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Abstract nology, for example, allows massively parallel high-through-
put gene-expression experiments. Consequently, microar-
High-throughput, data-directed computational protocols for rays have revolutionized modern genetics. Advances in struc-
Sructural Genomics (or Proteomics) are required in order to tural genomics methods would enable a similarly radical
evaluate the protein products of genes for structure and func- change in structural biology and proteomics. Unfortunately,
tion at rates comparable to current gene-sequencing technol- protein structure determination remains a costly and time-
ogy. To develop such methods, new algorithms are required consuming endeavor. Nuclear Magnetic Resonance (NMR)
that can quickly extract significantly more structural infor- is one of two experimental techniques for determining atomic-
mation from sparse experimental data. This paper presents a resolution structures of biological macromolecules. Stan-
new class of signal processing algorithms for nuclear mag- dard NMR protocols require running many separate exper-
netic resonance (NMR) structural biology, based on time- iments. A given experiment can take hours to days of spec-
frequency analysis of chemical shift dynamics. trometer time and it can take weeks to months to prepare a
A novel approach to multidimensional NMR analysis is protein sample needed for a sophisticated experiment (e.g.,
proposed in which the data are interpreted in the time-frequen-  residue-specific isotopic labelings). Once the data has been
cy domain, as opposed to the traditional frequency domain. collected it all must be carefully assigned, analyzed and con-
Time-frequency analysis (TFA) exposes behavior orthogo- solidated. This process can take months and requires many
nal to the magnetic coherence transfer pathways, thus af- tedious, manual steps. Due to the many steps in NMR dis-
fording new avenues of NMR discovery. An implementa- covery, advances in many subproblems are required to de-
tion yielding new biophysical results is discussed. In par- velop high-throughput methods for NMR structural biology.
ticular, we demonstrate the heretofore unknown presence of Automating the manual steps of NMR data assignment and
through-space inter-atomic distance information within **N- analysis will be one advance [1-5]. Reducing the amount
edited heteronuclear single-quantum coherence (>N HSQC) of spectrometer and wet-lab time by reducing the number of
data. A biophysical model explains these results, and is sup- required experiments will be another [1, 2, 6]. Our work fo-
ported by further experiments on simulated spectra. cuses on developing new algorithms that can quickly extract
significantly more structural information from sparse exper-
1 Introduction imental data. In this paper, we introduce and analyze a new
class of signal processing algorithms for NMR structural bi-
Molecular biology is undergoing a transition towards high- ology, based on time-frequency analysis of chemical shift
throughput methods. Advances in a variety of different tech- dynamics.
nologies are enabling this transformation. Microarray tech- Our algorithms leverage the time-varying behavior of
*Dartmouth Computer Science Department, Hanover, NH 03755, USA. NMR_ data to extract usefql mform_atlon' This permits the
t Dartmouth Chemistry Department, Hanover, NH 03755, USA. algorithms to extract more information from NMR data than
*Dartmouth Center for Structural Biology and Computational Chemistry, traditional methods. In particular, we describe how Time-
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and heretofore unobserved structural information, from NMR
experiments. Our algorithm demonstrates the utility of higher-
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treal, April 22-25 (2001) pp. 164-175 . analysis tools to the armamentarium of the structural biol-



ogist. CSD are rich in structural and dynamic information,
and yet they have never been previously exploited. TFA al-
lows us to decode the information locked in CSD. The CSD
TFA protocol effectively defines a new class of NMR experi-
ment. Our work shows that the information content of NMR
data (in general) and the 15N HSQC (in particular) is much
higher than previously believed. Furthermore, since the '°N
HSQC is perhaps the simplest, cheapest, and fastest het-
eronuclear NMR experiment, our method may have appli-
cations in high-throughput structural genomics. We present
the experimental results of applying our algorithms on two
protein NMR data sets from (1) human glutaredoxin, which
plays an important role in maintenance of the redox state
of the cell as well as in DNA biosynthesis and (2) core-
binding factor, a heterodimeric transcription factor involved
in hematopoesis. Oncogenic translocations in CBF-« and -5
are implicated in acute myelomonocytic leukemia.

We now summarize the potential application of our work
in high-throughput NMR methods for structural genomics.
Generalizing the JiGsAaw protocol of Donald and co-workers
[1,2], four spectra (the ®N-edited HSQC, 3D '*N-NOESY,
80 ms. '®»N-TOCSY, and HNHA) from a uniformly '°N-
labeled protein would be acquired in a few days. JIGSAwW
would then be employed to perform backbone resonance as-

signments and calculate secondary structure including (3-sheets

[1,2]. Next, we wish to constrain and calculate the global
fold in a high-throughput manner. The HSQC can then be re-
analyzed (as described in this paper) to reveal correlations in
the CSD TFA '®N-HSQC. CSD TFA yields structural con-
straints (distance correlations) that, together with the sec-
ondary structure and backbone amide proton assignments
from JIGSAw, can be interpreted as distance restraints to
calculate an approximate global fold. The above set of four
experiments requires only days of spectrometer time, rather
than the months required for the traditional suite of dozens
of experiments. Furthermore, the proposed protocol only re-
quires a protein to be ®N-labeled, a much cheaper and eas-
ier process than '3C labeling. From a computational stand-
point, we adopt a minimalist approach, demonstrating the
large amount of information available in a few key spectra.
While JIGSAW is used as an example, our method for CSD
TFA is actually independent of JIGsaw: alternatively, other
high-throughput assignment strategies could be employed
[e.g., 3-5], along with secondary structure predictors [e.g.,
7, 8] or other NMR methods for rapid secondary structure
determination [9].

