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ABSTRACT
We cast the problem of identifying protein-protein inter-

faces, using only unassigned NMR spectra, into a geome-
tric clustering problem. Identifying protein-protein inter-
faces is critical to understanding inter- and intra-cellular
communication, and NMR allows the study of protein inter-
action in solution. However it is often the case that NMR
studies of a protein complex are very time-consuming,
mainly due to the bottleneck in assigning the chemical
shifts, even if the apo structures of the constituent pro-
teins are known. We study whether it is possible, in a
high-throughput manner, to identify the interface region of
a protein complex using only unassigned chemical shift
and residual dipolar coupling (RDC) data.

We introduce a geometric optimization problem where
we must cluster the cells in an arrangement on the boun-
dary of a 3-manifold, where the arrangement is induced by
a spherical quadratic form. We show that this formalism
derives directly from the physics of RDCs. We present an
optimal algorithm for this problem that runs in O(n3 log n)

time for an n-residue protein. We then use this cluste-
ring algorithm as a subroutine in a practical algorithm
for identifying the interface region of a protein complex
from unassigned NMR data. We present the results of
our algorithm on NMR data for 7 proteins from 5 protein
complexes and show that our approach is useful for high-
throughput applications in which we seek to rapidly identify
the interface region of a protein complex.
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1 INTRODUCTION1

Protein-protein interactions are well-studied in structural
biology, and the structural basis for these interactions are
useful in elucidating the biological role of the consituent
proteins. As the Protein Structure Initiative [31] rapidly
populates the “space of protein structures,” an emerging
goal of structural proteomics is to study not just individual
proteins, but protein complexes and networks of protein
interactions, as well as the molecular and structural basis
for these interactions. High-throughput computational
approaches for identifying the interface region between
proteins in a complex can serve a useful role in study-
ing these protein-protein interactions. Recent advances in
solution NMR spectroscopy allow us to directly study the
interaction between two proteins in solution; NMR is ide-
ally suited to studying protein-ligand and protein-protein
interactions [42]. In contrast to existing approaches that
rely onassignedNMR data, in this paper we develop an
efficient algorithm for identifying the interface between
two proteins in a complex usingunassignedNMR data.

Even given apo (or, unbound) structural models of the
constituent proteins in a protein-protein complex (whose
structure is unknown) obtained by either NMR or X-ray
crystallography, a key bottleneck known as theassi-
gnmentproblem [17, 2, 23, 1, 28, 30] remains before
we can make use of the recorded NMR spectra. That
is, before we can make use of the NMR spectra, we
must assignthe NMR measurements to the nuclei that
the measurements give information about. For example,

1 Abbreviations used: NMR, nuclear magnetic resonance; RDC, resi-
dual dipolar coupling; HSQC, heteronuclear single-quantum coherence;
HN, amide proton; NOE, nuclear Overhauser effect; SAR, structure
activity relation; apo, free or unbound form of a protein in a protein
complex; holo, bound or complex form of a protein in protein complex;
SVD, singular value decomposition;SO(3), special orthogonal group
in 3D; S2, a 2-sphere inIR3.
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nuclear Overhauser effect(NOE) NMR data provides
interatomic distance restraints; in order for these distance
restraints to be used in structure determination, we must
first assign each restraint to a pair of nuclei in the protein.
Current automated computational approaches to study-
ing protein-protein interactions assume that the given
NMR data has been assigned. These approaches typically
use this NMR data, along with structural models of the
constituent proteins, to generate the structure of the pro-
tein complex [11, 10, 8, 26]. The assignment process
is typically done manually, and is time consuming. For
example, the E1N-HPr complex required about 2 years
of data analysis [7, 15] to obtain an accurate structural
model. Automating the assignment process is an active
area of research [23, 22, 43, 1, 2] (see [17] for a review of
recent work). By avoiding the assignment problem, high-
throughput determination of protein-protein interfaces
given onlyunassignedNMR data would speed up all cur-
rent approaches to generating the complex structure (via
docking, see Section 1.1 below for further discussion). We
show that without assignments, some accuracy is sacrifi-
ced in the determination of the protein interface, but there
are enormous savings in time and cost, making it suita-
ble for high-throughput applications. Furthermore, our
approach of using only asparseset of NMR data can be
useful in the context of drug design, where a large number
of protein-ligand pairs must be screened. Our algorithm
uses experiments that require only15N-labeled samp-
les that can be recorded in about a day of spectrometer
time; 15N-labeled samples require an order of magnitude
less expense than13C samples to prepare. While manual
approaches to determining the interface region may be
more accurate (using a large suite of NMR spectra recor-
ded for the apo and holo, or complex form, of the protein
of interest), in applications such as drug design, a high-
throughput algorithm (making use of sparse, unassigned
NMR data) that trades some accuracy for time is often
highly preferable to slower, data-intensive methods.

