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Sec. S1 describes in more detail the protein redesign algorithms and the computational proto-
col, including computational experiment design and supporting data, used to redesign GrsA-PheA.
Sec. S2 gives details about the structural analysis of the predicted mutants (Sec. S2.1) and the
comparison to other methods and evolution (Sec. S2.2). Sec. S3 gives additional details about the
experimental protocol and supporting data from the in vitro experiments. SI references (e.g., [6, 8])
are provided at the end of the SI.

S1 Algorithm
In Sec. S1.1, we describe the K∗ algorithm, the associated computational protocol, and the ap-
plication of K∗ to redesign GrsA-PheA. In Sec. S1.2, we describe the computational protocol for
identifying bolstering mutations outside of the enzyme active site, as well as the application of this
protocol in a redesign of an active site GrsA-PheA mutant with Leu as substrate.

S1.1 K∗

First, we present an overview of the K∗ ensemble-based protein redesign algorithm. We then
outline the computational protocol for redesigning a given enzyme/substrate complex using K∗.
Finally, we give details about the application of K∗ to redesign the active site of GrsA-PheA for
the target substrates Leu, Arg, Glu, Lys, and Asp. This section extends the relevant discussion in
the Materials and Methods section in the main article.
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S1.1.1 Description of the K∗ Algorithm

This section describes the steps of the K∗ algorithm. For a detailed description, as well as math-
ematical proofs of the algorithm’s correctness, we refer the reader to [6, 8]. For a given protein-
substrate complex, K∗ computes a provably-accurate ε-approximation to the binding constant, up
to the accuracy of the model (including the input structure, rotamer library, and energy function).

The input to K∗ includes an initial protein structure in PDB format, a selection of residue po-
sitions to be redesigned (these residues are typically part of the binding/active site of the protein),
a target substrate, and a rotamer library. All steps below are implemented in code and are fully
automated. An initial sequence-space filter is applied to reduce the set of candidate mutations by
restricting the allowed amino acid types for each of the redesigned positions. The user further
specifies a value k, so that a k-point mutation search will be performed by the algorithm. In a
k-point mutation search, at most k of the n flexible residues are allowed to simultaneously mutate,
while the remaining flexible residues are allowed to change their side-chain conformation. This
generates a set of candidate mutation sequences that must be evaluated by K∗. A volume filter
is then used to prune sequences that are under- or over-packed relative to the wildtype (WT) en-
zyme/WT substrate complex. The remaining unpruned sequences are then supplied for evaluation
to the partition function computation algorithm.

For a given protein sequence and the target substrate, K∗ computes a provably-accurate ε-
approximation to the binding constant (ε is a user-specified parameter). To achieve this, K∗

computes ε-approximations to the partition functions for the bound protein-substrate complex,
for the free protein, and for the free substrate. To compute a given partition function, K∗ con-
siders all rotamer-based conformations (e.g., for a protein-substrate complex, this may include all
combinations of the rotamers for the active site residues as well as the substrate rotamers). For
computational efficiency, K∗ applies Dead-End Elimination (DEE)-based pruning [4, 10] to prune
the majority of the rotameric conformations from further evaluation. Depending on the types of
protein flexibility allowed, K∗ can use the MinDEE [6] pruning criteria (for side-chain dihedral
flexibility) and the BD [5] pruning criteria (for protein backbone flexibility) in this initial prun-
ing stage. The remaining unpruned conformations are then enumerated by the A∗ algorithm [6]
in order of increasing lower bounds on the conformational energies. The enumerated conforma-
tions are energy-minimized and their energies are added to the computed partition function using
Boltzmann probabilities. A provable halting condition [6] is used to guarantee that the desired
ε-approximation is achieved. Since only low-energy conformations can contribute significantly
to the partition function, typically only a very small subset of the remaining unpruned conforma-
tions must be enumerated by A∗ before the provable halting condition is reached. An additional
inter-mutation pruning algorithm is applied to efficiently evaluate and prune low-scoring mutation
sequences [6].

S1.1.2 Outline of Protocol

Here, we briefly outline the sequence of steps in the protocol for enzyme redesign using K∗.

1. Obtain (or download) pdb structure for the enzyme/substrate complex to be redesigned;
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2. Extract the substrate, active site residues, and a set of residues close to the active site (the
steric shell) to use as the input structure for K∗. The steric shell constrains the movement of
the active site residues and is used to speed up the computation;

3. Generate configuration files for the rotamer library, energy function and mutation search
parameters;

4. Invoke the K∗ mutation search on the generated input configuration files.

In particular, for the computational experiments with GrsA-PheA, steps 1 and 2 are described
in the Materials and Methods section in the main article, and steps 3 and 4 are described in the
Materials and Methods section in the main article and Sec. S1.1.3 below.

