prim-push) circuit are composed inparallel, then the resulting supercircuit is su�cient toimplement a single pushing robot that can, for exam-ple, push a couch along a path. When the circuitsare distributed across two robots|broken up as de-scribed above|then neither robot alone can manip-ulate a couch, but both robots together can manip-ulate large objects dexterously along a path. In ad-dition, the resulting distributed system reaps bene�tsin terms of greater controllability and reduced sensingand knowledge requirements.5.3.2 Role TradingIn the Pusher/Steerer system, the manipulated objectsits between the robots. One feature of this systemis that there is no direct communication between thetwo robots; they interact with indirect communica-tion through the mechanics of the robots-and-objectsystem. The con�guration is conceptually similar to arear-wheel-drive automobile that has been sliced intothree sections: the rear wheels push the passengercompartment forward in a direction determined bythe front wheels. The challenge to this con�gurationis that the pieces are separate|the robots have tobe programmed to allow exible trajectory following,while keeping the object between them. The advan-tage is that the robots can trade roles|the Pushercan become the Steerer and vice-versa. This increasesthe exibility of the protocol by allowing such maneu-vers as the \back-and-�ll" that automobile drivers usefor turning cars around on narrow roads. It also per-mits the robots-and-object system to reverse directionwithout the robots having to move to di�erent faceson the object.Role trading adds exibility to the system but dou-bles the resource requirements. Each robot has to beequipped with all the circuits necessary for the Pusherrole and for the Steerer Role. A system so equipped itis supermodular, so long as the Pusher and the Steererhave the same direction of action.We have performed over 100 manipulation experi-ments using the Pusher/Steerer protocol running onseveral pairs of Cornell mobile robots. In these ex-periments, boxes and similar objects of varying size,mass, mass distribution, and material properties weremanipulated along complicated paths up to 50 feetin length. On the basis of these experiments, alongwith others which are described in [Bro95], we haveobserved the system to be quite robust in practice.In each case, the code that each robot executed re-mained the same|there was no recoding or \tuning"for di�erent objects or paths. Additional experiments10



using on-line navigation methods (human guidance inone case and visual landmark recognition in another)have demonstrated the exibility of the system.Despite conventional wisdom regarding the com-plexities of programming a multi-robot system, a keyfeature of the Pusher/Steerer system is its ease ofuse|the actual robot code is simple and elegant, andyet there remains great exibility in methods of pathspeci�cation.6 InfrastructureThe programs that implement our distributed ma-nipulation strategies were easy to generate and arerobust. In this section we discuss our developmentinfrastructure.We begin with two architectural decisions that we�rst reported in our paper \Program mobile robotsin Scheme" [RD92]. For details see [RD92]. Thesedecisions concern:1. Why extend a general-purpose programming lan-guage instead of using or inventing a special-purpose robot language such as ALPHA [Gat91],or the behavior language [Bro90] ?2. Of the general-purpose languages, why Scheme?We regard robots as computers that can exertforces. In particular, we are interested only in thecase these forces are external to the robot system|this excludes devices like clocks from being consid-ered robots. More speci�cally, we focus on deviceswhere these external forces are programmable: thisexcludes devices like VCRs, which are electronically,but not mechanically, programmable. Most speci�-cally, we are interested in using these programmableexternal forces for manipulation tasks|that is, to re-arrange the environment external to the robot (e.g., tomove furniture, perform assemblies, sort parts, etc.).Naturally, such robots typically use internal state toencode assumptions, models, and expectations aboutthe external physical world. Equally often, sensorsare employed not only to build such internal state butalso to compensate for errors in actuation and a priorimodels.As such, the internal state and control strategiescan range from very simple to arbitrarily complex.The language must support the following operations:1. access to e�ectors;2. access to sensors;3. ability to satisfy real-time constraints;

