
ARTIFICIAL INTELLIGENCE 295 

A Search Algorithm for Motion 
Planning with Six Degrees of 
Freedom* 

Bruce R. Donald  
Art i f ic ia l  Intel l igence L a b o r a t o r y ,  Massachuse t t s  Inst i tute  o f  
T e c h n o l o g y ,  C a m b r i d g e ,  M A  02139, U . S . A .  

Recommended by H.H. Nagel and Daniel G. Bobrow 

ABSTRACT 

The motion planning problem is of central importance to the fields of robotics, spatial planning, and 
automated design. In robotics we are interested in the automatic synthesis of robot motions, given 
high-level specifications of tasks and geometric models of the robot and obstacles. The "Movers' "' 
problem is to find a continuous, collision-free path for a moving object through an environment 
containing obstacles. We present an implemented algorithm for the classical formulation of the 
three-dimensional Movers' problem: Given an arbitrary rigid polyhedral moving object P with three 
translational and three rotational degrees of freedom, find a continuous, collision-free path taking P 
from some initial configuration to a desired goal configuration. 

This paper describes an implementation of a complete algorithm (at a given resolution)for the full 
six degree of freedom Movers' problem. The algorithm transforms the six degree of freedom 
planning problem into a point navigation problem in a six-dimensional configuration space (called 
C-space). The C-space obstacles, which characterize the physically unachievable configurations, are 
directly represented by six-dimensional manifolds whose boundaries are five-dimensional C-surfaces. 
By characterizing these surfaces and their intersections, collision-free paths may be found by the 
closure of three operators which ( i) slide along five-dimensional level C-surfaces parallel to C-space 
obstacles; (ii) slide along one- to four-dimensional intersections of level C-surfaces; and (iii) jump 
between six-dimensional obstacles. These operators are employed by a best-first search algorithm in 
C-space. We will discuss theoretical properties of the algorithm, including completeness (at a 
resolution). This paper describes the heuristic search, with particular emphasis on the heuristic 
strategies that evaluate local geometric information. At the heart of this paper lie the design and 
implementation of these strategies for planning paths along level C-surfaces and their intersection 
manifolds, and for reasoning about motions with three degrees of rotational freedom. The problems 
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of controlling the interaction of these strategies, and of integrating diverse local experts for geometric 
reasoning provide an interesting application of search to a difficult domain with significant practical 
implications. The representations and algorithms we develop impact many geometric planning 
problems, and extend to Cartesian manipulators with six degrees of freedom. 

1. Introduction 

The motion planning problem is of central importance to the fields of robotics, 
spatial planning, and automated design. In robotics we are interested in the 
automatic synthesis of robot motions, given high-level specifications of tasks 
and geometric models of the robot and obstacles. The problem is to find a 
continuous, collision-free path for a moving object through an environment 
containing obstacles; hence it has also been called the Find-Path or Piano 
Movers '  problem. 

We will confine ourselves to the classical I formulation of the Movers' 
problem: Given an arbitrary rigid polyhedral moving object P, find a continu- 
ous, collision-free path taking P from some initial configuration to a desired 
goal configuration. We are particularly interested in the three-dimensional 
Movers' problem, for an object with three translational and three rotational 
degrees of freedom. This paper describes an implementation of a complete 
algorithm (at a given resolution) for the full six degree of freedom Movers' 
problem. 

Both the moving object and each obstacle are modeled as the finite, rigid, 
possibly overlapping union of convex three-dimensional polyhedra. Note that 
the union need not be connected nor convex. The algorithm transforms the six 
degree of freedom planning problem into a point navigation problem in a 
six-dimensional configuration space (called C-space).  The C-space obstacles, 
which characterize the physically unachievable configurations, are directly 
represented by six-dimensional manifolds whose boundaries are five-dimen- 
sional C-surfaces.  By characterizing these surfaces and their intersections, 
collision-free paths may be found by the closure of three operators, called 
point navigation operators. A point navigation operator 

(i) slides along five-dimensional level C-surfaces parallel to C-space ob- 
stacles; 

(ii) slides along one- to four-dimensional intersections of level C-surfaces; 
or 

(iii) jumps between six-dimensional obstacles. 
(See Fig. 1.) These point navigation operators form the basis of a best-first 
search employing a set of heuristic strategies that evaluate local geometric 
information. Each strategy plans motions that are realized using the point 
navigation operators. At the heart of this paper lie the design and implementa- 