In this paper,2 we present an algorithm that uses the apo
structure of a protein in a protein complex and a small
number of unassigned NMR spectra to determine which
residues are part of the interface region in the complex. By
using unassigned NMR spectra we are able to remove the
requirement that chemical shifts and NOEs be laboriously
assigned to their corresponding atom in each protein. Our
algorithm is designed to use an existing structural model
of the protein, unassignedchemical shifts(i.e., HSQC
peaks), amide exchange data, and unassignedNH resi-
dual dipolar couplings(NH RDCs), which give restraints

2 Full details of the results in the paper, including additional figures,
can be found in [27].

on the orientation of the backbone NH bond vectors of a
protein in solution [39]. Unlike previous work [3] which
characterizes the geometry of protein interfaces, we do
not assume that the crystal or solution structure of the
complex has been solved. In fact, significantly more struc-
tures have been solved for proteins in their apo, or free
form, rather than in their holo, or complexed form, due to
limitations in the size of protein structures that can be sol-
ved by NMR or even X-ray crystallography. In practice,
it is often more desirable to have a low false-positive rate
at the expense of accuracy. Thus, for a proteinA, the goal
of our algorithm will be to describe the interface region
in terms of both aninteraction zoneZA and aninter-
action coreCA. We judge the performance of this pair
(ZA, CA) by examining the accuracy ofZA and the sen-
sitivity (i.e., percentage of true positives) ofCA. Previous
NMR techniques that have utilized prior apo structural
information have either required that the experimental
data be assigned [8, 26] or that multiple experiments uti-
lizing selective isotopic labeling be performed [34]. We
first consider a geometric version of the problem of iden-
tifying protein interfaces that asks us to cluster the cells
of anarrangementon a2-manifold. In Section 2.3, we
give an algorithm that computes the optimal solution to
this problem and runs inO(n3 log n) time. Then, in Sec-
tion 3, we give a more practical algorithm for solving
this problem that runs inO(nk3 + n3) time, wherek is
a parameter used to grid the the rotation spaceSO(3) in
order to estimate the alignment tensor (see Section 2).
In the first phase of our algorithm we use a probabilistic
approach to matching residues from the given structural
model to the unassigned experimental RDCs; this phase
identifies the interaction zoneZA. Then, in the second
phase, we use a practical version of our geometric cluste-
ring algorithm that, given a size threshold, identifies the
interaction coreCA. Instead of explicitly considering the
arrangement induced by the protein surface and the given
RDCs, this version of the clustering algorithm uses a dis-
cretized representation of the arrangement. In Section 4,
we apply our algorithm to NMR data for 7 proteins, and
show the interaction zones computed by our algorithm are
accurate (i.e., identify a large percentage of the interface
region), and that our computed interaction cores have high
sensitivity (i.e., a very low percentage of false positives).

In this paper, our main contributions are:
1. To formalize the problem of finding a protein inter-

face fromunassignedNMR data as a geometric cluste-
ring problem, by exploiting the computational-geometric
properties of RDC physics.

2. An optimal algorithm that runs inO(n3 log n) for
solving this geometric clustering problem.
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3.A practical algorithm running inO(nk3+n3) time to
identify the interface region of a protein given unassigned
chemical shifts, unassigned RDCs and a structural model
of the protein.

4.Testing of our algorithm on different combinations of
real and simulated NMR data from 7 proteins that shows
it could be useful in high-throughput applications.

1.1 Previous Work
Protein-protein interactions are important for understan-
ding many important biological phenomena. NMR allows
for the study of proteins in solution, and is ideally suited,
as well as widely used, to study protein-protein inter-
actions (see, e.g., [42] for a survey). The majority of
techniques to probe protein-protein interactions make use
of assignedNMR data. Previous NMR techniques that
use apo structural information require that the experimen-
tal data be assigned [8, 26] or that multiple experiments
utilizing selective labeling be performed [34]. The key
difference between our work and much of the previous
work is that we require onlyunassignedNMR data, and
seek only to identify the residues involved in the interface
region without predicting [11, 10, 26] the structure of the
complex. The identified interface residues can be used
in a number of ways. First, by running our algorithm on
both proteins in the complex, it is possible to constrain
the exhaustive searches over rotations and translations
typically used in protein-protein docking algorithms. Fur-
thermore, knowledge of the interface residues can be used
to model “hot-spots” for mutation studies, or in drug
design, where small molecules are identified (or built) to
target interface residues in order to disrupt protein-protein
interactions [24]. The goal of working with unassigned
data is to minimize manual, wetlab, and computational
time, as well as resources, needed, and to thus facili-
tate high-throughput examination of various structural
properties of proteins [21, 23, 28, 29, 14, 43].