S1.1.3 Application to GrsA-PheA

This section gives additional details about the K∗ mutation search parameters (Sec. S1.1.2, step 3)
used in the computational redesigns of the active site of GrsA-PheA, and is a supplement to the
relevant discussion in the Materials and Methods section in the main article.

A 2-point mutation search was performed for each of the target substrates. In a k-point muta-
tion search, at most k of the n flexible residues are allowed to simultaneously mutate, while the
remaining flexible residues are allowed to change their side-chain conformations. Out of all possi-
ble 2-point mutations, the sequence-space and volume filters were applied to select a set of mutants
to be explicitly enumerated and evaluated by the partition function computation algorithm. 4452
sequences and 4.71×108 rotameric conformations were considered in our designs. For each of the
redesign targets Leu, Arg, Glu, Lys, and Asp, sets of the top computational predictions were then
visualized and selected for experimental validation. In all cases, the computational predictions
selected to be tested experimentally were in the top ten as ranked by the algorithm.

In addition to the WT identity for the seven residue positions allowed to mutate (Ala236,
Trp239, Thr278, Ile299, Ala301, Ala322, and Ile330), the following subsets of amino acid types
were allowed in the redesigns for the different substrates:

• Leu: the set (Gly Ala Val Leu Ile Tyr Phe Trp Met) was allowed for all seven residue
positions;

• Arg and Lys: 236 (Gly Ala Val Leu Ile Tyr Phe Trp Met), 239 (Gly Ala Val Leu Ile Tyr Phe
Trp Met Ser Thr His Asn Gln Lys Arg Asp Glu), 278 (Gly Ala Val Leu Ile Tyr Phe Trp Met
Ser Thr His Asn Gln Lys Arg Asp Glu), 299 (Gly Ala Val Leu Ile Tyr Phe Trp Met Ser Thr
His Asn Gln Lys Arg Asp Glu), 301 (Gly Ala Cys), 322 (Gly Ala Val Leu Ile Tyr Phe Trp
Met), 330 (Gly Ala Val Leu Ile Tyr Phe Trp Met);

• Asp and Glu: 236 (Gly Ala Val Leu Ile Met), 239 (Gly Ala Val Leu Ile Met Ser Thr His
Asn Gln Lys Arg), 278 (Gly Ala Val Leu Ile Met Ser Thr His Asn Gln Lys Arg), 299 (Gly
Ala Val Leu Ile Met Ser Thr His Asn Gln Lys Arg), 301 (Gly Ala), 322 (Gly Ala Val Leu Ile
Met Ser Thr His Asn Gln Lys Arg Asp Glu), 330 (Gly Ala Val Leu Ile Met).
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From the set of all sequence combinations resulting from the allowed sets of amino acids, only
sequences with up to two mutations from the WT active site were considered (note that the WT
and all single-point mutations were also included). The number of candidate sequences (with the
total number of conformations shown in parenthesis) after this stage were as follows:

• Leu: 1450 (6.44× 107)

• Arg: 2511 (5.06× 108)

• Glu: 1633 (1.72× 108)

• Lys: 2511 (4.05× 108)

• Asp: 1633 (1.14× 108)

For each target substrate, the volume filter was applied to further prune sequences that were
more than 30 Å3 (for Leu) or 40 Å3 (for all other substrates) from the WT enzyme/WT substrate
volume. The number of remaining sequences (with the total number of conformations in parenthe-
sis) that were enumerated and evaluated by K∗ were as follows:

• Leu: 505 (1.12× 107)

• Arg: 1259 (1.54× 108)

• Glu: 776 (8.44× 107)

• Lys: 1237 (1.53× 108)

• Asp: 675 (6.86× 107)

The ligand substrate was also modeled using continuously-flexible rotamers and was allowed
to rotate/translate [6]. A value of 0.03 was used for ε, in order to guarantee that the computed
partition functions were at least 0.97 of the respective full partition functions (when all rotamer-
based conformations are included). The inter-mutation pruning filter (see SI S1.1) was used to
guarantee that ε-approximation scores were computed for all sequences whose score was within
two orders of magnitude from the best score for the given mutation search. The K∗ algorithm
distributes the computation of the K∗ approximation scores for the different mutation sequences
to a cluster of compute nodes, such that a single sequence is distributed to a single processor. For
the different substrates, the average time in minutes required to compute the K∗ score for a single
sequence (along with the max time per sequence in parenthesis) was as follows: 3 (114) [Leu];
10.9 (205) [Arg]; 9.6 (225.6) [Glu]; 10.8 (262.3) [Lys]; 8.3 (202.1) [Asp]. The top ten K∗ 2-point
mutation predictions for each of the target substrates are shown in Table S1.