1 A terminology due to [37]. 
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F[c. 1. We can represent the configuration of a polyhedron A by a pair, (T, O),  where T is a 
translation of A and O is a rotation of A. The problem of moving A from configuration (rs, 01) to 
(rg, 02) is transformed to the problem of navigating a configuration point, r, past C, which is the 
C-space obstacle due to B. S 1 and S 2 are C-surfaces bounding C. The configurations c a lie on the 
boundary of C, while d] is in free space. Two trajectories around B are shown. Note that the path 
segments (c6,(rg , 02) ) and (dl,(r~, 02) ) must also include a rotation. (The actual reference point is 
at the centroid of A,  but for the purposes of exposition, we have placed it at a vertex as shown.) 
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FIG. 2. An example of a solution path for the classical Movers' problem with six degrees of 
freedom. This illustration is a "time-lapse" picture of a path found by our planner for a 
hammer-shaped object. In all our examples, the workspace is bounded by a box (which is not 
shown). This solution path requires use of all three rotational degrees of freedom. 

FIG. 3. A different view of the solution path for the hammer example, with the obstacles 
"transparent" to allow us to view the rotations better. 
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tion of strategies for planning paths along level C-surfaces and their intersec- 
tion manifolds, and for reasoning about motions with three degrees of rotation- 
al freedom. The problems of controlling the interaction of these strategies, and 
of integrating diverse local experts for geometric reasoning provide an interest- 
ing application of search to a difficult domain with significant practical implica- 
tions. 

Examples of "classical" find-path problems solved by our planner may be 
found in Figs. 2-8. These problems are beyond the competence of previous 
implemented algorithms. In general, find-path problems with more than three 
degrees of freedom have proven extremely difficult to solve. We believe that in 
part, this difficulty has been due to the unresolved issues in the mathematics of 
spatial planning. This theoretical foundation of our planner was described in a 

(a) 

[64] 

(b) 

FI~. 4. (a) A find-path problem for an L-shaped object. The L-shaped object is shown amidst 
obstacles in the start and goal configurations, (b) Solution path I, frame 64 (final configuration). 
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FIG. 5. Detail of solution path for the L-shaped object find-path problem; frames 25-33. 

companion report [12]. In an appendix we provide the mathematical details 
that are relevant. In this paper, we concentrate on the search algorithm with 
particular emphasis on the heuristic strategies that evaluate local geometric 
information, and on the interaction of these strategies. Note that the solutions 
that our planner finds are not "optimal."  

1.1. Configuration space 

The configuration of an object is a vector of parameters representing its 
combined translation and orientation, relative to a specified coordinate system. 
For the classical Movers' problem in the plane, a typical configuration 

(x, y, 0) 

represents a displacement (translation) of (x, y), and a rotation by 0. (For 
example, imagine a polygon displaced by (x, y), and rotated by 0 about one of 
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FIG. 6. Detail of solution path for the L-shaped object find-path problem; frames 34-42. 

its vertices.) For the six degree of freedom classical Movers'  problem, a typical 
configuration 

X = (x, y, z, ~ ( O ) )  

represents a displacement (translation) of (x, y, z), and a three-dimensional 
rotation ~(~9). The three-dimensional rotation group is a three-parameter 
family; typical representations of rotations include Euler angles [42], spherical 
angles, and quaternions [19]. For example, if the Euler angles O = (~b, 0, 4)) 
are employed, then they determine a 3 by 3 rotation matrix which functions as 
gt(O) in the rotation group. It is convenient to identify the rotation operator 
with its parameterization, that is, to express X as 

X = ( x ,  y , z ,  q,,O, qb), 

or, more simply, as 

X = (r, 0 ) ,  
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FIB. 7. Detail of solution path for the L-shaped object find-path problem; frames 43-51, 

where r denotes a three-dimensional translation vector, and O some three- 
dimensional rotation. This second notation is independent of the particular 
representation chosen for rotations. ~- 

Using configuration space, reasoning about the motion of a complicated 
three-dimensional body amongst obstacles may be transformed into reasoning 
about a point in a six-dimensional configuration space. The transformation 
described by Lozano-P6rez [24] entails "shrinking" the moving object to a 
point, and correspondingly "growing" the obstacles. In principle, the point 
may then be navigated around the grown obstacles by means of the point 
navigation operators (above). 

2 More formally, the configuration space is the product space of the space of translations and the 
space of rotations for an object. In three dimensions,  the space of translations is Euclidean 
three-space R ' and the space of rotations is the three-dimensional  rotation group or special 
orthogonal group, SO(3). For the classical Movers '  problem we will employ the configuration 
space 1~3 x SO(3). In practice, we will represent  rotations as members  of a three-parameter  family 
(for example,  Euler angles), but they parameterize an isometry and N3 x SO(3) is not a vector 
space. 



SEARCH ALGORITHM FOR MOTION PLANNING 303 

[sz) [~ ]  [s4] 

i~s] [56] 157] 

[ss] [sg] [601 

FI6. 8. Detail of solution path for the L-shaped object find-path problem; frames 52-60. 