A common approach to studying protein-protein inter-
actions is todock the proteins in the complex. That is,
given structural information about the apo forms of the
proteins, as well as assigned NMR experimental informa-
tion such as orientational and distance restraints, docking
algorithms [26, 20, 11, 7, 8] compute the translation and
rotation that brings the apo structures together to pro-
duce the complex structure. In general, the experimental
NMR data must first be assigned; NOE data is particularly
hard to assign due to chemical shift degeneracy [7, 8].
However, without experimental data, the accuracy of the
predicted complex structure is determined solely by the
energy function, and not by experimental observations of
the complex in solution.

Another ubiquitous technique in the study of protein-
protein interfaces is calledchemical shift mapping[42,
38], which compares the change in HSQC spectra (see
Section 1.2 below) for the free and complex spectra of
the protein. To directly identify the interface region from
chemical shift perturbations, the HSQC must be assi-
gned. McCoy and Wyss [26] use assigned HSQC spectra
to identify the interface region, and they use assigned
RDCs to compute the relative rotation of the two prote-
ins in the complex. With unassigned HSQC spectra, it is
possible, through titration experiments, to identify which
(unassigned) HSQC peaks have shifted [33].

In contrast to many docking approaches, our algorithm
only finds the interface region of the given protein and not
the complex structure. Furthermore, we useunassigned
chemical shifts and RDCs. Kohlbacheret al. [20] use
unassigned experimental1H spectra to score candidate
dockings; however they do not use experimental data to
directly identify the interface region. Compared to the
work of [34] which uses selective labeling and unassigned
NMR data, our approach is faster and cheaper since the
amount of wetlab time is fixed for our technique and does
not depend on the protein being studied. We do show,
however, that selective labeling can optionally be used
with our algorithm to improve the accuracy and sensitivity
of the results (see Section 4).

1.2 Background
Solution NMR spectroscopy experiments give useful
information about various biological and physical geome-
tric properties of the protein being studied. Our algorithm
uses experimental data from several high-throughput
NMR techniques for the protein complex of interest; in
this section, we discuss the information content of this
data with respect to our algorithm.

Our algorithm uses1H-15N Heteronuclear Single
Quantum Coherence spectroscopy(2D HSQC) data [5,
pages 411–447]. The HSQC data for a protein consists
of a set of peaks which encode the resonant frequency of
the amide atoms in each residue. These characteristic fre-
quencies are also commonly referred to aschemical shifts;
thus, amide HSQC data for a protein (ideally) is a set of
pairs, one pair per residue (except for prolines and the N-
terminus), that contain the chemical shifts of the amide
proton and nitrogen. The chemical shift of a nucleus
changes when its local electronic environment changes.
Hence, the holo vs. apo spectrum indicates binding or
conformational change, allowing us to identify residues
in the interface region. Conversely, zero chemical shift
change can indicate that binding hasnot occurred. We
further assume that the holo structure does not undergo
significant conformational change outside of the interface
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region; similar assumptions are made by most docking
protocols [10, 8, 26]. Once the identity of each peak’s
atoms (in the primary sequence) is known, chemical shift
information can be useful in studying protein-ligand [38]
and protein-protein [42] interactions (see Section 1.1). In
this paper, we assume these identities are unknown, (i.e.,
unassigned), and treat the chemical shift peak for a given
residue as a unique identifier that indexes into the experi-
mental RDC data (described below). Our algorithm also
uses NMR data from eitheramide exchange[13] orwater
HSQC[16] experiments to identify which of the chemi-
cal shifts from the given HSQC spectrum is associated
with surface, or solvent accessible, residues in the protein.
The HSQC experiment together with these experiments
to identify solvent accessible residues can be performed
in less than a day of spectrometer time.

Our algorithm also usesresidual dipolar coupling
(RDC) data [25, 36, 39]. Residual dipolar couplings give
global orientational restraints on internuclear vectors. In
this paper, we use NH RDCs, which give orientational
information about backbone amide bond vectors. Each
residual dipolar couplingD is a real number, where:

D = DmaxvT Sv. (1)

Dmax is the dipolar interaction constant,v is the inter-
nuclear vector of interest with respect to an arbitrary
substructure frame, andS is the3×3 Saupeorder matrix,
oralignment tensor, which specifies the orientation of the
protein in the laboratory frame (i.e, magnetic field in the
NMR spectrometer).S is a symmetric, traceless, rank2
tensor, that describes the average substructure alignment
between the protein and the (alignment) medium [25].
Given a structural model, and the assignment of5 or more
of the recorded RDC values to their corresponding inter-
nuclear vectors in the model, it is possible to use SVD to
reconstruct the alignment tensorS [25]. There are a num-
ber of techniques to estimate the alignment tensor given
unassignedRDCs [21, 23, 22, 14, 29, 43]. Many soluti-
ons may exist to Equation (1) for the internuclear vector
v given an RDC valueD andS; however, givenv and
S, we canback-computeor simulateD (modulo noise,
dynamics, crystal contacts in the structural model etc.)
in constant time. We note that the number of solutions
to Equation (1) can be reduced by recording RDCs for
multiple aligning media [40, 41]. Each medium (ideally)
gives an unique alignment tensor, and thus for` aligning
media, we havè equations for a given NH vectorv. The
solutions tov must lie in the intersection of the soluti-
ons of thesè equations [41]. The functional relationship
given by Equation (1) between the recorded residual dipo-
lar couplings and the corresponding internuclear vectors
is aquadratic form; we note that the constantDmax can