4. synchronization and communication between pro-cesses.Since robot control algorithms can be quite generalwe chose a general programming language in whichto express them and provide architectural support forthe points above as follows:(1) and (2): library calls(3) and (4): light-weight processes (threads) im-plemented using continuations. Locks and condi-tion variables provide synchronization.Automatic memory management with garbagecollection of a �xed physical address space (novirtual memory).The last point yields a �xed upper bound forgarbage collection delays, permitting rigorous reason-ing about real-time programs.This section describes how well our design decisionsworked, and their implications for the infrastructureof manipulation protocols. We will describe domainconstraints that must be satis�ed to makes the use ofScheme practical. The programming infrastructurehas resulted in a particular set of manipulation idiomswhich permeate our code. We will describe how, usinghigher-order functions, we can implement terminationpredicates, control parameter caches, action cues, andevent-based exception handling.6.1 Mobot Scheme: The Software LogicAnalyzerIn Sections 5.1{5.3 above, we described several dis-tributed systems in which a team of mobots cooper-ates in manipulation tasks. The programs that imple-ment the strategies for Pushing, Reorientation, andPusher/Steerer are written in Mobot Scheme, acustomized Scheme48 designed by Jonathan Rees forthe Cornell Mobile Robots [RD92]. Mobot Schemecode for Protocol 2M� (Section 5.1) is shown in Fig-ure 12. The most interesting feature from a develop-ment standpoint is the distributed nature of the pro-gramming environment. The robots act as Schemeservers; our workstations run a Scheme48 byte-codecompiler and maintain serial connections to the robotsby wire or by radio modem. The serial connectionis used only during debugging|the robots are oth-erwise completely autonomous, possessing completeScheme48 virtual machines on board.A typical robot experiment session consists of in-teracting with the robot by typing on the worksta-tion. The user works in an interactive Scheme en-vironment, usually running inside GnuEmacs. The11



Both Robots Execute:(define (1-M-theta)(let ((initial-angle (measure-theta)))(let repeat ()(if (positive?(push 'until(lambda (theta)(if (not (approx=? thetainitial-angle))(sign (- theta initial-angle))#f))))(translate-left)(translate-right))(repeat))))Figure 12: Protocol 2M�: code for two mobile robotswith relative orientation sensing capability to executethe straight-line pushing task. This code is an imple-mentation of the circuit shown in Figure 2user has access to both the workstation facilities (e.g.,graphics, sound, �lesystems), and the mobile robot.Interaction with the robot begins by invoking themobot read-eval-print loop. Scheme forms aretyped interactively at the workstation, which compilesthem and sends them to the robot for evaluation. Thereply is interpreted by the workstation and displayedon the screen. Therefore, the read and print stepsoccur on the workstation, while the eval is performedby the robot. While a program is being executed,the serial communications link between the robot andworkstation is not required. It can be disconnectedat anytime, and the robot will continue to run inde-pendent of the workstation. Of course, debugging in-formation cannot be displayed during this time, andthe robot's program cannot be altered. But both ofthese activities may resume any time the communica-tions cable is reconnected. The design of the program-ming environment also permits remote procedure callsto take place between the robot and workstation, ineither direction. The end result is that the full de-bugging facilities of the workstation are available fordevelopment, and yet the robot remains autonomous,able to execute programs untethered.Our choice ofMobot Scheme for development re-ects a minimalist approach to multi-robot program-ming. As a programming language, Scheme is con-sidered minimal. Scheme comprises of a small set offunctions that enable the programmer to build layersof abstraction by evaluating lambda expressions and