As an orthogonal check for the computational predictions with Leu as substrate, additional K∗

runs that allowed flexible backbones were performed. These runs applied the BD algorithm [5] in
the DEE pruning stage and continuous backbone minimization in the A∗ enumeration stage, but
were otherwise identical to the continuously-flexible rotamers K∗ runs using MinDEE (SI S1.1).
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Table S1: Top ten 2-point active site mutants predicted by K∗ for each of the five target substrates
(Leu, Arg, Glu, Lys, and Asp)

Leu Arg Glu Lys Asp
1 278L/301G 278D/301G 239R/322R 278D/299D 239M/278R
2 278I/301G 299D/301G 278H/301G 278D/299E 278H/301G
3 299W/301G 278E/301G 239R/278H 278E/299D 278K/301G
4 299F/301G 278A/301G 322Q/301G 278D/301G 239K/278R
5 236M/301G 299E/301G 278K/301G 278E/299E 278K/330M
6 236L/301G 236G/278A 239K/278H 278D/299M 239R/278K
7 330F/301G 322G/301G 278N/322K 278D/299Q 239K/322K
8 278M/301G 278S/301G 278N/301G 278D/299W 239K/322R
9 322V/301G 299L/301G 278H/299K 278D/299F 236M/278K
10 278F/301G 236G/301G 278H/299R 278D/322G 278K/299M

The goal of these additional runs was to determine whether the top Leu mutants predicted by the
MinDEE K∗ runs (SI S1.1) and selected for experimental validation, would also be among the
top predictions when the backbone was allowed to flex. Indeed, 278L/301G was again ranked 1st,
278M/301G - 10th, and 322V/301G - 4th. The fact that these three mutants were still within the
top ten predictions even when backbone flexibility was allowed, further increased the confidence
in the feasibility of our predictions.

S1.2 Bolstering Mutation Prediction
This section gives details about the design of the bolstering mutation prediction computational ex-
periments. First, we present an overview of the Self-Consistent Mean Field (SCMF) entropy-based
method for estimating residue positions susceptible to beneficial mutations [13]. We then describe
how our MinDEE/A∗ algorithm [6] can be combined with SCMF as part of a computational proto-
col for identifying mutations outside of the enzyme active site for further improvement in the target
substrate specificity. Finally, we give details about the application of our SCMF with MinDEE/A∗

protocol in the GrsA-PheA redesigns for Leu. This section extends the relevant discussion in the
Materials and Methods section in the main article.

S1.2.1 Description of the SCMF Approach

In [13], a SCMF entropy-based method for estimating residue positions susceptible to beneficial
mutations was applied as a preprocessing step for focusing directed evolution experiments. Using
SCMF, the probabilities for different amino acid types and, consequently, the residue entropy at
each position in a protein can be estimated. For a given protein with n residue positions, the residue
entropy Si for each residue position i can be computed as:

Si = −
∑
a∈Ai

p(a|i) ln p(a|i), (S1)
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where Ai is the set of amino acid types allowed at residue position i, and p(a|i) is the probability
of having amino acid type a at residue position i. Here,

p(a|i) =
∑
r∈Ra

p(r|i), (S2)

where Ra is the set of rotamers (as given by the rotamer library) for amino acid type a and p(r|i) is
the probability of having rotamer r for amino acid a at residue position i. The probabilities p(r|i)
are computed using SCMF [13].

Since high residue entropy implies the existence of multiple amino acid types with reasonably
high probabilities, this method was used as a means to identify residue positions that are tolerant
to mutations.

S1.2.2 Outline of Protocol

We extended and modified the SCMF method to make it applicable as part of a five-step protocol
for determining mutations both close to and far away from the enzyme active site. The steps of our
protocol are as follows:

1. Apply theK∗ algorithm [6] to compute active site mutations with the desired target substrate
specificity;

2. Experimentally test a set of top-ranked K∗ predictions;

3. A computationally-predicted active-site mutant that is experimentally-verified to have a rea-
sonably high specificity toward the target substrate is then selected for further redesign;

4. SCMF is applied to select residue positions anywhere in the protein (both close to and far
away from the active site) that are to be redesigned;

5. TheMinDEE/A∗ algorithm [6] is applied to predict mutations to the set of residue positions
identified in step 4 for further improvement in the substrate specificity.

The active site mutations (step 2) and bolstering mutations (step 5) are then combined, and the
resulting mutants are experimentally tested.