Here  is an overview of our representation for C-space obstacles. C-space 
obstacles are modelled by unions of C-space volumes. These volumes may be 
represented as the intersection of several generalized half-spaces. Each half- 
space can be defined in terms of a real function f on C-space, by saying that it's 
all the points whose f-value is nonpositive. Given this description, a surface of 
the volume is (part of) the surface in C-space defined as those points whose 
f-value is zero. In general, the points whose f-value is some constant form a 
surface "parallel" to the surface of the volume, which we will call a level 
surface. Furthermore,  the f-value at any configuration represents the transla- 
tional distance to the surface. One utility of this way of describing obstacles is 
that our algorithm needs to be able to compute normals and tangents to these 
surfaces, and these functions give a direct way to do that. 

More precisely, a volume in the configuration space ~ may be represented 
by the intersection of a finite number of half-spaces (see Fig. 9). Each 
half-space may be defined via some smooth, real-valued function of ~, 
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FIG. 9. The region CO is the intersection of the half-spaces h~ , h , ,  h2, and h r . 

In general, the (closed) half-space h~- is the set of all points in ~ where f~ is 
negative-valued or zero: 

The common intersection of a number of such half-spaces yields a volume in ~. 
Lozano-P&ez [24] showed how C-space obstacles can be modeled in this 
manner,  and gave the form of the functions f~. The boundaries of C-space 
obstacles are called C-surfaces. Note that each C-surface lies within the kernel 
of some constraint f~. Our search algorithm needs to compute the normal and 
tangent spaces to these C-surfaces. The normal can usually be derived from the 
gradient Vf~ (this requires placing an appropriate Riemannian metric on the 
tangent space). When a real-valued function f~ on configuration space is used to 
describe constraints in that C-space (i.e., C-space obstacles), we call it a 
C-function. The form and interpretation of C-functions are presented in 
[6, 12, 24]. A surface "parallel" to a C-surface is called a level C-surface, and 
represents the set of configurations where f has a certain fixed value. This value 
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is termed the level of the level C-surface. The boundary of the C-space 
obstacle is a special case of level C-surface, where the level is zero. 

With this representation, we can find a collision-free path for a point amidst 
six-dimensional C-space obstacles in ~ 3 ×  SO(3) through the closure of the 
three point navigation operators. Implementing the point navigation operators 
requires surmounting certain mathematical problems. We present a brief 
overview of the solutions in an appendix. Two critical concepts described there 
are applicability and redundancy. We give informal definitions for them here. 

- Applicability. A feature of a polyhedron is a face, edge, or vertex on its 
boundary. The C-functions have the property that their conjunction enforces a 
disjointness criterion for the moving object and the obstacles. Each C-function 
is generated by a pair (gA, gB) where gA and g8 are features of the moving 
object and of an obstacle, respectively. The set of all C-functions is generated 
by considering all pairwise interactions (possible contacts and intersections) of 
moving object and obstacle features. However,  these interactions can only 
occur in certain orientations; for example, consider two cubes (one moving and 
one fixed). Since they have 12 edges each, they generate 144 edge-edge 
constraints. Roughly speaking, we say an edge-edge constraint is applicable at 
an orientation when the generating edges can touch without the cubes' interiors 
intersecting. However ,  at any fixed orientation only certain edges can touch 
and hence only certain edge-edge constraints are applicable. 3 The region of 
rotation space where a C-function fi is applicable is called its applicability 
region, ~l i CSO(3) .  For a given orientation 8 ,  the set of all applicable 
C-functions is called the applicability set. See Appendix A.2 for a more 
extensive treatment.  

- Redundant and nonredundant constraints. If a configuration X is in free 
space, the set of constraints which is (locally) relevant to motion planning from 
X is a subset of the applicable, positive-value C-functions at X. However,  the 
value of a C-function does more than merely indicate which side of a C-surface 
X is on. A C-function's value represents the translational distance 4 to that 
surface. Thus, C-functions provide a collection of pseudo-metrics on C-space. 
Using these metrics, it is possible to order C-surfaces by their closeness to a 
configuration X (simply sort the C-functions on their value at X).  We say that a 
C-surface is redundant if it is subsumed by a nearer,  intervening constraint. In 
Fig. 10, for example, f and g are nonredundant  constraints at X, but h is 
redundant  since it is subsumed by f. It is useful to determine the set of 
nonredundant  constraints at X since this is the smallest set of constraints that 
are locally relevant to motion planning. 

3 Note that our definition of applicability does not consider the other obstacles. The feasibility of 
a contact is also constrained by the other C-space obstacles. 

4 I.e., the distance in •3. 
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• X 

FI6. 10. h is a redundant constraint. 

