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ABSTRACT

We cast the problem of identifying protein-protein inter-
faces, using only unassigned NMR spectra, into a geome-
tric clustering problem. ldentifying protein-protein inter-
faces is critical to understanding inter- and intra-cellular
communication, and NMR allows the study of protein inter-
action in solution. However it is often the case that NMR
studies of a protein complex are very time-consuming,
mainly due to the bottleneck in assigning the chemical
shifts, even if the apo structures of the constituent pro-
teins are known. We study whether it is possible, in a
high-throughput manner, to identify the interface region of
a protein complex using only unassigned chemical shift
and residual dipolar coupling (RDC) data.

We introduce a geometric optimization problem where
we must cluster the cells in an arrangement on the boun-
dary of a 3-manifold, where the arrangement is induced by
a spherical quadratic form. We show that this formalism
derives directly from the physics of RDCs. We present an
optimal algorithm for this problem that runs in O(n®logn)
time for an n-residue protein. We then use this cluste-
ring algorithm as a subroutine in a practical algorithm
for identifying the interface region of a protein complex
from unassigned NMR data. We present the results of
our algorithm on NMR data for 7 proteins from 5 protein
complexes and show that our approach is useful for high-
throughput applications in which we seek to rapidly identify
the interface region of a protein complex.

1 INTRODUCTION!

Protein-protein interactions are well-studied in structural
biology, and the structural basis for these interactions are
useful in elucidating the biological role of the consituent
proteins. As the Protein Structure Initiative [31] rapidly
populates the “space of protein structures,” an emerging
goal of structural proteomics is to study not justindividual
proteins, but protein complexes and networks of protein
interactions, as well as the molecular and structural basis
for these interactions. High-throughput computational
approaches for identifying the interface region between
proteins in a complex can serve a useful role in study-
ing these protein-protein interactions. Recent advancesin
solution NMR spectroscopy allow us to directly study the
interaction between two proteins in solution; NMR is ide-
ally suited to studying protein-ligand and protein-protein
interactions [42]. In contrast to existing approaches that
rely onassignedNMR data, in this paper we develop an
efficient algorithm for identifying the interface between
two proteins in a complex usingnassignedNMR data.
Even given apo (or, unbound) structural models of the
constituent proteins in a protein-protein complex (whose
structure is unknown) obtained by either NMR or X-ray
crystallography, a key bottleneck known as thssi-
gnmentproblem [17, 2, 23, 1, 28, 30] remains before
we can make use of the recorded NMR spectra. That
is, before we can make use of the NMR spectra, we
mustassignthe NMR measurements to the nuclei that
the measurements give information about. For example,

1 Abbreviations used: NMR, nuclear magnetic resonance; RDC, resi-
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nuclear Overhauser effedNOE) NMR data provides on the orientation of the backbone NH bond vectors of a
interatomic distance restraints; in order for these distancerotein in solution [39]. Unlike previous work [3] which
restraints to be used in structure determination, we mustharacterizes the geometry of protein interfaces, we do
first assign each restraint to a pair of nuclei in the proteinnot assume that the crystal or solution structure of the
Current automated computational approaches to studycomplex has been solved. Infact, significantly more struc-
ing protein-protein interactions assume that the givertures have been solved for proteins in their apo, or free
NMR data has been assigned. These approaches typicallgrm, rather than in their holo, or complexed form, due to
use this NMR data, along with structural models of thelimitations in the size of protein structures that can be sol-
constituent proteins, to generate the structure of the proved by NMR or even X-ray crystallography. In practice,
tein complex [11, 10, 8, 26]. The assignment processt is often more desirable to have a low false-positive rate
is typically done manually, and is time consuming. Forat the expense of accuracy. Thus, for a protgithe goal
example, the ELIN-HPr complex required about 2 yearof our algorithm will be to describe the interface region
of data analysis [7, 15] to obtain an accurate structurain terms of both arinteraction zoneZ 4 and aninter-
model. Automating the assignment process is an activaction coreC4. We judge the performance of this pair
area of research [23, 22, 43, 1, 2] (see [17] for areview of Z 4, C'4) by examining the accuracy &f4 and the sen-
recent work). By avoiding the assignment problem, high-sitivity (i.e., percentage of true positives)@f,. Previous
throughput determination of protein-protein interfacesNMR techniques that have utilized prior apo structural
given onlyunassignedNMR data would speed up all cur- information have either required that the experimental
rent approaches to generating the complex structure (vidata be assigned [8, 26] or that multiple experiments uti-
docking see Section 1.1 below for further discussion). Welizing selective isotopic labeling be performed [34]. We
show that without assignments, some accuracy is sacrififirst consider a geometric version of the problem of iden-
ced in the determination of the protein interface, but therdifying protein interfaces that asks us to cluster the cells
are enormous savings in time and cost, making it suitaef anarrangementon a2-manifold. In Section 2.3, we
ble for high-throughput applications. Furthermore, ourgive an algorithm that computes the optimal solution to
approach of using only sparseset of NMR data can be this problem and runs i®(n? log n) time. Then, in Sec-
useful in the context of drug design, where a large numbetion 3, we give a more practical algorithm for solving
of protein-ligand pairs must be screened. Our algorithnthis problem that runs i@ (nk?® + n3) time, wherek is
uses experiments that require orff§N-labeled samp- a parameter used to grid the the rotation spsog¢3) in
les that can be recorded in about a day of spectrometasrder to estimate the alignment tensor (see Section 2).
time; '°N-labeled samples require an order of magnitudeln the first phase of our algorithm we use a probabilistic
less expense thadC samples to prepare. While manual approach to matching residues from the given structural
approaches to determining the interface region may benodel to the unassigned experimental RDCs; this phase
more accurate (using a large suite of NMR spectra recoridentifies the interaction zong,4. Then, in the second
ded for the apo and holo, or complex form, of the proteinphase, we use a practical version of our geometric cluste-
of interest), in applications such as drug design, a highfing algorithm that, given a size threshold, identifies the
throughput algorithm (making use of sparse, unassignethteraction core” 4. Instead of explicitly considering the
NMR data) that trades some accuracy for time is oftenarrangement induced by the protein surface and the given
highly preferable to slower, data-intensive methods. RDCs, this version of the clustering algorithm uses a dis-

