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S1 Introduction
In these Supplementary Materials, we give the mathematical derivation for the bounding regions of Gq,
which are used in the subsection entitled Bounding which is inside the Methods section of the main paper.
We have organized these Supplementary Materials as follows. The geometric structure of Gq is described
in Section S2. From this geometric structure, we derive properties of the convex hull of Gq in Section S3.
Next, in Section S4, we use the geometric hull of Gq to reduce our problem to that of finding a bounding
region for rotations Ak. We have two bounds for rotations. The first rotational bound, V (A,k), is described
in Section S5 and leads to a bounding region, W (G,q), for Gq. The second rotation bound is tighter
than V (A,k), and is shown in Section S6. Because the second rotation bound is tighter, it yields a tighter
bounding volume for Gq.

S2 Geometric Structure of Gq
We begin by formally specifying Gq and then exploiting its geometric structure.

G = A× T ⊆ S2 × R2 (1)

T = [tx1 , tx2 ]× [ty1 , ty2 ] (2)

A =


sin(θ) cos(φ)

sin(θ) sin(φ)
cos(θ)

∣∣∣∣∣∣ θ ∈ [θ1, θ2] , φ ∈ [φ1, φ2]

 . (3)

Let Ra(α) be a rotation about the unit vector a ∈ S2 by α radians. To rotate a point q ∈ R3 by α radians,
about an axis that is parallel to a and goes through the point t ∈ R3, we compute Ra(α)(q− t) + t. Notice
that Ra(α)(q− t) + t = [Ra(α)− I](q− t) + q, where I is the identity matrix. So we have

Gq = {[Ra(α)− I](q− t) + q | a ∈ A , t ∈ T} . (4)

Before proceeding, we generalize our operations to sets in the usual way. Let D,F ⊂ R3. Let RA(α)t =
{Ra(α)t | a ∈ A}. Let Ra(α)D = {Ra(α)d | d ∈ D}. Let RA(α)D = {Ra(α)d | d ∈ D, a ∈ A}. Let
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AD = RA(α)D. Let At = RA(α)t. Let t+D = {t+d | d ∈ D}. Let D+F = {d+ f | d ∈ D, f ∈ F}.
Let −T = {−t | t ∈ T}.

We can now rewrite equation (4) as

Gq =
{
[Ra(α)− I](q + (−T )) + q | a ∈ A

}
. (5)

Notice that q + (−T ) is a solid rectangle −T that has been translated in R3 by q. We further note that
[Ra(α)−I] is a linear mapping. Under a linear mapping, any solid rectangle becomes a solid parallelogram.
Consequently, Gq is the union of infinitely many solid parallelograms. Let our solid rectangle be D =
q + (−T ). Let the solid parallelograms be Fa = [Ra(α)− I]D + q. Hence,

Gq =
{
[Ra(α)− I]D + q | a ∈ A

}
=
⋃
a∈A

Fa. (6)

Equation (6) represents the geometric structure of Gq and we will use it below.

S3 Geometric Structure of the Convex Hull of Gq
In this section, we consider the convex hull of Gq. As shown above, Gq is the union of infinitely many solid
parallelograms. Let Q be the set of all the corners of all the parallelograms Fa where a ∈ A. Intuitively, one
can see that the convex hull of Q is the same as the convex hull of Gq. In this section, we formally derive
this result.

To begin, we make the trivial observation that a solid parallelogram is the convex hull of its four corners.
Let H(P ) denote the convex hull of P ⊂ R3. Let k1,k2,k3,k4 be the four corners of the solid rectangle
D = q + (−T ). Then we have

D = H({k1,k2,k3,k4}). (7)

We now consider what happens to each corner ki after the linear mapping Ra(α)−I . From equation (6),
we can write Gq as

Gq =
⋃
a∈A

[Ra(α)− I]D + q = [RA(α)− I]D + q. (8)

Before continuing, we would like to provide a simple intuitive explanation of the results we are deriving.
See Figure 1. Let Ma(α) = [Ra(α)− I]. Let MA(α) = [RA(α)− I].

Let Ci = MAki + q. (9)

Ci is the set of all possible images of the ith corner of D under the mapping in Equation (8). From Section S2
we know that Gq is the union of infinitely many solid parallelograms in R3. Because a solid parallelogram
is simply the convex hull of its four corners, it follows that any convex hull which contains the corners
of the parallelogram must completely enclose the entire solid parallelogram. As a result, any convex hull
which covers Ci for i = 1, 2, 3, 4 will cover all corners of all parallelograms, and therefore cover all of
Gq. In fact, the convex hull H(