be folded into the matrixS to be consistent with the stan-
dard representation of a quadratic form. Like the HSQC
experiment, RDCs can be recorded in about an hour of
spectrometer time.

2 PROBLEM DEFINITION AND
APPLICATION

In this section, we formally define a clustering problem in
an arrangement on a2-manifold, where the arrangement
is induced by a spherical quadratic form. We first state
the problem formally and then discuss its relevance and
application to the problem of determining protein-protein
interfaces given unassigned NMR data.

2.1 An Arrangement Problem on2-Manifolds
Let P be a semi-algebraic3-manifold with boundary in
IR3 with constant degree, and let∂P denote the boun-
dary ofP , which is a2-manifold inIR3. Let TP denote
the tangent bundle ofP ; that is,TP = {(p,v) | p ∈
P,v ∈ TpP} whereTpP is the tangent space ofp ∈ P .
Let V ⊂ TP be a finite set. LetB be the mapping
B((p,v)) = ((p ⊕ Bδ) ∩ P ) × (v ⊕ Bδ′), whereBδ

and Bδ′ are 3-dimensional balls of radiusδ > 0 and
δ′ > 0, respectively, centered at the origin. Here,⊕
denotes the Minkowski sum, i.e., for setsA and B,
A ⊕ B = {a + b | a ∈ A, b ∈ B}. Note thatB(V )
is an arrangement on∂P .

Let π : TP → P be the mapπ(p,v) = p. Let d :
S2 → IR be a quadratic form onS2 with d(v) = vT Sv,
whereS is a symmetric, traceless tensor of rank 2. Let
j : TP \ 0 → S2 be the mapj(p,v) = v

‖v‖ , where0
is the zero section ofTP . (Remark: Thezero sectionof
a tangent bundle is simply the set of all elements(p,v)
with ‖v‖ = 0). Let d∗ : TP \ 0 → IR be a quadratic
form onTP \ 0 with d∗(v) = d(j(p,v)); we note that
d∗ is thelifting of d by j. Figure 1 gives a commutative
diagram of the mappingsπ, j, d, andd∗. Let thecostof
X ⊆ TP \ 0 be defined as

c(X) = max
x,y∈X

ρ(π(x), π(y)),

whereρ(p, q) is the Euclidean distance betweenp andq
onP . We will also adopt that convention thatρ(X, Y ) =

max
p∈X,q∈Y

ρ(p, q). Let R be an arbitrary, finite set of reals.

Define theneighborhoodof r ∈ R asN (r) = (r−ε, r+
ε).

Call acandidate assignment(t, r) ∈ B(V ) × R con-
sistent if d∗(t) ∈ N (r). The possible assignmentsfor
r ∈ R ared−1

∗ (N (r)) ∩ B(V ). Now, givenR′ ⊂ R, V ,
andc0 ∈ IR we wish to find the largest subsetR′′ of R′
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Fig. 1. Commutative diagram of the mappings used in our
problem definition.
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Fig. 2. Our clustering problem in an arrangement with the set
R′ = {r, s}. Starting with the neighborhood ofR′, i.e., the
intervalsN (r) andN (s) in IR, we consider the set of orienta-
tions (contained inS2) that are associated with these intervals.
These orientations ared−1(N (r)) andd−1(N (r)), shown as
colored green and blue bands, respectively, on the unit 2-sphere.
By our definition ofd−1

∗ andB(V ), these sets of orientations
are mapped to patches on∂P , denoted by the colored patches in
the figure. Our optimization problem asks us to find the largest
set of patches that does not exceed the diameter thresholdc0 .

such that

c(d−1
∗ (N (R′′)) ∩ B(V ) ∩ π−1(∂P )) ≤ c0. (2)

Note thatd−1
∗ (N (R′′))∩B(V )∩ π−1(∂P ) represents

possible assignments forR′′. Computing this set requires
us to take the intersection between the setd−1

∗ (N (R′′))
and the arrangementB(V ). By the definition ofB(V ), the
intersection betweend−1

∗ (N (R′′)) andB(v) has the inte-
resting property that for each elementv ∈ V , it contains
either all of the setB(v) or none of it. The setπ−1(∂P )
serves to constrain the subset ofTP being considered so
that its base points are in∂P . We note that this restric-
tion can be relaxed to include any “shell” with depthγ
of P ; that is, the setπ−1(∂P ) can be replaced with the
set π−1(∂P ⊕ (Bγ ∩ P )). In Section 2.3, we give an
algorithm for computing the optimal subsetR′′ of R′.

