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Provably Good Approximation Algorithms for Optimal 
Kinodynamic Planning: Robots with Decoupled 

Dynamics Bounds 1 

B. R. D o n a l d  2 and P, Xavier 3 

Abstract. We consider the following problem: given a robot system, find a minimal-time trajectory 
that goes from a start state to a goal state while avoiding obstacles by a speed-dependent safety margin 
and respecting dynamics bounds. In [1] we developed a provably good approximation algorithm for 
the minimum-time trajectory problem for a robot system with decoupled dynamics bounds (e2g., a 
point robot in N3). This algorithm differs from previous work in three ways. It is possible (1) to bound 
the goodness of the approximation by an error term e; (2) to bound the computational complexity of 
our algorithm polynomially; and (3) to express the complexity as a polynomial function of the error 
term. Hence, given the geometric obstacles, dynamics bounds, and the error term e, the algorithm 
returns a solution that is e-close to optimal and requires only a polynomial (in (i/e)) amount of time. 

We extend the results of [1] in two ways. First, we modify it to halve the exponent in the polynomial 
bounds from 6d to 3d, so that the new algorithm is O(caN(1/e)3a), where N is the geometric complexity 
of the obstacles and c is a robot-dependent constant. Second, the new algorithm finds a trajectory that 
matches the optimal in time with an e factor sacrificed in the obstacle-avoidance safety margin. Similar 
results hold for polyhedral Cartesian manipulators in polyhedral environments. 

The new results indicate that an implementation of the algorithm could be reasonable, and a 
preliminary implementation has been done for the planar case. 

Key Words. Robot motion planning, Optimal control, Polynomial-time g-approximation algorithm, 
Time-optimal trajectory, Sllortest path, Kinodynamics, Polyhedral obstacles. 

1. Introduction. The kinodynamic plannin9 problem is to synthesize a robot 
motion subject to simultaneous kinematic constraints, such as avoiding obstacles, 
and dynamics constraints, such as modulus bounds on velocity, acceleration, 
and force. A kinodynamic solution is a trajectory specification: a start state 
and a mapping from time to generalized forces or accelerations. The resulting 
motion is governed by a dynamics equation. In robotics a long-standing open 
problem has been to synthesize time-optimal kinodynamic solutions, by which we 
mean solutions that require minimal time with respect to the kinodynamic 
constraints. 
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While there has been much work on this problem in the robotics community, 
there have been no exact algorithms except in the one-dimensional case. 4 In three 
dimensions, finding exact solutions is known to be NP-hard [3]; this straightfor- 
ward extension of a result from [4] is also described in Appendix A. Therefore, it 
is reasonable to pursue approximation algorithms--algorithms that compute kino- 
dynamic solutions that are "close" to optimal. However, for the many proposed 
approximate or heuristic techniques previous to [1] and [5], 5 no bounds exist on 
the goodness of the resulting solutions, or on the time-complexity of the algo- 
rithms. 

The primary measure of optimality is time. Because of uncertainty in control 
and error in models, we believe that a planned robot motion can only be considered 
safe it is avoids obstacles by an appropriate margin. Thus, it is also natural to 
incorporate a safety measure into the meaning of "optimal." The problem 
formulation we introduced in [1] therefore includes a speed-dependent obstacle- 
avoidance margin in the problem parameters, along with start and goal states, 
dynamics bounds, and a set of obstacles. This margin of error is specified by a 
safety function. An optimal trajectory is thus a minimum-time trajectory that 
respects this safety criterion. 

An approximation version of the problem allows an algorithm for kinodynamic 
planning to trade off running time against optimality in terms of: 

(a) Execution time of the trajectory. 
(b) Strictness in observing the safety margin. 
(c) Closeness to the desired start and goal states. 

(We note that (c) is implied in I-1] but clarified in [6].) To express this tradeoff 
analytically we parametrize closeness to an optimal solution with a tolerance 
and bound algorithm running time in terms of this ~. For example, if a "safe" 
optimal-time kinodynamic solution requiring time Topt exists, then the algorithm 
must find a "nearly-as-safe" solution that requires time at most (1 + e)Toot. 

Canny et al. [1] described the first provably good polynomial-time approxima- 
tion algorithm for two- and three-dimensional optimal kinodynamic planning, 
which they restricted to particle dynamics. Here, we modify and reanalyze the 
algorithm to improve both its complexity bound and its accuracy. The new 
algorithm has time complexity O(caN(l/g)3d),  where N is the geometric complexity 
of the environment and c depends on the dynamics and safety-margin parameters; 
this halves the previous exponent of the (l/e) term. Furthermore, we show that if 
an optimal kinodynamic solution requiring time Top t exists, then the new algorithm 
will find an approximately optimal solution that requires time Top" whereas [1] 
only show a bound of (1 +/3)Top t. 

These new results indicate that our theoretical algorithm might be reasonable 
for off-line motion planning, and we have performed simple experiments with a 
preliminary implementation of this algorithm, as reported in [3]. Our companion 

4 Canny et al. [2] have recently provided an exact algorithm for ihe two-dimensional L~ case. The 
alogirthm runs in exponential time and polynomial space. 
s Reference [5] is the journal revision of [1]. 
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paper [7] extends our approach to robots with coupled dynamics and coupled 
dynamics boundsr open-chain manipulators. 

2. Kinodynamic Motion Planning 

2.1. The Kinodynamic Planning Problem. Kinematic constraints, such as joint 
limits and obstacles, limit the configuration (position) of a robot. Dynamics 
constraints govern the time-derivatives of configuration and are independent of 
obstacles. They include dynamics laws and bounds on velocity, acceleration, a n d  
applied force. Strictly kinodynamic constraints are obstacle-dependent constraints 
that govern configuration and its time-derivatives but do not fall into either of the 
previous categories. An example of such a constraint is a speed-dependent 
obstacle-avoidance margin. A constraint is a kinodynamic constraint if it belongs 
to any of the above categories. The state of a robot at a given time is its 
configuration and velocity. The general kinodynamic planning problem is, for a 
given robot, to find a motion that goes from a start state to a goal state while 
obeying kinodynamic constraints. 

We consider the following Cartesian problem from [1]. (See Figure 1.) A 
point mass in ~d, where d~ {2, 3}, must be moved from a state state S = 
(s, ~) to a goal state G = (g, g). In the course of the motion, the point must 
avoid a set of polyhedral obstacles. Movement is controlled by applying forces 
or commanding accelerations, which are equivalent for a point mass. By 
using a configuration space approach, this problem is readily extended to 
cover polyhedral robots obeying decoupled dynamics and decoupled dynamics 
bounds. 

F r  / r 

G 

S 

Fig. 1. A kinodynamic planning problem for a point robot, showing the obstacles, the start S = (s, g), 
and the goal G = (g, g). F is a time-optimal solution (trajectory), with no safety margin. Fr is an optimal 
kinodynamic solution, and Fq is an e-approximately optimal kinodynamic solution. 



446 B.R. Donald and P. Xavier 

We denote the configuration space ~:a by C, and its phase space by TC. Phase 
space TC is the robot state space and is isomorphic to ~za. Thus, a point in TC 
is a (position, velocity) pair such as S or G. 

A robot motion over a time interval [0, TI] can be specified by a twice- 
differentiable map p: [0, Ts] ~ C. This map is the path of the motion. In kinodyna- 
mic planning the motion must obey dynamics and dynamics constraints, and it 
is convenient to specify I~ explicitly. The trajectory of a robot motion is the map 
F: [0, Ts] ~ TC given by F(t) = (p(t), 0(t)). We denote the position and velocity 
components of a subscripted trajectory F, by p, and p,, respectively. While a 
motion p can be given directly as a twice-differentiable function of time, two 
equivalent specifications are useful: 

(a) An initial position Po and a velocity function v = p. 
(b) An initial state (Po, Vo) and an acceleration function a = ii. 

The motion must respect upper bounds on the magnitudes of the acceleration 
and velocity. At all times t the acceleration ~(t) and the velocity 0(t) must obey 

and 

(2) ilii(t)il ~: < amax. 

Equations (1) and (2) are the dynamics bounds, and since the L=-norm is used, 
we call (1) and (2) L~ dynamics bounds. 

We assume that the obstacles do are represented by a set of convex, possibly 
overlapping polyhedra. If these convex polyhedra have a total of N faces overall, 
we call N the combinatorial complexity of 6 J. Free space is the complement of these 
obstacles. Finally, we assume that the set of free configurations is bounded by a 
d-cube of side length I. Thus, a tuple ((9, S, G, l, a . . . .  Vmax) is an instance of the 
Cartesian kinodynamic planning problem. 

An exact solution to the kinodynamic planning problem is a trajectory F such 
that F(0) = S, F(TI) = G, and F obeys the kinodynamic constraints. That is, the 
path p avoids all obstacles, the velocity i~ respects (l), and ji respects (2). The 
time for a solution F is simply T I. The time-optimal kinodynamic planning problem 
is to find a minimal-time kinodynamic solution, which is represented as a suitable 
encoding of the start state I'(0) and the acceleration function a. 

2.2. Optimal and Approximately Optimal Kinodynamic Plans. Following a theo- 
retically time-optimal solution closely enough to avoid obstacles may require 
unrealizable precision in control or sensing. The exact time-optimal solution may 
thus be unexecutable by a physical robot. For this reason, an optimal solution 
should observe a safety margin; the margin we define is speed-dependent. The 
safety margin ensures the existence of a "tube" or family of solutions "nearby" in 
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time and in phase-space that "approximate" the optimal safe solution. The 
existence of such a " tube"  of approximating solutions is essential for our approach. 
Safety margins are both practically motivated and mathematically necessary. 

A 6~-safe kinodynamic solution avoids all obstacles by a safety margin 6v. In this 
paper we define this safety margin to be an affine function of the trajectory speed. 
This first-order choice roughly corresponds to how accurately and quickly a robot 
senses its position and velocity, combined with how quickly it can correct for 
velocity errors. Two scalars Co > 0 and c~ _> 0 characterize the safety margin, 
which can be viewed as an obstacle-free tube centered about the path. Formally, 
a 6o-safe kinodynamic solution has the property that, for all times t in [0, Ty], there 
is a ball about p(t) in free space of radius 

(3) 6,(Co, c O(p(t))  = Co + c x IIp(t)il. 