While the point navigation operators define a complete search space, it is 
evidently too large, in general, to be searched in its entirety. This paper 
focuses on a search algorithm which uses the point navigation operators as 
primitives. While still complete (at a resolution), the algorithm employs 
heuristic strategies to evaluate local geometric information in C-space in order 
to guide and to limit the search. 

1.2. Review of previous work 

Planning problems have two components: characterizing the constraints and 
searching for a solution which satisfies the constraints. One attempts to achieve 
a complete (in some sense, "exact")  characterization of the constraints and a 
complete search algorithm for the representation. Previous motion planning 
algorithms fall into three broad classes: (1) theoretical but unimplemented 
algorithms which are complete,  5 (2) implemented approximate algorithms 
which are not complete, and (3) implemented complete algorithms which 
address three or fewer degrees of freedom. An extensive completeness review 

5 In general, the complete algorithms are complete only to a resolution; exceptions are 
[33, 34, 38-40]. 
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is beyond the scope of this paper; however, for a detailed analysis, see [12]. 
The algorithm presented in this paper is a representation-complete, search- 
complete algorithm (at a given resolution) for the six degree of freedom 
classical Movers' problem in E × SO(3). 

This paper is based on [12]. The foundations of our approach lie in 
[24, 25, 28, 39]. While the theoretical algorithm of Schwartz and Sharir [39] is 
complete, it is O(n 4096) for the six degree of freedom problem. Thus it serves 
chiefly as an existence proof. Reif [37] and Hopcroft et al. [20] have demon- 
strated complexity-theoretic results. Schwartz and Sharir, in [40], address the 
coordinated motion of circular bodies in the plane. For a survey of algorithmic 
motion planning, see [46]. A survey of issues in robotics can be found in [2]. 
For related work on motion planning, see [8, 17, 21, 29, 30, 38, 43]. Wingham 
[45] and Popplestone et al. [36] consider related issues in geometric planning 
problems. In particular, Canny [8] improved on Donald's representation [12] of 
the configuration space constraints, giving an algebraic formulation which 
permits a somewhat cleaner solution to certain intersection problems. 

Brooks and Lozano-P6rez [6] implemented a general path-finding algorithm 
for a polygonal object in the plane with two translational and one rotational 
degrees of freedom. Their planner uses hierarchical subdivision of the three- 
dimensional configuration space 6 E2x  S 1. Lozano-P6rez, in [25], described 
approximate solutions for Cartesian manipulators with six degrees of freedom 
(in principle) which consider three-dimensional slice-projections of C-space. 
Lozano-P6rez [26] has recently reported a motion planning algorithm for 6 
DOF linked arms which is also complete to a resolution. 

Global methods for path planning attempt to construct a model of the 
connectivity of free space which can be related to the generalized Voronoi 
diagram (GVD) (see [15]). In particular, Brooks [4] implemented a two- 
dimensional path-planner which models the free space as an overlapping union 
of generalized cones. This work was extended to a six-link manipulator for 
moving payloads with four degrees of freedom [5]. 

Using an approach called retraction, 0'Dtinlaing et al. [33, 34] construct a 
Voronoi diagram for a two-dimensional workspace and consider moving simple 
objects (a disk, a line segment) along it. Nguyen [31] discusses the relationship 
of global algorithms in the plane to the GVD. Donald presents criteria for the 
design and integration of local and global algorithms in [11], and in [12] 
develops a definition and new theoretical results for a six-dimensional exten- 
sion of the GVD, called the C-Voronoi diagram, and relates its structure to the 
(level) C-surface intersection manifolds. Canny [9] suggests an algorithm for 
computing the C-Voronoi diagram. 

Recently, researchers have begun to consider fine motion and motion 
planning with uncertainty [3, 14, 16, 27, 29]. For the six degree of freedom 

6 S 1 is the unit circle, on which two-dimensional  rotations may be represented.  
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case, both presume algorithms and representations which are derived in this 
paper. 

2. A Planning System for the Classical Movers' Problem with 
Six Degrees of Freedom 

In this section, we describe the design and implementation of a planning 
system for the classical Movers'  problem with six degrees of freedom. The 
planning algorithm required the solution of several representational and al- 
gorithmic questions and the implementation of the point navigation operators. 
The solutions to these problems are surveyed in Appendices A and B. In this 
section we will simply assume that these problems are solved, and proceed to 
employ the solutions in constructing a planning algorithm. Of particular 
importance will be two effective procedures by Donald [12], which address the 
intersection problem in C-space: 

(i) Given two or more level C-surfaces, construct their intersection man- 
ifold. 

(ii) Given a C-surface and a trajectory, 7 find their intersection. Determine 
whether the intersection lies on the boundary of a C-space obstacle. 