remove layers of abstraction by applying a procedureto its arguments. The entire language de�nition, in-cluding its history, code examples, macro documenta-tion, formal syntax and semantics, and extensive bibli-ography �ts into 55 pages [CR92]. Scheme is a modernhigh-level functional language with automatic mem-ory management, �rst-class functions, block structure,static scoping, closures, polymorphism, and dynamictyping.Early manipulation programs for commercial an-thropomorphic robot arms were written in a Basic-like language which lacked virtually every desirablefeature of modern programming languages.5 More re-cently, manipulators and mobile robots have been pro-grammed in the C language.6 The application of lan-guages like Scheme, Lisp, or ML to robot control mayhave been primarily hindered by one particular fea-ture: automatic memory management. Systems withthis feature require periodic garbage collection, whichoften stalls or at least slows other processing. Sincerobot programming was assumed to require real-timeresponse, garbage collecting systems were avoided.The reasons were: (1) Robots need programs whichmeet real-time constraints, and (2) A language thatgarbage collects can introduce arbitrarily long delays.For many robots and many tasks, these reasons arenot valid. First, many robots execute tasks which donot require real-time responses to sensory input. Forexample, most mobile robots do not need to dodgetra�c on busy streets or play tennis. In particular,much manipulation work can be modeled as \quasi-static", meaning that inertial e�ects are negligible.When this is the case (largely because speeds are lowand friction is signi�cant), objects in the task stopmoving as soon as the robot stops. And so the robotmay \stop and think" for arbitrarily long periods with-out upsetting the task. Thus, pausing for garbage col-lection does not break the strategy, but instead merelyslows it down.Now, there are quasi-static tasks in which therobots cannot pause for arbitrary periods of time. Ina dynamic environment, a robot may have to respondto conditions (e.g., the presence of a human being, orthe sudden appearance of an obstacle) in the worldapart from the actual manipulation. (The interaction5The most common example is the VAL II language whichruns the Unimation Puma series of manipulators.6The Zebra Zero manipulator arm is supplied with a C li-brary of robot control functions, and many mobile robots areprogrammed in C due to the abundance of C compilers forsmall microprocessors. The Intel 80196 family and the Motorola68000 family of processors, including embedded controller vari-ations, are frequently used.12



between the robot and the manipulated object mayremain accurately described as quasi-static). We havefound that garbage collection does not vitiate the ro-bustness or even signi�cantly degrade the performanceof distributed manipulation protocols: a close exami-nation of current mobile robots reveals that very fewemploy processors with virtual memory. In most cases,memory size is �xed, and is often small by worksta-tion standards. As we pointed out in [RD92], with aconstant amount of memory needing garbage collec-tion, we can easily calculate an upper bound on howlong this process could possibly take. Thus, we knowin advance how long a pause may occur as the robotexecutes its strategy, and so we can predict just howe�ectively (in the worst case) the robot could react tochanging conditions.7A robot running a garbage collecting programmingsystem can execute complex coordinated strategiesin dynamic environments. Each cooperative strategypresented in this paper is an example. The programsthat implement our strategies must of course accessmotors and sensors on our robots. In the next setionwe describe this interface.6.2 Higher Order FunctionsThe most critical features of our Mobot Schemesystem are higher order functions, sensor-based con-trol structures, and event-based exception handling.In this section we describe how using higher orderfunctions we can implement termination predicates,control parameter caches, and action cues. Figure 12is an example of how higher order functions are usedin Mobot Scheme.6.2.1 Termination PredicatesIn our system, the robot programmer can write pro-grams in which arbitrary termination predicates (func-tions) are passed as arguments to motion control rou-tines. Intermediate layers of the motion control sys-tem build more complicated predicates out of these,and pass along the resulting functions to the nextlower layer. As described in [RD92], we use higherorder function to implement termination predicates.7Moreover, robots like the Cornell MobileRobots, which con-tain a loosely connected network of 9 or more (on average) pro-cessors, have a distinct advantage in that time-critical processesmay be o�oaded to a processor which does not garbage collect.Our robot's impediment sensor, for example, detects when aspeci�ed amount of current would have to be applied to themotors in order for the robot to continue moving. The pro-cessor which detects this situation and shuts down the motorsexecutes a simple feedback loop at a high frequency, and doesnot garbage collect.