We omit the parameters Co and c 1 in the discussion when confusion will not arise. 
Note that 6,,-safety is an example of a kinodynamic constraint that is neither a 
pure kinematic constraint nor a pure dynamics constraint. A 6,,-safe kinodynamic 
planning problem, then, is a tuple ((9, S, G, a . . . .  v . . . .  I, c o, Cl). We call a . . . .  v . . . .  
I, Co, and c 1 the kinodynamic bounds. 

For fixed c o and c 1, consider the class of all 6~.-safe kinodynamic solutions. We 
define an optimal 6v-safe kinodynamic solution to be a solution whose time is 
minimal in this class. We henceforth employ the term optimal kinodynamic solution 
as including fi~-safety as one of the kinodynamic constraints that optimal trajec- 
tories must obey. 

Let us say that an approximating state (x', ~') is "e-close" to a reference state 
(x, ~) if 

(4) Iix - x'l] = O(e.) 

and 

(5) IJ~ -/~'II = o(e). 

We now specify what it means for a kinodynamic solution F~ to be ~:- 
approximately optimal, where a positive c < 1 parametrizes the closeness of the 
approximation. First, I-'~ must obey the safety margin 

(6) ~'~(Co, c 0(0~)  = ( l - e) ,~(Co,  c~)(O~). 

Second, if an optimal safe trajectory takes time Topt, then we require that, for an 
e-approximately optimal trajectory Fq, 

(7) ~ <_ (1 + ~)Lp,. 
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Thirdly, we require that Fq(0) and Fq(Tq) be e-close to the desired start and goal 
states S and G, respectively. 

In order to obtain our result, we must assume four conditions: L~-n0rm 
acceleration and velocity bounds, a bounded world diameter, and a nonzero safety 
margin. Each of these can be plausibly motivated in physical terms. For example, 
any physical robot will have bounded velocity and acceleration. However, the 
proofs in this paper do not go through if any of these assumptions is dropped, 
and the safety margin assumption is particularly crucial. 

2.3. Statement of  Results. We describe a provably good approximation 
algorithm for the optimal Cartesian kinodynamic planning problem 
((9, S, G, a . . . .  v . . . .  l, c o, c1), where I is the workspace diameter. Concisely stated, 
we show: 

THEORZM 2.1. Let ((9, S, G, amax, v . . . .  l ,  Co, cl) be an optimal kinodynamic planning 
problem for a point mass robot obeying L~ dynamics bounds. Let 0 < e < 1. 

Suppose there is a 6v(Co, cl)-safe trajectory from S to G taking time Top t. Then the 
algorithm finds a (1 - e)6v(c o, cO-safe trajectory taking time at most Toptfrom some 
S* = (s*, ~*) to some G* = (g*, g*) such that S* and G* are within O(e) of S and 
G, respectively. The approximation error at S and G can be controlled independently 
of Vmax and I. 

For d = 2, 3, the running time of the algorithm is 

I/ d [-Vmax(amaxCl q- Vmax)31"]d"~ 
O{CAN| ~ | 1, 

\ L amaxCO g -J / 

where N is the geometric complexity of the problem and c A is a constant. Thus, 
for a given point robot in a two- or three-dimensional worm of fixed diameter, the 
algorithm has an asymptotic time bound of O(caN(1/e)3d). 

Thus, the algorithm will find a trajectory that takes at most as long as the optimal 
kinodynamie solution but that might be a factor of e less safe. The theorem states 
that the algorithm runs in time polynomial in the geometric complexity N and in 
the resolution (1/0, as does the result from [1]. Our new result is a significant 
improvement over the result in [1] in both the approximation accuracy and the 
complexity bounds, as described in Section 1. 

Observing more closely, we note that an optimal kinodynamic planning problem 
X has three components: The combinatorial complexity of sC is the number N of 
faces in the arrangement of obstacles (9. The algebraic complexity of the geometry 
is the number of bits necessary to encode the coordinates of the vertices of (9, and 
the start and goal states. The algebraic complexity of the kinodynamic bounds is 
the number of bits necessary to encode the kinodynamic bounds (a . . . .  v . . . .  cl, Co). 
In the language of combinatorial optimization [8], we show that our algorithm 
is an e-approximation scheme that is fully polynomial in the combinatorial and 
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algebraic complexity of the geometry, and pseudopolynomial in the kinodynamic 
bounds. 

We also note that neither our algorithm nor the algorithm in [1] guarantees 
that the approximate optimal safe solution will be near the optimal safe solution 
except at its endpoints. In this respect these trajectory planning algorithms are 
similar to Papadimitriou's fully polynomial approximation scheme for three- 
dimensional Euclidean shortest paths [9]. Again, the closeness of the approxima- 
tion is strictly in terms of the optimization measure, so the optimal solution 
might not appear spatially similar to the truly optimal. In fact, the results of [4] 
imply that finding a path that is homotopic to the optimal is Y~-hard.  (See 
Appendix A.) 

We have completed a preliminary COMMON LIsP implementation of this algo- 
rithm in two dimensions. In Section 5 we briefly report on this and describe 
extensions to the main result. 

2.4. Previous and Related Work. For a review of issues in robotics and algor- 
ithmic motion planning, see [10] and [11]. A large body of work on optimal 
control exists in the control theory and robotics literature. For example, see 
[12]-[16]. Much of this work provides partial analytic characterizations of 
time-optimal solutions. Among significant results, [12] and [13] show how to 
time-rescale the velocity profile of given a particular trajectory t o  obtain a 
trajectory that is time-optimal with respect to dynamics constraints. This flavor 
of theoretical work has led to algorithms that attempt to find nearly time-optimal 
trajectories, notably [17] and [18]. None of these results provided analytically 
guaranteed closeness to global Optimality, and assuring the accuracy of these 
algorithms could be controlled by increasing the number of gridpoints required 
that their running-time bounds be exponential this number. 

The polyhedral Euclidian shortest-path problem can be viewed as a version of 
optimal kinodynamic planning in which the acceleration bound area x is set to 
infinity. This observation may be used to extend the results of [4] to show that 
in three dimensions optimal kinodynamic planning is Jff~-hard; a proof sketch 
is given in Appendix A. Papadimitriou [9] gives a fully polynomial approximation 
algorithm for the shortest-path problem. O'Dfinlaing [19] provides an exact 
algorithm for one-dimensional kinodynamic planning. These methods may extend 
to the two- and three-dimensional cases as well. Kinodynamic planning in two 
dimensions is related to the problem of planning with nonholonomic constraints, 
as studied by Fortune and Wilfong [20], [21] and Jacobs and Canny [22]. In this 
problem a robot with wheels and a bounded minimum turning radius must be 
moved. To make the analogy clear, in our case the minimum turning radius is 
(1/amax) llPll z 

Canny et al. [1] (see also their revision [5]) introduce the use of an e- 
approximation problem formulation to kinodynamic planning and provide the 
first provably good approximation algorithm for two- and three-dimensional 
optimal kinodynamic planning. The work presented in this paper improves on 
their result in both the accuracy of the approximation and in the complexity of 



450 B.R. Donald and P. Xavier 

the algorithm. These stronger results are obtained by modifying the earlier 
algorithm and by using new constructive trajectory proof techniques that utilize 
the velocity bounds in the problem. In Section 3 we describe the improved 
algorithm, with the changes presented in Section 3.2. In Section 4 we present the 
complexity analysis. 

3. Kinodynamic Planning with Loo Dynamics Bounds 

3.1. The Basic Idea. The basic idea behind our approach, beginning with [1], is 
to reduce the problem of finding an approximately minimal-time trajectory to 
finding the shortest path in a directed graph. The vertices of the graph "discretize" 
the statespace TC, and the edges of the graph correspond to trajectory segments 
that each take time ~, a parameter computed by the algorithm. 

Given the acceleration bounds a . . . .  let d be the set of constant accelerations 
whose components are members of { - a . . . .  0, amax}. We choose a timestep ~ such 
that velocity bound v~a x is a multiple of amax r. Applying a member of ,~' for 
duration �9 is called an (a . . . .  z)-ban 9. (See Figures 2 and 3.) We also use this term 
to refer to the resulting trajectory segment: we say that there is an (a . . . .  r)-bang 
from state X to state Y if following an (a . . . .  r)-bang moves from X to Y. 

Suppose S * =  (s*,,~*)~ TC is a state such that ~* is a vector of integer 
multiples of am~xZ. Suppose that (x,~) is a state reachable from S* by some 
sequence of (ama~z)-bangs. Then, for each coordinate i, 

W/i 
(8) X i = S~ q- 2-arnax "c2 a n d  xi = S* q- r/iamax z 

Z 

for some integers m i and ni. Thus, all states reachable from S* by a sequence 
of (a, z)-bangs belong to a set of states that lie at the interstices of an underlying, 
regular grid embedded in TC. This grid has spacings of amaxr2/2 in position and 
arnaxZ in velocity. We call this set of intersticial states the TC-grid, and each of 
these states a TC-gridpoint. We call a trajectory that results from a sequence of 

(! 

~l (i,,,a;. T 

Fig. 2. For L,~ dynamics bounds: extremal accelerations (left) that generate (a,.a ~, r)-bangs, with the 
velocity components shown here (right). 
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i ! i i i  i . . . . . .  

Fig. 3. TC-gridpoints lying in phase-space for a one-dimcnsional problem. TC-gridpoints are the 
vertices of a reachability graph. Shown here are some of the edges for a reachability graph rooted at 
the origin, with no obstacles nearby. Note that an edge does not show the actual trajectory 
corresponding to an (a . . . .  ~)-bang, which traces a quadratic curvc in TC. 

(a . . . .  0-bangs between TC-gridpoints an (a . . . .  O-grid-bang trajectory. Its velocity 
function is a grid-bang velocity function. 

Recall the definition of 6'v-safety (6). We say that (x, ~) obeys 5'~-safety if the ball 
of radius 6'~(~) about x lies in free space. S*, v . . . .  6'~, C, and (a . . . .  z)-bangs 
determine a graph ff(t/~ ~) embedded in TC. The vertices vie V are the TC- 
gridpoints. Each edge e~ ~ r is a 5'~-safe (a . . . .  z)-bang between two of these vertices. 
We say that z, S*, a . . . .  v . . . .  Co, cl,  (9, and r. induce the reachability graph ~('1/', ~'), 
which we say is rooted at S*. 