We begin, in Section 2, with a review of the theory and
practice of NMR spectroscopy and discuss the implications
of protein dynamics on quantum systems. Section 3 details
our method for extracting time-varying behavior from NMR
data. In section 4 we introduce methods for analyzing time-
varying NMR data. Section 5 presents the results of the ap-
plication of TFA to the raw HSQC data for human glutare-
doxin and CBF-g. Finally, section 6 discusses these results
and introduces a biophysical model to explain them.

2 NMR Data

Correlations in nuclear spin angular momentum are man-
ifested as resonant peaks in NMR spectra. The location
of these peaks in frequency space is measured as chemical
shift. Multidimensional NMR spectra capture interactions
between atoms as peaks in R? or R3, where the axes indi-
cate resonance frequencies or chemical shifts of atoms. In a
typical >N spectrum peaks correspond to an '°N atom, its
amide proton (HN), and possibly another *H atom, of par-
ticular resonance frequencies. A peak occurs when atoms
interact. Atoms interact via quantum magnetic coherence
transfer either through covalent bonds, or through space.

Traditional NMR structure-determination protocols call
for a number of different experiments. Each experiment
gives qualitatively different kinds of information. NMR ex-
periments fall into two categories: those (such as NOESY)
that transfer magnetization through-spaceand those (such as
HSQC) that transfer magnetization through-bond. Through-
space interactions are caused by the Nuclear Overhauser Ef-
fect (NOE) which falls off with =6 [10] and is essentially
zero beyond 6 A. Consequently, NOEs are typically em-
ployed to derive distance restraints among pairs of protons.
Through-bond experiments are used to derive several differ-
ent kinds of information, although in general, not distance
restraints. For example, the >N HSQC is a two-dimensional
through-bond experiment correlating the amide proton with
the amide '°N of the same residue [11] (Fig. 1 A). The
HSQC is typically used to determine and pairwise correlate
the chemical shifts of the amide protons and nitrogens along
the backbone of the protein. These correlations establish the
HN-15N connectivities, and the backbone chemical shifts are
subsequently used as reference points within other spectra.

The precise location of an NMR peak in frequency-space
is determined by a number of factors. Each atom-type has
an inherent chemical shift. For example, in “isolation”, all
hydrogen atoms would have the same chemical shift. This
fundamental frequency is modulated upfield or downfield
via shielding by the electron clouds and nuclei of nearby
atoms. Within an amino acid (monopeptide), these shield-
ing interactions are systematic and repeatable. That is, in a
test tube of a given amino acid (e.g., Alanine) in solution,
the amide proton for each monopeptide will have the same
chemical shift. In a large protein, sequential interactions and
the shielding of atoms brought into spatial proximity due to
secondary and tertiary structure also significantly affect the
chemical shift of a given nucleus.

2.1 Chemical Shift Dynamics

Proteins tend to be flexible and in solution, are constantly
undergoing small conformational changes. Since chemical
shifts are affected by tertiary structure [12-14], we must con-
clude chemical shifts are in fact dynamic (time-varying). We
will refer to the phenomena as Chemical Shift Dynamics
(CSD).
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Figure 1: (A) The HSQC Magnetic Transference Pathway (dotted line). Magnetization is transferred, through-bond from the amide proton, to the amide
nitrogen and back. (B) Windowing. In Time Frequency Analysis short segments of the full data, called windows, are extracted and analyzed separately. In this
example, each row is an individual FID. A window is a subset of the columns in the full FID matrix. Each window is Fourier Transformed (after scaling and
padding) yielding a single spectral frame. (C) Peak Features. For each peak we extract the frequency of the center of the peak (w g and wp), the width of the

peak (67 and 5 ) and the intensity, or height of the peak I.

Molecular motion occurs simultaneously at many differ-
ent time-scales spanning many orders of magnitude [15].
Some of these time scales are within the Nyquist frequency
defined by NMR sampling rates. Consequently, CSDs are, in
principle, observable by NMR. Furthermore, it is reasonable
to hypothesize that CSD reflect structural properties and are
therefore, worthy of examination.

Interestingly, chemical shift is typically viewed as a static
property. This is in large part due to tools employed in tra-
ditional NMR analysis. A NMR spectrometer records a se-
ries of time-domain signals, know as Free Induction Decays
(FIDs). A given atom’s chemical shift is encoded as a peri-
odicity within the FIDs. It is obtained by applying a Fourier
Transform to the FIDs. FIDs, being time-domain signals, are
capable of encoding CSD. However, it is not possible to ob-
serve CSD using the Fourier Transform because it integrates
over time. The primary contribution of this paper is applica-
tion of Time-Frequency Analysis (TFA) to extract CSD from
NMR data.