In this paper we present an algorithm that uses the apocretized representation of the arrangement. In Section 4,
structure of a protein in a protein complex and a smallwe apply our algorithm to NMR data for 7 proteins, and
number of unassigned NMR spectra to determine whictshow the interaction zones computed by our algorithm are
residues are part of the interface region in the complex. Byaccurate (i.e., identify a large percentage of the interface
using unassigned NMR spectra we are able to remove theegion), and that our computed interaction cores have high
requirement that chemical shifts and NOEs be laborioushysensitivity (i.e., a very low percentage of false positives).
assigned to their corresponding atom in each protein. Our In this paper, our main contributions are:
algorithm is designed to use an existing structural model 1. To formalize the problem of finding a protein inter-
of the protein, unassignechemical shifti.e., HSQC face fromunassignedNMR data as a geometric cluste-
peaks), amide exchange data, and unassifttédesi-  ring problem, by exploiting the computational-geometric
dual dipolar couplinggNH RDCs), which give restraints properties of RDC physics.

2. An optimal algorithm that runs i (n3 logn) for

2 Full details of the results in the paper, including additional figures, SOIVINg this geometric clustering problem.
can be found in [27].
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3. Apractical algorithm running i (nk3 +n?) time to Another ubiquitous technique in the study of protein-
identify the interface region of a protein given unassignedprotein interfaces is callechemical shift mapping42,
chemical shifts, unassigned RDCs and a structural moded8], which compares the change in HSQC spectra (see
of the protein. Section 1.2 below) for the free and complex spectra of

4. Testing of our algorithm on different combinations of the protein. To directly identify the interface region from
real and simulated NMR data from 7 proteins that showschemical shift perturbations, the HSQC must be assi-
it could be useful in high-throughput applications. gned. McCoy and Wyss [26] use assighed HSQC spectra