⋃4
i=1 Ci) is equal to the convex hull H(Gq). We now apply the following

property of convex hulls: H (
⋃n

i=1 Pi) = H (
⋃n

i=1 H(Pi)) for any Pi ⊂ R3. Using this property, we obtain
H(Gq) = H(

⋃4
i=1 H(Ci)). This is the main result we derive in this section (see equation 14). Below, we

give the formal derivation.
We use the fact that, if M is a linear operator, then H(MP ) = MH(P ) for any P ⊂ R3. From
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Corner of solid parallelogram
Convex Hull of corresponding corners
Convex Hull of all solid parallelograms
Edge of solid parallelogram

Figure 1: Cartoon Diagram of the Convex Hull of Gq. As described in Section S2, we know that Gq is the union of infinitely
many solid parallelograms. In this figure, we have drawn a cartoon of this fact in two dimensions for the sake of clarity. In addition,
we have simplified our picture by drawing only six parallelograms instead of infinitely many. In actuality, there are infinitely
many solid parallelograms that live in three dimensions, and the geometric property we are deriving is true in three dimensions. In
Section S3 we have defined Ci = [RA(α) − I]ki + q where ki are corners of our rectangle D (see Section S3 for details). The
red dots represents the corners of the parallelograms, and the gray lines represent the edges of the rectangles. The blue areas are
H(Ci), namely the convex hulls of the corners. The outer solid black line represents the convex hull of Gq. Notice that the convex
hull for all of the H(Ci) is equal to the convex hull of Gq.

equations (7) and (8), we have

Gq = MA(α)H({k1,kt,k3,k4}) + q =
⋃
a∈A

Ma(α)H

(
4⋃

i=1

{ki}

)
+ q (10)

=
⋃
a∈A

H

(
Ma(α)

4⋃
i=1

{ki}

)
+ q =

⋃
a∈A

H

(
4⋃

i=1

{Ma(α)ki}

)
+ q. (11)

We now consider the convex hull.

H(Gq) = H

(⋃
a∈A

H

(
4⋃

i=1

{Ma(α)ki}

))
+ q = H

(⋃
a∈A

4⋃
i=1

{Ma(α)ki}

)
+ q (12)

= H

(
4⋃

i=1

⋃
a∈A

{Ma(α)ki}

)
+ q = H

(
4⋃

i=1

MA(α)ki + q

)
(13)

= H

(
4⋃

i=1

Ci

)
= H

(
4⋃

i=1

H(Ci)

)
(14)

Equation (14) represents the geometric structure of the convex hull of Gq. We use this result in the next
section to derive a bounding volume for H(Gq).

S4 Bounding Regions for H(Gq)
Equation (14) is a bounding volume for Gq. Instead of computing the convex hull exactly, we approximate
it. We do this by replacing each H(Ci) with an axis-aligned bounding box (AABB), Bi, that completely
encloses H(Ci). The details for how to compute Bi are given in Section S5 and Section S6. Because
H(Ci) ⊂ Bi, we have

Gq ⊂ H(Gq) = H

(
4⋃

i=1

H(Ci)

)
⊆ H

(
4⋃

i=1

Bi

)
. (15)
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From Equation (15), one can see that we have an approximation of the convex hull H(Gq).
Note that the Bi are bounding regions for H(Ci). If we are given any bounding regions for each H(Ci),

then we can construct a bounding region for Gq. To get a bounding region for Ci, we consider its detailed
structure (Equation 9).

Ci = MAki + q = [RA(α)− I]ki + q = RA(α)ki + (q− ki). (16)

The points q and ki are fixed constants (for a given NOE constraint and a given grid cell G). From equa-
tion (16), we see that Ci is identical to RA(α)ki except that it has been translated by (q−ki). Consequently,
finding a bounding region for Ci is equivalent to finding a bounding region for RA(α)ki. Given a method
for bounding RA(α)ki, we can construct a bounding region for Gq.

We define our bounding volume W (G,q) as follows. Let V (A,k) be a bounding region for RA(α)k so
that RA(α)k ⊂ V (A,k).

Gq ⊂ W (G,q) = H

(
4⋃

i=1

Bi

)
= H

(
4⋃

i=1

V (A,ki) + q− ki

)
. (17)

If we replace V (A,ki) with a tighter bound for RA(α)t, then equation (17) yields a tighter bounding volume
for Gq.

S5 Quick Rotation Bound V (A,k) for Ak
In this section, we present a quick way to compute the bounding volume V (A,k) for RA(α)k. Consider

Figure 2. Let a ∈ S2 be an arbitrary axis of rotation (‖a‖ = 1). Let k ∈ R3 be an arbitrary point. Let
u = Ra(α)k. Let ε0 ∈ [0, 2] be a constant which represents the maximal variation in the direction of
the axis of rotation. Let ε ∈ R3 be a vector where ‖ε‖ ≤ ε0 and ‖a + ε‖ = 1. We use ε to represent a
small “perturbation” of the direction of the axis of rotation. Let w = Ra+ε(α)k. Without any perturbation, a
rotation about axis a gives us u. If we perturb the axis by ε, we get a (possibly) different point w. (Figure 2.)