Of course, single spin time-resolved chemical shifts are
not apparent in the FID profile. The aim of our work is not
to isolate the emissions of single spins within the ensem-
ble. Clearly, that would not be possible. Our idea is differ-
ent. We observe that using the standard methods, a signal is
interpreted in either the time-domain, or the frequency do-
main, using the discrete Fourier transform (FT). However,
by doing an FT over the whole time domain one cannot fo-
cus on local frequency distribution variations. The FT as-
sumes that the frequency content of the signal is constant
throughout the entire signal and thus that it is effectively
periodic. This means that there can be no concept of time
in the frequency domain, and therefore no concept of a fre-
quency changing with time. Mathematically, frequency and
time are orthogonal. But some signals do have frequency
components that change with time. The Short-Time Fourier
Transform (STFT) tries to evaluate the way frequency con-
tent changes with time. Using TFA methods, one can often
separate the components of a signal in ways that are difficult
or impossible using standard time-series analysis or standard

spectral analysis. Hence, the STFT and the wavelet trans-
form have become standard tools in signal analysis. For ex-
ample, Coatrieux and co-workers [16] employed a wavelet
transform to perform TFA on 3'P magnetic resonance spec-
troscopy (MRS) data from perfused working smooth muscle,
demonstrating the utility of TFA for MRS.

We note that CSD are a different phenomena from tra-
ditional NMR dynamics (e.g., *>N- and 3C-relaxation rates
for molecular mobility studies, their interpretation via the
’model-free’ formalism to obtain generalized order parame-
ters, or amide proton exchange measurements) [17-24]. Hence,
we will show that CSD contain complementary information
to traditional NMR dynamics protocols.

3 Time-Frequency Analysis

Our algorithm for extracting CSD from NMR data is sum-
marized in Figure 2 A.The details of each step are discussed
in the following subsections. We will focus on the applica-
tion of TFA to the '5N-edited HSQC in our examples, but
TFA can be applied to the data from any NMR experiment.

3.1 Data Acquisition and Preprocessing

The data acquisition and preprocessing steps are the same
for TFA and traditional methods. A sample is placed in the
spectrometer and a series of pulse sequences are applied.
At the end of each pulse sequence a signal is recorded —
this is the FID. A two-dimensional NMR experiment, such
as the 'N-edited HSQC, involves the acquisition of a se-
quence of FID’s with increasing ¢, times, resulting in a two-
dimensional FID matrix. Once the data are collected they are
subjected to a number of preprocessing steps. Typical trans-
formations include noise-reduction and water-suppression.
After the preprocessing, the traditional technique would ap-
ply a single 2-dimensional Fourier Transform to the data to
obtain the NMR spectrum.



Function TFA(FIDs,n)
Set Frames = ()
Fori=1ton
Set f = extractWindow (i, F1Ds)
f = applyHammingWindow( f)
f = zeroPad(f)
f = FFT(f)
f = phaseCorrect(f)
f = baselineCorrect(f)
Set Frames(i) = f
Return Frames

Function Peak Track (F'rames)

Set P = extractPeaks(Frames(1))

SetT = {((WH,P7WN,P75H,P75N,P7IP>) |[pe P}

For i = 2 to sizeOf (Frames)
Set P = extractPeaks(Frames(i))
SetC' = {(t,p) €T x P|Vp' € P, d(t,p) < d(t,p') }
Set T = {append(p, ) | (t,p) € C'}

Return T’

Function SIM (T'racks)
Set sim =0
Fori = 1 to sizeOf(Tracks) — 1
For j = i to sizeOf (T'racks)
sim(i, j) =max(M(Tracks(j), Tracks(j)),
P(Tracks(3), Tracks(3)),
B(Tracks(j), Tracks(j)))
Return sim

Figure 2: (A) TFA Algorithm. (B) Peak Tracking. A track is a list
of temporally sequential peaks. The peak tracking algorithm creates an
initial set of tracks from the first frame. Peaks from subsequent frames are
appended to the track with a peak that is closest in frequency, shape and
intensity. (C) Similarity Measurements. A similarity matrix is generated
using the maximum similarity between tracks ¢ and j under the M, P, and
B similarity metrics (equations 2-4)

3.2 Short-Time Fourier Analysis

The primary distinction between traditional NMR analysis
and TFA is the use of the Short-Time Fourier Transform
(STFT) [25] . The STFT is a standard method for analyzing
time-varying signals. Whereas the Fourier Transform takes
as input the entire FID data set to produce a single spectrum,
the STFT takes as input successive, overlapping temporal
windows of the FID matrix to produce multiple spectra (Fig.
1B).

There is an inherent trade-off between frequency and tem-
poral resolution when applying TFA. In summary, the smaller
the input window the higher the temporal resolution but the
lower the frequency resolution. To a certain extent, one can
compensate for lower frequency resolution by zero-padding
the data prior to analysis and increasing the amount of tem-
poral overlap (in data points) between windows. Our input
window size was 128 data points. Each FID is 1024 samples
long. We used maximally overlapping windows so that we
could generate as many spectral frames as possible. When
windowing data, it is crucial to apply a scaling function to
the window. Failure to do so results in spectral artifacts. We
applied a Hamming window scaling function to each win-

dow and then padded the data with zeros just prior to spectral
analysis.

The output of TFA is, in essence, a movie —a time-series
of spectral frames. Qualitatively, a single frame from a TFA
looks very similar to the traditional >N HSQC spectrum.
Quantitatively however, there are differences due to the fact
that frames are localized in time.

After spectral analysis, traditional methods usually apply
phase and base-line correction to the spectra. We applied
both phase and baseline correction to each of the TFA spec-
tra frames [35].

