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Abstract� Kinodynamic planning attempts to solve a robot motion problem subject to
simultaneous kinematic and dynamics constraints� In the general problem� given a robot
system� we must �nd a minimal�time trajectory that goes from a start position and velocity
to a goal position and velocity while avoiding obstacles by a safety margin and respecting
constraints on velocity and acceleration� We consider the simpli�ed case of a point mass
under Newtonian mechanics� together with velocity and acceleration bounds� The point
must be 	own from a start to a goal� amidst polyhedral obstacles in �D or �D� While exact
solutions to this problem are not known� we provide the �rst provably good approximation
algorithm� and show that it runs in polynomial time�

� Introduction

The kinodynamic planning problem is to synthesize a robot motion subject to simultane�
ous kinematic constraints� such as avoiding obstacles� and dynamics constraints� such as
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modulus bounds on velocity� acceleration� and force� A kinodynamic solution is a mapping
from time to generalized forces or accelerations� The resulting motion is governed by a dy�
namics equation� In robotics� a long�standing open problem is to synthesize time�optimal
kinodynamic solutions� by which we mean solutions that require minimal time and respect
the kinodynamic constraints�

While there has been a great deal of work on this problem in the robotics community�
there are no exact algorithms except for the one�dimensional case� Furthermore� it can
be shown that in three dimensions� �nding exact solutions is NP�hard�� Therefore� it is
reasonable to pursue approximation algorithms � algorithms that compute kinodynamic
solutions that are 
close� to optimal� However� among the many proposed approximate or
heuristic techniques� there exist no bounds on the goodness of the resulting solutions� or on
the time�complexity of the algorithms� We consider the restricted situation of particle dy�
namics� and provide a provably good approximation algorithm for the �� and ��dimensional
cases�

We incorporate safety into the meaning of 
optimal� by including a speed�dependent
obstacle avoidance margin in the problem parameters� From this viewpoint� it is intuitive
that approximation algorithms for kinodynamic planning should trade o� planning time
�computational complexity� against optimality in terms of� �a� execution time of the mo�
tion� �b� strictness in observing the safety margin� and �c� closeness to the desired start
and goal positions and velocities�

To analytically express this trade�o� we parameterize closeness to an optimal safe so�
lution by a tolerance �� and we bound the planning algorithm�s running time in terms of
this �� Roughly speaking� we show that if there exists a 
safe� optimal�time kinodynamic
solution requiring time Topt� then we can �nd a 
near�optimal� solution that requires time
at most �� � ��Topt� Furthermore� the running time of our algorithm is polynomial both in
the closeness of the approximation �

�
and in the geometric complexity� These bounds on

solution accuracy and running time are the �rst that have been obtained for �D and �D
optimal kinodynamic planning� which has been an open problem in computational robotics
for over ten years�

� Kinodynamic Motion Planning

��� The Kinodynamic Planning Problem

Kinematic constraints� such as joint limits and obstacles� limit the con�guration �position�
of a robot� Dynamics constraints govern the time�derivatives of con�guration �independent
of obstacles�� They include dynamics laws and bounds on velocity� acceleration� and ap�
plied force� Strictly kinodynamic constraints are obstacle�dependent constraints that govern
con�guration and its time�derivatives but do not fall into either of the previous categories�

�It was �rst observed in �CDRX� that the methods of Canny and Reif �CR� can be extended to demon�
strate NP�hardness� For a complete proof see �Xa��
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An example of such a constraint is a speed�dependent obstacle�avoidance margin� A con�
straint is a kinodynamic constraint if it belongs to one of the above categories� The state of
a robot at a given time is its con�guration and velocity� The general kinodynamic planning
problem is� for a given robot� to �nd a motion that goes from a start state to a goal state
while obeying kinodynamic constraints�

We consider the following restricted problem� �See �gure ��� A point mass in �d

�d � �� �� must be moved from a state S � �s� �s� to a goal state G � �g� �g�� In the course
of the motion� the point must avoid a set of polyhedral obstacles� Movement is controlled
by applying forces or commanding accelerations� which are equivalent for a point mass�
By using a con�guration space approach� this problem is readily extended to cover a rigid
non�rotating robot geometrically described by the union R of convex polyhedra�

We will denote the con�guration space �d by C� and its phase space by TC� Phase
space TC is the robot state space and is isomorphic to ��d� Thus� a point in TC is a
�position� velocity� pair such as S or G�

A robot motion over a time interval ��� Tf � can be speci�ed by a twice�di�erentiable map
p � ��� Tf �� C� This map is the path of the motion� In kinodynamic planning� the motion
must obey dynamics and dynamics constraints� and it is convenient to specify �p explicitly�
The trajectory of a robot motion is the map � � ��� Tf �� TC given by ��t� � �p�t�� �p�t���
We denote the position and velocity components of a subscripted trajectory �r by pr and �pr�
respectively� While a motion p can be given directly as a function of time� two equivalent
speci�cations are useful� �a� an initial position p� and a velocity function v � �p� and �b�
an initial state �p��v�� and an acceleration function a � �p�

The motion must respect upper bounds on the magnitudes of the acceleration and
velocity� At all times t the acceleration �p�t� and the velocity �p�t� must obey

k �p�t�k� � vmax� and ���

k�p�t�k� � amax� ���

Eqs� ��� and ��� are the dynamics bounds� When the meaning is clear from context� we
will drop the max subscript�

We assume that the obstacles O are represented by a set of convex� possibly overlapping
polyhedra� Suppose these convex polyhedra have a total of n faces overall� We call n the
combinatorial complexity of O� Note that n is also the number of bounding halfplanes of
the obstacles� Free space is the complement of these obstacles� We assume that the set of
free con�gurations is bounded by a d�cube of side length l� A general kinodynamic planning
problem� then� is a tuple �O�S�G� l� a� v��

An exact solution to the kinodynamic planning problem is a trajectory � such that
���� � S� ��Tf � � G� and � obeys the kinodynamic constraints� That is� the path p
avoids all obstacles� the velocity �p respects ���� and �p respects ���� The time for a solution
� is simply Tf � The time�optimal kinodynamic planning problem is to �nd a minimal�time
kinodynamic solution� which is represented as a suitable encoding of the start state ����
and the acceleration function a�
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A theoretically time�optimal solution may require unrealizable precision in control or
sensing and thus be unexecutable by a physical robot� For this reason� an optimal solution
should observe a safety margin� the margin we de�ne is speed�dependent� Furthermore�
the safety margin ensures the existence of a 
tube� or family of solutions 
nearby� in time
and in phase�space that 
approximate� the optimal safe solution� The existence of such a

tube� of approximating solutions is essential for our approach� Safety margins are both
practically motivated and mathematically necessary�

A �v�safe kinodynamic solution avoids all obstacles by a safety margin �v� In this paper�
we de�ne this safety margin to be an a�ne function of the trajectory speed� This �rst�
order choice roughly corresponds to how accurately and quickly a robot senses its position
and velocity� combined with how quickly it can correct for velocity errors�� Two positive
scalars c� and c� characterize the safety margin� which one can view as an obstacle�free
tube centered about the path� Formally� a �v�safe kinodynamic solution has the property
that for all times t in ��� Tf �� there exists a ball about p�t� in free space of radius

�v�c�� c��� �p�t�� � c� � c�k �p�t�k�
We will drop the parameters c� and c� in the discussion when confusion will not arise� Note
that �v�safety is is an example of a kinodynamic constraint that is neither a pure kinematic
constraint nor a pure dynamics constraint� A �v�safe kinodynamic planning problem� then�
is a tuple �O�S�G� a� v� l� c�� c��� We call a� v� l� c�� and c� the kinodynamic bounds�

For �xed c� and c�� consider the class of all �v�safe kinodynamic solutions� We de�ne an
optimal �v�safe kinodynamic solution to be a solution whose time is minimal in this class�
We will henceforth employ the term optimal safe kinodynamic solution since �v�safety is
the only type we consider here�

We now specify what it means for a kinodynamic solution �q to be ��approximately
optimal� where a positive � � � parameterizes the closeness of the approximation� First of
all� �q must obey the safety margin

��v�c�� c��� �pq� � ��� ���v�c�� c��� �pq�� ���

Second� if an optimal safe trajectory takes time Topt� then we require that

Tq � �� � ��Topt�

Now� let us say that an approximating state �x�� �x�� is 
��close� to a reference state �x� �x�
if

kx� x�k � O���� and �������� �x

� � �
� �x�

����� � O���� �
�

�Consider a one�dimensional system� Recall that �E
�v

� mv� Therefore� if the control system allows a

maximumvelocity error of �v� and Fres force is available for correcting velocity errors� then mv	v
Fres

distance
might be traveled erroneously before the velocity can be corrected� Concisely stated� c� characterizes how
accurately the robot can control its energy consumption�
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For the �nal criterion� we require that �q��� and �q�Tq� be ��close to the desired start and
goal states S and G� respectively��

In order to obtain our result� we must assume four things� a velocity bound� a diameter
bound� L��norm acceleration� and safety� Each of these assumptions can be motivated in
physical terms� For example� robots exist in the physical world� and hence of course any
actual robot will have bounded maximum velocity and a bounded workspace� However�
the proofs in this paper do not go through if any of these assumptions is dropped� In �DX��
DX�� RT�� we relax the L��norm� Safety� as we shall see� proves to be a crucial assumption�

��� Statement of Results

In section ��� we describe a provably good approximation algorithm for the optimal safe
kinodynamic planning problem� Concisely stated� we show�

Theorem ��� Let K � �O�S�G� a� v� l� c�� c�� be an optimal safe kinodynamic planning
problem� Let � � � � �� Let n be the combinatorial complexity of the obstacles O�

Suppose there is a �v�c�� c���safe trajectory that obeys the dynamics bounds a and v and
goes from S to G in time Topt� Then the algorithm �nds a ��v�c�� c���safe trajectory that
obeys the dynamics bounds� takes at most time �� � ��Topt� and goes from some S� to some
G� such that S� is ��close to S and G� is ��close to G�

The running time of the algorithm is

O

�
�n

�
lv��

��

�d�A �

d � �� �� where

� � max

�
�a�c� � ��

c�
�

s
a�c� � ��

�c�
�
a

v

�
A �

An optimal safe kinodynamic planning problem has two complexity components� The
combinatorial complexity is the number n of bounding halfplanes on the obstacles O� The
algebraic complexity of the kinodynamic bounds �a� v� l� c�� c�� is the number of bits needs
to encode them� Our algorithm is an ��approximation scheme that is fully polynomial in
the combinatorial complexity of the geometry and pseudo�polynomial�� in the algebraic
complexity of the kinodynamic bounds�

Note that we cannot claim that the approximately optimal safe solution is necessarily
near to a truly optimal safe solution in position� In this respect it is useful to compare our


Note that the de�nition of ���close� is not symmetric because of the velocity condition in ���� The
condition k �x� �x�k � O��� may perhaps seem more intuitive� While the results here satisfy this de�nition�
��� allows simpler proofs and is necessary for natural extensions of our work beyond the scope of this paper�

��That is� the algorithm has a running time that is polynomial in the quantities a� v� l� c�� and c��
but it is not polynomial in the size �bit�complexity� of their encodings� See �PS� for a discussion of
pseudopolynomiality�






result to Papadimitriou�s fully polynomial approximation scheme for �D Euclidean shortest
path �Pap�� Speci�cally� neither method necessarily �nds a solution that is spatially close
to the optimal path� but merely one that has a length �time� that is not too much longer
than the optimal length �time�� In fact� the results of �CR� imply that �nding a path that
is position�space close to the shortest path� or even one that is homotopic to the optimal
is NP�hard�

These above results can be extended to a rigid� non�rotating robot whose geometry is
given by a union R of convex polyhedra� This con�guration space transformation has been
discussed extensively in the literature �see� eg� �LoP��� The algorithm of �LoP� could be used
as a preprocess to reduce the planning problem for R amidst O to the point navigation
problem we discuss� Since the dynamics equations for such a robot are identical to those
of a point robot� we only need to map the problem to this con�guration space and apply
the algorithm�

��� Review of Previous Work

For a review of issues in robotics and algorithmic motion planning� see �Bra� Y�� There
exists a large body of work on optimal control in the control theory and robotics literature�
For example� see �Hol� BDG� Sch� SS�� SS��� Much of this work attempts an analytic
characterization of time�optimal solutions�for example� to prove that in certain cases
piecewise�extremal �
bang�bang�� controls� with a �nite number of switchings� su�ce� This
has led to many interesting and deep subresults� For example� �BDG� Hol� show how given
a particular trajectory � � �p� �p�� its velocity pro�le can be rescaled so as to respect
dynamics constraints and to be time�optimal� Using these ideas� a number of authors have
proposed heuristic or approximate algorithms for what is hoped to be near time�optimal
trajectory planning� In particular� Sahar and Hollerbach �SH� and Shiller and Dubowsky
�SD� both implemented algorithms which employ a �xed�resolution con�guration�space or
phase�space grid to compute� approximately� near minimal�time trajectories for robots with
several degrees of freedom �and full dynamics�� They did not bound the goodness of their
approximation� nor the running time of their algorithm� However� their grid methods take
time which grows exponentially with the number of grid points� or the resolution� We
provide the �rst polynomial�time algorithm�

The polyhedral Euclidean shortest path problem can be viewed as a version of optimal
kinodynamic planning with the acceleration bound a set equal to in�nity� This observa�
tion may be used to extend the results of �CR� to show that in �D� optimal kinodynamic
planning is NP�hard� In other work� �O�D�unlaing �O� provides an exact algorithm for one�
dimensional kinodynamic planning� These methods may extend to the �� and �D cases
as well� Kinodynamic planning in �D is related to the problem of planning with non�
holonomic constraints� as studied by Fortune and Wilfong �FW� W�� In this problem� a
robot with wheels and a bounded minimum turning radius must be moved� To make the
analogy clear� in our case� the minimum turning radius is �

a
k �pk�� These algorithms might

lead in time to an exact solution to kinodynamic problems in �D and �D�
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� Algorithm and Analysis

��� The General Idea

Our approach transforms the problem of �nding an approximately minimal�time trajectory
to �nding the shortest path in a directed graph� The vertices of the graph 
discretize� the
statespace TC� and the edges of the graph correspond to trajectory segments that each
take time � � a parameter computed by the algorithm�

Given the acceleration bound a� let A be the set of constant accelerations whose com�
ponents are members of f�a� �� ag� Let us choose a timestep � such that velocity bound v

is a multiple�� of a� � Applying a member of A for duration � is called an �a� � ��bang� �See
�gure ��� We also use this term to refer to the resulting trajectory segment� we say that
there is an �a� � ��bang from state X to state Y if following an �a� � ��bang moves from X to
Y�

Suppose S� � �s�� �s�� � TC such that �s� is a vector of multiples of a� � Suppose
that �p� �p� is a state reachable from S� by some sequence of �a� � ��bangs� Then for each
coordinate i�

pi � s�i �
mi

�
a� � and

�pi � �s�i � nia�
���

for some integers mi and ni� Thus� all states reachable from S� under a sequence of �a� � ��
bangs belong to a set of states that lie at the interstices of an underlying� regular grid
embedded in TC� This grid has spacings of a��

� in position and a�
� in velocity� We call

this set of intersticial states the TC�grid� and each of these states a TC gridpoint��� We
call a trajectory that results from a sequence of �a� � ��bangs between TC�gridpoints an
�a� � ��grid�bang trajectory�

Recall ���� We say that state �x� �x� obeys ��v�safety if the ball of radius ��v�k �xk� about x
lies in free space� If � is small enough� then a �v�safe trajectory will imply the existence of a
��v�safe �a� � ��grid�bang trajectory that meets the other approximation requirements� Since
each �a� � ��bang takes time � � �nding a minimal�time ��v�safe �a� � ��grid�bang trajectory
between TC�gridpoints X and Y is identical to �nding the shortest path in a graph G�V� E�
embedded in TC� The vertices vi � V are the TC�gridpoints� and the edges ej � E are the
��v�safe �a� � ��bangs between pairs of these vertices� We say that � � S�� the kinodynamic
parameters� and � induce the graph G�V� E��

��We use multiple to mean �integer multiple��
��If the grid�spacing in velocity is a� � then the closest velocity grid�coordinate is always at most a�

� away�
this is what is needed for our proofs� The spacing along the velocity axis is a� � At any �xed grid�velocity
�multiple of a� �� the spacing along the position axis is a��� However� the grid positions for odd multiples

of a� �velocity� are o�set by a��

� from the grid positions for even multiples of a� � Hence� all the relevant

states lie at the interstices of an underlying� regular grid with spacings of a�
�

�
in position and a� in velocity�

Thus� the mapping from states to the interstices of the underlying grid is one�to�one� but not onto� The size
of the underlying grid provides a bound on the number of reachable states� See �Xa� for further discussion�
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��� The Algorithm

To explain the algorithm we need two more de�nitions� First� given two non�negative
scalars �x and �v� we say that state X is within ��x� �v� of state Y if kx � yk � �x and
k �x � �yk � �v� Second� consider two trajectories �a� �b � ��� T � � TC� Given two scalars
�x and �v� we say that we say that �a approximately tracks �b to tolerance ��x� �v� in the
L��norm if for all times t�

kpa�t�� pb�t�k� � �x� and
k �pa�t�� �pb�t�k� � �v�

Given problem �O�S�G� a� v� l� c�� c�� and approximation parameter �� our algorithm
does the following�

�� It chooses a timestep � as a function of a� v� �� c�� and c�� Speci�cally� the algorithm
chooses the largest � such that � � �v

a
� a� jv� and

� � �

��
min

�s
�c��

a�c� � ��
�

c��

a�c� � ��

�
�

�� Next� the algorithm chooses the starting TC�gridpoint S� according to the following�
s� � s� and �s� is the multiple of a� closest to �s

�	�
�

�� It then searches for the shortest path in the induced embedded graph G�V� E�� de�
scribed above� from S� to any state �vertex� that is within �a�

�

� � a�� � of �g� �g
�	�

�� The
algorithm explores the graph using breadth��rst search� checking the ��v�safety of each
�a� � ��grid�bang it considers�

To show the correctness and complexity of the algorithm we must show how to choose
� so that the following holds� if there exists a �v�safe trajectory from S to G taking time
T � then there also exists a ��v�safe �a� � ��grid�bang trajectory between states ��close to S
and G that takes time �� � ��T �

We �rst observe that if trajectory �opt obeys dynamics bounds a and v� then there is
a time�rescaled �Hol� trajectory ��opt that takes time �� � ��Topt and that obeys dynamics
bounds a


�	��� and v


�	�� � We then choose �x and �v that guarantee that if �q tracks ��opt
to tolerance ��x� �v�� then it will be ��v�safe� We then show there is a � proportional to ��

such that there exists an �a� � ��grid�bang trajectory �q that �a� approximately tracks ��opt
to this tolerance� and �b� is within �a�

�

� � a�� � of ��opt when t � � and when t � �� � ��Topt�
The latter implies ��closeness�

Finally� we show that �v�safety�checking is O�n� per �a� � ��bang� Recalling that TC�

gridpoints have the form ���� we �nd that jVj is O
	

lv

a���


d
� The de�nition of �a� � ��bang

implies that the maximal out�degree in G is �d� Thus we get the complexity bound in
Theorem ����

 



��� Time�Rescaling and Safe Tracking

We say that a path p is traversed by a trajectory � if the image of the position component
of � is equal to the image of p�

Lemma ��� If path p is traversed in time Tr by a trajectory �r under acceleration bound
a and velocity bound v� then there exists some ��r that traverses p in time Tr�� � �� while
obeying acceleration bound a


�	��� and velocity bound v

�	�
� In particular� this is true of

��r � �p�r� �p
�
r�� where

p�r�t� � pr

	
t

�	�



�

�p�r�t� � �
�	�

�pr

	
t

�	�



�

���

Proof� Follows from the results of �Hol� or from direct computation using ���� tu
To prove the main theorem we need to note that ��� preserves �v�safety�

Observation ��� Suppose �r is a �v�c�� c���safe trajectory from S to G that takes time Tr

and obeys bounds v and a� Then ��r as de�ned by ��� is �v�c�� c���safe� obeys bounds v
�	�

and a


�	���
� and goes from S� � �s� �s

�	�
� to G� � �g� �g

�	�
��

Intuitively� we expect that if a trajectory �q tracks ��r as de�ned in ��� closely enough�
then �q will be ��� ���v�safe� We have the following lemma� which is independent of norm�

Lemma ��� 	The Safe Tracking Lemma
 Let �v be speci�ed by c� and c�� and let � �
� � �� Let the tracking tolerance ��x� �v� satisfy the condition��

�v � c��

c�	� � and

�x � c��

c�	�
�

� �

Suppose that �q tracks ��r to tolerance ��x� �v�� Then the ��v�tube induced by �q lies within
the �v�tube induced by �r�

Proof� We �nd positive real numbers �x and �v such that if �q tracks ��r to tolerance
��x� �v�� then the ��v�tube induced by �q lies entirely inside the �v�tube induced by �r�
Henceforth� let c�� � ��� ��c� and c�� � ��� ��c��

Suppose that x � C lies inside the ��v�tube induced by �q� Then for some
tx � ��� �� � ��Tr��

kx� pq�tx�k � c�� � c��k �pq�tx�k� �!�

Let B��x� denote the ball of radius � about x� If �q�t� tracks ��r�t� to tolerance ��x� �v��
then pq�tx� � B�x�p

�
r�tx�� and �pq�tx� � B�v� �p

�
r�tx��� Therefore

kx� p�r�tx�k � kx� pq�tx�k� �x� and
k �pq�tx�k � k �p�r�tx�k� �v�

��We write two inequalities because �x and �v have di�erent dimensions �units��

!



Since p�r�tx� � pr�
tx
�	�

� and �p�r�tx� �
�

�	�
�pr�

tx
�	�

�� by substituting into �!� and adding �x
to the right�hand side�

����x� pr

�
tx

� � �

����� � c�� � �x � c��

����� �pr

�
tx

� � �

������ �v

�
� ����

Now� suppose that 	 
 � and that �x and �v satisfy the following condition�

�v � c��

c�
����	�

�x � 	�v�
����

Simple manipulation then shows that �x � ��� ��c��v � �c�� Thus�

c�� � �x � c���v � c�� ����

But then�

c�� � �x � c��

����� �pr

�
tx

� � �

������ �v

�
� c� � c�

���� �pr

�
tx

� � �

����� � ����

This implies that kx � pr�
tx
�	�

�k � c� � c�k �pr�
tx
�	�

�k via ����� Therefore� x lies inside the
�v�tube induced by �r�

Since x is an arbitrary point inside the ��v�tube induced by �q� it follows that the ��v�
tube induced by �q lies entirely inside the �v�tube induced by �r� Recall the hypotheses
concerning c�� c�� and �� Choosing 	 � �� we see that condition � � and the other hypotheses
of the lemma together ensure that ���� is satis�ed� tu

��� The Tracking Lemma

The Tracking Lemma relates a timestep size � to a tracking tolerance� In particular� it tells
how to choose � to assure that in the absence of obstacles� for every �u that obeys dynamics
bounds a


�	��� and v
�	�

there will exist an �a� � ��grid�bang trajectory �q that tracks �u to

tolerance ��x� �v�� We �rst need the following�

Lemma ��� Let � 
 �� and let �u be a trajectory respecting dynamics bounds a


�	���
and

v

�	�
� Let � � �v

a
� and let a� jv�

Suppose that

N � �

�
� ����

Then if �pq�� �pq�� is a TC�gridpoint such that kpq��pu���k � a��

�
and k �pq�� �pu���k � a�

�
�

there exists an �a� � ��grid�bang trajectory �q such that �q��� � �pq�� �pq�� and that �q�N� �

is within �a�
�

� � a�� � of �u�N� ��

��



Proof�
Since we are using the L��norm� it is su�cient to consider the case of a one�dimensional

con�guration space C� We show that the lower bound on N given by ���� is su�ciently
large to guarantee that if �u meets the hypotheses of the lemma then some �a� � ��grid�bang
trajectory can meet the endpoint conditions�

Let � 
 �� � � �v

a
� and a� jv� Let pu���� �pu���� and �pu�N� � be �xed� and consider some

�u that satis�es these endpoint conditions and the hypotheses of the lemma� Let �pq�� �pq��

be a TC�gridpoint within �a�
�

�
� a�

�
� of �u���� To �nd a su�ciently large N � we introduce

variables b and Q� These variables depend on �u� Let b be an integer such that such that

j �pq� � ba� � �pu�N� �j � a�

�
�

Now� de�ne Q to be the collection of all �a� � ��grid�bang trajectories of time length N�

starting at �pq�� �pq�� with net velocity change ba� � The positions reached by the di�erent
trajectories in Q at time N� form a set of discrete points spaced a� apart� Call these
positions the Q�positions� If the range of Q�positions spans the range of possible �u�N� ��
then for some trajectory �q � Q� jpq�N� �� pu�N� �j � a��

� �
We show how to choose N so that the maximum Q�position exceeds the maximum

possible pu�N� �� A similar argument shows that the same N guarantees that the minimum
Q�position is less than the minimum possible pu�N� �� For the remainder of this proof� we
will refer to the trajectories that achieve the maximum Q�position and the maximum
possible pu�N� � as �q and �u� respectively�

The �q that attains the maximum Q�position obeys either �a� full positive acceler�
ation� possibly followed by zero acceleration for one timestep� followed by full negative
acceleration�
� or �b� full positive acceleration until its velocity is v� followed by zero ac�
celeration� followed by full negative acceleration� Similarly� a �u that maximizes pu�N� �
obeys either �c� full positive acceleration followed by full negative acceleration� or �d� full
positive acceleration until its velocity is v


�	��
� followed by zero acceleration� followed by

full negative acceleration�
Consider �pq and �pu and their role in determining pq�N� � and pu�N� �� In the worst

case� �pq� � �pu���� a�

�
and �pq�N� � � �pu�N� �� a�

�
� If pq�N� � is to be greater than pu�N� ��

then we can divide the interval ��� N� � into three intervals during which �q 
loses ground
to� �u� 
gains on� �u� and 
loses ground to� �u� �See �gure ��� In other words� there are
times tc and tl� � � tc � tl � N� � such that

�pq�t� � �pu�t� if � � t � tc�
�pq�t� 
 �pu�t� if tc � t � tl� and
�pq�t� � �pu�t� if tl � t � N��

Now� when �q is accelerating full�positive�

�pq�t�� �pu�t� � a

�
� � �

�� � ���

�



�a

�
�

��The zero acceleration timestep in the �rst case occurs if N � �pq
N��� �pq�
a�

is odd�

��



Similarly� when �q is accelerating full�negative�

�pq�t�� �pu�t� �
�a

�
�

Hence� when � � t � tc� �pq�t� � �pu�t� 

�a

�
� and when tl � t � N� � �pq�t� � �pu�t� � � �a

�
�

Then� because �pq� � �pu���� a�
�

and �pq�N� � � �pu�N� �� a�
�
�

R tc
� � �pu�t�� �pq�t��dt � a��


�
� andRN�

tl
� �pu�t�� �pq�t��dt � a��


�
�

Therefore� it is su�cient to choose an N that guarantees

Z tl

tc

� �pq�t�� �pu�t��dt � a� �

��
� ��
�

Consider the behavior of �pq�t� � �pu�t� between times tc and tl� For now� suppose that
�pq�t� � v during this time� Then� for an interval of time Ic beginning with tc� both �pq�t�
and �pq�t� � �pu�t� increase� for an interval Il beginning at most one timestep after Ic and
ending with tl� both �pq�t� and �pq�t�� �pu�t� decrease� Furthermore�

�pq�t�� �pu�t� 
 a�

�
�t� tc� during Ic� and

�pq�t�� �pu�t� 
 a�

� �tl � t� during Il�

Using some manipulation� we then see that if �pq�t� � v for all t � �tc� tl�� the condition

tl � tc � ��

�
� � ����

guarantees that ��
� is true�
Now� suppose �pq�t� � v for some interval Im � �tc� tl�� �See �gure ��� Then� for

an interval of time Ic immediately preceeding Im and beginning with tc� both �pq�t� and
�pq�t�� �pu�t� increase� for an interval Il immediately after Im and ending with tl� both �pq�t�
and �pq�t�� �pu�t� decrease� However� during Im� �pq�t�� �pu�t� � a� � since � � �v

a
� It follows

that ���� again guarantees that ��
� is true�
We observe that

tc � �
�
� and

N� � tl � �

�
�

Recalling ����� we see that the following choice of N guarantees that the range of
Q�positions will be adequate�

N � �


�

�

�
� ��

Using the fact that � � � � �� we obtain the su�cient condition ����� tu

��



Lemma ��� 	The Tracking Lemma
 Let � 
 �� Let �u be a trajectory that respects
dynamics bounds a


�	���
and v

�	�
and takes time Tu� Let �x and �v be positive� Let � � �v

a

Suppose that

� � �

��
min

�s
�c��

a�c� � ��
�

c��

a�c� � ��

�
� ����

and a� jv� Furthermore� let N be given by �	
�� and suppose that Tu � N� � Then in
the absence of obstacles there exists an �a� � ��grid�bang trajectory �q respecting dynamics
bounds v and a that approximately tracks �u to tolerance ��x� �v� during ��� Tu� and obeys
the following conditions�

pq��� � pu����
k �pq���� �pu���k� � a�

�
�

kpq�Tu�� pu�Tu�k� � a� �� and
k �pq�Tu�� �pu�Tu�k� � a��

�� �

Proof�
We show that the the upper bound ���� is correct� Let the hypotheses of the lemma

be satis�ed� Let N be given by ����� Then it follows from Lemma ��� that there is an
�a� � ��grid�bang trajectory �q such that for any positive integer k satisfying kN� � Tu�

kpq�kN� �� pu�kN� �k� � a��

� � and
k �pq�kN� �� �pu�kN� �k� � a�

� �
��!�

This can be shown by induction on k�
Now� for all t� k�pu�t�� �pq�t�k� � �a� By considering the relative velocity in the worst

case� where along some axis

jpq�kN� �� pu�kN� �j � a��

� �

j �pq�kN� �� �pu�kN� �j � a�
� �

jpq��k � ��N� �� pu��k � ��N� �j � �a��

�
� and

j �pq��k � ��N� �� �pu��k � ��N� �j � �a�

� �

we conclude that for all t � ��� Tu��

kpq�t�� pu�t�k� �
a�N � ���� �

�
����

To guarantee that the right�hand side of ���� is less than �x� it is su�cient that