α

θ

a ε
ku

w

Figure 2: Applying a set of rotations. We consider rotating an arbitrary vector k by a rotation Ra(α), where the angle of
rotation α is fixed, but the axis of rotation a can range over a small spherical cap of size ε0. We can think of this as perturbing a
by a small vector ε where we require ‖a‖ = ‖a + ε‖ = 1, and ‖ε‖ ≤ ε0. Let u = Ra(α)k. Let w = Ra+ε(α)k. We require an
upper bound on ‖u−w‖.

An upper bound on ‖w − u‖ can be used to find a bounding volume for RA(α)k. Let r ≥ ‖w − u‖
be an upper bound. If we choose a ∈ A and find an ε0 such that every element in A is ε0 close to a, then
RA(α)k will be completely contained within a sphere of radius r centered at u.

We can reduce the bounding volume even farther, because rotations cannot change the length of a vector.
Therefore, w and u must lie on a sphere centered at the origin with a radius of ‖k‖. The intersection of a
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solid ball of radius r centered at u and a spherical shell centered at the origin with radius ‖k‖ gives us a
filled circular patch of the spherical shell, that is a “spherical cap.” In terms of latitude and longitude, the
spherical cap is the area around a “north” pole which has latitude greater than or equal to some fixed value.

The basis for our bound is a vector equation for rotations. A derivation of Equation (18) can be found
in [1], Chapter 4, pages 164-165.

u = Ra(α)k = (k · a)a + (sinα)(a× k) + (cos α) [k− (k · a)a] . (18)

We write down the vector equations for u = Ra(α)k and for w = Ra+ε(α)k, and then subtract to get
an exact expression for w − u. Finally, we find an upper bound on the magnitude ‖w − u‖.

u = Ra(α)k = (k · a)a + (sinα)(a× k) + (cos α) [k− (k · a)a] (19)

w = Ra+ε(α)k = [k · (a + ε)](a + ε) + (sinα)[(a + ε)× k] + (cos α)
[
k−

(
k · [a + ε]

)
(a + ε)

]
(20)

After subtracting u from w and performing some algebra, we obtain

w − u = (sinα)(ε× k) + (1− cos α)
[
(k · a)ε + (k · ε)(a + ε)

]
. (21)

We now bound the magnitude ‖w−u‖ using very simple upper bounds. We apply the triangle inequality,
the Pythagorean theorem, and elementary bounds on the magnitude of cross and dot products. Notice that
in equation (21) that the term (sinα)(ε×k) is perpendicular to the term (1− cos α)(k · a)ε. Recall that we
restrict ε so that we have ‖a + ε‖ = 1. We don’t simplify (k · a) because both k and a are known, so there
is no need to approximate.

‖w − u‖ ≤ r(ε0,a, α,k) (22)

where r(ε0,a, α,k) = ε0

(√
(sinα)2‖k‖2 + (1− cos α)2(k · a)2 + |1− cos α| ‖k‖

)
.

We now have a geometric bounding shape for RA(α)k. Choose ε0 > 0 and a ∈ A so that every element
of A is within ε0 of a. Let B(a, r) be a solid ball centered at a with radius r. Let S(a, r) be a sphere
centered at a with radius r.

RA(α)k ⊆ U(A,k), where U(A,k) = B
(
Ra(α)k, r(ε0,a, α,k)

)
∩ S(0, ‖k‖). (23)

The vector 0 is the origin. The bounding volume (23) is a spherical cap. It is straight-forward to compute
the smallest axis-aligned bounding box (AABB) which completely encloses the spherical cap (23).

RA(α)k ⊂ V (A,k), where V (A,k) = the axis-aligned bounding box of U(A,k) (24)

Our bounding volumes U(A,k) and V (A,k) can be computed very rapidly using equation (22). Unfor-
tunately, the bound is fairly loose. In practice, the bound (22) is too large by about a factor of one to two for
the majority of cases with a distribution extending out to about a factor of five. Because this bound is loose,
we find a tighter bound below, although it is somewhat more expensive to compute.

S6 Tighter Rotation Bound for Ak
In this Section, our goal is to find the smallest axis-aligned bounding box (AABB) which contains Ak =
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RA(α)k. This is equivalent to finding the extrema

max
a∈A

ui(a) and min
a∈A

ui(a), where i = 1, 2, 3 and u(a) =

u1(a)
u2(a)
u3(a)

 = Ra(α)k. (25)

The extrema of ui(a) specify the smallest possible axis-aligned bounding box (AABB) for Ak. To find
these extrema, we form a grid over A which has a mesh-resolution of at most γ radians (in practice, we set
γ = 0.01 radians), and for each grid point, we perform numerical gradient ascent and descent to find local
extrema. We then find global extrema by taking the maximum and minimum of the local extrema.
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