3.3 Peak Picking and Feature Extraction

The next step in either the traditional or the TFA method
is to locate and characterize the resonant peaks within the
spectra. This can be done manually or automatically. We
utilized the automatic peak picking capabilities of the pro-
gram NMRPipe [26] to locate the peaks in each frame. In
addition to locating the position of each peak in frequency
space, the NMRPipe peak picker also extracts a number of
other features from each peak. In our experiments we uti-
lized 5 features: the peak’s amide-proton and '®N chemical
shifts (wy and wy), amide-proton and *°N line-widths (6 5
and '), and intensity (/) (Fig. 1 C).

3.4 Peak Tracking

Once the peak picking and feature extraction are completed,
the next step is to trace the evolution of each peak through
time (Fig. 2 B). We call this trajectory a track. The input to
the peak tracking algorithm are the individual peak lists, one
for each spectral frame. For each frame, a greedy algorithm
matches a peak in frame 7 with the peak in frame 7 41 whose
5 features most closely match its own. If no such peak exists
then the track is labeled as “terminated”. All matchings are
unique. That is, no peak from frame 741 is paired with more
than one peak from frame 7. The output of the peak tracker
is a set of tracks. Each track encodes a trajectory in a five
dimensional space. Alternatively, one can think of a track
as a b x N matrix where N is the number of frames. We
call this matrix the track matrix. Each track corresponds to
a single peak in the traditional °N HSQC spectrum. When
the assignments of these peaks to specific (HN, 1N) pairs
are known, we can assign each track as well.

4 CSD Analysis

TFA is primarily a means for observing CSD. Analysis of
CSD, we will show, yields relevant biological information.
We’ve stated that protein motion gives rise to CSD. Differ-
ences in track dynamics may be due to differences in the
molecular dynamics of various parts of the protein. If this is
true, then there is information encoded in CSD. Specifically,
if we can find sets of tracks that are temporally correlated,
it might indicate something about the atoms associated with



those tracks. For this reason, we chose to explore the notion
of similarity among pairs of tracks.

4.1 Track Similarity Measurements

Different similarity measurements emphasize different prop-
erties of the tracks. The molecular dynamics which give rise
to CSD are varied, complex and typically unknown at the
time of NMR analysis. For these reasons, we implemented
three different track similarity measurements, each target-
ing a different kind of information [Fig. 2 C]. It is worth
introducing and reviewing these metrics, since their applica-
tion may be unfamiliar in this context. The use of the power
spectrum to infer structural constraints from energetic sim-
ilarity in chemical shift dynamics is novel. Our third sim-
ilarity metric employs higher-order statistics (specifically
polyspectral analysis and the bicoherence spectrum) [27]
which have not been previously applied to any form of bio-
polymer NMR.

The first measurement, M, compares track morphology
using the correlation coefficient. The second measurement,
P, compares periodicities within the tracks using the power
spectrum. The power spectrum of a signal is the square of
the magnitude of its Fourier transform. It reveals the amount
of energy present as a function of frequency. Two tracks
experiencing similar periodicities will have similar power
spectra. The final measurement, B, compares nonlineari-
ties within the tracks using the bicoherence spectrum [27].
The bispectrum is a higher order statistic capable of detect-
ing third-order correlations within a signal. It is often used
to detect quadratic phase coupling, a specific type of non-
linearity. Itis defined as B(wy,ws) = Y (w1)Y (w2)Y* (w1 +
wa) where Y (w) is the Fourier transform and Y*(w) is its
complex conjugate. The functions governing CSD are non-
linear. Thus, it is possible that tracks will exhibit quadratic
phase coupling. Two tracks that are caused or modulated by
the same non-linear process will have similar bispectra. The
bicoherence is the normalized bispectrum. It is defined as

Y(wl)Y(wg)Y*(wl =+ WQ)
VIV @)Y o)1V (wr + wn)

1)

B(wr,w2) =

The bispectrum has previously been utilized in a number of
domains to extract information from the higher-order statis-
tics of natural data [e.g., 27, 28].

We say that two tracks are correlated if their similarities
exceed a chosen threshold under any of the three similarity
measurements, otherwise they are uncorrelated. Let C' de-
note the set of pairs of correlated tracks and let U denote the
set of pairs of uncorrelated tracks. C' and U are disjoint and
the set C U U is the set of all pairs of tracks. Note that the
cardinality of C, and consequently U, is determined by the
chosen threshold.

Prior to calculating similarities between pairs of tracks,
each profile is normalized to the range [—1, 1]. The similar-

ity between two tracks are only computed over temporally
coincident frames. The M, P, and B similarity measure-
ments are calculated as follows. Let X and Y be two track
matrices. Let x,,,, Twy, Ty, Ts, and zy denote the rows
of X, corresponding to the chemical shift, line-widths and
intensity profiles of X, respectively. Note that z,,,, for ex-
ample, is a vector of N wg-values, one for each frame.
Our M similarity measurement is defined as

M(Xa Y) = (T(mwy s Yor )s T(Twy s ywzv)7 (2
T'(l'(;H ) y6H)7 T(m&v ) y6N)7
r(zr,yr))

where r(x,y) is the correlation coefficient of vectors x and

y.
Our P similarity measurement is defined as

P(X,Y) = (r(H(zwy ), H(Yor ), 7(H(Twy ), H(yoy), @)
T(H(:C5H)vH(y5H))vT(H($5N)5H(y5N))a
r(H(zr), H(yr)))

where H (z) is the power spectrum of the vector x, and
r(Hy, Hy) is the correlation coefficient of the power spec-
tra H; and Hs.