to identify the interface region, and they use assigned

) RDCs to compute the relative rotation of the two prote-
1.1 Previous Work ins in the complex. With unassigned HSQC spectra, it is
Protein-protein interactions are important for understanpossible, through titration experiments, to identify which
ding many important biological phenomena. NMR allows (unassigned) HSQC peaks have shifted [33].
for the study of proteins in solution, and is ideally suited, In contrast to many docking approaches, our algorithm
as well as widely used, to study protein-protein inter-only finds the interface region of the given protein and not
actions (see, e.g., [42] for a survey). The majority ofthe complex structure. Furthermore, we wsgssigned
techniques to probe protein-protein interactions make usehemical shifts and RDCs. Kohlbachet al. [20] use
of assignedNMR data. Previous NMR techniques that unassigned experimentaH spectra to score candidate
use apo structural information require that the experimeneockings; however they do not use experimental data to
tal data be assigned [8, 26] or that multiple experimentglirectly identify the interface region. Compared to the
utilizing selective labeling be performed [34]. The key work of [34] which uses selective labeling and unassigned
difference between our work and much of the previousNMR data, our approach is faster and cheaper since the
work is that we require onlynassignedNMR data, and amount of wetlab time is fixed for our technique and does
seek only to identify the residues involved in the interfacenot depend on the protein being studied. We do show,
region without predicting [11, 10, 26] the structure of the however, that selective labeling can optionally be used
complex. The identified interface residues can be useith our algorithm toimprove the accuracy and sensitivity
in a number of ways. First, by running our algorithm on of the results (see Section 4).
both proteins in the complex, it is possible to constrain
the exhaustive searches over rotations and translations2 Background
typically used in protein-protein docking algorithms. Fur- Solution NMR spectroscopy experiments give useful
thermore, knowledge of the interface residues can be usedformation about various biological and physical geome-
to model “hot-spots” for mutation studies, or in drug tric properties of the protein being studied. Our algorithm
design, where small molecules are identified (or built) touses experimental data from several high-throughput
targetinterface residues in order to disrupt protein-proteiMMR techniques for the protein complex of interest; in
interactions [24]. The goal of working with unassigned this section, we discuss the information content of this
data is to minimize manual, wetlab, and computationaldata with respect to our algorithm.
time, as well as resources, needed, and to thus facili- Our algorithm uses'H-!>N Heteronuclear Single
tate high-throughput examination of various structuralQuantum Coherence spectroscq@p HSQC) data [5,
properties of proteins [21, 23, 28, 29, 14, 43]. pages 411-447]. The HSQC data for a protein consists

A common approach to studying protein-protein inter- of a set of peaks which encode the resonant frequency of
actions is todock the proteins in the complex. That is, the amide atoms in each residue. These characteristic fre-
given structural information about the apo forms of thequencies are also commonly referred tolasmical shifts
proteins, as well as assigned NMR experimental informathus, amide HSQC data for a protein (ideally) is a set of
tion such as orientational and distance restraints, dockingairs, one pair per residue (except for prolines and the N-
algorithms [26, 20, 11, 7, 8] compute the translation anderminus), that contain the chemical shifts of the amide
rotation that brings the apo structures together to proproton and nitrogen. The chemical shift of a nucleus
duce the complex structure. In general, the experimentathanges when its local electronic environment changes.
NMR data must first be assigned; NOE data is particularlyHence, the holo vs. apo spectrum indicates binding or
hard to assign due to chemical shift degeneracy [7, 8]conformational change, allowing us to identify residues
However, without experimental data, the accuracy of than the interface region. Conversely, zero chemical shift
predicted complex structure is determined solely by thechange can indicate that binding hast occurred. We
energy function, and not by experimental observations ofurther assume that the holo structure does not undergo
the complex in solution. significant conformational change outside of the interface
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region; similar assumptions are made by most dockinge folded into the matri$ to be consistent with the stan-

protocols [10, 8, 26]. Once the identity of each peak’'sdard representation of a quadratic form. Like the HSQC

atoms (in the primary sequence) is known, chemical shifexperiment, RDCs can be recorded in about an hour of

information can be useful in studying protein-ligand [38] spectrometer time.

and protein-protein [42] interactions (see Section 1.1). In

this paper, we assume these idgntitieg are unknown_, (i.e2 PROBLEM DEFINITION AND

unassigne}l and treat the chemical shift peak for a given APPLICATION

residue as a unique identifier that indexes into the experi-

mental RDC data (described below). Our algorithm alsdn this section, we formally define a clustering problemin

uses NMR data from eith@mide exchangi3] orwater ~ an arrangement onamanifold, where the arrangement

HSQC[16] experiments to identify which of the chemi- is induced by a spherical quadratic form. We first state

cal shifts from the given HSQC spectrum is associatedhe problem formally and then discuss its relevance and

with surface, or solvent accessible, residues in the proteirfPplication to the problem of determining protein-protein

The HSQC experiment together with these experimentéterfaces given unassigned NMR data.

:ﬁ l'gsgigig\;e;; ;? gsza&;%;etse'?gzs;an be performe%ll An Arrangement Problem on2-Manifolds
Our algorithm also usesesidual dipolar coupling Let P be a semi-algebraig-manifold with boundary in

(RDC) data [25, 36, 39]. Residual dipolar couplings giveR* With constant degree, and 18% denote the boun-

global orientational restraints on internuclear vectors. Indary of P, which is a2-manifold inIR”. Let TP denote

this paper, we use NH RDCs, which give orientationalthe tangent bundle oP; that is, 7P = {(p,v) | p €

information about backbone amide bond vectors. EacH’ Vv € T, P} whereT, P is the tangent space pfe P.

residual dipolar coupling is a real number, where: Let V. C T'P be a finite set. Let3 be the mapping
- B((p,v)) = ((p® Bs) N P) x (v ® Bs), where Bs
D = Dinazv' Sv. (1) and By are 3-dimensional balls of radiu§ > 0 and