� �

s
��x
a

�
�

N � �

�
� ����

Since k �pq�t�� �pu�t�k� � a�N ���� when � � t � Tu� for the velocity case we require that

��



� � �v

a

�
�

N � �

�
� ����

If Tu 
 N� is not a multiple of N� � then for some natural numbers n � N and k�
�kN � n�� is within �

�
of Tu� Substituting twice the value for N from Lemma ��� and

rounding to simplify yields the condition ����� tu

��� Safety Checking

We describe how to check whether an �a� � ��bang violates the speed�dependent safety�
margin �v�c�� c�� in O�n� time� We review some basic computational geometry� describe
the special case when c� � �� and then extend the method to the general case�

As noted above� we assume that obstacles are the union of convex polyhedra� For now�
let the safety margin be a constant c� 
 �� and de�ne the Bc� to be the L� ball with
radius c�� Staying c��safe relative to a convex polyhedron A is then equivalent to avoiding
A � A 	 Bc� � where 
	� denotes the Minkowski sum� Since Bc� is a d�cube� A is also a
convex polyhedron and has O�jfaces�A�j� faces� By taking the Minkowski sum of each of
the obstacles with Bc� we obtain the expanded obstacles�

Suppose A has faces fF�� � � � � Fm g lying on the boundary planes of the closed half�
spaces fH�� � � � �Hm g� The boundary plane of each Hi is the kernel of an a�ne function
fi� If ni is a unit vector in the outward normal direction from the boundary plane of Hi�
and yi is any point on this boundary then

fi�x� � hni�xi � hni�yii� ����

The polyhedron A is thus described by a set of functions F � f f�� � � � � fm g�
A point x is on the boundary of A if and only if it lies on some closed face Fk of A�

Equivalently� fk�x� � �� and for all fj that determine an edge of Fk� fj�x� � �� Since for
a convex polyhedron the numbers of edges and faces are linearly related and an edge is
common to two faces� determining whether x lies on the boundary of any of the expanded
of obstacles takes total time O�n��

Without loss of generality� suppose that �a� � ��bang p begins at t � � and that p��� is
c��safe� We then can check the c��safety of p�t� by determining whether p�t� violates the
boundary of an expanded obstacle� For a face Fk of A� we only need to solve fk�p�t�� � ��
and for each solution ts check whether fj�p�ts�� 
 � for some fj that determines an edge
of Fk with fk�

Now� consider the speed�dependent safety function �v� For each time t� the point p�t�
should avoid the obstacles expanded by an L� ball with radius �v� �p�t���

In other words� p�t� is �v�safe relative to a convex polyhedron A if and only if it avoids
the expanded obstacle "A� �p�t�� � A	B�v� �p�t��� where B�v� �p�t�� is the L� ball with radius
�v� �p�t��� "A� �p�t�� is described similarly to A� by a set of functions "F � f "f�� � � � � "fm g� For
each fi � F �

"fi�p�t�� �p�t�� � hni�p�t�i � hni�yi � qik �p�t�k�i� ����

��



where qi is a constant vector that depends only on ni� To check whether p�t� violates the
faces of "A� we use the "fi � "F the same way we use the fi � F above�

Since p�t� is quadratic� "fk�p�t�� �p�t�� � � has solutions of the form t � a�
p
b� When

computing the inequalities we can square twice to eliminate the radical� and thus it is
adequate to compute square roots symbolically� This implies that safety checking never
requires numbers longer �in the number of bits� than a constant�multiple of the length of
the longest number in the input� Therefore� we can still use the real�RAM computation
model� By the same argument as in checking whether a point is in on an expanded obstacle
boundary� we need to solve O�n� equations and check O�n� inequalities� overall� Therefore�
the cost of safety�checking is O�n� per �a� � ��bang�

��� Proving the Main Theorem

We can now prove Theorem ����
Proof of Theorem ����

Let K � �O�S�G� a� v� l� c�� c�� be an instance of the optimal safe kinodynamic planning
problem� Let � � � � ��

Suppose �opt is a �v�c�� c���safe trajectory that obeys the dynamics bounds a and v and
goes from S to G in time Topt� By Lemma ��� and Observation ��� that follows it� there is
a trajectory ��opt that is �v�c�� c���safe� obeys bounds

v
�	�

and a

�	���

� takes time �� � ��Topt�

and goes from S� � �s� �s
�	�

� to G� � �g� �g
�	�

��
Now suppose we run the algorithm described in Section ���� The choice of � in the

algorithm matches the conditions in Lemma ��
 when the values of �x and �v from equation
� � in Lemma ��� are substituted into equation ����� Furthermore� the algorithm�s choice
of S� obeys the condition on �pq�� �pq�� in Lemma ���� Therefore� some �a� � ��grid�bang
trajectory beginning at S� tracks ��opt closely enough to be ��v�c�� c���safe� to obey the
dynamics bounds a and v� and to take time �� � �� to reach a state G� within tolerance
�a�

�

� � a�� � of G
��

Breadth��rst search guarantees such a trajectory will be found if there is no ��v�c�� c���
safe �a� � ��grid�bang trajectory beginning at S� that obeys the dynamics bounds and comes
adequately close to G� in less time� Thus� the algorithm will �nd a trajectory meeting the
conditions of the theorem�

To establish the time bound� we now bound the numberG��a� �� v� l� d� of TC�gridpoints
for a point robot with maximum �L�� speed v in a d�dimensional free�space of diameter
l� Without loss of generality� choose s� to be the 
zero� position� Recalling the canonical
form of a TC�gridpoint from ���� we conclude

G��a� �� v� l� d� � O

�
�� vl

a�� �

�d
�
A �

Since the number of �a� � ��bangs from a state is constant ��d� and the cost of checking
the safety of a bang is O�n�� the total complexity of the algorithm can be obtained by

�




substituting in � from ����� Since � � �� we can use

� � ��

��
min

�s
�c�

a�c� � ��
�

c�

a�c� � ��

�

instead of ���� to get the bound in the theorem�

� Conclusions

In this paper we described the �rst polynomial�time� provably good approximation algo�
rithm for kinodynamic planning� We feel that kinodynamic planning represents a new
direction in algorithmic motion planning� and expect to see much progress in this area�

There are many directions for future research�

�� The complexity of our algorithm can probably be improved� For work in this direc�
tion� see �DX��DX��DX�� Xa��

�� Other search algorithms� such as A�� may be employed in place of a breadth��rst
search�

�� Precise lower bounds for kinodynamic planning should be established �especially in
the �D case�� For work in this direction� see �Xa��

�� Exact algorithms should be explored� For work in this direction� see �CRR��


� We conjecture that if contact is allowed �rather than �v�safety� then the complexity of
the problem increases considerably� More speci�cally� one can imagine three related
kinodynamic planning problems�

�a� The �rst is explored in this paper� where the robot must avoid obstacles by a
speed�dependent safety margin�

�b� A second problem might be likened to �gure skating� forbidden regions are
marked out in the plane �the 
ice��� and a path with velocity�dependent non�
holonomic constraints must be synthesized� The 
obstacles� may be grazed but
not crossed� However� the forbidden regions exert no reaction forces on the
robot� even when in contact� This second problem corresponds to theoretical

true� optimality�

�c� One can also imagine a third problem in which the reaction forces �impact�
constraint forces� and friction� of the obstacle surfaces are taken into account�

Finally� one may consider the optimization version of each of these problems� Note
that while the theoretical formulation of the 
�gure skating� problem is quite clean�
it may be rather far from practical interest�

��



From a combinatorial standpoint� we believe that in order to obtain near� ���� op�
timality for the �gure�skating problem� a grid such as ours would have to have at
least exponential size� In particular� we conjecture that the grid spacing may be a
superpolynomial function of the minimum distance between obstacles�

�� It would be interesting to extend our approach to ��norm velocity and acceleration
bounds� For work in this direction� see �DX�� DX�� RT� Xa��

�� It would be of value to extend our approach to to manipulator systems with full ro�
tational dynamics� For example� one might consider the rigid body dynamics of open
kinematic chains with revolute and prismatic joints� Finding near�optimal kinody�
namic solutions in these cases would be of great interest� For work in this direction�
see �JHCP� DX�� DX�� Xa��

In addition� there is a great deal of interesting experimental work to be done� in reducing
these algorithms to practice� and on developing search heuristics� For work on implementa�
tion of our approach� and experiments� see �DX�� Xa�� Computational kinodynamics seems
a particularly fruitful area in which to pursue fast� provably good approximation algo�
rithms� since while the problems are of considerable intrinsic interest� exact solutions may
well be intractable� Finally� since the problem has an optimization 	avor� the algorithms
and proof techniques draw on several branches of computer science and robotics�
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Figure �� A kinodynamic planning problem for a point robot� showing the obstacles� the start S� the goal G� and three
solutions� time�optimal �� optimal 
safe� �r � and approximately optimal �q� which happens to be exact at the start and goal�
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Figure �� Extremal accelerations 
left� that generate 
a� ���bangs 
right��
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Figure �� An example of �pr and �pq that achieve the maximum position subject to conditions at times � and N� � In this
case� �pq never reaches the maximum allowed velocity v� N must be large enough so that the distance �q gains over �r during
Ic and Il makes up for the distance �q loses to �r during ��� tc� and �tl� N� ��
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Figure �� An example of �pr and �pq that achieve the maximum position subject to conditions at times � and N� � In this
case� �pq sustains the maximum allowed velocity v for the interval Im� N must be large enough so that the distance �q gains
over �r during Ic� Im� and Il makes up for the distance �q loses to �r during ��� tc� and �tl� N� �� Note that in this �gure� the
condition � � �v

a
is not met�
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