Our B similarity measurement is defined as

B(X,Y) = (r(Be(Twy )s Be(Ywr)), 7(Be(Twy ), Be(Yun ), (4)
T(BC(*T&J )a BC(y5H))a T(BC($5N )a BC(y5N))7
r(Be(21), Be(y1)))

where B.(z) is the bicoherence of the vector x, and
r(Be1, Be2) is the correlation coefficient of the bicoherences
B.1 and Beo.

The similarity measurements are in the range [—1, 1].
Each similarity measurement (M, P, B) is multidimensional
(one dimension per feature) and a separate threshold was se-
lected for each dimension. The master threshold for a given
similarity measurement is adjusted by maintaining the rela-
tive positions of the thresholds for the individual dimensions.
The global similarity measurement takes the maximum sim-
ilarity under M, P and B. The correlated pairs from each of
M, P and B are combined to create the the final, correlated
set. We are presently exploring analytical methods for deter-
mining thresholds based on the distributions of similarities
observed under a given measurement/dimension.

5 Results

Our technique has been applied to the raw, two-dimensional
5N HSQC FID matrices from the two proteins Human Glu-
taredoxin (huGrx) [29,30] (PDB ID 1jhb) and Core Bind-
ing Factor Beta (CBF-33) [31, 32] (BMRB Accession 4092;



(A) Track Statistics
Protein
CBF-B(ppm) | huGrx (ppm) | scTCR (ppm)
Mean A Chem. Shift 0.16 0.17 0.27
Max A Chem. Shift 0.78 0.63 0.59
Min A Chem. Shift 0.07 0.07 0.14
St. Dev. A Chem Shift 0.09 0.07 0.09

(B) Inter Atomic Distance Statistics
huGrx CBF-8 scTCR
CA|IUA |[cAH|UARA |cBA| UAR
Mean 11.02 17.07 11.90 22.26 21.23 26.58
Median | 9.59 16.56 12.09 21.34 17.37 26.58
Max 23.45 40.76 21.27 53.68 48.00 56.95
Min 3.45 1.85 1.91 1.80 5.20 2.29
Pairs 23 8187 21 19001 21 17780
ttest | p<1.8x107°% | p<7.6x1077 | p<1.9x 1072

Table 1: (A) Summary of track statistics for CBF-/3, huGrx and scTCR
(preliminary results). A chemical shift is calculated as the difference be-
tween the highest and lowest proton chemical shift value in each track. (B)
Inter-atomic distance statistics for the distribution of temporally correlated
peaks (C) vs. uncorrelated peaks (U) in huGrx, CBF-g3, and scTCR (pre-
liminary results). The number of pairs of protons in each distribution is also
reported. Student’s ¢-test confidence scores (p-values) reflect the probabil-
ity the differences in means are due to chance.

PDB ID 2jhb). The sizes of the the two proteins are 106
and 143 residues respectively. We were provided the original
5N HSQC FID data, signal processing parameters, and orig-
inal peak lists for each protein by Dr. John Bushweller. '°N
HSQC spectra were recorded at Dartmouth on a 500 MHz
Varian UnityPlus spectrometer with an actively shielded gra-
dient triple resonance probe and pulsed field gradients at
20°C and at 30°C for CBF-3 and huGrx, respectively, in 5%
D>0. In our experiments we utilized signal processing pa-
rameters similar or identical to those used in [29, 31] when
possible.

5.1 Observability of CSD

A representative track is presented in Fig. 3. A number of
reasons suggest that the dynamics exhibited in the tracks are
not merely spectral artifacts. First, we note that each track’s
intensity (I) exhibits the expected decay predicted by the
Bloch equations [33]. Second, the measured length of each
track closely matches the published T times (within 4% for
CBF-3, within 5% for huGrx). Third, a typical peak moves
in a range of about 0.2 ppm [Table 1 A] which is small
enough to be consistent with the change in chemical shift
due to structural flexibility [34] yet too large to be explained
by errors in estimating a peak’s position —NMRPipe esti-
mates the numerical error in localizing a peak in frequency
space. In our experiments that error is, on average 0.01 ppm
—an order of magnitude smaller than the changes we ob-
serve in the chemical shift profiles of our tracks. Thus, CSDs

cannot be attributed to measurement error alone.

Of course, an FID is a composite of the individual sig-
nals emitted from the atoms in solution. A track exhibits
an aggregate of individual behaviors rather than the behav-
ior of a single atom. However, it is reasonable to assume that
each molecule in solution has roughly the same structure and
therefore the same capacity for motion. Consequently, corre-
sponding atoms from different molecules experience similar
variations in their electronic environment. Averaged over all
the molecules in solution, the tracks associated with atoms
in the vicinity of especially mobile regions of the protein
should have characteristics different from those associated
with relatively rigid regions. By extension, two flexible re-
gions undergoing different kinds of motion (e.g., periodic,
but at different frequencies) will give rise to tracks with dif-
ferent properties.

5.2 Information Content of CSD

We know the peak assignments for each protein, so it is pos-
sible to identify the amide proton associated with each track.
Furthermore, the 3-dimensional structures of the two pro-
teins are known, so it is possible to validate the calculated
similarities in terms of biophysical properties. We calculated
the track similarity for all pairs of tracks. We discovered
that the graph of cumulative means of inter-atomic, 'H-'H,
distances, sorted by increasing track similarities, exhibits a
negative correlation (Fig. 4).

That is, for sufficiently high similarity thresholds, the
mean inter-atomic distance of set C'is smaller than the mean
inter-atomic distance of set U.