Dinas is the dipolar interaction constant, is the inter- 0" > 0, respectively, centered at the origin. Here,
nuclear vector of interest with respect to an arbitrarydenotes the Minkowski sum, i.e., for sets and B,
substructure frame, arglis the3 x 3 Saupeorder matrix, A ® B ={a+b[a € A, b € B}. Note thatB(V)
oralignment tensqmwhich specifies the orientation of the IS @an arrangement o,

protein in the laboratory frame (i.e, magnetic field in the Leétw : TP — P be the mapr(p,v) = p. Letd :
NMR spectrometer)S is a symmetric, traceless, ragk 5~ — IR be a quadratic form o6 with d(v) = v’ Sv,
tensor, that describes the average substructure alignmeWheresS is a symmetric, traceless tensor of rank 2. Let
between the protein and the (alignment) medium [25]J : TP\ 0 — S? be the mapj(p,v) = 7, where0
Given a structural model, and the assignmentafmore  is the zero section df'P. (Remark: Thezero sectiorof
of the recorded RDC values to their corresponding inter-a tangent bundle is simply the set of all elemeftsv)
nuclear vectors in the model, it is possible to use SVD towith [|v|| = 0). Letd. : TP\ 0 — IR be a quadratic
reconstruct the alignment tens®f25]. There are anum- form onT'P \ 0 with d.(v) = d(j(p,v)); we note that
ber of techniques to estimate the alignment tensor giver- is thelifting of d by ;. Figure 1 gives a commutative
unassignedRDCs [21, 23, 22, 14, 29, 43]. Many soluti- diagram of the mappings, j, d, andd... Let thecostof
ons may exist to Equation (1) for the internuclear vectorX € TP\ 0 be defined as

v given an RDC valueD andS; however, giverv and

S, we canback-computer simulate D (modulo noise, e(X) = max p(n(z),7(y)),

dynamics, crystal contacts in the structural model etc.) wyeX

in constant time. We note that the number of solutions

to Equation (1) can be reduced by recording RDCs f0rWherep(p’ 9) is the Euclidean distance betwegandg

multiple aligning media [40, 41]. Each medium (ideally) °" - Ye will also adopt that convention thallX, Y') =

gives an unique alignment tensor, and thus/faligning ~ ,ex vey p(p; q). Let R be an arbitrary, finite set of reals.

media, we havé equations for a given NH vecter. The  Define theneighborhoodbfr € RasN(r) = (r—e,r+
solutions tov must lie in the intersection of the soluti- ¢).

ons of thesd equations [41]. The functional relationship  Call acandidate assignmerit,r) € B(V) x R con-
given by Equation (1) between the recorded residual diposistentif d.(t) € N(r). The possible assignmenter
lar couplings and the corresponding internuclear vectors € R ared; (N (r)) N B(V). Now, givenR' C R, V,
is aquadratic form we note that the constait,,,, can  andc, € IR we wish to find the largest subsit’ of R’/
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OPCP S? 7 RORDR DR’

A, we view the problem of inferring the interface region
of A in a complex with another protei as an instan-
tiation of the above problem on arrangements as follows.
We take the3-manifold P to be the space-filled structural

Fig. 1. Commutative diagram of the mappings used in ourmodel of A, and the2-manifold &P to be the solvent-

problem defrinition.

R N(r)

accessible surface of the structural modelofThe set

V' C TPis simply the protein NH bond vectors, from the
given structural model ofl. We define the arrangement
B(V) slightly differently from above; for an NH vector

v associated with the™ residue along the backbone, we
defineB(v) to be the subset aP that contains the van
der Waals balls of the atoms in th#' residue. We note
that in this definition, the elements B{V') can intersect
only at boundaries. In general, one RDC value is measu-
red for each bond of a particular type — e.g., one RDC for
every backbone amide bond. For each amide bond, a pair
of (HN, N) chemical shifts (frequencies) is also measu-
red. We letR be the set of RDC values for the backbone
amide bond vectors of our protein. We assume that the

Fig. 2. Our clustering problem in an arrangement with the setalignment tenso8 has been estimated; there exist nume-

R’ = {r, s}. Starting with the neighborhood at’, i.e., the
intervalsN (r) and N (s) in IR, we consider the set of orienta-

rous techniques for estimating the alignment tensor from
unassigned NMR data [21, 23, 22, 29, 14, 43] (see Sec-

tions (contained ir6?) that are associated with these intervals. tions 1.2 and 3 for discussion on the technique we use in