2.2 Application to Protein-Protein Interfaces
We now apply the optimization problem presented above
in the context of determining protein-protein interfaces
using NMR spectroscopy. As mentioned above, the input
to our optimization problem is the manifoldP , a quadra-
tic form d, setsR′ andV , and a scalarc0. For a protein

A, we view the problem of inferring the interface region
of A in a complex with another proteinB as an instan-
tiation of the above problem on arrangements as follows.
We take the3-manifoldP to be the space-filled structural
model ofA, and the2-manifold ∂P to be the solvent-
accessible surface of the structural model ofA. The set
V ⊂ TP is simply the protein NH bond vectors, from the
given structural model ofA. We define the arrangement
B(V ) slightly differently from above; for an NH vector
v associated with thekth residue along the backbone, we
defineB(v) to be the subset ofP that contains the van
der Waals balls of the atoms in thekth residue. We note
that in this definition, the elements ofB(V ) can intersect
only at boundaries. In general, one RDC value is measu-
red for each bond of a particular type – e.g., one RDC for
every backbone amide bond. For each amide bond, a pair
of (HN, N) chemical shifts (frequencies) is also measu-
red. We letR be the set of RDC values for the backbone
amide bond vectors of our protein. We assume that the
alignment tensorS has been estimated; there exist nume-
rous techniques for estimating the alignment tensor from
unassigned NMR data [21, 23, 22, 29, 14, 43] (see Sec-
tions 1.2 and 3 for discussion on the technique we use in
our algorithm). The quadratic formd is defined usingS
(see Equation (1)). We take the setR′ to be the RDCs
associated with amide chemical shifts that are perturbed
between the apo and holo form ofA. Recall that the unas-
signed chemical shifts that are perturbed between the apo
and holo forms of a protein are associated with residues
that are candidates for the interface region. Furthermore,
these chemical shifts index into the experimental RDCs,
thus we can determine the setR′ from the experimental
data. In the remainder of the paper, we letε = 1, thus
N (r) = (r−1, r+1) (i.e., that there is 1 Hz of error in the
experimental RDCs). We take thec0 to be a user-defined
parameter that is given as input (see Section 4 for further
discussion).

To solve our optimization problem, we wish to find
the subset of the arrangementd−1

∗ (N (R′)) ∩ B(V ) ∩
π−1(∂P ) that minimizes the objective functionc (see
Figure 2). Intuitively, this geometric optimization pro-
blem corresponds to identifying a set of candidate NH
bond vectors and their residues that (a) map to, within
experimental error, a set of RDCsR′′ that is a subset ofR′

and (b) are clustered on the protein surface. Our problem
definition not only accounts explicitly for experimental
error in the RDC data, but it also captures the ambiguity
in the structural model by representing each NH vector
as a cone to model orientational uncertainty and convol-
ving the NH vector’s base point with a surface patch on
∂P to model positional uncertainty. (Remark: It is worth
noting that our framework allows these surface patches

296



to be defined arbitrarily as long as they are of constant
degree.) In Section 2.3 we give an optimal and combina-
torially precise algorithm for solving this problem, and in
Section 3 we give a practical algorithm along with results
on experimental protein NMR data.

2.3 A Clustering Algorithm on Arrangements
In this section, we describe a combinatorially precise
algorithm for solving the clustering problem presented
in Section 2.1 above. For ease of exposition, let the arran-
gementA = d−1

∗ (N (R′)) ∩ B(V ) ∩ π−1(∂P ) and the
parameterc0 be fixed. We note that, then, the setsR′, V ,
and the quadratic formd are fixed as well. Let|V | = n.
By definition,A hasn generating cells; the complexity of
our algorithm is determined by the number of generating
cells inA. In fact, for our application (see Section 2.2
above)A always has generating cells that intersect only
at boundaries, and thus total number of3-cells inA in
this case isn. Since we assume thatP , and thus∂P , has
maximum constant degree, the boundaries of the cells of
Aare algebraic surfaces that also have constant maximum
degree. Our goal is to compute a subset ofA that minimi-
zes Equation (2). Informally, our algorithm exploits the
fact that the arrangementA can be represented using a
vertical decomposition[18], and that we can quickly find
the extrema of each cell ofA.