The smaller r is, the finer the underlying TC-grid, and the better some 
(a . . . .  z)-grid-bang trajectory will approximate an arbitrary trajectory that starts 
at S* and obeys the kinodynamic constraints. Thus, it is intuitively plausible that 
if ~ is small enough and Foo t is an optimal trajectory from a state S sufficiently 
near S* to a state G, then there will be a 6~.-safe (a,~ax, z)-grid-bang trajectory 
Fq going from S* to a state G* near G in approximately time Too t. Furthermore, 
since this trajectory need only obey 6'v(Co, cl)-safety, it is conceivable that it 
might take time T~ < Top,. 

A naive algorithm might therefore do the following. First it would choose 
a timestep z as a function of a . . . .  v . . . .  e, c o, and cl. Then it would choose a start 
state S* that approximates S, with the restriction that amax z divides .~*. Finally, it 
would search for the shortest path in the induced graph to any of a set of vertices 
that approximate G, and return the trajectory corresponding to this path. The 
closeness of the approximations to S and G would improve as z decreases. 

This describes the gist of the algorithm in [1]. The main burden in proving the 
correctness is to show how to choose an adequately small z that induces a 
reachability graph only polynomially large in 1/e. The disadvantage of this 
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algorithm is that, in general, it is only guaranteed to approximate the goal to 
O(Vmaxr) in position, which means that the approximation closeness is dependent 
on the "size" of the statespace. 

3.2. The Algorithm 

3.2.1. Modifications to the Naive Algorithm. Recall that edges in the reach- 
ability graph correspond to (amax, z)-bangs between vertices. A state in the image 
of one of these trajectory segments is an edge-state if it is not a vertex. Since an 
(a . . . .  z)-bang trajectory might come closest to the goal state at a time that is not an 
integer multiple of z, we might expect that an algorithm that checks the closeness 
of edge-states to the goal will find a better approximation than the naive 
algorithm would find. (See Figure 4.) This intuition is correct, and by considering 
edge-states as well as vertices, our algorithm can find a trajectory that 
approximates G to within O(amaxZ 2) in position. 

We define a graph trajectory to be a trajectory that begins at the root S* of the 
reachability graph ~ and is a subtrajectory of some trajectory corresponding to 

�9 a path in the graph. Thus, the algorithm looks for a minimal-time graph trajectory 
to an edge-state or vertex within the appropriate closeness of G. 

If si is not a multiple of amaxZ for some coordinate i, then it is hard to choose 
the root vertex S* that approximates S and that is the best for finding an 
approximately optimal graph trajectory without a cumbersome case analysis. We 
attempt to simplify the description by using the following trick: whenever some ~i 
is not a multiple of amax z the algorithm chooses S* so that S will be approximated 
by Fq(z), for any graph trajectory F~ beginning at S*. If Fq is the minimal-time 
graph trajectory to a state adequately close to the goal, the algorithm will then 
return the subtrajectory that begins at time ~. 

3.2.2. Our Algorithm Step by Step. We first introduce terminology to describe 
how closely one state approximates another. Let X = (x, ~) and Y = (y, ~) be 

�9 �9 ,, GC~G ~ " y " �9 

x 

Fig. 4. State G* on the trajectory of the (amax, z)-bang from X to Y lies much closer to the goal G 
than either X or Y do. 
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two states, and suppose that 

LIx - yllo~ -< r/=, and [l~ - ~[1~ -< ~ .  

Then we say that X is within (rlx, tlv) of Y, or that X approximates Y to tolerance 
( ~ ,  ~ ) .  

Our improved algorithm does the following 

1. Chooses a timestep z as a function of a . . . .  v . . . .  e, Co, and cx. Specifically, the 
algorithm chooses the largest ~ such that ~ ___ Vmax/a . . . .  a m a x ~ l / )  . . . .  and ~ _< 
Coe/(2am~ ~ c1(1 -- e) + S/)max). 

2. Nex t, it chooses the starting TC-gridpoint S* that roots the reachability graph. 
For each coordinate i: 

(9) 
~*(0) = the multiple of amaxZ closest to si 

~.2 

s,*(0) = st(0) - ~ (~,(0) + ~,*(0)). 

3. It then searches for a minimal-time graph trajectory from S* to any state 
that is within (5amaxZa/2, 2amax) of G. This search is basically a breadth- 
first search of the induced reachability graph f~. In the nth generation of 
the search the algorithm finds vertices n edges from S*. However, as the 
algorithm explores an edge out of a vertex, it checks whether the corresponding 
(a . . . .  z)-bang comes adequately close to G. If during a generation n more than 
one such (amax, z)-bangs are found, the algorithm chooses one that comes 
adequately close to G at the earliest time. The algorithm uses backpointers to 
construct a minimal-time graph trajectory when the search succeeds. 

4. Let Fq be the minimal-time graph trajectory found above. The algorithm returns 
F~, defined by 

(10) F;(t) = Fq(t + z). 

3.3. Analyzing the Algorithm. We claim that if an optimal by-safe trajectory Fop t 
from S to G takes time Topt, then the algorithm will find a 6'v-safe trajectory 
taking at most time Topt and approximating S and G to within tolerances that are 
O(e) and that do not grow with I or /)max' A key lemma shows how to choose a 
timestep z that is ~(0 such that the choice of S* (9) assures that there will be a 
6'v-safe graph trajectory F~ taking time 

Tq_< Top,+ 

and going from S* to a state G* approximating G to the appropriate tolerance 
given in step 3 above. The lemma also bounds IIFq(~)- 811. This shows that 
searching for the shortest graph trajectory will be adequate. 

There are two components to the algorithm's complexity: the size of the 
reachability graph ff and the cost of checking whether an (a . . . .  z)-bang (potential 
graph edge) is 6'v-safe. The maximal out-degree in f# is 3 a, and the number of 
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vertices is bounded by the number of TC-gridpoints, which is proportional to 
(lVmax/a2ax'C3) d. Safety checking using simple computational geometric techniques 
described in Appendix B costs O(N) per (%,~, z)-bang, as in [5]. With minor 
modifications, the technique for checking safety with respect to a single obstacle 
is also used to check closeness to the goal. Thus we get the complexity bound 
O(cdN(]/e)3d). 

4. Better Bounds for a Cartesian Robot with L~ Dynamics Bounds 

4.1. Overview. We not outline the argument proving the parts of Theorem 2.1 
concerning the goodness of the approximation and the running time of the 
algorithm. The general idea is that the choice of timestep z and root vertex S* will 
guarantee that, for every 6~-safe trajectory beginning at start state S, there will be 
a graph trajectory that "tracks" it closely enough to be (1 - e)6,-safe and to take 
the same amount of time. We now formalize our notion of "tracking." 

DEFINITION 4.1. Consider two trajectories F,,  Fb: [0, T] ~ TC. Given two scalars 
t/~ and t/~, we say that F, approximately tracks F b to tolerance (qx, tl~) in the 
Loo-norm if, for all times t, 

(11) IlPa(0-- pb(t)ll~ ~ ~ and II#a(t)-- Pb(t)l[o~ ~ q~. 

It is useful to think of a trajectory F inducing a tube of diameter at least t/x in 
position and ~/~ in velocity around its image in TC, and we call this tube the 
(tl~, tl.)-tube induced by F. If F.  approximately tracks Fb to tolerance (q~, t/~), then 
each trajectory lies in the (t/~, t/.)-tube induced by the other. (See Figure 5.) 

/ \~ x ' .  x\ 

\ \  ', x 

x x k ~ 

..... i ? : / ; "  

z, 

,T 

Fig. 5. An (r/~,, qv)-tube projected into phase-space. Trajectory F. approximately tracks Fb to tolerance 
(~x, ~1. 
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Now, suppose that F, is a trajectory from S to G taking time T,, and suppose 
furthermore that F, obeys dynamics bounds ama x and Vmax and is 6v(Co, c0-safe. 
Let 0 < e < 1. 

To prove the theorem, we first describe a one-parameter family of safe tracking 
tolerances (rl~, tlv) such that if trajectory F~ tracks F r to a tolerance in this family, 
then F~ will be ( 1 -  e)6~(Co, c0-safe. This family of tolerances is given by the 
following lemma, which is proven in [1], [3], and [5]. Note that because the 
lemma holds for any Lp-norm, our results are easily extendible to safety margins 
given in any such norm. 

LEMMA 4.1 (The Safe Tracking Lemma). Suppose that 6 v is specified by c o and 
c 1 and that F r is a 6~-safe trajectory. Let O < e < l ,  and let 6 ' v = ( 1 - e ) @  
Then a tolerance (fix, fly ) exists such that,for any trajectory Fq, the following hold: 

1. I f  Fq tracks F, to tolerance (tlx, tl~), then Fq is 6'v-safe. 
2. Furthermore, for any positive fl, the following choices suffice: 

Co~ 
t/~ _< q(1 - e) + (12) fl' 

nx 

Second, we show how to choose a timestep ~ and a root vertex state S* s o  
that in the absence of obstacles there will be some graph-trajectory Fq such that: 

(a) F(r) is within (qx, qv) of S. 
(b) F~ tracks F, to tolerance (t/z, t/v ). 

(Recall that F~(t) = Fq(t + z) from (10).) This choice of z and S* is given in Lemma 
4.2 (the Strong Tracking Lemma). If (t/z, t/v ) is a safe tracking tolerance, then F~ will 
be (1 - ~)6~(Co, c0-safe in the presence of the obstacles. 

To complete the proof, we show how to choose a safe tracking tolerance (t/x, t/v ) 
so that there will be a fimestep z that bo th  is f~(e) and satisfies Lemma 4.2. It 
follows that the number of TC-gridpoints will be O((1/@e). Since each TC-graph 
vertex has a maximum out-degree of 3 d, and checking the (1 - ~)6~(Co, c0-safety 
of an (a . . . .  ~)-bang is O(N) (as proven in Appendix B), it follows that searching 
the TC-graph for a shortest path from S* to G* in the TC-graph takes time 
O(3dN(1/e)ad). The lemmas and theorem that follow and the terms in the algorithm 
give us Theorem 2.1. 