These orientations aré ' (N (r)) andd~'(N(r)), shown as

colored green and blue bands, respectively, on the unit 2-spher

By our definition ofd; ' andB(V), these sets of orientations

are mapped to patches 0, denoted by the colored patches in

our algorithm). The quadratic forahis defined using
fSee Equation (1)). We take the gt to be the RDCs
associated with amide chemical shifts that are perturbed

the figure. Our optimization problem asks us to find the Iargeslbetween the apo and holo form 4f Recall that the unas-

set of patches that does not exceed the diameter threghold

such that
c(dH(N(R)NB(V)N7~ 1 (0P)) < co. (2)

Note thatd, (N (R")) N B(V)N7~1(0P) represents
possible assignments f&”. Computing this set requires
us to take the intersection between thedset( N (R"))
and the arrangemef{(1/). By the definition of3(V'), the
intersection betweedi, ! (N (R")) andB(v) has the inte-
resting property that for each elemeant V, it contains
either all of the set3(v) or none of it. The set~1(9P)
serves to constrain the subseflaP being considered so
that its base points are mP. We note that this restric-
tion can be relaxed to include any “shell” with depth
of P; that is, the setr—!(0P) can be replaced with the
setr—1 (0P @ (B, N P)). In Section 2.3, we give an
algorithm for computing the optimal subsit’ of R’.

2.2 Application to Protein-Protein Interfaces

signed chemical shifts that are perturbed between the apo
and holo forms of a protein are associated with residues
that are candidates for the interface region. Furthermore,
these chemical shifts index into the experimental RDCs,
thus we can determine the set from the experimental
data. In the remainder of the paper, wedet 1, thus
N(r) = (r—1,r+1) (i.e., thatthereis 1 Hz of errorin the
experimental RDCs). We take thgto be a user-defined
parameter that is given as input (see Section 4 for further
discussion).

To solve our optimization problem, we wish to find
the subset of the arrangemeiit! (N (R')) N B(V) N
7~1(0P) that minimizes the objective function (see
Figure 2). Intuitively, this geometric optimization pro-
blem corresponds to identifying a set of candidate NH
bond vectors and their residues that (a) map to, within
experimental error, a set of RD@ that is a subset o’
and (b) are clustered on the protein surface. Our problem
definition not only accounts explicitly for experimental
error in the RDC data, but it also captures the ambiguity

We now apply the optimization problem presented aboven the structural model by representing each NH vector
in the context of determining protein-protein interfacesas a cone to model orientational uncertainty and convol-
using NMR spectroscopy. As mentioned above, the inpuving the NH vector’s base point with a surface patch on
to our optimization problem is the manifold, a quadra- 9P to model positional uncertainty. (Remark: It is worth

tic form d, setsR’ andV, and a scalar,. For a protein  noting that our framework allows these surface patches
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to be defined arbitrarily as long as they are of constanthis be denoted (s). This is equivalent to asking how
degree.) In Section 2.3 we give an optimal and combinamany cells of the arrangement have all of their extrema
torially precise algorithm for solving this problem, and in in s; this can be done i®(n) time. LetC be the set of
Section 3 we give a practical algorithm along with resultsall such balls. Let* = arg max o(s), and letA* be the

on experimental protein NMR data. subset of4 contained ins*. The set4* can be computed