Termination predicates have been introduced in thepre-image motion planning framework of [LPMT84].An extensive discussion of the relative power of thesetermination predicates in the context of motion plan-ning may be found in [Erd84].In the [LPMT84] framework, actions are pairs ofthe form (v; tp), where v is a velocity vector, and tpis a termination predicate. The motion continues inthe direction v until the termination predicate returnstrue. The predicate, then, is a function of all of theinformation available to the robot through sensors anda priori models. In the idealized model, the predicateis evaluated continuously in the background.8All of our motion control functions follow thesame style for any e�ector (including, e.g., a camerawhich may pan or tilt [Bro95]). Examples of MobotScheme code for various modes of translation (for-ward motion) are in Figure 13. We deviated fromtypical Scheme style by introducing keyword argu-ments which modify the e�ects of the motion. Hence,a set of defaults must be maintained, and there areset-default! and get-default functions for thispurpose. Default values are used for any argumentnot given explicitly in the call to translate.Our motion control functions represent sensor-based control loops. They initiate the robot's motion,which is usually controlled by another processor, andat the same time evaluate the appropriate terminationpredicate. The motion is halted when the terminationpredicate returns a value other than false. In orderfor access to the motors to remain completely general,many keywords exist, and may be used in arbitrarycombinations. (See Figure 14.)As indicated by the examples in the �gure, key-words such as 'by and 'vel (for velocity) are followedby integer values. On the other hand, keywords suchas 'until are followed by functions. In the speci�ccase of 'until, a function of one argument is given,and the robot's motion stops when this function eval-uates to something other than false. The argumentto the predicate is supplied by the system when thepredicate function is called and represents the cur-rent knowledge of the status of the motion. The mo-tion controller (a separate processor) reports this sta-tus information to Mobot Scheme. In one examplefrom Figure 13, we check to see whether the robot'sbumpers have contacted an obstacle; in another, wecheck to see if sonar unit 2 reports a value that ex-8On a real robot, the frequency at which the terminationpredicate is evaluated will of course critically a�ect its accu-racy. However, the pre-image planning framework anticipatedthe general problem of control error from the start. Controlerror is already part of the input to the problem.13



Example Distance Velocity Termination Predicate(translate) indet. default (impediment?)(translate 'by 750) 750mm default (or (impediment?)(lambda (status)(stopped?status)))(translate 'vel 220) indet. 220mm=s (impediment?)(translate 'by 2000 'vel 400) 2m 400mm=s (or (impediment?)(lambda (status)(stopped?status)))(translate 'until indet. default (or (impediment?)(lambda (status) (lambda (status)(not (not(zero? (zero?(read-bumpers))))) (read-bumpers)))))(translate 'until 640mm 450mm=s (or (impediment?)(lambda (status) (lambda (status)(> *threshold* (or (> *threshold*(read-sonar 2))) (read-sonar 2))'by 640 (stopped?'vel 450) status))))Figure 13: Mobot Scheme motion control examples using the translate function. For simplicity, only threekeyword arguments are shown. Any or all of the valid arguments may be combined, however. When no distanceargument is given (using the 'by option), the distance the robot will travel is indeterminate. When a distance isspeci�ed, the termination predicate consists of a check for the status of the motor controller, which is triggeredby checking odometry. Note that the system always checks for the impediment condition. The action taken when(impediment?) returns true is to invoke the impediment handler (see Section 6.3).ceeds *threshold*.Keyword Description Default value'by distance to travel (mm) none'vel velocity (mm=s) 300'accel acceleration (mm=s2) 225'dir direction to travel 1(forward is positive)'torque motor torque limit 180(in obscure units)'until termination predicate (impediment?)'on-exit termination action (stop)halt the robotFigure 14: Motion control system keywords. The key-words may be used in arbitrary combinations, andeach has a reasonable (and changeable) default value.The default termination predicate, (impediment?),reports whether the robot's motors are stalled9 due tocontact with an immovable obstacle. The action taken9The level of motor current that must be exceeded to meetthe stalled conditionmay be set by software; an additional key-word argument, 'torque, exists for this purpose.
when an impediment is detected is speci�ed by the im-pediment handler, because the situation is treated asan exception (see Section 6.3.) The system alwayschecks for the impediment condition. Since the usermay supply several other terminating conditions (suchas a speci�ed distance traveled, or some other arbi-trary predicate), the system constructs, at run time,the proper predicate to use.6.2.2 Write-through CacheWe may use higher-order functions to modify the low-level behavior of individual processors in the robotwhile still maintaining the single Scheme processor ab-straction at the user level. The mechanism we use is awrite-through cache, which can be implemented to betransparent to higher levels of code. Its sole utility isto boost performance, and works as follows.Each robot contains, on average, more than nineindividual processors, each of which is directly con-nected to a small number of sensors or motors.This heterogeneous collection of computers are pro-grammed to make each sensor or motor \smart". Asmuch processing as possible is done locally, with every14