S1.2.3 Application to GrsA-PheA

This section gives additional details about the design of the bolstering mutation prediction compu-
tational experiments for GrsA-PheA, and is a supplement to the relevant discussion in the Materials
and Methods section in the main article.

For all non-Pro residues in the structure 1amu (residues with missing heavy atoms in the crystal
structure were removed from the input structure), the residue entropy was computed using SCMF.
Residue positions with too few neighboring (in space) residues were removed from further consid-
eration, since we did not have sufficient confidence in the entropy estimates for residue positions
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with a small number of residue interactions. Let xi be the number of neighboring residues (within
a distance cutoff d) for residue position i, and let X be the set of numbers xi for all residue posi-
tions i. We then discarded all residues that had fewer neighboring residues than the σth percentile
threshold for the distribution of the elements in X . In all our computational experiments, we used
d = 5 Å (for any pair of rotamers for any two residue positions) and σ = 75 (in effect, this mostly
discards surface positions).

The remaining residue positions were then ranked in order of decreasing residue entropy. The
eight residue positions with the highest computed residue entropy Si (45, 187, 207, 210, 238, 239,
277, and 447) were selected for the MinDEE/A∗ mutation search (Fig. S1, top). The lowest-energy
rotamer conformation for the highest-activity K∗ mutant for Leu (T278L/A301G) was used as
input to the MinDEE/A∗ redesign algorithm [6]. The MinDEE/A∗ input structure included the
residue positions in 1amu within 8 Å of the ligand or the eight high-entropy positions identified in
the entropy step. Residues 45, 187, 207, 210, 238, 277, and 447 were modeled using continuously-
flexible rotamers and allowed to mutate; residue 239 was modeled using continuously-flexible
rotamers but was not allowed to mutate, since it is part of the enzyme active site.

In the MinDEE/A∗ run, only the amino acid types with probabilities above a certain cutoff
threshold (as computed by SCMF) were allowed for each of the seven mutable residue positions.
We used the 75th percentile of the distribution of all amino acid probabilities for all residue posi-
tions as the cutoff threshold. In addition to the WT identity, the allowed amino acid types in the
MinDEE/A∗ experiments were as follows: 45 (Ala Leu Ile Phe Asn Gly), 187 (Ala Val Leu Ile Ser
Thr Asp Glu Asn Gly), 207 (Ala Leu Ile Ser Thr Asn Gly), 210 (Ala Leu Ile Phe Tyr Asn Gly),
238 (Ala Leu Ile Ser Thr Asn Gly), 277 (Ala Val Leu Ile Ser Thr Asn Gly), 447 (Ala Val Leu Ile
Ser Thr Asn Gly). For computational efficiency, we applied a heuristic halting condition for the
MinDEE/A∗ search, different from the provably-accurate halting condition described in [6]. Let
bm be the computed lower bound on the conformational energy of the first rotameric conformation
generated by A∗, and let bc be the computed lower bound on the conformational energy of the
current rotameric conformation generated by A∗. The MinDEE/A∗ search was then halted when
bc > bm + λ; in our experiments, we used a value of 2.0 for λ.

Up to 3-point bolstering mutation search (in addition to the initial 2 active site mutations) was
performed for the mutable positions, and the top mutants were visualized and selected (Table S2).
At that point, mutant proteins were created using site-directed mutagenesis by adding to the active
site double mutant 1-, 2-, and 3-point bolstering mutations comprising the ≤ 3-point MinDEE/A∗-
predicted mutants. The lowest-energy S447N conformation is shown in Fig. S1(bottom). Some
modifications to the energy function were introduced for the entropy and MinDEE/A∗ steps. A
vdW radii scaling factor of 0.95 and a solvation-energy scaling factor of 0.5 were used; hydrogens
were not used in the vdW energy computation. In addition, amino acid reference energies were
computed and used (similarly to [7]) to limit the number of times a particular amino acid type is
selected within a given redesign. A simpler version of our software that did not include various
enhancements and modifications to the algorithm (as compared to the K∗ experiments) was used
for the SCMF and MinDEE/A∗ runs. The bolstering mutation computation required approximately
a week of computational time.
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Figure S1: (top) Residue entropy computed by the SCMF approach. The eight positions selected
for the MinDEE/A∗ mutation search are labeled and shown in red. The positions discarded by the
‘neighboring residues’ filter are shown in green. (bottom) The lowest-energy S447N conformation
predicted by MinDEE/A∗. The hydrogen bond between H344 and N447 (the distance between Nδ2

(Asn) and the backbone carbonyl oxygen of His is 2.94 Å) is shown with a dashed yellow line.
The Leu ligand is shown in orange.
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Table S2: Top bolstering mutations from the 3-pt MinDEE/A∗ mutation search. These mutations
are in addition to the 2-point active site mutation 278L/301G

Rank Mutant
1 187L/238I/447L
2 187L/238I/447N
3 187L/238I/447I
4 187L/277L/447L
5 187L/238I/447A
6 187L/447L
7 187L/207L/447L
8 187L/277L/447N
9 187L/277L/447I
10 187L/447N
11 187I/238I/447L

S2 Analysis of the Computational Results
In this section, we give details about the structural analysis of the predicted mutants (Sec. S2.1)
and the comparison to other methods and evolution (Sec. S2.2).