in O(n?) time, sinces(s) can be computed i@ (n) time
) ) ) ) ) _ for eachs € C, and|C| is O(n?). By definition, each
In thl_s section, we describe a gombmatonally Preciseeel| of A* is also in.A. Our algorithm finds the optimal
algorithm for solving the clustering problem presentedgei p” = R’ such thatR” is the largest set that satisfies
in Section 2.1 above. For ease of exposition, let the a”anEquatio_n (2). We return all triples, v, B(v) N~ (9 P))
gementA = d'(N(R') N B(V) n«~'(0P) and the  \yherer ¢ R”, v € V' = V N A%, (r,v) is & consistent
parameter;, be ﬂxed. We note that, then, the s&s V/, assignment, and the patchgd&(v) N7~ (0P)}yer- that
and the quadratic forni are fixed as well. LefV'| = n. 4y contained in the ball (of maximum score) associated
By definition,.A hasn generating cells; the complexity of \ith g The correctness of our algorithm follows if we
our algorithm is determined by the number of generating.5 1, show that every subset with diameter at mgsis
cells in A. In fact, for our application (see Section 2.2 ¢,nsidered by the scoring phase. It is straightforward to
above)A always has generating cells that intersect onlygge that the subset of that yields the maximum score
at boundaries, and thus total numberegells in.Ain 54 has diameter at most is associated with the sub-
this case is. Since we assume th&, and thus)P, has  getp” that minimizes Equation (2). Thus, the following
maximum constant degree, the boundaries of the cells gt jyma proves the correctness of our algorithm:
Aare algebraic sgrfacesthat also have constan?maxlmuml_emma 2.1.Every subsefX C A with diameter at
degree. Our goal is to compute a subsetidhat minimi-
zes Equation (2). Informally, our algorithm exploits the
fact that the arrangement can be represented using a Proof. Fix a subsetX and letp andg be the pair of
vertical decompositiofiL8], and that we can quickly find extrema that have maximal distance and dedenote
the extrema of each cell of. the ball with p and ¢ on its perimeter with diameter
Our algorithm works as follows. First, we note that @ = p(p, ¢). Note thats must contain every cell itk
givenB(V'), we can take the intersectialy ! (N (R’)) N completely; that is, no cell ok lies outside ofs, other-
B(V) in O(n) time since we are givel andd, and each wise we could create a ball with diameter greater than
cellof ANB(v) is either equal t&(v) (for somev € V)  p(p, q). Furthermores is the smallest ball that can con-
or (). First, we obtain thevertical decompositionf 4.  tain all of X, since any balls’ with diametera’ < «
The vertical decomposition of an arrangement is a essersannot containX . Now, s by definition is explicity con-
tially a recursively-defined sweep (along each dimension}yidered by our algorithm in the scoring phase, and thus is
of the cells of the arrangement. We omit a full descrip-contained irC. O
tion of the decomposition here, see [18] for examples By Lemma 2.1 and the time required to maintain the
and further references. For an arbitrary arrangement iwertical decomposition data structure fdr we have the
IR? of sizen, the worst-case complexity of the vertical following theorem:
decomposition i€ (n?) [18]; there is an algorithm to con-
struct the decomposition that requires, in the worst case
O(n?log n) time [6]. We note that with the given decom- t

position, finding the extrema of the cells df requires,
in the worst-case(n?) time, since that is the worst- 3 A CLUSTERING-BASED ALGORITHM

case complexity of the decomposition. Now, we can have TO IDENTIFY PROTEIN INTERFACES

at mostO(n) extrema over all cells of the arrangement, The algorithm in Section 2.3 is exact and combinatorially
since each cell has constant degree; thus, we Ggué) precise, but requires computation of algebraic surfaces.
pairs of extrema. For each pair of extrema < IR®, we  In this section we give a practical version of the the algo-
check ifp(p, q) is at mostc, . For each such pajr, ¢, we  rithm of Section 2.3. Due to experimental error in the
construct a ball with diametei(p, ¢) with p andg onthe  RDCs we make use of a probabilistic method to compute
boundary. Let there bg such balls. Ifk = 0, then we  Aratherthan computing the intersection directly. We also
return theR” = ). Otherwise, we calculate the following model the elements ofl using a discrete point set that
scoreon each ball. For each ballwe compute how many represents the protein surface, rather than using an alge-
cells of the arrangement lie completelydnlet number  braic representation afP. As before, the input to our

2.3 A Clustering Algorithm on Arrangements

mostc, is contained in one of the balls A

Theorem 1.The setR” C R’ that minimizes Equa-
ion (2) can be computed i@ (n3 logn) time.