The immediate application of (i) is the sliding problem: How to slide along 
one level C-surface, and how to slide along the intersection of two or more 
level C-surfaces. 

Using the point navigation operators (Section 1), we implemented a best- 
first search algorithm in C-space. The algorithm has theoretical properties 
which include completeness (at a resolution). This section describes the 
heuristic search, with particular emphasis on the heuristic strategies that 
evaluate local geometric information, and on the interaction of these strategies. 

2.1. Definitions 

A topological space 8 M is called an n-dimensional manifold if it is locally 
homeomorphic to ~n. A chart is a way of placing a coordinate system on M; if 
U and V are open subsets of M, two homeomorphisms f : U-->f(U) C_ ~n and 
g : V--> y(V)  C_ ~n have C~-overlap if the maps 

f o g - l :  g(U N V)--> f (U N V) , 

go f - '  : f (U  A V)---~ g(U A V) , 

are also C ~ (that is, possessing continuous partial derivatives of all orders). A 
family of pairwise C~-overlapping homeomorphisms whose domain covers M is 

7 A trajectory in C-space is the image of an embedding of the unit interval in ~3 x SO(3). 
To be precise, M must in addition be a second-countable Hausdorff space. 
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called an atlas for M. A particular member  ( f ,  U) of an atlas ~ is called a chart 
(for the atlas q/) ,  or a coordinate system for U. For a good introduction to 
differential geometry,  see, for example, [41]. 

In this paper we usually specify charts via the inverse form h : R ~ M (where 
R is an open subset of ~n) with the understanding that it is the inverse (or set 
of local inverses) h -1 which provides the family of charts {(h -1, Wi) }, for 
U iV¢~ = h(R). As  an example, consider the map h that specifies a chart for a 
five-dimensional level C-surface: 

h : Es__~ E3 x SO(3) , 

( E 2 y + E 3 z + E 4 - I  ) 
( y , z, ~, O, qb ) ~-~ E1 , y, z, t~, O, cb . 

Here  the E i are smooth, real-valued functions 9 on SO(3),  that is, 
E i : (q~, 0, ~b)---~ ~. The inverse map h -1 is obvious, and provides a chart for the 
five-dimensional submanifold of E ~ × SO(3). Donald [12] derives such charts, 
in the form of h; in this paper,  we will take them for granted. 

2.2. Introduction 

We are now ready to describe a planning system for the find-path problem in 
~3 × SO(3). The algorithm has the structure of a search and is complete (at a 
given resolution). The basic idea is as follows. 

Configurations and tangent vectors are represented as 6-tuples of floating 
point numbers. C-functions have canonical forms as trigonometric polynomials, 
given in Appendix B.1. They are represented by their floating point coef- 
ficients. 1° 

We define a finite partition of C-space into regions called neighborhoods. 
The neighborhoods are defined by a quantization of the factor spaces of 
C-space. The size of the quantization, and hence of the neighborhoods, is 
determined by the resolution. This partition defines the nodes of the search 
space. The search operators between neighborhoods correspond to motions in 
configuration space. A best-first search algorithm is employed to find a path. 

We are able to define and implement certain procedures called local 
operators. When applied at a (representation of a) configuration, a local 
operator  attempts to move the robot in a specified direction until either the 
subgoal or an intervening C-surface is reached. The local operators have the 
general form 

Move(X:configuration, f :direction, limit:configuration), 

9 By applying + to the E~, we of course mean to specify the function whose value is their sum. 
lO In principle, rational arithmetic could be employed instead. 



310 B.R. DONALD 

and are designed to return X', the configuration reached in direction 5, and the 
reason for stopping (which will either be "reached subgoal" or the name of the 
C-surface which halted progress). The local operator  assumes that X is in free 
space, and ensures that there exists a collision-free path along t; taking the 
robot from configuration X to X'. Furthermore,  we insist that l imit  = X + t6, 
for some positive t. In general, 6 can be represented as a tangent vector to 
E3 x SO(3); the space of directions is locally isomorphic to [R 6. 

Many different Move operators can be defined. Let X = (x, O). We will 
restrict 6 to be either a pure translation 

• ~3 x {0} 

or a pure rotation 

• +k - k  + 

The closure of these operators is complete for the space of configurations. By 
this we mean that in the absence of obstacles, there is some finite sequence of 
operators which carries any configuration X into any other configuration Y. It 
is often convenient to think of these operators as Translate(X, d, x ' )  (where 

• E3 and x'  is a goal translation) and Rotate(X,  ~b, q~') (where ~b is an angular 
direction and q~' is a goal angle). The theory and implementation of Translate 
and Rotate is discussed in Appendix B. 