As the means of the distributions C' and U diverge (with
higher and higher thresholds) they reach a point where the
difference becomes statistically significant according to Stu-
dent’s ¢-test. Above this range we can adjust the cardinality
of C' while maintaining a statistically significant difference
in the means. Detailed statistics are given in Fig. 8. The ¢-
test assumes that the two distributions are normal with equal
variances. Our variances were not equal so we applied the
standard log-transformation to the distributions to equalize
the variances.

We then selected a threshold that maximizes the distance
between the means of C' and U when the cardinality of C'
is between twenty and thirty (Table 1 B, Fig. 5). The sta-
tistical significance of these differences in means was ver-
ified (Student’s ¢-test, huGrx: p < 1.8 x 1075, CBF-3:
p < 7.6 x 10~7). We conclude that our track similarity
measurement has a significant bias towards picking proton
pairs that are close in space. Of particular interest is that the
distributions reported in Table 1 B. and Fig. 5 include a high
percentage of long-range interactions. These long range in-
teractions are analogous to the NOE distance restraints ob-
tained from NOESY spectroscopy [35]. A graphical depic-
tion of these restraints along the backbones of the two pro-
teins is given in Fig. 9.
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Figure 3: The track corresponding to the amide proton and 1N of 1le10 in huGrx. A single frame from the TFA is seen on the left. The peak corresponding
to 11e10 is outlined. The twelve smaller frames detail the behavior of that peak through time. The numbers under each image indicate the frame number it was
taken from. Each of these details were taken from the same region in frequency space (118.1 ppm to 118.12 ppm on the w  axis, 6.77 ppm to 6.95 ppm on the
wp axis). The full profiles for this track are seen on the right hand side of the figure. Each panel depicts the profile of a single feature (From top to bottom:

wi,wN, dg, 05 and I). In each panel the x-axis is the frame number.

Under our M, P, and B similarity measurements not all
spatially proximate proton pairs are found to be in C. This
behavior also parallels NOESY spectroscopy in which not
all close 'H-'H pairs appear. However, NOESY peak inten-
sity is correlated with inter-atomic distance in a roughly » =6
fashion. In contrast, the degree of M, P, and B-similarity
cannot currently be used to quantitate through-space dis-
tance. We are presently exploring more sophisticated sim-
ilarity measurements that may yield quantitative bounds on
distance.

It is worth emphasizing that the distance information ob-
tained in our experiments is unexpected. The >N HSQC,
unlike a NOESY, is not supposed to contain any inter-atomic
distance information. Indeed, it is specifically designed to
prevent transference of magnetization between anything but
the '®N and 'H from each amide group. The key advantage
to TFA, however, is that it reveals atomic properties unre-
lated to transference pathways. We also note that because
the mean distance correlations we observe are considerably
larger than the 6 A, they are not explainable by any residual
or unsupressed NOE.

TFA of HSQC data is not intended to replace standard
NOESY experiments. Rather, it demonstrates that there is
more information in NMR data than previously believed.
Indeed, TFA can be applied to NOESY data as well. TFA
may be used to supplement traditional NMR spectra. Several
common problems, such as peak overlap and peak matching
within and across spectra, may benefit from an analysis of
the time-varying behavior of the data.

The raw FID data for huGrx and CBF-3 were recorded
from the same Varian NMR spectrometer at Dartmouth. An
important control experiment is to test the TFA protocol on
data from different spectrometers. We recently applied our
TFA protocol to the raw N HSQC data for a third pro-
tein, Single Chain T-cell Receptor (scTCR) [36] (BMRB
Accession 4330; PDB ID 1bwma) recorded on a different
spectrometer at Harvard, and provided to us by Dr. Brian

Hare in Prof. Gerhard Wagner’s lab. The preliminary re-
sults from these experiments are also presented in Table 1
and Figure 6. We observed a similar trend in this new data,
which was not as pronounced, although still significant (¢-
test, p < 0.019). A difference of approximately 5.5 A was
observed between the means of C and U. However, unlike
the other two proteins, in scTCR, C does not form a nor-
mal distribution. Consequently, it is also useful to consider
the difference in medians, which was 9.21 A — comparable
to the difference in medians for huGrx and CBF-3. There
are several possible explanations for the smaller effect in the
means. scTCR is a challenging NMR project because of its
size (28 kD, 255 residues) — more than 100 residues larger
than our next largest protein, CBF-£. In general, NMR spec-
tra for large proteins are more difficult to work with, pri-
marily due to weakened signal strength and spectral overlap
(crowding among peaks). Consequently, in the TFA, it was
harder to separate and track peaks for scTCR: signal overlap
and peak degeneracy complicate the analysis. In Sec. 8 we
suggest a number of computational improvements that may
help solve these problems.