297



algorithm is the set of backbone NH vectors from a 3Dubiquitin (PDB ID: 1D3Z), barnase (PDB ID: 1BNR),
structural model of the apo form of a proteihin the  barstar (PDB ID: 1BTA), EIN (PDB ID: 1EZA), and
complex, RDCs for the protein, a set of chemical shiftsHPr (PDB ID: 1HDN) from the CAD-ICAD [32],
(for surface residues) that are perturbed in the holo formubiquitin-CUE [19], barnase-barstar [4], ELN-HPr [15]
of the protein, and an upper bound on the diameter oprotein-protein complexes and the Pex13P-Pex14P [12]
the interface region. As a preprocessing step to our algoprotein-peptide complex. We assume thatthe manual (and
rithm, we note that there is existing software to identify generally time-consuming) experimental studies for these
the perturbed chemical shifts (e.qg., [33]). complexes have produced the true interface regions, and
Let A be the apo form of am-residue protein in the compare the results of our algorithm against them. We
complex, and let{ denote the holo form of the proteinin report theaccuracy(the fraction of the interface region
the complex. We us#&4 to denote the surface backbone identified by our algorithm) of the interaction zone, and
NH vectors from the structure of. Let R denote the thesensitivity(the fraction of the output of our algorithm
RDC values observed for the NH vectors of the surfacehat was part of the interface region) of the interaction
residues ofd. In the first phase, we identify the set of core (Figure 3).
NH vectors (i.e., residues) associated with the given per- For our experiments, we used experimental RDC data
turbed chemical shifts by using unassigned experimentdbr a single aligning medium for EIN, HPr, and ubiquitin
RDCs. We first compute an estimated alignment tensoavailable from the BioMagResBank (BMRB) [37]. For
using the algorithm of [23], and fix the RDC majp  these proteins, a second set of RDC data for a second
Our algorithm then partitions the sAtinto two sets M, aligning medium was simulated. As mentioned in Sec-
RDCs that are associated with perturbed chemical shiftgjon 1.2, additional aligning media serve to constrain the
andM’ = R\ M. We then probabilistically match RDCs solutions for the NH vector orientations that can be incor-
in M’ with NH vectorsV, by eliminating the highest porated as follows. For 2 aligning media, each RDiS
joint-probability match, and successively conditioning given one probability distribution per medium; we match
match probabilities on previous eliminations (cf. [22]). experimental RDCs to NH vectors by taking the maxi-
After all RDCs inM’ have been matched, we output the mum joint probability that the RDCs in both media match
remaining NH vectors as the interaction zdfig. Inthe  to a vectorv. For the remaining proteins, experimental
second phase, we filtef 4 further by using the algo- RDC data is not publicly available; two sets of RDC data
rithm of Section 2.3 as follows. First, we compute anfor two independent aligning media were simulated for
approximation to9 P by taking a uniform sample (at a Pex13P, CAD, barnase and barstar. For simulated RDC
fixed resolution) obHP. We make use of the MSMS [35] data, we used a Gaussian error window of 1 Hz. Although
algorithm for constructing this point set; MSMS runs in we have experimental NMR chemical shifts and NH vec-
O(mlogm) time, wherem is the number of atoms id.  tors for all residues in the proteins being tested, we only
Let S4 be the point set computed by MSMS; note thatmake use of surface NH vectors and chemical shifts. Sur-
|Sal = O(m) = O(n). We partition the point set as fol- face NH vectors can be easily identified from the given
lows: for each NH vector € V", we letS, C S4 be  structural model, and surface chemical shifts can be iden-
all points inS 4 that are associated with the same residueified experimentally using amide exchange data; we used
asv. This set can be computed(|S,4|) time. We then  the program MolMol to compute these NH vectors. Sol-
proceed as in Section 2.3 and output the residues associzent accessibility (i.e., percentage of atomic surface area
ted with the highest-scoring cluster as the interaction corexposed to solvent) and the chemical shiftassignment was
C 4. During the first phase of the algorithm, tensor estima-used to identify chemical shifts associated with residues
tion requiresO(nk?) time, and the set4s — V' requires  whose solvent accessibility was at lea8%. The set of
O(n?) time to construct. In the second phase of the algosurface residues that we used as input in all of our expe-
rithm, the setS4 requiresO(mlogm) time, wherem is  riments were the residues identified by MolMol as being
the number of atoms iA, and the clustering step requires at leastt0% solvent-accessible, as well as any residues in
O(n?) time. The overall running time of our algorithm is the interface region for that protein. We implemented our
thenO(nk® + mlogm + n3) = O(nk? + n?). algorithm in Matlab (Mathworks Inc, Natick, MA), and
ran all of our experiments on a Pentium-4 class proces-
sor. Since some of our input data (specifically, simulated
4 RESULTS AND DISCUSSION RDC data) was generated with a Gaussian error window,
We implemented and tested our algorithm on 7 protethe test results in Figure 3 give the average accuracy and
ins from 5 different protein complexes: the apo formssensitivity over 10 trials for each protein. For our test
of Pex13P (PDB ID: 1NM7), CAD (PDB ID: 1C9F), cases, each execution of our algorithm required about 2
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Protein | Accuracy| Sensitivity E;?;f;? ;‘6 Selnos(;t;;lty Protein | Accuracy| Sensitivity | Labeling E;?;f;? ;(6 Selnos(l)tozlty
PEX13P 73% 80% PEX13P 87% 94% RDQKF

25| 100% 25| 100%
barnase 2% 90% 20 99% barnase 78% 85% NGKT 30 100%
barstar 77% 100% =T g0 |Parstar 91% 100% | RQKS 351 96%
ubiquitin | 73% 3%  ms—To0 T Togee | lbiauitin [ 74% 100% [ RNDKT | — oo — oo
CAD 75% 90% 55 91% CAD 85% 100% QEHMS 55 91%
HPr 88% 100% 30 8% HPr 88% 100% EF 30 93%
EIN 90% 100% T 739 EIN 93% 100% NV 35 84%

(a) o) © )

Fig. 3. Results.(a) Accuracy of interaction zone and sensitivity of interaction core; (b) Tradeoff between sensitivity;ajo)l
Accuracy of interaction zone and sensitivity with selective labeling; (d) Tradeoff between sensitivity aitth selective labeling.
For (a) and (c), the diameter of the interaction cefewas set t@0 A.