We note that the structure of the proof of the main result is similar to that in 
[1]. However, the Strong Tracking Lemma (Lemma 4.2) shows how to choose a 
timestep and root vertex so that some graph trajectory will track an optimal 
trajectory, and not merely an optimal trajectory that has been e-time-rescaled, i.e., 
slowed down by a factor of e. Furthermore, the proof of the lemma is significantly 
different from that of the Tracking Lemma of [1]. The main part of the our proof 
is based on tracking velocity functions and makes use of the velocity limits in the 
problem to bound the duration over which tracking error can increase, unlike the 
corresponding proof in the earlier work. The construction is done with explicit 
inductive definition. Finally, additional constructions involving the initial and 
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terminal segments guarantee that the approximation closeness at the start and 
goal is achieved independently of v . . . .  and with an f~(e) timestep. 

4.2. The Stron9 Trackin9 Lemma 

4.2.1 Preliminary Discussion o f  the Lemma. Our tighter approximation and 
time-complexity bounds rely on the following lemma. 

LEMMA 4~2 (The Strong Tracking Lemma). Suppose a trajectory Fr respects 
acceleration bound area x and velocity bound Vm~x and takes time F,. Furthermore, 
suppose that amaxZ divides Vm~ x. Then in the absence of obstacles, the following hold: 

1. For any positive qx, ~l~, a timestep size z and a choice of root vertex S* exist 
such that a graph-trajectory Fq with the following properties exists: 
(a) Fq(z) is within (amax z2, 2amaxZ ) of Fr(0), and, for all t ~ [0, z], Fq(t) is within 

(~, ~o) of v,(o). 
(b) Fq(t + ~) is within tolerance (qx, rl~) of F~(t)for all t e [0, T~], and Fq(T~+ z) 

is within (5area:Z/2, 2am~xZ ) of F,(T~). 
2. Moreover, z is polynomial in rl~, ~ ,  1/v . . . .  and 1/area x. Specifically, z can be 

chosen as the largest z such that a~axZ divides v ~  and 

(13) <min(-~/x , ~/. ) 
- \SVmax 2Zmmax" 

As in [1], it is sufficient to consider the one-dimensional case, since we are using 
the L~-norm for dynamics bounds. Assume that trajectory F r obeys the velocity 
and acceleration bounds. We call a function that describes the velocity of some 
grid-bang trajectory a 9rid-ban9 velocity function. We initially assume that T~ = Kz 
for some integer K, and that v . . . .  Vr(O), and vr(T~) are multiples of area:. 

The proof has four stages. First, we show there is a pair of grid-bang velocity 
functions bounding v, from above and below while staying within a constant 
of v,. (See Figure 6.) Second, we use these bounding trajectories to show there 
is a grid-bang trajectory r'~ that tracks F~ to a tolerance that is a function 
of the dynamics bounds and z; ~'q(t) approximates Fr(t) to within 
(2Vmax'C q-amax z2, 2amaxZ ) for all times t ~ [0, T~]. (See Figure 8.) Third, we show 
there is a grid-bang trajectory Fq that tracks F r only slightly less closely than ~q 
but that approximates F, better at T~. (See Figure 9.) Finally, we relax our 
assumptions about F r, except for the condition that ama x Z divide Vma ~. To relax 
the assumptions, we show how to prepend and append trajectory segments of 
length z or less to Fr to reduce the proof to the restricted case. (See Figures 10 
and 11.) 

We now introduce a notation to describe grid-bang trajectories. Observe that 
a grid-bang trajectory F lasting for Kz is uniquely described by the initial state 
(p(0), p(0)) and a sequence of vectors {c o . . . . .  e ~-1} whose individual compo- 
nents are members of { - 1 , 0 ,  1}, i.e., c~ 'e{-1 ,0 ,  1) d. Then we have, for 
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x / / 

Fig. 6. First step in proving Lemma 4.2. Assume that trajectory F, obeys the velocity and acceleration 
bounds Vm,x and am~x. In addition, for now assume that T, --- Kr for some integer K, and that v .... 
v~(0), and v,(T,) are multiples of amax z. Then v~ is bounded above and below by (a .... 0-bang velocity 
functions vf~t and V~o,~, which stay within 2a,.~z of v~. 

t ~ End, (n + 1)~1, 

(14). 

v(t) = v(nz) + (t -- nz)amaxle", 

p(t) = ~n~) + v(s) ds, 

where I is the identity matrix. 

4.2.2. Bounding Velocity Functions. The following lemma shows the existence of  
two " b o u n d i n g "  gr id-bang velocity functions for each one-dimensional  velocity 
function v~ that  obeys bounds  Vmax and am,x. (See Figure 6.) Fo r  a velocity function 
v, in d dimensions, d such pairs of  functions exist. In  the construct ion of  an 
(amax, z)-bang trajectory that  approximates  F~, we use these bounding  functions 
to guarantee velocity-tracking. 

LEMMA 4.3. Let r be f ixed such that amax'r[Vmax. Let v, be a velocity function 
obeying dynamics bounds Vmax and a . . . .  and let z JTr. Suppose that amaxZ divides 
vr(O) and vr(T~). Then there are two grid-bang velocity functions Vslow, vfast: 
[0, T~] -+ [ - v  . . . .  Vmax] that satisfy the following five conditions: 

1. /)slow(O) = /Jr(O) ~ Vfast(O ). 

2. Vslow(T~) = vr(Tr) = Vfast(Tr). 
3. Vslow(t ) <__ V,(t) <__ Vf~t(t ) for all t ~ [0, T~]. 
4. vfa~t(t ) - vr(t ) <_ 2ar, axz and v,(t) - Vslow(t) -< 2amaxZ for all t e [0, T,]. 
5. For all n, Vf~st(nz) - v~(nz) < 3amaxZ/2 and v,(nz) -- Vslow(nZ ) <_ 3am,xZ/2. 
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Fig. 7, The construct ion for L e m m a  4.3 ~ matches  v, at t = 0, T s.  Ufast and V,low are visible as dashed 
lines where  they differ from ~f~t and ~7~o~, respectively. 

PROOF. We first define a grid-bang velocity function ~r that approximates /),. 
(See Figure 7.) We define g,(nz) to be the integral multiple of %axZ that most 
closely approximates 6 v , (nz) .  We then inductively construct ~: 

�9 Initialization: 6~(0) =/),(0). 
�9 Stage n: for t �9 Era, (n + 1)r), 

(15)  ~.(t) = ~ ( n ~ )  + 
(~,((n + 1)r) - ?~(nz) ) ( t  - n r )  

Thus, for all n, [vr(m) - Or(m)l ~ am,xZ/2- It follows that ~, also obeys accelera- 
tion bound amax, or else v, would have to violate am, x. Furthermore, because of 
the closeness at multiples of ~, I v,( t )  - ~,(t) l < amax ~ for all t e [0, T,]. It is obvious 
that ~ obeys velocity bound Vmax. 

We now define: 

1. Vfast ( t )  = min(v . . . .  ~r(t) + amax'C). 
2. ~Tslow(t ) = max(-Vmax, ~Tr(t) -- am.xZ). 

It is straightforward to verify that these grid-bang velocity functions satisfy the 
last three claims of the lemma. 

/)fast and/)s,ow are similar to 17fast and ~stow- First, we set 

vf~,(o)  = V~,o~,(o) = ~,(o) = v,(o), 

6 In cases when  v,(z) - l_vr(m)/a~,~xZAama x T = amaxZ/2 , the f loor or  ceiling must  be chosen consistently.  
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and 

/)fast(Tr) ~-- Vslow(Tr) = ~r (~r)  = vr(Tr) .  

We then construct the functions forward in time from t = 0 and backward from 
t = T~ until they match ~ea~t(t). For  the vf~t case at the t = 0 end, we set 

d . d    vfast t,, mln(a ax + Omax) 
until the minimal time when Vfast(t ) = Vfast(t). If there is no such time, then 
/-)fast = Vr" The other cases are similar. []  

4.2.3. Tracking a Restricted Trajectory. Given a trajectory F r that begins and 
ends with velocities that are multiples of a~ax~ and that takes a multiple of ~c time, 
we show that an (area . z)-bang trajectory exists that matches  it at the start, 
approximates it at the end, and tracks it to a tolerance that is independent of 
trajectory time. Lemma 4.4 establishes that the start state can be matched and 
that the tracking tolerance can be obeyed for an arbitrarily long trajectory. (See 
Figure 8.) The trajectories V~ow and Vfa~t are used in the construction as markers 
to bound velocity tracking error and enforce exact matches at t = 0 and t = T,. 
According to Lemma 4.5, with an increase in tracking error, an (a . . . .  r)-bang 
trajectory can also approximate Fr(T,) to within a~aJ z in position. 

Fig. 8. The second step in proving Lemma 4.2. We constructively show the existence of an (a . . . .  z)-bang 
trajectory that tracks F,./3~(0) = p,(0), and ip,(t) -/~q(t)[ _< 2Vma~Z + ama,,'C 2. ~,~ is bounded above and 
below by (a . . . .  z)-bang velocity functions vf~st and vs,,w, which stay within 2a,,a,,z of v,. 
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LEMMA 4.4. Let z be fixed such that amax'C l /)max. Let F, have velocity function 
/)~ obeying dynamics bounds /)max and a . . . .  and let z IT,. Suppose amax'C divides 
/)~(0) and /),(T~). Then there is an (a . . . .  z)-trajectory Fq such that,  for all times 
t~[O, T,], 

(16) I/)r(t) - Fq(t)[ ~ 2amax'C 

and 

(17) Ip,(t) - pq(t)l < 2/)max z qs amax z2. 

PROOF. We inductively define an (a . . . .  z)-bang trajectory Fq that ' t racks  F~ to 
the tolerance in the lemma. The definition works for semi-infinite trajectories, and 
it is similar to simple finite injury constructions from recursion theory. 

In stage n of the construction, we define gq(t) for all t e [nz, (n + 1)'c) and 
possibly alter a previously defined section of the function. Our  choice of Fq(0) 
serves as the root vertex of the reachability graph and determines the position- 
space alignment of the TC-grid coordinates. Let iT,, /)fast, and /)~low be defined 
as in Lemma 4.3. 

�9 Initially, set/3q(0) = p,(0) and Oq(0) = ~,(0). The origin of the grid is chosen so 
t h a t  (pq(0), gq(0)) is a gridpoint. 