6 Comparison of experimental results to theoretical
models

Consider the following simplified model in Fig. 7. Suppose
protons X and Y are both near some region of the protein Z.
Z is close enough to X and Y to have some influence on their
chemical shifts (e.g. via electronic shielding). Now suppose
that Z is part of a flexible region. As Z moves, the chemical
shifts of X and Y will change. If Z’s motion has similar in-
fluence (i.e., upfield or downfield) on X and Y, then their
tracks will have morphological similarities. Furthermore,
if Z’s motion is periodic, then the tracks of X and Y will
be periodic and therefore have similar power spectra and/or
bispectra. Of course, X and Y may themselves be part of
(independent) flexible sub-domains. Their individual chem-
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Figure 4: Mean inter-atomic distance vs. similarity for huGrx (top panel)
and CBF-g3 (bottom panel). The data-points were obtained by sweeping
the similarity threshold from 0 to 1 and computing the mean inter-atomic
distance for the set C corresponding to that threshold. The data-point at the
far left comprises all pairs of protons. The point at the far right comprises
only those pairs of protons with highest similarity. To avoid an unfair skew
in the mean, a proton and itself (i.e., similarity =1.0, distance = 0.0 A)
are not included in any computed C. The similarity scale is non-linear
to highlight the drop in distance at high levels of similarity. Above 0.8
we observe a steeper drop-off. The dashed lines are positive and negative
standard error measurements.

ical shifts may reflect the combined influence of multiple Z’s
plus tumbling and solvent interactions. However, insofar as
our model is concerned, these additional factors will yield
more complex CSD but the possibility of detecting correla-
tions remains. In such cases, a multi-dimensional similarity
measurement, such as the one presented here, will increase
the chances of finding correlations.

Z can only influence the chemical shifts of atoms within
a fixed radius [37]. When this radius can be estimated, up-
per bounds on the distance between temporally-correlated
tracks can be calculated and applied quantitatively in a man-
ner analogous to NOE’s. Note that under this model, the
conditions necessary to produce temporal correlations be-
tween pairs of tracks are quite restrictive. In particular, it
does not predict that all pairs of close atoms will be tempo-
rally correlated.
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Figure 5: Normalized histograms of distances observed for computed
C’s and U’s for huGrx (top panel) and CBF-3 (bottom panel) as reported
in Table 1 B. In both panels, C'is shifted significantly towards 0. The height
of a bar indicates the percentage of the total population within that range.

6.1 Comparison to Simulation of Chemical Shifts in
Mobile Protein Domains

We tested our model with simulated spectra of proteins in
which we simulate the molecular dynamics over time. In
the first simulation we created a time-series from twenty
PDB files describing distinct, but similar, low-energy con-
formations of CBF-3 derived from traditional NMR struc-
tural techniques. In the second simulation we used the time-
series generated from the ten PDB files of hemoglobin (HGN)
and Che-Y protein (CHY) as obtained from the database of
molecular motions [15]. Using the program SHIFTS [38] we
simulated the chemical shifts for each proton in each of the
PDB files describing the motion of the molecules. SHIFTS
takes as input a PDB file and estimates proton chemical shifts
from empirical formulas. The result is analogous to TFA
of real NMR data but not identical. A key distinction is
the length of the simulated tracks. Ten and twenty data-
point tracks are too sparse to perform meaningful spectral
analysis so we only considered the morphological similar-
ity (M) of the tracks. The pairwise track similarities under
the M similarity measurement were calculated. Two filters
were applied to the similarity matrix. The first filter ignores
any single track whose chemical shift profile range is below
a minimum threshold. In other words, we ignored tracks
that were essentially flat. The second filter ignored pairs
of tracks whose respective CSD ranges were wildly differ-
ent. That is, we did not compare a track with high activity
with one with low activity. The reason is that atoms ex-
periencing wildly different ranges of CSD are unlikely to
be nearby. A threshold was applied to the filtered matrix.
The inter-atomic distances of the tracks above the threshold
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Figure 6: Normalized histogram of distances observed for computed C
(bottom) and U (top) for scTCR as reported in Table 1 B. C' is shifted
significantly towards 0. The length of a bar indicates the percentage of the
total population within that range.

were examined. As in the experiments on real NMR data,
there is a statistically significant difference (Student’s ¢-test,
CBF-3: p < 1.8 x 1079 HGN: p < 4.0 x 1073; CHY:
p < 5.1 x 10~7) between the means of correlated and un-
correlated tracks. Detailed statistics are given in Table 2.

7 Conclusion

The application of TFA to NMR data is appropriate because
1) NMR data are inherently time-varying, and 2) CSD have
the potential to yield more information about the local elec-
tronic environment than the corresponding time-averaged
chemical shift. We have shown that it is possible to observe
CSD in one class of NMR experiment. The chemical shifts
of the atoms in any flexible protein are dynamic. There-
fore, TFA is applicable to any NMR experiment with suit-
able time-resolution. The >N HSQC is one such experi-
ment. Applying the techniques presented here to other ex-
periments is an obvious extension. One can imagine further
enhancing the observability of CSD by manipulating the fac-
tors affecting protein flexibility (e.g., solution temperature).

We have also shown that CSD contain structural informa-
tion. In particular, our results demonstrate that >N HSQC
CSD contain through-space inter-atomic distance informa-
tion. The model we used to explain the relationship between
temporal correlation and inter-atomic distance does not pre-
clude finding this information in other NMR experiments as
well. Adapting the techniques presented here to other NMR
experiments will permit the kind of cross-validation typical
in NMR discovery.

The extraction of inter-atomic distance is not the only
potential application of TFA. It might be used to confirm, or
provide an alternative means for obtaining, standard NMR
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Figure 7: Molecular motion-based model for observed relationship be-
tween spatial proximity and temporal correlation of CSD. The dark-gray
dashed line represents an arbitrary sequence of residues in the peptide chain.
Circles and lines represent atoms and bonds. Protons X and Y are both
proximal to Z, a flexible substructure of the protein. As Z moves (in this
example back and forth along an arc) its influence on the respective chem-
ical shifts of X and Y changes. The result is a coordinated change (in this
example, anti-correlated) of the chemical shifts of X and Y. B is the applied
magnetic field.

measurements (e.g., 75 times). The identification and classi-
fication of flexible regions within biological macromolecules,
peak separation in dense NMR spectra, and peak matching
across spectra are all exciting directions for future work.