Our algorithm works as follows. First, we note that
givenB(V ), we can take the intersectiond−1

∗ (N (R′)) ∩
B(V ) in O(n) time since we are givenV andd, and each
cell ofA∩B(v) is either equal toB(v) (for somev ∈ V )
or ∅. First, we obtain thevertical decompositionof A.
The vertical decomposition of an arrangement is a essen-
tially a recursively-defined sweep (along each dimension)
of the cells of the arrangement. We omit a full descrip-
tion of the decomposition here, see [18] for examples
and further references. For an arbitrary arrangement in
IR3 of sizen, the worst-case complexity of the vertical
decomposition isΘ(n3) [18]; there is an algorithm to con-
struct the decomposition that requires, in the worst case,
O(n3 log n) time [6]. We note that with the given decom-
position, finding the extrema of the cells ofA requires,
in the worst-caseΘ(n3) time, since that is the worst-
case complexity of the decomposition. Now, we can have
at mostO(n) extrema over all cells of the arrangement,
since each cell has constant degree; thus, we haveO(n2)
pairs of extrema. For each pair of extremap, q ∈ IR3, we
check ifρ(p, q) is at mostc0 . For each such pairp, q, we
construct a ball with diameterρ(p, q) with p andq on the
boundary. Let there bek such balls. Ifk = 0, then we
return theR′′ = ∅. Otherwise, we calculate the following
scoreon each ball. For each balls, we compute how many
cells of the arrangement lie completely ins; let number

this be denotedσ(s). This is equivalent to asking how
many cells of the arrangement have all of their extrema
in s; this can be done inO(n) time. LetC be the set of
all such balls. Lets∗ = arg max

s∈C
σ(s), and letA∗ be the

subset ofA contained ins∗. The setA∗ can be computed
in O(n3) time, sinceσ(s) can be computed inO(n) time
for eachs ∈ C, and |C| is O(n2). By definition, each
cell of A∗ is also inA. Our algorithm finds the optimal
setR′′ ⊆ R′ such thatR′′ is the largest set that satisfies
Equation (2). We return all triples(r,v,B(v)∩π−1(∂P ))
wherer ∈ R′′, v ∈ V ′ = V ∩ A∗, (r,v) is a consistent
assignment, and the patches{B(v)∩π−1(∂P )}v∈V ′ that
are contained in the ball (of maximum score) associated
with R′′. The correctness of our algorithm follows if we
can show that every subset with diameter at mostc0 is
considered by the scoring phase. It is straightforward to
see that the subset ofA that yields the maximum score
and has diameter at mostc0 is associated with the sub-
setR′′ that minimizes Equation (2). Thus, the following
lemma proves the correctness of our algorithm:

Lemma 2.1.Every subsetX ⊆ A with diameter at
mostc0 is contained in one of the balls inC.

Proof. Fix a subsetX and letp and q be the pair of
extrema that have maximal distance and lets denote
the ball with p and q on its perimeter with diameter
α = ρ(p, q). Note thats must contain every cell inX
completely; that is, no cell ofX lies outside ofs, other-
wise we could create a ball with diameter greater than
ρ(p, q). Furthermore,s is the smallest ball that can con-
tain all of X, since any balls′ with diameterα′ < α
cannot containX. Now, s by definition is explicity con-
sidered by our algorithm in the scoring phase, and thus is
contained inC.

By Lemma 2.1 and the time required to maintain the
vertical decomposition data structure forA, we have the
following theorem:

Theorem 1.The setR′′ ⊆ R′ that minimizes Equa-
tion (2) can be computed inO(n3 log n) time.

3 A CLUSTERING-BASED ALGORITHM
TO IDENTIFY PROTEIN INTERFACES

The algorithm in Section 2.3 is exact and combinatorially
precise, but requires computation of algebraic surfaces.
In this section we give a practical version of the the algo-
rithm of Section 2.3. Due to experimental error in the
RDCs we make use of a probabilistic method to compute
A rather than computing the intersection directly. We also
model the elements ofA using a discrete point set that
represents the protein surface, rather than using an alge-
braic representation of∂P . As before, the input to our
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algorithm is the set of backbone NH vectors from a 3D
structural model of the apo form of a proteinA in the
complex, RDCs for the protein, a set of chemical shifts
(for surface residues) that are perturbed in the holo form
of the protein, and an upper bound on the diameter of
the interface region. As a preprocessing step to our algo-
rithm, we note that there is existing software to identify
the perturbed chemical shifts (e.g., [33]).