�9 Stage n (>0):  We choose c"E { - 1 ,  0, 1}, and set Vq(t) = Vq(n'c) + c n amax(t -- nz) 
for t E [nz, (n + 1)z). The following rules determine c": 
1. Initially, c" is chosen to minimize Ip~((n + 1)z) -/Sq((n + 1)'c)l subject to the 

condition /)~low(t)< fq(t)< Vfast(t) and subject to the previously chosen 
cO . . . ,  cn-1 

2. Let y(")= p,((n + 1)z ) -  ~q((n + 1)z). We call y~") the lag during stage n. 
If I Yt")] > 2VmaxZ, then: 
(a) For  the greatest integer m < n such that  c " r  sgn(yt")), set c " =  cm+ 

sgn(ff)). 
(b) If there is a greatest integer j, m < j < n, such that  setting d = d - 

sgn(y ~")) minimizes ]pr((n + 1 ) z ) -  pq((n + 1)z)l, or if otherwise ~q((n + 1)z) 
would not  be bounded by /)fa~t((n + 1)z) and /)~low((n + 1)z), then set 
c j = d - sgn(yt")). 

By this definition, for all t ~ [0, T~],/)slow(t) < 6q(t) < /)fast(t), SO fq(t) satisfies the 
first claim in the lemma. 

Before we show ~q satisfies the second claim, we observe that  if we only use 
the first rule at each stage n, then 

Ipr(t) --/~q(t)l < 4/)max'C + amax'C 2 

for all t ~ [0, T~]. To see this, first note that  F r can maintain maximum acceleration 
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for at most time 2Vmax/amax, since otherwise it would violate the velocity bounds. 
Therefore, the rule implies that if, at some time tb, 

P,(tb) - ~q(tb) >_ amax z'2, 

then ~q will equal or exceed v, at some time no later than tbd-2/)max/area x. The 
second rule gives us the tighter approximation in the lemma; although this does 
not affect the asymptotic complexity bounds, it significantly affects the running 
time of any implementation. 

We now verify that the second rule for stage n of the construction is consistent 
and guarantees (17). Let 

be the trajectory just before the rule is applied, and let F~") denote the trajectory 
at the end of stage n. Assume that/3 ("- 1) obeys the lemma for all t e [0, nz]. To see 
that the condition lye")[ > 2/)max is adequate for triggering changes to the {ok}, we 
observe that if Ip,(t)-/3q(t)[ > 2Vma.Z + amaxZ z for some t ~ ( n r , ( n  + 1)z], then 
[y(")[ > 2/)ma x. Thus, if a c m is found as specified, then 'L [p~(t ) -/3tq")(t)[ < 2/)max z + 
amax'C 2 for all t ~  [nz, ( n +  1)z]. 

Without loss of generality we assume that the rule is applied when the lag y~") 
exceeds 2/)maxZ; the negative lag case is symmetrical. Since the lag y~") > 2/)maxZ , 
there is some minima~ tw such that 

v(n)(t) < vr(t ) ~ /)fast(t) for all t e (tw, nz). 

Otherwise, the first rule would have been violated at a previous stage. Furthermore, 
there is an integer m such that m z < ( n - 1 ) z ,  t w < ( m  + 1)z, c~"<0, and 
c" § x . . . . .  c"- x = 1 before the rule is triggered. 

Finally, we must ensure that the rule does not cause the new/3~")(t) to become 
too much larger than pr(t) in the interval [mz,  (n + 1)z]. Recall that, for all integers 
k, vr(kz) - Vslow(kz) < 3am,xZ/2. Because f-tq,) accelerates maximally (respecting ama x 
and Vmax) over [(m + 1)z, (n + 1)z], it follows that v~(t) - ~")(t) < 3amax/2 for all t 
in this interval. Since yt") > 2/)maxZ and nz - mr  < 2VmaJama x, it then follows (with 
some algebraic manipulation ) that 

pr(t) -- ~")(t) > -/)max T - -  area x r 2 for t ~ [mY, (n + 1)z]. 

Thus, ~n)(t) obeys (17) for all t ~ [0, (n + 1)r]. [] 

Using the ~q defined above, we show the existence of an (a . . . .  z)-bang trajectory 
Fq that tracks F, a little less closely in position but that is within (amax'C 2, amax'C) 
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Fig. 9. The third step in our proof of Lemma 4.2: ~q (from Lemma 4.4) is modified to obtain vq such 
that ~g v~(t) dt is within am~xZ 2 of ~ Vri(t ) dr. 

of F,(T~) at time T,. Specifically, we modify the velocity function ~q to improve 
the approximat ion  while staying between vf,st and V~low. (See Figure 9.) 

LEMMA 4.5. Let z be fixed such that amax'~[Vma x. Let F r have velocity function 
vr obeying dynamics bounds Vma x and a . . . .  and let z[ T,. Suppose ama:lvr(0), 
v~(T~). Then a 9rid-bang Fq exists that tracks F~ to tolerance 
(4VmaxZ + anaaxZ2,2amaxZ) such that F~(0)= F~(0), vq(T~)= v~(T~), and Ipq(T~)- 
pr(T~)l < amaxZ 2. 

PROOF. Given Fq obeying the hypothesis of the lemma, let us define Vfast , Vslow , 
and F~ as in the two previous proofs. We show by construct ion how to modify 
Fq incrementally into a Fq that satisfies the lemma. Let  y = pr(T~) -/3~(T~). 

�9 Initialization: Let _~F I~ = Fq. Go  to stage 0. 
�9 Stage n: If [p,(T~) - p~")(T~)I < ama :  2, then Fq = F~ "). Otherwise, we obtain _qF I"+ 1) 

by modifying V~q " -  1). Let  m be the least integer such that  

and 

Sgn(y)(vr(mr) -- ~q(mr)) > O, 

sgn(y)c m >__ O, 

sgn(y)c"-  1 < 0. 

Set c " -  1 = c " -  1 + sgn(y) and c m = c" - sgn(y). Proceed to the next stage. 

For  n > 0 we verify that  at stage n we can always find the necessary integer 
m. We describe the case where y > 0; the y < 0 case is similar. If v~")(t) = Vfast(t ) 
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for all t, then p~")(T,)> p,(T~). We show that  as long as v~")(t)< Vfast(t ) at some 
time t, the stage can proceed. Suppose that  we have followed the construct ion 
through n - 1 stages, reached stage n, and found that  pr(T~) - p~")(T~) > ama~Z 2. 
Then, since v~")(0) = vf,st(0), there is a least integer k such that  v~")(kz) < vf,st(kz). 
Either c k -1 = 0 or c k- 1 = _ 1. Suppose that  c ~- 1 = _ 1. Then  there must  be a 
least integer m > k such that  6 , >  0, since V~q")(kz) < Vfa~t(kz) but  vtq")(T~) = vf,~t(T~). 
Suppose that  c k- 1 = O. I fc  k > O, then m = k. Otherwise, by the previous argument ,  
there must  be a least integer m > k such that  Cm --> 0. 

By inspection, we can see that, for each n and all t e [0, T~], 

p~")(t) <_ p~"+ ')(t) < (") t - -  Pq ( ) -}- amax"C 2 

and 

p("+ 1)(T~) = p~q")(T~) + ama,,'t "2. q 

This ensures that  the construct ion reaches terminat ion and the posi t ion-tracking 
bounds  are achieved. The velocity-trackiog bounds follow from the fact that  
Vslow(t ) ~ Vq(t) <__ Vfast(t ) for all t. [ ]  

The following corollary is immediate.  

COROLLARY 4.6. Let z be fixed such that amax'C]Vmax. Let Fr have velocity function 
v~ obeying dynamics bounds Vm~x and area x, and let z[ T~. Suppose that F,(T,) is a 
TC-gridpoint relative to Fr(0), z, and the dynamics bounds. Then a grid-bang 
trajectory Fq exists that tracks F, to tolerance (4Vma,Z + amax z2, 2amaxZ ) such that 
rq(0) = F~(0) and Fq(T~) = F;(T~). 

PROOF. Lemma 4.5 asserts all the claims except that  pq(T~) = pr(T~). The  corol lary 
follows from the proper ty  that  (am~x, z)-grid-bang trajectories w i t h  the same 
start states and final velocities will have final positions that  differ by a multiple of 
amax'C 2. []  

4.2.4. Removing Restrictions. We now remove certain restrictions on F~. (See 
Figures 10 and 11.) First, we remove the restriction that  T~ be a multiple of  z. The 
basic idea is that  if we extend the trajectory and obtain a t rajectory that  
takes [-T~/zTz time, we can obtain a t rajectory that  satisfies the hypotheses of 
Lemma 4.5. The acceleration bound  and the timestep then limit how much  greater  
the tracking error  is at time T~ than at [-T/z:]z. 

COROLLARY 4.7. Let z be fixed such that arnax'C[/)max. Let F r have velocity function 
v r obeying dynamics bounds Vmax and amax such that amaxZ]Vr(O ) and ama~zlv,(T~). 
Then a grid-bang Fq exists that tracks F, to tolerance (4VmaxZ + amax'C 2, 2am~x z) 
such that Fq(0) = rr(0), tvq(Tr) - vr(Tr) [ < amax'C, and [pq(T~) --pr(T~)] < 3amaxZ2/21 
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Fig. 10. Proving Lemmas  4 . 6 4 . 8 :  if ama~v does  not  divide v,(T,), then there is some  am~-bounded v'~ 
such that v',(t) = v~(t) for t e [0, T;'] and am~ ~'r I v'~(T'~), where T', = [- T#T7 and T,' = T'~ - "r. If p,(0) = p',(0), 
then a trajectory that tracks F', also tracks F,  a lmost  as closely.  

PROOF. Suppose F, is a trajectory obeying the hypotheses of the corollary. Define 
T', = [-T~/v-]z. Then there is a trajectory F', such that 

F',(t) = F,(t) if t e [0, T.], 

v;(t) = v,(T.) if t e IT,, r;] .  

By Lemma 4.5, there is an (a . . . .  ~)-grid-bang trajectory Fq obeying Vm.x that 
tracks F" to tolerance (4v~.xv + am.xV 2, 2am.~v) such that Fq(0)= F;(0), vq(r;)= 
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Fig. 11. Proving L e m m a  4.9: if am.xT does not divide vr(0), then there is some  am.x-bounded v" such 
that v'(t + ~) = v,(0) for t e  [0, T,] and  am, x~ divides v;(0). Here  the t ime-scale for v; is offset by - ~  to 
sh ow this relationship. 
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v;(T;), and Ipq(T;) - P;(T;)I < anaax z2. Since Fr(T,) = F;(T.) and v;(t) = v,(T.) = vq(T;) 
for all t e [T,, T;], and since Vq obeys acceleration bound area., it follows that 
]pr(Tr) -- pq(Tr) I < 3amaxZ2/2 and [v~(T~) -- vq(T~)l < % , : .  [] 

Next, we remove the restriction that ama:lv,(T~). Again, we show how to 
modify the "tail" of F, to get a trajectory that satisfies the hypotheses of 
Lemma 4.5. 