sensori-motor module providing a high-level interfaceto the rest of the robot. Consequently, the robot'scritical system parameters are distributed across manyprocessors. When a Scheme program accesses a sen-sor or motor, at the lowest level a form of remoteprocedure call (RPC) is executed to the processorwhich controls the hardware of interest. The inter-processor communication and RPC are of course hid-den to higher levels of Scheme programs, such asthe the user programming level. Each time an RPCoccurs, many parameters may be needed, which in-creases the amount of communication necessary andslows down the system. As a result, most proces-sors store their own state variables, and the remote(calling) machine needs only pass along the changesin state.We now present a brief case-study of usingMobotScheme to tune a control library, thereby improv-ing real-time performance. In our initial library, anyScheme function invoking a wheelbase motion would�rst set each parameter in turn and then �nally startthe motion. This was ine�cient. We observed that al-most always the parameters remain the same throughmany successive motions. Therefore, we decided tocache them on the Scheme computer using a standardwrite-through cache. We implemented a simplemacro,cache! (see Figure 15), which accepts as its argumentthe function used to set a parameter. It modi�es thisfunction to use the cache, and also constructs a func-tion to read the current value of the parameter fromthe cache. Its use is illustrated in Figure 16. Whatis interesting is that even this kind of low-level op-timization may be done in Mobot Scheme, usinghigher-order procedures.The cache! macro takes two arguments, the func-tion which sets the parameter to be cached and thetable to use. Two things happen: (a) the set functionis modi�ed to set the current value in the cache table,and then the original set function is called, and (b) aget-value function (thunk) is returned. Each entry inthe cache table has a key and an entry. The key isthe new set function, and the entry is always a pair((value) . original-set-fcn). The value is keptin a one-element list so that it will be null if no valuehas been set. The original set function is kept aroundso that (i) we can get it back if we need it, and (ii) wecan call it to write the cache out (to force a write).Because we used a modern general purpose pro-gramming language with higher order functions, im-plementing cache! was easy. The cache is transpar-ent to the low-level layers of the robot control sys-tem, which performs the necessary communications

(define *wb-state-table* (make-table))(define (write-wb-state)(write-cache *wb-state-table*))(define translate-speed(cache! set-translate-speed!*wb-state-table*))(define translate-accel(cache! set-translate-accel!*wb-state-table*))(define translate-torque(cache! set-translate-torque!*Wb-State-Table*))Figure 16: Examples of using a simple write-throughcache, implemented using a macro and higher or-der functions.between processors, and also to the higher levels ofthe system, such as the user programming environ-ment. The cache may be trivially removed in the eventthat we decide not to trust the remote processor toretain its state between successive motions (e.g., dueto a suspected faulty piece of hardware).10 On theother hand, the macro is general enough to be usedin other caching applications. Our cache! illustratesthat standard software design techniques are also ap-plicable to robot programming. We are far from thedays of programming a single 8-bit processor in as-sembly language in order to make our robots move.6.2.3 Action CuesOur �nal example of higher order functions lies in theinterface to the Cornell Mobile Robots' set of push-buttons which, along with multi-colored LEDs, re-side on top of the robot for interaction with users.Especially when operating untethered, the informa-tion displayed by the lights and entered via the but-tons provides useful communication between the robotand the researcher. At the user programming level,the set-button-action! procedure takes two argu-ments: the �rst identi�es a particular button on therobot, and the second is a function of no arguments(technically a thunk). When the appropriate buttonis pressed, the associated function is executed in itsown thread, concurrently with whatever other threads(processes) are running on the robot. The mechanism10On the Cornell Mobile Robots, the Scheme processor candetect when the wheelbase processor resets, and a completecache write automatically occurs after those events, along witha warning message displayed on the workstation.15



