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Appendix

In Appendix A, we give a proof for computing all possible orientations of a peptide plane
from a φ-defining RDC in one alignment medium and a ψ-defining RDC in a second alignment
medium. In Appendix B, we describe the procedure used to simulate the RDCs for the loops
studied in [2, 4, 6, 7], and by our algorithm pool (see section Results and Discussion).

A Analytic Solutions for Peptide Plane Orientations from φ-defining
RDCs in Medium 1 and ψ-defining RDCs in Medium 2

We show that it is possible to compute all possible orientations of a peptide plane from a φ-defining
RDC in one alignment medium and a ψ-defining RDC in a second alignment medium. That is,
if RDCs for the bond vectors which are missing in one alignment medium can be measured in a
second medium, our algorithm pool is able to use those to compute loop backbone conformations.
The proposition below shows how to do this.

Proposition A.1. Given the diagonalized alignment tensor components Sxx and Syy for medium
1, S′

xx and S′
yy for medium 2, a relative rotation matrix R between the POFs of medium 1 and 2,

the peptide plane Pi, a φ-defining RDC in medium 1 and a ψ-defining RDC in medium 2 for φi
and ψi, respectively, there exist at most 16 orientations of the peptide plane Pi+1 with respect to
Pi that satisfy the RDCs, which can be computed exactly and in closed form by solving two quartic
equations.

Proof. Let POF1 and POF2 denote the POFs for the medium 1 and 2, respectively. Without loss of
generality, we choose to work in POF1. By direct application of Proposition 1 in main text, we can
compute φi exactly and in closed form. Now it remains to compute ψi. Let v = (x, y, z)T be the
vector in POF1 and the same vector be v′ = (x′, y′, z′)T in POF2, for which we have a ψ-defining
RDC measured in medium 2. Then

v′ = Rv (A.1)

⇒

x′y′
z′

 =
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from which we have

x′ = R11x+R12y +R13z (A.2)

y′ = R21x+R22y +R23z (A.3)

z′ = R31x+R32y +R33z. (A.4)

The reduced RDC equation (Eq. (5) in main text) for ψ-defining RDC can be written as

a′x′
2

+ b′y′
2

= c′, (A.5)

where a′, b′ and c′ are constants. Substituting Eq. (A.2) and Eq. (A.3) in Eq. (A.5), we obtain

I0 + I1x
2 + I2y

2 + I3z
2 + I4xy + I5yz + I6zx = 0, (A.6)

where Ii for 0 ≤ i ≤ 6 are constants.
Let the unit vector v0 = (0, 0, 1)T represent the N-HN bond vector of residue i in the local coor-

dinate frame defined on the peptide plane Pi in POF1. Then we can write the forward kinematics
relation between v0 and v as follows:

v = Ri,POF Rl Rz(φi) Rm Rz(ψi) Rr v0 (A.7)

Here Rl, Rm and Rr are constant rotation matrices that describe the kinematic relationship be-
tween v0 and v. Rz(φi) is the rotation about the z-axis by φi, and is a constant rotation matrix
since φi is known. Rz(ψi) is the rotation about the z-axis by ψi.

Let c and s denote cosψi and sinψi, respectively. Using this while expanding Eq. (A.7) we have

x = A0 +A1c+A2s, y = B0 +B1c+B2s, z = C0 + C1c+ C2s, (A.8)

where Ai, Bi, Ci for 0 ≤ i ≤ 2 are constants. Substituting Eq. (A.8) in Eq. (A.6) we obtain

K0 +K1c+K2s+K3cs+K4c
2 +K5s

2 = 0, (A.9)

where Ki, 0 ≤ i ≤ 5 are constants.
Using half-angle substitutions

u = tan(
ψi

2
), c =

1− u2

1 + u2
, and s =

2u

1 + u2
(A.10)

in Eq. (A.9) we have

L0 + L1u+ L2u
2 + L3u

3 + L4u
4 = 0, (A.11)

where Li, 0 ≤ i ≤ 4 are constants.
Eq. (A.11) is a quartic equation which can be solved exactly and in closed form. Let {u1, u2, u3, u4}

denote the set of (at most) four real solutions of Eq. (A.11). For each ui, we can compute the cor-
responding ψi value by using Eq. (A.10).

We have shown that for both φi and ψi there are at most four possible real solutions that satisfy
the respective RDCs. Therefore, in total there are at most 16 orientations possible for the peptide
plane Pi+1.
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Figure S1. Block diagram of the RDC simulation procedure.

B RDC Simulations using pales

We used the same set of loops that were previously studied by three other loop closure algorithms [2,
4, 6]. This set consists of 10 loops each with 4, 8 and 12 residues chosen from a set of nonredundant
X-ray crystallographic structures obtained from PDB [1]. In addition, we also used the set of
twenty 12-residue long loops published in [7]. Since no experimental RDC data was available, we
simulated the RDCs for these loops. First, we used pales [12, 11] to simulate alignment tensors.
Figure S1 shows a block diagram of our RDC simulation procedure. The PDB coordinate files were
obtained from the PDB [1]. Then the reduce [8] module of MolProbity [5, 3] was invoked to
protonate the X-ray structures. The protonated structures were then input to pales. The pales
protocol [11] predicts both magnitude and orientation of the steric component of the molecular
alignment tensor from the molecule’s three-dimensional (3D) shape. In our simulations, infinite
cylinder Pf1 bacteriophage (-pf1 flag) was used as the liquid crystalline alignment medium. The
-H flag was enabled to include the protons. Other simulation parameters were set to their default
values. The pales-predicted alignment tensor, and the protonated crystal structure was then used
by rdc-analytic [10, 9] to simulate the RDCs. rdc-analytic outputs the RDCs, the protonated
structure in a principal order frame (POF) of RDCs that diagonalizes the alignment tensor by doing
singular value decomposition (SVD). These, along with the loop anchor residue specifications were
then input to pool which determined the loop conformations.
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