S2.1 Structural Analysis
Structural comparison between the predicted mutant structures and the WT can reveal insights into
the reasons for the switch of specificity in the Leu redesigns. We thus generated and visualized
the structures in the K∗ bound-state ensemble for the T278L/A301G mutant. When overlayed
with the WT structure, all conformations of the Leu substrate found in the K∗ ensemble clash
sterically with the side-chain of Ala at position 301. The mutation A301G appears to free up the
space necessary to accommodate the Leu side-chain. In addition, the mutation T278L fills up the
enzyme pocket to partially compensate for the change in the substrate size from the bulkier Phe
to the smaller Leu. The lowest-energy T278L/A301G structure with Leu as substrate is shown in
Fig. 1 in the main article.

To analyze the effect of the double mutation T278D/A301G on the enzyme specificity for Arg,
we generated and visualized the five lowest-energy structures from theK∗ ensemble for this double
mutant, as well as the five lowest-energy structures for the point mutations T278D and A301G. To
facilitate the structural comparison, we used MolProbity [3] (Table S3). The comparison between
the structures for A301G (which includes the WT Thr at position 278) and T278D/A301G suggests
that the addition of the T278D mutation allows the side-chain of the Arg substrate to participate
in stronger hydrogen bonding and/or electrostatics interactions with the charged carboxyl group of
Asp at 278. The Arg substrate conformations in all five T278D/A301G structures fill the space that
is otherwise occupied by the Ala side-chain at 301. In the T278D structures, the Arg atoms are
pushed away from the A301 side-chain mainly through changes in the Arg side-chain dihedrals.
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This mostly alleviates the Arg-A301 steric clashes (although in some structures of the single-point
mutant these clashes are still significant), at the cost of introducing new significant clashes with
other residues in the active site. Similarly to the Leu redesigns, the mutation A301G therefore
appears to free up the space necessary to accommodate the Arg substrate. The second lowest-
energy T278D/A301G structure from the K∗ ensemble with Arg as substrate is shown in Fig. 2 in
the main article.

10



Ta
bl

e
S3

:
M

ol
Pr

ob
ity

[3
]

an
al

ys
is

fo
r

th
e
a
fiv

e
lo

w
es

t-
en

er
gy

T
27

8D
an

d
T

27
8D

/A
30

1G
st

ru
ct

ur
es

fr
om

th
e

re
sp

ec
tiv

e
K
∗

en
se

m
bl

es
w

ith
A

rg
as

su
bs

tr
at

e.
T

he
b
cl

as
hs

co
re

fo
ra

gi
ve

n
st

ru
ct

ur
e

is
de

fin
ed

as
th

e
nu

m
be

ro
fa

to
m

pa
ir

s
w

ith
va

n
de

rW
aa

ls
ov

er
la

p
gr

ea
te

r
th

an
0.

4
Å
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S2.2 Comparison to Other Methods and Evolution
It is interesting to compare our structure-based redesign predictions both to enzymes selected by
evolution and to the predictions from alternative redesign methods. With this motivation in mind,
we obtained the set of 1230 NRPS adenylation domains of both known and unknown specificity
and their sequence alignment from [12]. We then compared the active sites of our experimentally-
validated mutants (Table 1 in the main article) to the active sites of the 1230 domains [12], and
determined that although the amino acid identities at mutated positions were found as constituents
of longer signature sequences, none of our exact mutant active sites could be found in that domain
set. This suggests that our structure-based method can successfully identify mutant GrsA-PheA
active sites (specific for given target substrates) that have not been selected by natural evolution.

We further compared our structure-based predictions (Table 1 in the main article) to two
sequence-based methods: the support vector machine (SVM) method of [12] and the phyloge-
netic method of [2] (Tables S4 and S5, respectively). The SVM predictor clusters sequences with
similar substrate specificities into composite specificities. Both large clusters (a larger number of
specificities grouped together) and small clusters (fewer specificities grouped together) were used
by this method [12, Table 2]. The small-cluster predictor assigned a Phe-Trp specificity to all six
mutants in Table 1(i) in the main article, and was thus unable to recognize the switch in speci-
ficity (confirmed by our experimental results) for the Leu-specific mutants. The large-cluster SVM
predictor identified a composite specificity that contains Leu (as well as 6 other substrates) for
T278L/A301G and T278M/A301G, and Asp for T278K/A301G, but failed to make a prediction
about the other three mutants in Table 1(i) in the main article.