or 3 minutes of CPU time on average. Taecuracyof  remaining interface residues are nearby; in our test cases,
the interaction zon# 4 is the percentage of true interface all interface residues that were not in the interface core
residues contained ifi 4. For our test cases, we achieved were all within about 10 A from the core.

accuracies between 73% and 90%. Bhasitivityof the Selective labeling allows the stable isotopic labeling of
interaction coreC'4 is the percentage af'y comprised agiven setofresidue types, and thus allows us to constrain
of interface residues; we achieved sensitivities of betthe amino acid type of an experimentally-recorded RDC if
ween 73% and 100%. Accuracy and sensitivity results ar¢hat type has been labeled. In our algorithm, this additio-
reported for each protein (for a visualization of the outputnal constraint can be used in the first phase to improve the
of our algorithm on the proteins in the EIN-HPr complex accuracy of matching experimental RDCs to NH vectors.
see [27]). A key feature of our algorithm is the ability to This can, in turn, improve both accuracy and sensitivity of
choose the diameter threshe|dfor the interaction core. the interaction zone. In practice, the most useful residue
With a conservative value (i.e., significantly smaller thantypes for selective labeling can be determined from the
the interface region itself), we are able to achieve veryprimary sequence and apo structure, as well as from bio-
high sensitivity at the expense of decreased accuracy. Thahysical characterizations of which amino acid types are
is, whenc, is small, the second phase of our algorithm likely to be on the protein surface [9]. Figure 3(c) shows
returns a small number of residues, but they are all guathat our experimental results can be improved by using
ranteed to be inthe interface region. Asweincregsthe  selective labeling; for each protein, we give a labeling
size of the interaction core increases, but these residudbat improves both the accuracy of the interaction zone
are not all necessarily guaranteed to be in the interfacand the sensitivity of the interaction core. By using selec-
region. Figure 3(b) shows the tradeoff between the senstive labeling, we are able to improve the average accuracy
tivity of the interaction core ang, for two representative  of the interaction zone to 88% and the average sensitivity
proteins. However, the accuracy of the interaction coreof the interaction core to 97%. Furthermore, we observe
(i.e., percentage of the true interface region contained ithe same tradeoff between accuracy and sensitivity of the
the core) decreases as the core diameter decreases. Fateraction core (see Figure 3(d)); however, the sensiti-
example, for barstar, the core accuracy decreases frowity of C'4 was improved due to the constraint added by
86% to 77% wher, is decreased from 30 A to 25 A. selective labeling in the first phase of our algorithm.

We note that this feature of our algorithm is important

in applications such as drug design and protein-protein

docking, since users can tregt as essentially a confi-

dence parameter, setting it conservatively for obtain highb  CONCLUSION

sensitivity. For example, the docking study of [10] found | this paper, we have formalized the problem of fin-
that in some cases, distance restraints between just a Siﬂ'mg a protein interface fromnassignedNMR data as a

gle pair of residues are sufficient to significantly constraingeometric clustering problem. We gave an optimal algo-
the relative rotations and translations of the two proteingjthm for the geometric clustering algorithm that runs
in the complex. It is thus possible to run our algorithm j, O(n3logn). Using this algorithm, we developed a
on both of the proteins of a complex and use the compactical algorithm for finding protein interfaces given
puted interaction cores to constrain the docking procesgnassigned chemical shifts, unassigned RDCs and a struc-
a priori, reducing the time spent searching rotations andyra| model of the apo protein that runs@nk® + n)
translations by existing approaches [11, 10, 8, 26]. Furtine. On NMR data for 7 proteins, we showed that our
thermore, ifc, is set conservatively, it is likely that the  aigorithm yielded results that were both accurate and had
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high sensitivity (i.e., a low false-positive rate), demon- [18] D. Halperin. In J. E. Goodman and J. O'Rourke, editors,
strating that our algorithm is useful in practice. It would Handbook of Discrete and Computational Geomgery.

be interesting to see if our algorithm could be appliedto ~ 389-412. CRC Press, New York, NY, 1997.

proteins with multiple interface regions. In principle, our [19] R. S.Kang, C. M. Daniels, S. A. Francis, S. C. Shih, W. J.
algorithm could be generalized: in the second phase, we ~ S@lerno, L. Hicke, and |. Radhakrishnapell, 113:621—

: : 630, 2003.
Wogld return a set of CIL.JSterS W.Ith high score, rather than[ZO] O. Kolhbacher, A. Burchardt, A. Moll, A. Hildebrandt, P.
a single cluster, as the interaction cores.
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