(define-syntax cache!(lambda (exp rename compare)(let ((set-fcn (cadr exp))(state-table (caddr exp)))`(let ((original-set-fcn ,set-fcn))(set! ,set-fcn (lambda (x)(let ((value (table-ref ,state-table ,set-fcn)))(if (or (null? (car value)) (not (equal? (car value) (list x))))(original-set-fcn x))(table-set! ,state-table ,set-fcn (cons (list x) (cdr value))))))(if (not (table-set! ,state-table ,set-fcn (cons '() original-set-fcn)))(begin(set! ,set-fcn original-set-fcn)(error "Cache error: table full?" ',set-fcn ',state-table))(lambda ()(let ((value (table-ref ,state-table ,set-fcn)))(if (null? (car value))(error "Cache error: the referenced value has not been set." ',set-fcn ',state-table)(car (car value))))))))))(define (write-cache cache-table)(table-walk(lambda (set-fcn value)(if (not (null? (car value)))(apply (cdr value) (car value))))cache-table))Figure 15: A simple write-through cache implemented using a Scheme macro.allows complete freedom in deciding what the buttonsshould do. The exibility is provided by the passingof an arbitrary Scheme function directly into the nextlower layer of the sensor control system. In fact, manyof our sensors are programmed in this manner, includ-ing the pushbutton bumpers that detect collisions withobjects and measure the relative orientation of objectfaces with respect to the robot's heading. In writ-ing a program which polls the bumpers, we �rst writea function which, when a bumper button is pressed,simply updates a global dynamic variable. The pollingprocess then reads this variable to determine the cur-rent state of the bumper sensor.6.3 Collisions as ExceptionsWe say a contact change occurs at time t when therobot is in contact with a di�erent number of surfacesbefore t than after t. We say the contact change is pos-itivewhen the number of contacting surfaces increases.Hence, a contact change is an external event to therobot (in other words, ground truth)|observable toan outsider but potentially undetectable by the robot.An impediment, on the other hand (see Sec-tion 6.2), is an internal event signaled by and for therobot itself. We de�ne a collision as a special kind
of event that convolves the (internal) impediment andthe (external) contact change. More precisely, a colli-sion is the special case of an impediment caused by apositive contact change.Unexpected collisions should be treated as excep-tions. The idea is straightforward|we can either �llour programs with conditionals which check for unex-pected situations, or we can invoke the exception han-dler and make our programming task that much easier.Also, we must be able to easily modify this behaviorfor those circumstances under which the programmerfully expects that a given situation might occur, andwishes to trap it so that the program can continue toexecute, taking appropriate action.A global variable called impediment-handler is de-�ned as a function which is called when the motioncontrol system detects the impediment condition. Thedefault value for the handler is a function which �rststops the robot's motors and then calls the system ex-ception handler, presenting all relevant information tothe user, and leaving them in the symbolic debugger(see Figure 17 Example 2). From within the debug-ger, the user may continue (e.g., after removing theo�ending obstacle from the robot's path), abort, or16



perform almost any other action, such as recompilinga piece of code, or using the inspector to examine thestack.So, the default reaction to a collision is for the robotto stop and the user to be presented with status in-formation displayed through the debugger. In otherwords, the situation is treated as any other run-timeerror would be, such as division by zero or a type mis-match. It remains to be explained how the user maywrite a program which traps expected collision errors.;;;; Example 1.;;;; Move until the bumpers detect a collisionLily> (translate 'until(lambda (s)(not (zero? (read-bumpers)))))#t;;;; Example 2.;;;; Move forever monitoring the motor current;; against a current threshold.;; Here we grab the robot and force it to stop,;; which invokes the debugger that allows us;; us to examine variables, redefine functions,;; etc. :a aborts out of the debugger.Lily> (translate)Error: Impedimenttranslate100(Debugging job number 25)Lily-> :a;;;; Example 3.;;;; Expected collisions can be trapped. We use;; a tolerate-impediments wrapper around the;; function that might generate a collision.;; The impediment handling system will stop;; the robot and the motion function return;; 'impediment.Lily> (tolerate-impediments (translate))'impedimentFigure 17: Three examples of impediments han-dling. It is straight-forward to substitute an arbi-trary function for the impediment handler.The mechanism we use replaces the impediment