When using the method by Challis et al. [2], the top prediction of that method coincided with
the measured target substrate specificity for three of the six mutants in Table 1(i) in the main article
(T278L/A301G, T278M/A301G, and T278H/A301G). For A322V/A301G, the top prediction by
this method was Phe, while a Leu domain ranked fifth in the prediction list. For T278D/A301G, this
method identified Trp as its top prediction, while two Phe domains were ranked second and third,
an Arg domain was ranked fourth in the list, and Lys was not predicted at all. For T278K/A301G,
the top prediction was a Trp domain, while there was no Asp domain in the top forty predictions.
Thus, although the method by Challis et al. performed reasonably well for the given set of mu-
tations, our structure-based method was still able to predict substrate specificities missed by this
sequence-based method.

Even when allowing only a small number of mutations to the enzyme active site, our structure-
based redesign algorithm predicted novel mutants of GrsA-PheA (with improved target specificity)
that are not yet found in nature and that were not predicted by alternative redesign methods. Our
structure-based approach aims at identifying protein sequences that are predicted to have improved
target substrate specificity (we refer to this as positive design). In addition to positive design, ex-
plicit negative design may be required, so that the design aims not only to improve the specificity
for the target substrates, but also to destabilize the protein interactions with other substrates. In
some cases, a serendipitous switch of specificity may be obtained without explicit negative de-
sign (e.g., our Leu mutants). In general, however, the lack of a negative design procedure may
only yield an improvement in (but not a switch of) the target substrate specificity (e.g., our re-
designs for charged substrates). However, the systematic incorporation of negative design poses
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Table S4: Predictions from the SVM-based method using the alarge clusters and bsmall clusters
methods [12, 11]. NP, no prediction; Abu, 2-amino-butyric acid; Iva, isovaline; Aad, 2-amino-
adipic acid.

Mutant Large Clustersa Small Clustersb

278L/301G gly-ala-val-leu-ile-abu-iva phe-trp
278M/301G gly-ala-val-leu-ile-abu-iva phe-trp
322V/301G NP phe-trp
278D/301G NP phe-trp
278H/301G NP phe-trp
278K/301G asp-asn-glu-gln-aad phe-trp

both significant computational and additional modeling challenges (e.g., backbone flexibility [5])
for structure-based approaches. In contrast, the sequence-based redesign methods compared here
can be easily and efficiently applied to predict the specificity of a given protein sequence for a va-
riety of substrates. It would be interesting to apply a hybrid approach that combines the strength of
structure-based approaches for performing positive design with the ability of methods like [2, 12]
to explicitly generate negative designs for a given sequence. Such an approach, combined with ex-
tensive experimental validation, could enhance our understanding of the natural selection processes
for NRPS adenylation domains, and help further improve the accuracy of the in silico predictions.

S3 Experimental Protocol

S3.1 Primers
The mutagenesis primers used for the site-directed mutagenesis of mutant PheA are summarized
in Table S6.

S3.2 Protein Expression and Purification
Fig. S2 shows the SDS-PAGE for the WT and mutant PheA.

S3.3 Steady-state Kinetics
Figures S3-S6 show the representative steady-state kinetics curves for the wild-type and mutant
PheA. Each data point represents the initial rate v measured at one substrate concentration. The
initial rate v was obtained by monitoring the increase of absorbance at 340 nm as a function of time
(sec). The rate was plotted against amino acid concentration and fit directly into the Michaelis-
Menten equation to derive kcat, K

M
and kcat/KM

. Amino acid concentrations covering 0.2-5.0 K
M

were used to obtain the hyperbolic curve. Each single reaction was repeated at least three times to
obtain the standard deviation shown as the error bar of each point.
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Table S5: Comparison of the active sites of our experimentally-validated mutants using the phylo-
genetic method of Challis et al. [2, 1]. This method tries to predict the specificity of an active site
mutation by comparing its sequence to a database. For each of the amutants, the top five matches
are shown (ranked): the bprotein and cmodule in the gene with the respective dactivated amino acid
substrate.