Let A be the apo form of ann-residue protein in the
complex, and letH denote the holo form of the protein in
the complex. We useVA to denote the surface backbone
NH vectors from the structure ofA. Let R denote the
RDC values observed for the NH vectors of the surface
residues ofA. In the first phase, we identify the set of
NH vectors (i.e., residues) associated with the given per-
turbed chemical shifts by using unassigned experimental
RDCs. We first compute an estimated alignment tensor
using the algorithm of [23], and fix the RDC mapd.
Our algorithm then partitions the setR into two sets,M ,
RDCs that are associated with perturbed chemical shifts,
andM ′ = R\M . We then probabilistically match RDCs
in M ′ with NH vectorsVA by eliminating the highest
joint-probability match, and successively conditioning
match probabilities on previous eliminations (cf. [22]).
After all RDCs inM ′ have been matched, we output the
remaining NH vectors as the interaction zoneZA. In the
second phase, we filterZA further by using the algo-
rithm of Section 2.3 as follows. First, we compute an
approximation to∂P by taking a uniform sample (at a
fixed resolution) of∂P . We make use of the MSMS [35]
algorithm for constructing this point set; MSMS runs in
O(m log m) time, wherem is the number of atoms inA.
Let SA be the point set computed by MSMS; note that
|SA| = O(m) = O(n). We partition the point set as fol-
lows: for each NH vectorv ∈ V ′′, we letSv ⊂ SA be
all points inSA that are associated with the same residue
asv. This set can be computedO(|SA|) time. We then
proceed as in Section 2.3 and output the residues associa-
ted with the highest-scoring cluster as the interaction core
CA. During the first phase of the algorithm, tensor estima-
tion requiresO(nk3) time, and the setVA − V ′ requires
O(n2) time to construct. In the second phase of the algo-
rithm, the setSA requiresO(m log m) time, wherem is
the number of atoms inA, and the clustering step requires
O(n3) time. The overall running time of our algorithm is
thenO(nk3 + m log m + n3) = O(nk3 + n3).

4 RESULTS AND DISCUSSION
We implemented and tested our algorithm on 7 prote-
ins from 5 different protein complexes: the apo forms
of Pex13P (PDB ID: 1NM7), CAD (PDB ID: 1C9F),

ubiquitin (PDB ID: 1D3Z), barnase (PDB ID: 1BNR),
barstar (PDB ID: 1BTA), E1N (PDB ID: 1EZA), and
HPr (PDB ID: 1HDN) from the CAD-ICAD [32],
ubiquitin-CUE [19], barnase-barstar [4], E1N-HPr [15]
protein-protein complexes and the Pex13P-Pex14P [12]
protein-peptide complex. We assume that the manual (and
generally time-consuming) experimental studies for these
complexes have produced the true interface regions, and
compare the results of our algorithm against them. We
report theaccuracy(the fraction of the interface region
identified by our algorithm) of the interaction zone, and
thesensitivity(the fraction of the output of our algorithm
that was part of the interface region) of the interaction
core (Figure 3).

For our experiments, we used experimental RDC data
for a single aligning medium for E1N, HPr, and ubiquitin
available from the BioMagResBank (BMRB) [37]. For
these proteins, a second set of RDC data for a second
aligning medium was simulated. As mentioned in Sec-
tion 1.2, additional aligning media serve to constrain the
solutions for the NH vector orientations that can be incor-
porated as follows. For 2 aligning media, each RDCr is
given one probability distribution per medium; we match
experimental RDCs to NH vectors by taking the maxi-
mum joint probability that the RDCs in both media match
to a vectorv. For the remaining proteins, experimental
RDC data is not publicly available; two sets of RDC data
for two independent aligning media were simulated for
Pex13P, CAD, barnase and barstar. For simulated RDC
data, we used a Gaussian error window of 1 Hz. Although
we have experimental NMR chemical shifts and NH vec-
tors for all residues in the proteins being tested, we only
make use of surface NH vectors and chemical shifts. Sur-
face NH vectors can be easily identified from the given
structural model, and surface chemical shifts can be iden-
tified experimentally using amide exchange data; we used
the program MolMol to compute these NH vectors. Sol-
vent accessibility (i.e., percentage of atomic surface area
exposed to solvent) and the chemical shift assignment was
used to identify chemical shifts associated with residues
whose solvent accessibility was at least40%. The set of
surface residues that we used as input in all of our expe-
riments were the residues identified by MolMol as being
at least40% solvent-accessible, as well as any residues in
the interface region for that protein. We implemented our
algorithm in Matlab (Mathworks Inc, Natick, MA), and
ran all of our experiments on a Pentium-4 class proces-
sor. Since some of our input data (specifically, simulated
RDC data) was generated with a Gaussian error window,
the test results in Figure 3 give the average accuracy and
sensitivity over 10 trials for each protein. For our test
cases, each execution of our algorithm required about 2
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Protein Accuracy Sensitivity
PEX13P 73% 80%
barnase 72% 90%
barstar 77% 100%
ubiquitin 73% 73%
CAD 75% 90%
HPr 88% 100%
E1N 90% 100%

(a)

Protein c0 Sensitivity
barstar 20 100%

25 100%
30 99%
35 81%

HPr 20 100%
25 91%
30 88%
35 73%

(b)