COROLLARY 4.8. Let z be f ixed such that amaxZlVma x. Let F, have velocity function 
Vr obeying dynamics bounds Vm, x and am~ ~ such that amaxZ[Vr(O). Then a grid-bang 
Vq exists that tracks F, to tolerance (4VmaxZ +am, xZ2,2am~x z) such that 
F~(0) = rr(0), I v~(T~) - vr(T~)l < 2amax z, and Ipq(T~)~ p,(T~)I < 5amax'C2/2. 

PROOF. Suppose F~ is a trajectory obeying the hypotheses of the corollary. Define 
T'r = FT~/z-]z, and T~' = T', -- z. Define v o to be the multiple of am~xZ closest to 
v~(T~) subject to the condition that ]v~(TT) - Vo] < a m J .  

We then define a trajectory F'r: 

F'r(t ) = F,(t) if t ~ [0, T~'], 

and 

v'r(t ) = v',(T;) + - -  (t -- T") (Vo _ v'~(T')) if t ~ IT/ ,  T'r]. 

F', obeys amax" It follows that ]p,(T~)- p',(T,)[ < amax zz, since T ' , -  T~' = z. By 
Lemma 4.5, there is an (a . . . .  0-grid-bang trajectory Fq obeying Vmax that tracks 
F', to tolerance (4Vma: + amax z2, 2 % , : )  such that Fq(0)= F'r(0), vq(T',)= v',(T'~), 
and Ipq(T'~)-p'r(T'v)[ < area: 2. It follows that [pq(t)-fir(t)[ < 5am,xZ2/2 for all 
t6  [T~', T~]. Because [vq(T")- vr(T'/)[ <_ 2amax'C and [vq(T',) -- v,(T',) I _< amax'C, it 
follows that [vq(t)- v,(t)[ < 2am,xZ for all t~ ITS', T~]. [] 

Finally, we remove the restriction that vr(0) be a multiple of amaxZ. We modify 
F, by prepending a trajectory segment that has an initial velocity that is a multiple 
of % , : ,  ends at F,(0), and takes time z. (This construction is "symmetrical" to 
the construction in the proof of Corollary 4.7. See Figure 11.) The modified 
trajectory satisfies the hypotheses of Corollary 4.8. 

COROLLARY 4.9. Let z be f ixed such that anaax~[Vmax. Let F~ have velocity function 
v r obeying dynamics bounds Vma x and area x. Suppose that 

3" = the multiple of'amaxZ closest to vr(O), 

s* = p,(O) - ~ (~(o) + ~*). 
z 
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Then a grid-bang Fq exists such that: 

1. r . ( 0 )  = (s*,  ~). 

2. Fq(z) approximates F~(0) to tolerance (amax z2, 2am,xZ). 
3. For all t e [0, z], Fq(t) is within (VmaxZ , 2am~xZ ) of  F~(0). 
4. For all t e [0, T~], Fq(t + z) tracks Fr(t ) to tolerance (4Vm,xZ + a~x  z2, 2am~xZ ). 
5. Fq(T~ + z) approximates F,(T~) to tolerance (5amaxZ2/2, 2am,xZ ). 
6. Fq(0) is computable f rom a . . . .  v . . . .  and F,(0). 

PROOF. Suppose Fr is a trajectory obeying the hypotheses of the corollary, and 
suppose v~(0) is not  a multiple of am~xZ. Let Vo be the multiple of am~xZ closest to 
v~(0). We can then define a trajectory F', such that  F'~(z) = Fr(0): 

v;(0) = Vo, 

t 
v;(t) = v o + (v,(0) - Vo) if t e [0, r], 

p;(0)  = p~(0) - f~ v;(t) dt, 

and 

F;(t) = r~(t - z) if t e [z, T~ + z]. 

Clearly, F'r(0 ) = (s*, ~*) as defined in the lemma. 
By CorOllary 4;8, there is an (amax, 0-bang trajectory Fq such that:  

1. r~(o) = r;(o). 

2. Fq tracks F', to tolerance (4Vma~Z + amax z2, 2amaxZ). 

4. Ivq(T~+ z) - v',(T~+ z)l < 2amax~'. 

Since F;(t) = F~(t - z) for all t e [z, T~ + z], this establishes the last three conditions 
of the corollary. Since F~(0) = F'(0) and F;(z) = F,(0), the first three  conditions 
follow from the area x and Vm. x bounds. [] 

PROOF OF LEMMA 4.2. We apply Lemma 4.5 and the corollaries that  follow it. 
Specifically, suppose that  a trajectory Fr respects acceleration bound area x and 
velocity bound Vm, x and takes time T, and that  am~xZ divides Vma x. Using Corollary 
4.9, for any z such that  amax'C divides v . . . .  we can compute the components  (s*, ~*) 
of a state S* such that, for some (a . . . .  z)-bang trajectory Fq beginning at S*: 

1. Fo(z) approximates Fp(0) to tolerance (amaxZ 2, 2amax" 0. 
2. Fo(t + z) tracks Fr(t) to tolerance (4VmaxZ + amax'C 2, 2amaxZ ). 
3. Fq(T~+ z) approximates Fp(T~) to tolerance (5am~xz2/2, 2am~x~ ). 
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Therefore, if 4Vmax'C + anaax'C 2 ~ t/x and 2am,,Z < t/v, then Fq(t + z) tracks Fq(t) 
to tolerance (t/x, t/v ). Thus the choice of �9 in (13) is sufficient. [] 

4.3. A 6'v-Safe ("Also Safe") Grid-Bang Trajectory. Recall that by Lemma 4.2, z 
is polynomially dependent on t/~ and t/,. Applying Lemmas 4.2 and 4.1 and 
choosing fl in (12) to maximize the upper bound on �9 yields the following theorem: 

THEOREM 4.10. Given dynamics bounds area x and v . . . .  obstacles (9, scalars c o > 0 
and cl >_ 0, and positive scalar e <_ 1, let z be chosen such that amaxZ divides Vrnax 
and 

Co~ 
(18) z < 

-- 2amaxCl(l -- e) + 5vm, x" 

Then for any start state S we cap choose a root vertex state S* such that if F, 
begins at S, is by-safe, and takes time T~, then a 6',-safe trajectory F~ with the 
following properties exists: 

1. Fq(0) = S*. 
2. Fo(T) approximates F,(0) to within (amax z2, 2amax'~ ). 
3. Fq(T~+ z) approximates F~(T,) to within (5amaxZ2/2, 2amax'C ). 

PROOF. Suppose F, is a 3~(Co, c0-safe trajectory taking time T~ and obeying 
acceleration bound area x. Then by Lemma 4.1 the choice o f  a tolerance (t/x, t/v ) 
given in (12) ensures that if a trajectory Fq approximately tracks Fr to tolerance 
(t/x, t/v), then the 3'v-tube induced by Fq lies entirely inside the 3~-tube induced by Ft. 
Since the by-tube induced by F~ intersects no obstacles in (9, Fq is therefore 
3',-safe. Given the tolerance (t/x, t/v), we use Lemma 4.2 to choose the timestep 
r and the root vertex S* (via Corollary 4.9). 

To get the desired bounds, we must choose fi so that using (18) yields a maximal 
z as given by (13). Let us therefore define, for fl > 0, 

Coefi 
~x([~)  = 

5Vrnax(Cl(1 -- e) + fl)' 

(19) %(fl) = c~ 
2a~ax(Ct(1 - e) + fl)' 

z(fl) = min(rx(fl), %(fl)). 

By inspection, zx(0 ) < %(0), ~x is monotonically increasing, and % is mono- 
tonically decreasing. Thus, z(fl) is maximized when zx(fl) = %(fl). Requiring fl to 
be positive and doing a little computation, we find that z(fl) is maximized when 

(20) fl = - 2Vmax 
5ama x" 
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Applying either zx or % to this fi yields the desired z in (18). Finally, we see 
that the choice of z and the closeness of Fq(z) to S guarantee that the trajectory 
segment from the root vertex to  Fq('c) will be 6'r-safe. [] 

4.4. Approximation Goodness and Overall Complexity Bounds. As the algorithm's 
choices of timestep and root vertex agree with Theorem 4.10 and Corollary 4.9, 
we have shown the approximation bounds in Theorem 2.1. 

To determine the total complexity of the algorithm we must bound the number 
of (a . . . .  z)-gridpoints for a Cartesian robot with maximum (L~) speed Vmax in a 
d-dimensional free space of diameter I. We do this by simply calculating the 
number of gridpoints reachable under grid-bang commanded motions from the 
root vertex state in the absence of obstacles. Let G~(a . . . .  % v . . . .  l, d) denote this 
bound. 

First we consider the d = 1 case. It is clear that Goo(a . . . .  27, v . . . .  l, 1) is equal 
to the maximum number of possible velocities at any given time kz multiplied by 
the maximum number of possible positions at that time. Since at each timestep 
the change in velocity is amaxZ, -amaxr, or 0, the number of possible velocities 
is at most 2V~ax/am,xZ + 1. To see that the number of possible positions at a given 
velocity is at m o s t  l/amaxZ2+ 1, let v ") denote the velocity and x ") the position at 
timestep i for any i. Then X (k+  1) = v(k),~ _~_ a(k)(a~xZ2/2) + x k, where a(k)~ { -  1, O, 
1}. Without loss of generality, let v ~~ = 0 and x (~ = 0. Since v (k) = etk)amax z for 
some integer c ~k), by using induction we can show that 

(21) 

X (k) = (2y(k) + 1)amaxZ2 if C tk) odd, 
2 

X (k )  - -  2--(k)amax'C2V if C (k) even, 
2 

for some integer y(k). It follows that 

(( )) 
\ \amaxZ 

Hence, in a bounded workspace with velocity limits, we can use a poly- 
nomial-sized reachability graph to find an approximate optimal safe solution. 
Given a problem for which a 6v-safe solution exists, the algorithm finds a 
trajectory Fq that satisfies the time approximation Tq < Topt, in addition to 
respecting the kinodynamic constraints and being 6'v-safe. Noting that the 
maximum out-degree of the reachability graph is 3 d and that checking the 
safety of trajectory segments requires time O(N), we substitute the algorithm's 
choice of �9 (18) into (22) to obtain completely the complexity bound in 
Theorem 2.1. 
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5. Implementation, Discussion, and Extensions 

5.1. Implementation Results. To get some idea for how our algorithm might 
behave in practice, we have completed a COMMOn LISP implementation for a point 
robot in two dimensions obeying L~ dynamics bounds. This planner, which we 
have run ,on a Sun SparcStation2, is the first implementation 7 of any algorithm 
that generates provably good, provably near-optimal kinodynamic plans for 
problems in more than one dimension. 