Given the local operators, we can define more sophisticated local strategies 
for spatial reasoning. These strategies are implemented by local experts  I~ in 
C-space. For example, one local expert attempts to circumnavigate C-space 
obstacles by sliding along intersections of level C-surfaces. Another ,  "greedy"  
expert tries to translate or rotate straight towards the goal. A local expert 
typically examines the local geometric environment of C-surfaces, their nor- 
mals and intersections. It also takes into account the history of planning. The 
local experts can be thought of as issuing "commands"  in terms of the local 
operators. Depending on the results of these at tempted motions, an expert 
may issue other local operator  commands, and either directly invoke or leave a 
forwarding message for another local expert. 

To summarize: a local operator is an algorithm for moving along a specific 
trajectory until a constraint is encountered (or a subgoal is reached). A local 
expert  is a strategy for choosing the trajectory based on an examination of the 
history of planning and the local geometry. When a local expert chooses a 
trajectory, it calls on some sequence of local operators to realize it. 

~1 The term local expert was brought to my attention in discussions with Van-Duc Nguyen, 
Tom~s Lozano-P6rez, and Rodney Brooks. 
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2.2.1. Planning and search 

The planning algorithm is implemented as a search of the configuration space. 
The search constructs a graph of neighborhoods which have been explored. 
(We will be more precise about the term neighborhood later.) Each mode in 
the search graph is associated with a configuration and contains information 
about the local geometry and the history of planning. The search algorithm 
chooses a node for exploration. Several local experts are then applied at that 
node. Each expert can produce a new search node. All of these are sons of the 
explored node,  and are added to the search queue. The new sons are 
connected to their father by the arcs of the search graph and each son may be 
thought of as an exploration from the father. 

If at any point in the search, two explorations reach the same neighborhood, 
the planner attempts to merge the associated nodes into one node. 

The search algorithm is best-first [32] with the metric of progress established 
as distance from the goal. (This requires placing a metric on both translation 
and rotation space.) Other  search measures (such as path length, or time) 
would also be possible, and an A* search strategy could be exploited to find 
optimal paths. In practice this would probably require adding new local experts 
in order to ensure reasonable performance.  

As search nodes are explored, they are entered in a priority queue,  called 
the search queue. The nodes in the search queue are ordered by a metric on 
configurations. Some search strategies we discuss require two search queues: 
when the primary queue is exhausted, then nodes from the reserve queue are 
explored. 

We will proceed as follows. First, using the local operators alone, we can 
define a complete search strategy (at a given resolution). This search strategy 
can be considered the most primitive local expert,  and is known as the 
"bumble strategy." By applying the bumble strategy at every search node,  we 
are guaranteed to find a path (at a given resolution) if one exists (Fig. 11). 

Next, we will define more complicated local experts which will be applied to 
search nodes at the same time as the bumble expert. These experts greatly 
improve the performance of the planner. 

2.3. A complete search strategy 

A search node is associated with a configuration. Every configuration is in turn 
associated with a neighborhood of C-space. The neighborhoods form a parti- 
tion of C-space. Since many configurations are associated with one neighbor- 
hood, so several search nodes may have configurations lying in the same 
neighborhood. 

Assume the neighborhoods are "small ."  If the configurations of two search 
nodes are in the same neighborhood, it indicates that they should, if possible, 
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FIo. 11. Schematic illustration of the "bumble"  strategy (an exhaustive search). A fine six- 
dimensional lattice is thrown across C-space. By exploring from one configuration to its neighbors 
in the lattice, a path will eventually be found, if one exists at the lattice resolution. Fortunately,  it 
is also possible to take large steps in the lattice, and simply record the neighborhoods the path 
visits. 

~ g  

ker f ~-~ ker g 

FIG. 12. f, g : •3 x SO(3) ~ [~ are C-functions which describe two level C-surfaces, ker f and ker g. 
The level C-surfaces are smooth, five-dimensional manifolds parallel to C-space obstacle boun- 
daries. From X E ker f, three paths sliding along the level C-surface ker f are shown. Each path is 
orthogonal to Vf. The sliding expert plans such paths along five-dimensional level C-surfaces. 
(ker  f ) A ( k e r  g) is the intersection of the two level C-surfaces, and is a four-dimensional 
manifold. The intersection expert plans paths along intersection manifolds. Such a path p is shown 
from configuration Y. 
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be merged into one node, since they are close together. By keeping track of 
the set of explored neighborhoods, we can avoid redundant explorations. If the 
neighborhoods are sufficiently small, then the search will be complete at a 
resolution closely related to the neighborhood size. 