Mutanta Proteinb Modulec Substrated

278L/301G Cyclosporine synthetase, CssA 3 Leu
Cyclosporine synthetase, CssA 10 Leu
Cyclosporine synthetase, CssA 2 Leu
Cyclosporine synthetase, CssA 8 Leu
Gramicidin synthetase A, GrsA 1 Phe

278M/301G Cyclosporine synthetase, CssA 3 Leu
Cyclosporine synthetase, CssA 10 Leu
Cyclosporine synthetase, CssA 2 Leu
Cyclosporine synthetase, CssA 8 Leu
Cyclosporine synthetase, CssA 4 Val

322V/301G Gramicidin synthetase A, GrsA 1 Phe
tyrocidine synthetase 1, TycA 1 Phe

CDA peptide synthetase I, Cda1 3 Trp
enniatin sythetase, Esyn1 2 Val

Microcistin synthetase B, McyC 1 Leu
278D/301G CDA peptide synthetase I, Cda1 3 Trp

Gramicidin synthetase A, GrsA 1 Phe
tyrocidine synthetase 1, TycA 1 Phe
Pyoverdin synthetase, PvdD 2 Arg

tyrocidine synthetase 3, TycC 2 Gln
278H/301G fengycin synthetase, FenA 2 Glu

Fengycin synthetase, Pps4 2 Glu
Fengycin synthetase, FenC 1 Glu
Fengycin synthetase, Pps1 1 Glu
Fengycin synthetase, FenE 1 Glu

278K/301G CDA peptide synthetase I, Cda1 3 Trp
Gramicidin synthetase A, GrsA 1 Phe
tyrocidine synthetase 1, TycA 1 Phe
tyrocidine synthetase 3, TycC 2 Gln

Cyclosporine synthetase, CssA 3 Leu

14



Table S6: Mutagenesis primers.
T278L-f 5’- GTTATTTTGTTACCACCTACCTATGTAG -3’
T278L-r 5’- GGTAACAAAATAACAGTGATTTCCTTTTG G -3’

T278M-f 5’- GTTATTATGTTACCACCTACCTATGTAG -3’
T278M-r 5’- GGTAACATAATAACAGTGATTTCCTTTTGG -3’

T278H-f 5’- CTGTTATTCACTTACCACCTACCTATGTAG -3’
T278H-r 5’- GTGGTAAGTGAATAACAGTGATTTCCTTTTGG -3’

T278D-f 5’- CTGTTATTGACTTACCACCTACCTATGTAG -3’
T278D-r 5’- GTGGTAAGTCAATAACAGTGATTTCCTTTTG G -3’

T278K-f 5’- CTGTTATTAAGTTACCACCTACCTATGTAG -3’
T278K-r 5’- GTGGTAACTTAATAACAGTGATTTCCTTTTGG -3’

A322V-f 5’- CATAAATGTCTATGGCCCTACGGAAAC -3’
A322V-r 5’- GCCATAGACATTTATGTAAGTTAC -3’

S447N-f 5’- GAAGTTGAGAATATTCTTCTAAAGCATATG -3’
S447N-r 5’- GAATATTCTCAACTTCTTCTAGTTCAACTCG -3’

I277L-f 5’- GTTCTTTTGTTACCACCTACCTATGTAG -3’
I277L-r 5’- GGTAACAAAAGAACAGTGATTTCCTTTTGG -3’

V187L-f 5’- GCTTATCTTATTTATACTTCTGGTACAACAGGC -3’
V187L-r 5’- GTATAAATAAGATAAGCAAGATCGGTTGATTTACTTGG -3’

15



Figure S2: SDS-PAGE showing the homogeneity of the WT and mutant PheA. 1-2 µg
of protein was loaded for each sample lane. M : Marker, 1: WT, 2: A301G, 3: T278L,
4: A301G/A322V, 5: T278M/A301G, 6: T278L/A301G, 7: T278L/A301G/S447N,
8: T278L/I277L/A301G, 9: V187L/T278L/A301G, 10: I277L/T278L/A301G/S447N,
11: T278D/A301G, 12: T278H/A301G, 13: T278K/A301G.

S3.4 Specificity Redesign
Figures S7 and S8 show, respectively, the relative and absolute substrate specificities for WT and
mutant PheA with Phe and Leu. These figures are based on the data from Table 1 in the main
article.

S3.5 Other Experimentally-tested Mutants
Table S7 presents the experimental results for several mutants not shown in Table 1 in the main
article. These mutants are divided into three categories: (1) Computationally-predicted mutants
that do not exhibit the desired specificity for a target substrate (Table S7i); (2) Single-point muta-
tions that, by themselves, are not predicted by our algorithms, but that are components of other
computationally-predicted mutants (Table S7ii); (3) Mutants predicted by our algorithms and
selected for experimental verification that were difficult to purify due to solubility issues (Ta-
ble S7iii). The double mutants T278E/A301G and T278D/I299E designed to bind Arg and Lys,
respectively, both went into inclusion bodies in all expression conditions and could thus not be
studied.