Our planner is a simple implementation of the algorithm and uses no search- 
pruning heuristics. It basically does a breadth-first graph search of the TC-grid, 
computing a state's (vertex's) neighbors only when it is on the search frontier. A 
bit array is used to record whether a state has been reached, and each vertex found 
keeps a pointer to its "parent." The planner implements collision-avoidance and 
6'v-safety, so each trajectory segment is 6'v-safe. 

An example of a solution found by our planner is shown in Figure 12. The start 
position is at the lower left, and the start velocity is in the positive y direction; 

H ~ 

J 

f~  

II 

(a) 

7 

(b) 

Fig. 12. (a) A near-optimal trajectory found by our implementation; the "spikes" indicate the velocities. 
In (b) the commanded accelerations are shown, e.g., the commanded acceleration for the first time-step 
is a bang in the (+x, - y )  direction. 

7 Actually, it is the second incarnation of our first implementation. 
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the goal, at the upper right, has velocity in the negative y direction. The small 
dots indicate the position component of the planned trajectory at each time step. 
The line segments attached to each do t  in Figure 12(a) indicate the velocity at 
that position. The longer segments in Figure 12(b) indicate the acceleration 
direction. In this problem the world is 3.5 by 1.9 units; Vma x = 0.12; area x = 0.1; 
CO = 0.31; Cl = 0.1; and e = 0.8. v was chosen as 0.4, resulting in a TC-grid of 
approximately 800,000 states. The implementation searched over 740,000 states 
and required approximately 3 hours of actual elapsed time, which includes 
swapping, to solve this problem; CPU run time was consistently under an 
hour. 

5.2. Discussion. The careful reader might observe that, in general, there may be 
many minimal-time (amax, ~)-bang trajectories from S to a given TC-gridpoint, and 
the algorithm as described in previous sections might find any one of these. These 
trajectories can differ from each other in many properties, such as homotopy class, 
maximum curvature, and average speed. Certain secondary performance measures 
can be used to choose among these during each round, but this is unrelated to 
our theoretical result and does not affect the number of states visited. This idea 
is explored in [3], and Figure 13 illustrates the effect of a different choice. 

Despite the slowness of the our current implementation, we do not believe that 
the algorithm is inherently impractical. First, if we allow solutions that take at 
most time (1 + e)Topt instead of Topt, where Top t is the time for an optimal 
kinodynamic trajectory, we can increase the timestep size. This single change in 
the algorithm dramatically reduces the size of the reachability graph and the 
running time. (See Figure 14.) The analysis in I-3] and [23] closely parallels the 
one described here. Finally, we note that because of the particular graph-search 
nature of the algorithm, we could greatly exploit parallelism in a practical 
implementation; additional, though limited, parallelism can be extracted in safety 
checking. 
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Fig. 13. Choosing among multiple trajectories that reach a TC-gridpoint during a round affects 
properties unrelated to optimality. 
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Fig. 14. Although the main result of this paper shows that our algorithm can find trajectories that are 
exactly time-optimal as long as slack is allowed in safety, allowing approximate time-optimality results 
in much faster planning. For  example, the implementation on a 32 Mbyte SparcStation2 took 5 CPU 
minutes to plan the trajectory above, which obeys es = sr = 0.6, Co = 0.2, eL = 0.5, am,x = 0.2, and 
vm,~ = 0.3. The environment is the same as in the other examples. 

5.3. Extensions~ Our results can be directly extended in several ways. 
Via a transformation to configuration space [24], our results can be applied to 

a rigid, nonrotating robot whose geometry is given by a union ~ of convex 
polyhedra. This configuration space transformation has been discussed extensively 
in the literature (see, e.g., [24]). The algorithm of [24] could be used as a preprocess 
to reduce the planning problem for ~ amidst obstacles (9 to the point navigation 
problem we have discussed. 

Since the Safe Tracking Lemma (Lemma 4.1) and Strong Tracking Lemma 
(Lemma 4.2) are independent of spatial dimension, the  main theorem can be 
extended to arbitrary d, with additional complexity resulting from the increased 
cost of safety checking and d-dimensional arithmetic. In particular, safety checking 
would involve collision detection with the Minkewski sum of convex d-polytopes 
and a speed-parametrized d-cube. (See Appendix B for the three-dimensional case.) 
Letting p(N, d) be the complexity of this procedure, the exter~ded main result would 
have cost O(cdp(N, d)(1/s)3n). The details of the result appear to hinge on bounding 
the number of ( d -  1)-faces (since a ( d -  2)-face bounds exactly two ( d -  1)- 
faces) of the Minkowski sum and constructing their incidence relation. We 
conjecture that applying and extending work from computational geometry such 
a s [25] and [26] would be fruitful. 

In turn, this extended d-dimensional algorithm would apply,  via robot- 
dependent constant linear transforms, to other robots with constant, decoupled 
dynamics equations and decoupled dynamics, when the configuration space 
obstacles are expressed as unions of convex polytopes. For such robots with 
revolute and translational degrees of freedom and polyhedral workspace obstacles, 
the only change in the algorithm would again be in the safety-checking step. For 
a discription of the modified safety-checking step, which extends [27] and [28], 
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see our companion paper [-7] or [3], which present our results for robots with 
coupled dynamics. 

Finally, the approach in [1] and its descendents reduce the problem of finding 
an approximately optimal trajectory to that of finding the shortest path between 
two vertices of a uniform-cost graph whose vertices correspond to system states. 
On such graphs the single-source or single-sink shortest-path problem can be 
solved with nearly the same asymptotic time-complexity as finding a path between 
two vertices. For a k-source or k-sink problem, the complexity of the algorithm 
is O(ca(N + k)(1/e)3d), with the increased cost resulting from checking closeness to 
the sources or sinks. 

6. Conclusions. In this paper we obtain a provably good approximation algo- 
rithm for kinodynamic planning that extends the results of [1-1. We modify their 
algorithm for Cartesian kinodynamic planning under L~ dynamics bounds and 
apply new analysis techniques. We are able to: 

(a) Tighten the complexity bound to O(cdN(1/e)3d), or O(N(1/e) 3a) for a fixed robot 
and world diameter, from O(N 2 log N(l/e)6d). 

(b) Show that our algorithm finds a trajectory taking at most time Topt (the optimal 
time) instead of time Topt(1 + e). 

In addition, the approximation closeness at the start and goal states is not affected 
by the velocity bounds. 

We have reported on a preliminary implementation. This is the first implementa- 
tion of a polynomial-time, provably good approximation algorithm for kino- 
dynamic planning. While the current implementation runs slowly, eventually 
an improved implementation may be reasonable for practical off-line motion 
planning. Finally, we have described probable, if not definite, direct extensions 
to our work. 

There are many additional directions for future research, among these: 

1. Reducing the "practical complexity" of our algorithms, for example, using 
heuristically assisted search techniques instead of breadth-first search. 

2. Precise lower bounds for kinodynamic planning should be established (especi- 
ally in the two-dimensional case). 

3. Since the structure of the reachability-graph can be Computed "locally," there 
is hope for a parallel implementation, and this should be investigated. 

4. We conjecture that if contact is allowed (rather than 6,,-safety), then the 
complexity of the problem increases considerably. 

Kinodynamic planning represents a new direction in algorithmic motion plan- 
ning. Computational kinodynamics seems a particularly fruitful area in which to 
pursue provably fast, provably good approximation algorithms, since, while the 
problems are of considerable intrinsic interest, exact solutions may well be 
intractable. We have presented results with the lowest known complexity for 
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Cartesian kinodynamic planning in two and three dimensions. For  our corre- 
sponding results for robots having less restricted dynamics and dynamics bounds, 
we encourage the reader to see our companion paper [7]. 

Appendix A. Kinodynamic Planning Lower Bounds. This appendix sketches how 
to extend Canny and Reifs proof [4] of the ~ ' - h a r d n e s s  of the three-dimensional 
shortest-path problem to show that opt imal  Cartesian kinodynamic planning in 
three dimensions is also ~ - h a r d .  This claim was made in [1], but without proof. 
While the general description here should convey the flavor of the result, the 
technical specifics are intended to accompany or follow a close reading of Section 
2 of [-4]. The discussion also includes a brief justification of our statement from 
Section 2.3 that finding a path that is homotopic to the shortest is ~M~-hard. 

The idea for the (main) extension is simple: if we could set the acceleration 
bound r to O0, the reduction would be trivial because the problems would be 
identical. However, to do a polynomial-time reduction, we must show that for a 
given shortest-path problem instance we can find a "sufficiently large" ama~ that 
only requires a polynomial number of bits to encode. 

A. 1. Canny and Reif's Proof 

A.I.1. A Reduction. To prove that the three-dimensional shortest-path problem 
for a point among polyhedral obstacles is XP-ha rd ,  I-4] give a polynomial-time 
reduction from 3SAT. They describe how to take a given instance of 3SAT and 
construct an instance of the polyhedral path-planning problem such that a 
shortest-path from the start position to the goal position can be used to determine 
whether the 3CNF formula in the instance is satisfiable. The proof considers a 
3CNF formula F of m clauses C1 . . . .  , Cm over n variables b l , . . . ,  b, and their 
negations. The polyhedral environment constructed by the reduction has a 
description of length O(mn). The construction allows the computation (using O(mn) 
bits) of a path length lower bound l and an accuracy 6,c such that the shortest-path 
between the start and goal positions has length greater than l § fi,c if and only if 
the formula F is not satisfiable. 8 

A.1.2. Correspondence Between Homotopy Classes. The polyhedral environment 
will be the interior of a square box separated into levels by flat plates, each having 
one, two, or three slits. The plate thickness, slit width, and plate separation will 
all have the same size ecg. In addition, internal wails will divide the spaces between 
certain plates into rooms having one slit on the "ceiling" and one slit on the 
"floor." The start position will be above the top plate, and the goal below the 
lowest. 