handler with a di�erent function while a collision isa predicted possibility and should be trapped. Inour experience, the most common alternative to thefunction which calls the exception handler is a func-tion which simply returns the symbol 'impediment.The user program needs only check for this symbol tobe returned by a motion control routine in order tobranch on whether a collision occurred or some othersituation terminated the motion. Because we use thismechanism frequently, we have de�ned a macro, calledtolerate-impediments (see Figure 17 Example 3),which replaces the default impediment handler with afunction that returns 'impediment while the body ofthe macro is being executed. Consequently, one maymodify any motion control function call by wrappingtolerate-impediments around it, as shown in the ex-ample.The exibility of Mobot Scheme permits the useof this mechanism, which can be seen in virtually ev-ery manipulation program our robots run. All we havedone was to adapt a traditional technique to our ap-plication of programming robots. Our programs areshort and simple as a result of this technique.7 ArchitectureWhen the minimalist philosophy is applied to robotmanipulation algorithms it yields protocols with sur-prisingly low resource consumption|that is, the re-sulting protocols often dispense with a resource (suchas sensing, communication, or geometric models) thata naive analysis would have predicted was essential[DJR93, DJR94a, RDJ95, DJR94b]. When applied tothe programming environment and architectural sup-port for robot manipulation, minimalism results in adevelopment and execution system that is spare andlean|in other words, somethingmore like Scheme andless like C++ (Section 6). In this section we discussthe use of our Scheme-based minimalist infrastructurein supermodular architectures.The greatest challenge for supermodular architec-tures is to support code distribution across multiplespatially separated robots. It is di�cult to ensurecode portability across robot architectures, and theresult of the execution in distributed systems of mul-tiple robots is even harder to predict. Even for sin-gle robot systems that are mechanically similar (suchas our robots Tommy and Lily), it is not trivial toshare code, as this often entails adjusting constantsthat involve mass, gear ratios, etc. Furthermore, formanipulation tasks, the output of a distributed sys-tem of robots often depends on the number of robotsand their relative positions.Consider, for example, a system in which a robot17



pushes an object to e�ect a desired translation andthe circuit implementation of this system we describein Section 5.1. This system is modular but not su-permodular. The reason is that when distributed onmultiple robots, the output of the system depends in-timately on the location of the robots. To see this,imagine a two robot system consisting of the originalrobot and a second robot that acts on a face of theobject opposite to the �rst robot. The presence ofthe second robot interferes with the action of the �rstrobot (e.g., it may cause the box to rotate). This is nota supermodular system; in other words (prim-push)(Section 5.1) is modular but not supermodular.A contrasting example is the reorientation task.Here, one robot alone can cause reorientations by ex-ecuting (push-track) (Section 5.2), but this may re-quire a large workspace area. When the same codeis distributed over multiple robots, the output of thesystem is the same (e.g., the object rotates), but per-haps at a faster rate. The resulting circuit, Async-Online is completely supermodular. In our hierarchyof supermodular examples, Async-Online is moresupermodular than (push-track), which is more su-permodular than (prim-push).This is a supermodular system; in other words(push-track) is modular and supermodular.Supermodularity has made it easy for us to shareand distribute code across similar|but not identical|robots that operate in parallel. This is because the(abstract) principles of supermodularity translate intoconcrete bene�ts in terms of code recycling and pre-dictability in distributed robot systems. By de�ni-tion, supermodular circuits can be relocated to di�er-ent physical locations and still function correctly. Inaddition, we believe that the performance guaranteesof supermodular circuits transfer when the circuits aredistributed.The pushing vs. reorienting example describedabove shows that supermodularity and distributionimpact architecture. We now discuss this connectionwith emphasis on the following questions:1. What architectural support is required to dis-tribute the circuits over several agents?We cannot begin to answer this question until weunderstand what it means to distribute a circuitover several agents. The installation and calibra-tion of resources must be speci�ed, and commu-nications pathways across spatially separate loca-tions must be available. (The precise de�nitionof these operations is given in the information in-variants theory [Don95].) But for a distributed