8 Future Work

This paper demonstrates the existence and observability of
CSD using TFA. Correlations in CSD were used to extract
structural information in a high-throughput manner that is
amenable to automation. In Sec. 6 we proposed a biophysi-
cal model for the CSD correlations. The model is consistent
with both experimental and simulated studies. Future work
should endeavor to validate or falsify this model. Chemical
shift (CS) is the result of magnetic shielding, so anything
that affects CS must ipso facto be a shielding/deshielding
process. In this paper, we exploited the fact that the CS de-
pends on the intricate details of the molecular structure, so
that changes in the structure (or more precisely, changes in
the distribution of structures) will affect the CS. However, in
future work, one wishes to understand the detailed causes
of nuclear shielding. Hence, experiments should be per-
formed to consider alternative biophysical explanations. For
example, Drs. Alan Stern and Jeff Hoch have suggested to
us that CSD may be the result of sample heating during the
pulse sequence [40]. To test this hypothesis, we propose to
run HSQCs using pulse sequences with different length (or
power) presaturation pulses. A sequence with a long presat-
uration pulse will heat the sample more than a sequence with
a short one. If the chemical shift changes are not affected
by the length of the presaturation pulse, then temperature is
probably not responsible for the effect.

A variety of control experiments should be performed as
well. These include: disabling the deuterium lock circuit,
and testing the observability of CSD in 1D experiments. In



addition, we would like to test our protocol on a number of
other proteins under different conditions. Therefore we in-
vite NMR structural biologists interested in a rapid structural
assay to contact us.

Finally, a number of computational improvements are
possible. The short-time FT has some disadvantages, such
as the limit in its time-frequency resolution capability. One
might overcome these limitations by the use of wavelet the-
ory [16]. This should help in applying TFA to larger pro-
teins, as should improved peak-tracking and better track mod-
eling.
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Appendix

Table 2 shows the detailed results of temporal similarity mea-
surements on simulated NMR data. Figure 8 shows the re-
lationship between the differences in inter-atomic mean dis-
tances between the sets C' and U and the size of the corre-
lated set C'. Figure 9 shows ribbon diagrams of both test pro-
teins and the distance restraints derived via TFA projected
onto cartoons of those proteins.
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CBF-3 CHY HGN
CA|IURA |cAH| UARA |cB) | UGB
Mean 9.78 2170 | 1378 | 17.35 | 13.30 | 18.67
Median | 4.84 2046 | 1358 | 17.40 | 13.21 | 18.65
Max | 26.26 | 55.96 | 23.10 | 34.02 | 22.66 | 40.34
Min 2.96 2.58 2.87 2.63 2.83 2.60
Pairs 24 18608 22 7728 44 8867
ttest | p<1.8x107Y | p<40x1073 | p<51x10~7

Table 2: Inter-atomic distance statistics for the distribution
of temporally correlated protons (C) vs. uncorrelated pro-
tons (U) in smulated CBF-3, CHY and HGN spectra. The
simulation of CBF- spectrum is based on twenty PDB files
encoding NMR-derived low-energy conformations. These
twenty low-energy conformations are derived from NMR
data and were averaged to obtain the final, published struc-
ture of CBF-3 [32]. We consider these conformations to
form an ergodic ensemble. That is, each conformation is
drawn from some low-energy well in conformation space
and any path through these conformations is equally likely.
Consequently, we generated a time series by using each con-
formation once, in random order. We report the results of
one random permutation of the conformations but tests with
100 other random permutations yield similar results. The
simulation of the CHY and HGN spectra is based on ten
PDB files (for each protein) depicting conformations gen-
erated by molecular dynamics simulation. Student’s ¢-test
confidence scores (p-values) reflect the probability the dif-
ferences in means are due to chance. The effects of the
smaller sample size for CHY and HGN relative to CBF-43
are seen in the difference in means between C and U. The
shorter series have less power for discrimination, but the sta-
tistical significance remains.
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Figure 8: Normalized Similarity Threshold vs. difference in
means of C' and U (solid line) and cardinality of C' (dashed
line) for CBF-5 and huGrx. The x-axis is a normalized
threshold over the multidimensional M, P, and B-similarity
measurements. Within the range of thresholds presented
here, the distributions C' and U are statistically different (i.e.,
they pass a ¢-test). As the similarity threshold increases, the
cardinality of C decreases and the difference in means in-
creases.
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Figure 9: This figure is best viewed in color. Please see http://www.cs.dartmouth.edu/~langmead/recomb01/
Similarity pairings for huGrx and CBF-g. Lines connect pairs of atoms whose tracks exhibit temporal correlation. The color of
the line indicates the actual distance between the two endpoints. The tertiary structure of each protein is shown on the left for
reference in a similar spatial projection. These similarity pairings indicate long-range distance restraints and reflect the spatial
proximity of different parts of the proteins. When coupled with a high-throughput assay for secondary structure determination
[1,2] and a structure refinement algorithm designed for sparse distance constraints [39], an estimate of the protein’s global fold
can in principle be obtained.
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