It is possible to devise a complete search strategy (at a given resolution) 
using just the local operators. We first throw a fine six-dimensional lattice 12 
over configuration space. The lattice is used to keep track of the state of the 
planner, i.e., which neighborhoods have been explored, and for computing the 
connectivity of these neighborhoods. The lattice will "wrap around" in the 
rotational dimensions, but this is easily implemented using modular arithmetic. 
We will define an adjacency function for points in the lattice; in addition, when 
a neighborhood is explored, the corresponding node in the lattice is marked. 
When a search node is chosen for exploration: 

(i) X, the configuration of the search node, is mapped to L, a point in the 
lattice. L is the name of the neighborhood N(L) centered on L, which contains 
X. 

(ii) The unexplored neighborhoods adjacent to N(L) are found. Each of 
these neighborhoods is also identified by a central lattice point. 

(iii) The planner attempts to move to each of the unexplored, adjacent 
neighborhoods. 

(i) has the effect of mapping a neighborhood of C-space to a canonical 
element (which lies on the lattice) in its interior. These neighborhoods decom- 
pose R3x SO(3) into equivalence classes with the same canonical element. 
When a neighborhood is reached for the first time, we mark its lattice point as 
explored. The search terminates when a neighborhood containing the goal is 
reached, and when that exploration can be connected to the goal configuration. 

2.3.1. Implementation of  neighborhoods and lattices 

In principle, it is possible to implement the lattice as a six-dimensional array 
(with modular indexing for the rotational dimensions). In practice, for any fine 
resolution, this array will be enormous, and very sparse. Although an adver- 
sary can design a find-path problem for which our planner must explore the 
entire lattice, in practice this does not occur. However, we must maintain a 
record of what neighborhoods have been explored, in order to generate the 
unexplored neighbors for a search node. Since the array is sparse, we will 
employ a different strategy. 

A partial order can be defined on lattice points by considering them as 
six-dimensional vectors. This order has no particular geometric significance for 
the rotational dimensions, but it can be used to store explored lattice points in 
a binary tree. Since the vast majority of neighborhoods are never explored, the 

12 I.e.,  the factor spaces of  the parameter  space are quantized,  and the lattice is a partial order 
on the Cartesian product  of  the factor space quantizations. 
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tree is typically small, even for fine lattices. To mark a lattice point as 
explored, we insert into the binary tree. To find whether a lattice point has 
been explored, we search the tree. 

It is desirable to employ a fine lattice in order to ensure completeness at a 
fine resolution. The use of a binary tree to record explored configurations 
effectively removes the problem of lattice size for storing explored configura- 
tions. For example, if we segment C-space into an N x N x • • • x N lattice, 
then an array would have to be N 6 long. But the binary tree need store only 
the explored location, and (if height-balanced) can access any leaf in O(log N) 
operations. 

If the lattice resolution is fine, then the planner as described so far will take 
very small steps for each search exploration. This has been remedied as 
follows: If a local operator  is invoked to find whether l imi t  may be attained 
from X in direction t3, it must effectively intersect a path in direction 15 with all 
C-surfaces. It is not much harder to find the f i rs t  constraint along the path 
p ( t )  = X +  tt3 (even if it is beyond l imit):  in particular, we note that all 
intersections along the path p may be sorted on distance from X. The 
complexity of finding this first intersection along p is independent of the lattice 
resolution (since the intersection algorithm has nothing to do with the lattice; 
see [12]). We can "sample" the portion of the path which lies in free space at 
the lattice resolution. All of these configurations are then marked as "ex- 
plored,"  and as reachable from their immediate neighbors along the path. Thus 
they form a connected chain in the lattice along the path p. While all these 
configurations are in some sense sons of X, in practice we will select only one 
or two to be entered in the primary search queue. These sons might be (1) the 
son which is closest to the goal, and (2) some son at a reasonably large step 
away from X. This step size, called the b u m b l e  reso lu t ion ,  might be 3 to 10 
times the lattice resolution. The other sons should be kept on a reserve queue, 
which can be explored when the primary search queue is depleted or 
exhausted. 

In practice, it may be preferable to enter ranges  in the exploration tree, for 
example, to record that all lattice points 

( x , y ,  z ,  to, O, 49) <<- L <~ ( x + k d T, y ,  z ,  tO, 0, 49) 

(for some integer k) are explored. This requires keeping an exploration tree of 
l ines instead of configurations, with the intent of minimizing the number of 
exploration tree entries. When lines are entered into the tree, they may be 
merged with previous lines to form connected components of explored regions. 
These operations are supported by hierarchical subdivision algorithms. At this 
point in the experimental use of the planner, it is still too early to tell whether 
this optimization is necessary. 