The environment is constructed so that it will have special properties that we 
describe, avoiding details as much as  possible. Recall that each clause C~ in a 

8 We mostly follow the notation of [4] in this section. In particular, "/" is used as in [4], not as in 
the rest of this paper; i.e., it does not mean "world diameter," 6,c is not found in [4], but it just takes 
the place of a more complicated term. 
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3CNF formula is a disjunction of literals Lil v Li2 V Li3. If we separate paths 
that go from the start to the goal without ever visiting a level twice into their 
homotopy equivalence classes, then each class will encode (1) a truth assignment 
for bl . . . . .  b, and (2) the evaluation of a conjunction of m literals, one from each 
clause of F, using this truth assignment. In other words, if F' is the disjunctive 
normal form of F obtained by distribution, then, for each term (conjunction of 
literals) in F' and each truth assignment, there will be a corresponding homotopy 
class. If the truth assignment fails to satisfy the term formula, then some obstacle 
will "stretch" the shortest-path in the class. Furthermore, this path will have a 
length greater than l + bac if and only if the truth assignment fails to satisfy the 
term formula. Finally, F is satisfiable if and only if the shortest-path from start 
to goal will not be "stretched." 

OBSERVATION. The careful reader of [4] will note that for any of these homotopy 
equivalence classes, it can be easily calculated whether the shortest-path in that 
class will be "stretched" in this manner. Thus, a given 3CNF formula F, we could 
construct the corresponding polyhedral shortest-path problem, and once we obtain 
the homotopy class of the shortest path from start to goal, we could determine 
whether F is satisfiable. Thus, the construction in [4] can be used to show that 
findin9 the homotopy equivalence class of the shortest-path in a polyhedral environ- 
ment is Jff~-hard. 

A.1.3. Bit-Countin O. To show their reduction is polynomial time, [4] must show 
that the number of bits necessary to encode the corresponding shortest-path 
problem instance will be polynomial in n and m. The main problem is to show 
that eCR does not have to be too small. Suppose that the construction proceeds 
for a 3CNF formula F. Let lunstretche d denote the length of the actual shortest-path 
if F e 3SAT, and /stretched if not. 

Again, modulo some details, we can view their analysis as having three steps, 
showing that: 

1. If the slit width and plate thickness were zero, the construction guarantees that, 
for path length lower bound l = 2 a" and another parameter, which in [4] is 
called the minimum virtual source spacing, ~Smi n = 2-m": 

~2ml n 
lunstretche d : 1 and /stretched ~ 1 -t- - -  

4l 

(Equation (9) in [4].) 
2. The total number of plates is bounded from above by 

7nm + 1 0 n + 2 m + 4 .  

Furthermore, each plate can add no more than ~CR to the shortest-path length, 
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SO that if F e 3SAT, then 

(Equation (10).) 
3. It follows that if 

1 < lunstretche d <__ l + (7rim + 10n + 2m + 4)gCR. 

62in 

41 
- -  > (7rim + 10n + 2m + 4)eCR , 
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which is guaranteed ifecR = 2-2nm-3n-3/(7n m + 10n + 2m + 4), then the reduc- 
tion works with 6,c = 62in/41. 

Thus, ecR can be specified in O(nm) bits. It then follows from other arguments that 
any dimension in the environment can be specified in O(nm) bits. 

A.2. The Extension for Kinodynamic Lower Bounds 

A.2.1. The Idea. To extend the Jff~-hardness result to kinodynamic planning, 
we can use essentially the same polynomial-time reduction to reduce an instance 
of 3SAT to an optimal kinodynamic planning problem instance. Hence, we would 
use a point amidst polyhedral obstacles. We also choose the units for time and 
distance such that they convert trivially. For a given 3CNF formula F, the new 
reduction constructs the kinodynamic planning problem instance identical to the 
path-planning problem instance in the [4] reduction except that: 

1. The slit width and plate thickness ebR will be smaller than ecR. 
2. The start and goal positions will be lifted to the corresponding states with 

velocity zero. 
3. The velocity must obey a unit bound (in the same Lp-norm used for distance 

in the shortest-path problem). 
4. The acceleration will obey some bound amax (in the same norm). 
5. For lower time bound l and time-accuracy 6r, which we introduce, the 

minimal-time kinodynamic solution (obstacle-avoiding trajectory) would take 
more than time I + 6r if and only if the given 3CNF formula F is not satisfiable. 

The specification of 3v-safety parameters Co and c 1 is omitted from the discussion; 
it is easy to choose them because they can be incorporated linearly into the choices 
of slit widths and plate separations. 

A.2.2. Bit-Counting Again. Similarly to the above, the minimal-time solution 
will be "stretched" if and only if F r 3SAT. Let Tstretche d be the minimal solution 
time in this case, and let Tunstretche d be the least time otherwise. Suppose that we 
choose times T t = l and 6 r = t~mi n via unit conversion. It follows the analysis in 
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[4] that if the slit width and plate thickness were zero, and if the acceleration 
bound were infinite, then 

T u n s t r e t e h e  d = l and T~tretche d > l + - -  
41 

With slit width and plate thickness e~R, but infinite acceleration, it follows that 

1 <_ T,.,nstretchoa <-- 1 + (7nm + i0n + 2m + 4)ebR. 

Now, if the acceleration bound is a . . . .  Tunstretche d can increase by at most 2/area x 
for each obstacle edge along the shortest path, since this is twice the amount of 
time it takes to go from zero velocity to full speed or vice versa. Since there will 
be at most two edges along the shortest-path for each plate, 

( 4 )  
l ~ Tunstretche d ~ 1 + (7rim + 10n + 2m + 4) e~R + 

anlax 

By similar reasoning as above, if 

2-  2rim- 3 n - 4  
t 

13CR (7rim + 10n + 2m + 4) 

and 

amax = 22nm+3n+6(7nm -'k 10n + 2m + 4), 

then the reduction will work with 6r = 62min/41. (Recall that •min ----- 2-"m') Thus, 
e~R and area x can be specified in O(nm) bits. 

Appendix B. Safety Checking. We describe how to check whether an (a . . . .  T)- 

bang violates the speed-dependent safety margin 6v(Co, cO. The procedure runs in 
O(N) time, where N is the geometric complexity of the configuration space 
obstacles. We review some basic computational geometry developed by [243, 
describe the special case when ca = 0, and then extend the method to the general 
case .  

Assume that the configuration space obstacles are the union of convex poly- 
hedra, and recall that d _< 3. For  now, let the safety margin be a constant c o > 0, 
and define the Bc0 to be the L~o ball with radius co. Staying co-safe relative to a 
convex polyhedron A is then equivalent to avoiding A = A @ Bc0, where " O "  
denotes the Minkowski sum. Let A have m faces. Then, since B~0 is a d-cube and 
d < 3, A is also a convex polyhedron and has O(m) faces. By taking the Minkowski 
sum of each of the obstacles with Be0 we obtain the expanded obstacles. 
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Suppose A has faces {Fo . . . .  , F~} lying on the boundary planes of the closed 
half-spaces {Ho, . . . ,  H,,}. The boundary plane of each Hi is the kernel of an attine 
function f~. Ifn~ is a unit vector in the outward normal direction from the boundary 
plane of H~ and y~ is any point on this boundary, then 

fi(x) = <ni, x )  -- <nl, yi>. 

The polyhedron A is thus described by a set of functions f f  = {fo,-..  ,f,,}. 
A point x is on the boundary of A if and only if it lies on some closure of some 

face Fk of ,4. Equivalently, fk(X) = 0, and, for all fj  that determine an edge of Fk, 
fj(x) < 0. Since for a convex polyhedron the numbers of edges and faces are 
linearly related and an edge is common to exactly two faces, determining whether 
x lies on the boundary of any of the expanded of obstacles takes total time O(N). 

Without loss of generality suppose that (a, 0-bang p begins at t = 0 and that 
p(0) is Co-safe. We can then check the Co-safety of p(t) by determining whether p(t) 
intersects the boundary of an expanded obstacle. For a face F k of A, we only 
need to solve fk(p(t)) = 0, and for each solution t S check whether fj(p(Q) > 0 for 
some fj that determines an edge of Fk with fk. 

To check whether an (amax, z)-bang is 6~(Co, c0-safe relative to A for a given 
cl > 0, we simply "lift" the obstacles from C to TC. A state (x, v) is by-safe relative 
to a convex polyhedron A if and only if it lies outside the expanded obstacle 
.4(v) = A (~ B~o(v), where B~o(V) is the L~ ball with radius 6~(v). Thus, a state-space 
obstacle/] is described similarly to A, by a set of functions ~ = {fo . . . . .  fro}. For 
each f /~ ~-,  we define 

f i(x,  v) = <hi, x> - <hi, ~'i+ qillvll~>, 

where qi is a constant vector that depends only on n i. (x, v)e A if and only if 
f/(x, v) < 0 for each i. 

We use the fi~ ~ in the same way we use the f~ ~ Y above. Specifically, 
assume that (p(0), [~(t)) is 6v-safe, and for each f /~ ~ define 

fi(t) = (ni, p(t)) - <n i, Yi + qillP(Ol[ oo>, 

An (a . . . .  z)-bang (p, p) intersects /] if and only if there is some t e [0, z] and 
some face FK of 3 such that 

f~(t) = o, 

and 

fj(t) < 0, Vfj that determine an edge of F k. 

Since lgt) is quadratic, fk(t) has zeros of the form t = a _+ x/b. When computing 
the inequalities we can square twice to eliminate the radical, and thus it is possible 
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to compute square roots symbolically. This implies that safety checking never 
requires numbers longer (in the number of bits) than a constant multiple of the 
length of the longest number in the input, so taking account of the bit complexity 
of safety checking does not raise our complexity bounds from those obtained using 
the real-RAM model. Therefore, since we need to solve O(N) equations and check 
O(N) inequalities, the cost of safety checking is O(N) per (a, z)-bang. 
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