S3.6 Free Energy Calculation for WT and Mutant PheA
According to transition state theory, the activation energy, ∆G‡T has two terms, an energetically un-
favorable term ∆G‡, due to the chemical steps of bond making and breaking, and a compensating
energetically favorable term ∆Gs , due to the realization of the binding energy. That is,

∆G‡T = ∆G‡ + ∆Gs . (S3)
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Figure S3: Representative steady-state kinetics curves for: WT PheA with Phe (A) and Leu (B),
A301G/A322V with Phe (C) and Leu (D), and T278M/A301G with Phe (E) and Leu (F).
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Figure S4: Representative steady-state kinetics curves for: T278L/A301G with Phe (A) and Leu
(B), T278L/A301G/S447N with Phe (C) and Leu (D), and V187L/T278L/A301G with Phe (E)
and Leu (F).
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Figure S5: Representative steady-state kinetics curves (black) for I277L/T278L/A301G with Phe
(A) and Leu (B), I277L/T278L/A301G/S447N with Phe (C) and Leu (D), and T278H/A301G with
Phe (E) and Glu (F). For comparison, the steady-state kinetics curve for the WT enzyme with Glu
(F, blue) is also shown.
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Figure S6: Representative steady-state kinetics curves (black) for T278K/A301G with Phe (A) and
Asp (B), and T278D/A301G with Phe (C), Lys (D), and Arg (E). For comparison, the steady-state
kinetics curve for the WT enzyme with Asp (B, blue), Lys (D, blue), and Arg (E, blue) are also
shown.
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Table S7: Other experimentally-tested amutants. (i) The dkcat, eK
M

, and fkcat/KM
for a set

of mutants that showed little or no specificity for the target (Leu) vs. the WT (Phe) bsubstrate.
The K∗ cranks for the respective mutants with Leu; ¶this mutant was a top-ranked prediction by
the algorithm of [8], but was pruned by the version of K∗ described here. §Not detectable. ‡K

M

and kcat/KM
cannot be accurately determined because the solubility of Phe (∼180 mM in water)

limits the reaction velocity under the experimental condition, in which the velocity remains linearly
dependent on the concentration of the substrate. (ii) Single-point amutants that are components of
K∗-predicted double-mutants or of predictions from a GMEC-based approach [6]. The dkcat, eKM

,
and fkcat/KM

for each mutant with the respective bsubstrate are shown. (iii) aMutants difficult to
purify due to gsolubility issues are shown with their K∗ cranks and the target substrates.

kcat
d KM

e kcat/KM
f

Mutanta Substrateb Rankc (min−1) (mM) (mM−1 min−1)
A301G/I330F Leu 7 3.66 122.24 0.03

(i) A301G/I330F Phe 3.1 59.0 0.05
A301G/I330W Leu ¶ § § §

A301G/I330W Phe > 0.32‡

kcat
d KM

e kcat/KM
f

Mutanta Substrateb (min−1) (mM) (mM−1 min−1)
A236M Phe 8.1 0.0834 97.12
A236M Leu 21.1 217.2 0.097

(ii) A322M Phe 20.2 23.2 0.87
A322M Leu 9.4 640 0.015
T278E Arg 1.4 80.0 0.018

Mutanta Rankc Solubleg

(iii) T278E/A301G 3 (Arg) no
T278D/I299E 2 (Lys) no
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Figure S7: Relative substrate specificity for Phe (left) and Leu (right) of WT and mutant PheA.
The specificity of all enzymes for each of the two substrates are normalized relative to the enzyme
with the highest specificity for that substrate.

With the assumption that the active site residues and the side-chain of the amino acid sub-
strate are not directly involved in the chemistry of the reaction, the difference of the activation
energy is considered to be the difference in binding energy of the enzyme and transition state. Let
∆∆GPhe−Leu be the difference in binding energy between substrate Phe and Leu for WT and mu-
tant PheA; let ∆∆GWT−Mut be the difference in binding energy between WT and mutants for Phe
and Leu; and let ∆∆Gint be the coupling energy (interaction energy) between T278L and A301G
for Phe and Leu. Calculation of the free energy difference was done using equations c, d, and e in
the caption of Table S8; the results are summarized in Table S8.

22



Figure S8: Absolute values of kcat (top left), K
M

(top right), and kcat/KM
(bottom) for Phe (cyan)

and Leu (red) of WT and mutant PheA. Values of K
M

for WT with Leu (6980 µM) and T278L
with Leu (26280 µM) and value of kcat/KM

for WT with Phe (951 mM−1 min−1) exceed the range
displayed in the plot.
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