Protein Accuracy Sensitivity Labeling
PEX13P 87% 94% RDQKF
barnase 78% 85% NGKT
barstar 91% 100% RQKS
ubiquitin 74% 100% RNDKT
CAD 85% 100% QEHMS
HPr 88% 100% EF
E1N 93% 100% NV

(c)

Protein c0 Sensitivity
barstar 20 100%

25 100%
30 100%
35 96%

HPr 20 100%
25 91%
30 93%
35 84%

(d)

Fig. 3. Results.(a) Accuracy of interaction zone and sensitivity of interaction core; (b) Tradeoff between sensitivity andc0 ; (c)
Accuracy of interaction zone and sensitivity with selective labeling; (d) Tradeoff between sensitivity andc0 with selective labeling.
For (a) and (c), the diameter of the interaction core,c0 , was set to20 Å.

or 3 minutes of CPU time on average. Theaccuracyof
the interaction zoneZA is the percentage of true interface
residues contained inZA. For our test cases, we achieved
accuracies between 73% and 90%. Thesensitivityof the
interaction coreCA is the percentage ofCA comprised
of interface residues; we achieved sensitivities of bet-
ween 73% and 100%. Accuracy and sensitivity results are
reported for each protein (for a visualization of the output
of our algorithm on the proteins in the E1N-HPr complex
see [27]). A key feature of our algorithm is the ability to
choose the diameter thresholdc0 for the interaction core.
With a conservative value (i.e., significantly smaller than
the interface region itself), we are able to achieve very
high sensitivity at the expense of decreased accuracy. That
is, whenc0 is small, the second phase of our algorithm
returns a small number of residues, but they are all gua-
ranteed to be in the interface region. As we increasec0 , the
size of the interaction core increases, but these residues
are not all necessarily guaranteed to be in the interface
region. Figure 3(b) shows the tradeoff between the sensi-
tivity of the interaction core andc0 for two representative
proteins. However, the accuracy of the interaction core
(i.e., percentage of the true interface region contained in
the core) decreases as the core diameter decreases. For
example, for barstar, the core accuracy decreases from
86% to 77% whenc0 is decreased from 30 Å to 25 Å.
We note that this feature of our algorithm is important
in applications such as drug design and protein-protein
docking, since users can treatc0 as essentially a confi-
dence parameter, setting it conservatively for obtain high
sensitivity. For example, the docking study of [10] found
that in some cases, distance restraints between just a sin-
gle pair of residues are sufficient to significantly constrain
the relative rotations and translations of the two proteins
in the complex. It is thus possible to run our algorithm
on both of the proteins of a complex and use the com-
puted interaction cores to constrain the docking process
a priori, reducing the time spent searching rotations and
translations by existing approaches [11, 10, 8, 26]. Fur-
thermore, ifc0 is set conservatively, it is likely that the

remaining interface residues are nearby; in our test cases,
all interface residues that were not in the interface core
were all within about 10 Å from the core.

Selective labeling allows the stable isotopic labeling of
a given set of residue types, and thus allows us to constrain
the amino acid type of an experimentally-recorded RDC if
that type has been labeled. In our algorithm, this additio-
nal constraint can be used in the first phase to improve the
accuracy of matching experimental RDCs to NH vectors.
This can, in turn, improve both accuracy and sensitivity of
the interaction zone. In practice, the most useful residue
types for selective labeling can be determined from the
primary sequence and apo structure, as well as from bio-
physical characterizations of which amino acid types are
likely to be on the protein surface [9]. Figure 3(c) shows
that our experimental results can be improved by using
selective labeling; for each protein, we give a labeling
that improves both the accuracy of the interaction zone
and the sensitivity of the interaction core. By using selec-
tive labeling, we are able to improve the average accuracy
of the interaction zone to 88% and the average sensitivity
of the interaction core to 97%. Furthermore, we observe
the same tradeoff between accuracy and sensitivity of the
interaction core (see Figure 3(d)); however, the sensiti-
vity of CA was improved due to the constraint added by
selective labeling in the first phase of our algorithm.

5 CONCLUSION
In this paper, we have formalized the problem of fin-
ding a protein interface fromunassignedNMR data as a
geometric clustering problem. We gave an optimal algo-
rithm for the geometric clustering algorithm that runs
in O(n3 log n). Using this algorithm, we developed a
practical algorithm for finding protein interfaces given
unassigned chemical shifts, unassigned RDCs and a struc-
tural model of the apo protein that runs inO(nk3 + n3)
time. On NMR data for 7 proteins, we showed that our
algorithm yielded results that were both accurate and had
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high sensitivity (i.e., a low false-positive rate), demon-
strating that our algorithm is useful in practice. It would
be interesting to see if our algorithm could be applied to
proteins with multiple interface regions. In principle, our
algorithm could be generalized: in the second phase, we
would return a set of clusters with high score, rather than
a single cluster, as the interaction cores.
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