circuit to achieve the same task, we must demon-strate that the embedded circuits e�ect the samestrategy.For our particular domain of manipulation tasks,we must account for the mechanical interactionsbetween the robots and their environment. Ona robot such as Camel, whose bumper geome-try is essentially a at blade, the e�ect of push-ing against an object may be di�erent from thatof, say, Tommy, whose bumper is in the shapeof a semi-circle. For manipulation, then, we ob-serve that compatible mechanical architecturesare required when distributing a circuit acrossseveral agents. However, by transforming circuitsinto other equivalent circuits, we have \ported"our strategies without di�culty from Tommy toCamel11 and vice-versa. The transformation op-erates at the circuit level, so in the �nal analysiswe are still moving a (transformed) circuit fromone robot to another.We have identi�ed that the robot's mechanicalarchitecture may limit supermodularity for ma-nipulation tasks, because di�erent strategies arerequired for di�erent mechanical interfaces to theworld. An important line of inquiry remains,which is to ask how the necessary architecturalsupport for supermodularity varies with the taskdomain.2. What development environment best supports theauthoring of supermodular circuits and protocols?Our authoring environment is developed on top ofan intrastructure (Section 6) that enforces min-imal constraints on programming. The systemwe advocate is orthogonal both to the notion ofmodularity in cognitive AI and also to the hori-zontal decomposition of Subsumptionism. Specif-ically, our development environment is structuredby the following categories: modular circuits, su-permodular circuits, and strategies composed ofsupermodular circuits (or supercircuits).The �rst category comprises the modular circuitsfor the interaction between robots and objectsand for navigation. Conceptually, these circuitscan represent a wide range of robot skills of vary-ing degree of abstraction and complexity. A cir-cuit in this category is a single-agent circuit thatis safe for relocation on other single-agent sys-tems, but there are no \degrees of freedom": the11Camel is a Cornell mobile robot that uses treads instead ofwheels for locomotion.18



circuit must be immersed identically. An exampleof a modularmanipulation circuit in this categoryis (prim-push).The second category comprises the manipulationcircuits that are often supermodular. In ourhierarchy measured by the fraction of the con-�guration space that allows relocation, Async-Online and (align) are completely supermod-ular. (push-track) is often supermodular. Acircuit in this category is safe for relocation evenwhen the circuit is immersed in a di�erent fash-ion. The \degrees of freedom" of this immersionare controlled by the kinds of permutations per-mitted in the information invariants theory (inthe form of co-designation constraints.)The third category comprises the circuits for ma-nipulation strategies. A circuit in this category isa multiple agent circuit consisting of supermod-ular circuits. The resulting supercircuit may ormay not be supermodular. Examples are Proto-col 2M�, protocol Async-Online, and Pusher-Steerer, which are supermodular.3. How can the architectural support and authoringenvironment be realized in such a way that theoverall development system can also be regardedas minimalist?The development environment we outlined abovemakes it easy to synthesize distributed manipu-lation strategies (i.e., circuits for manipulationstrategies) by combining and composing super-modular circuits. Since each supermodular cir-cuit translates into lean code with performanceguarantees, predictable parallel protocols can eas-ily be generated by combing existing and trustedcircuits. The resulting circuit strategy can be an-alyzed in the information invariant theory withrespect to resource consumption. This analysisleads to equivalent minimalist circuits and trade-o�s between di�erent resources. The resultingcircuit also translates into a statement about theminimal architectural support for the protocol:the circuit describes all the needed resources.In summary, the architecture we advocate for au-thoring supermodular circuits arises from systemati-cally distributing simple and parsimonious manipula-tion circuits on spatially separated robots. We arguedthat circuits authored in a supermodular architecturetranslate into code that is simple, reusable, portable,predictable, parallelizable, and \near-optimal" fromthe point of view of resource consumption [BBD+95].
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