In practice we have had no problem in selecting a very fine resolution for the 
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lattice (one selects a fine lattice resolution, and a considerably larger Bumble 
resolution or step size, as described above). This lattice-based strategy is not 
only theoretically complete for a given resolution, but has also been used to 
find very complicated paths for the six degree of freedom classical Movers' 
problem. However, the algorithm has an "excessively local" flavor--it is 
clumsy and quite slow when employed alone (hence the strategy's name). We 
can construct much "smarter" heuristic experts which attempt to exploit 
coherence in C-space. When these experts are used in conjunction with the 
bumble strategy, we obtain a planner which is not only complete, but which 
can solve complicated problems in a reasonable amount of time. We continue 
to find the lattice useful for recording the planner's explorations by the local 
experts. 

2.3.2. Keeping track o f  connectivity 

Suppose a subsequent exploration reaches the same neighborhood. There are 
two choices, which we call the mark  algorithm and the connect  algorithm: 

- The mark  algorithm. Discard the exploration, since the neighborhood is 
already explored. In practice, the mark algorithm often suffices for path- 
finding. The mark algorithm computes a directed, spanning tree T of explored 
neighborhoods, which is rooted at the start configuration. 

- The connect  algorithm. Connect together the search nodes for all explora- 
tions to that neighborhood. The connect algorithm is more complicated, and 
requires the following bookkeeping (see Fig. 13). Let N be a neighborhood of 

S 
m 

f 

\ 

I 

FIG. 13. The lattice point L is at the center of a neighborhood ~f of C-space. Search explorations 
arrive at configurations X and Y in N. The planner attempts to find a path connecting X and Y, by 
trying to connect both configurations to L. 
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~3 X SO(3), and L e f iN)  be a lattice point which is the canonical element for 
N. Suppose X is an exploration of N, i.e., X c N is the final configuration in 
some motion reaching 2¢'. Let s(X)  denote the search node for X. (If X is the 
first exploration of •, then create a search node s(L)  for L.) Determine 
whether there exists a path from X to L (using the local operators). If so, 
connect s(X)  and s(L)  together. 

The connect algorithm computes a more complete connectivity graph for the 
neighborhoods of C-space. It computes an undirected graph H of explored 
neighborhoods, which may contain cycles. As long as H is connected, then T is 
a spanning tree for H, and the mark algorithm is complete for planning a 
connected path along H. However, not all planning strategies admit this kind 
of "connected planning." In particular, when we consider strategies which 
construct partial paths and planning islands (which may later connect up), the 
connect algorithm is necessary (see the suggestor strategy, Section 2.4.8, for an 
example). 

2.3.3. Discussion o f  the bumble strategy 

Suppose the lattice spacing is d T and d R in the translational and rotational 
dimensions. Then the adjacent lattice points to L = (x, y, z, t), O, 4)) will be: 

(x -+ dr ,  y, z, ~b, O, 4)), 
(x, y -+ d T, z, O, O, 4)), 
(x, y, z -+ d v, ~O, O, 4)), 
(x, y, z, 0 - dR(mOd 2"rr), 0, 4)), 
(x, y, z, 0, 0 -+ dR(rood "rr), 4)), 
(x, y, z, O, O, 4) +- dR(mOd 2~r)). 

Each adjacent lattice point is the center of a neighborhood of configurations 
which is contiguous to the neighborhood of L. Each such neighborhood can be 
reached (if it is in free space and there is no intervening C-surface) by the local 
operators Translate and Rotate. Since there are 12 neighbors for each lattice 
point, we have found it inadvisable to explore them all for each search node 
expansion. Instead, the set of unexplored adjacent neighborhoods is ranked (in 
terms of proximity to the goal), and motions towards the top k T translational 
and k R rotational neighbors are attempted (typically, k T ~ 3 and k R ~ 2). If the 
node is reexplored later, motions toward k T + k R more of the unexplored 
neighbors will be attempted (if there are that many left). When using the mark 
algorithm, we say an exploration is successful if it reaches a new (unexplored) 
neighborhood. If an exploration is successful, then a new search node is 
created and the neighborhood is marked as explored. Since the neighborhood's 
"name"  is its lattice point, this simply corresponds to marking the lattice point. 
Whether successful or not, all explorations are recorded at the parent search 
node so that they will not be tried again. 
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Suppose X is a configuration in neighborhood ?¢'(L), with associated lattice 
point L. The unexplored adjacent lattice points to L indicate a set of subgoals 
to be attained from X. The bumble strategy ranks these subgoals, chooses 
some of them, and selects trajectories which may attain them. The local 
operators are then employed to (try to) realize the selected trajectories. These 
explorations are then recorded so that only new explorations will be pursued in 
the future. Note that the planner is not constrained to move along the lattice, 
and that although the subgoals lie on the lattice, the motion from X to any 
subgoal does not, unless X = L. 

The local experts are considerably more sophisticated than the bumble 
strategy. Their subgoals need not lie on the lattice, and the motions specified to 
the local operators need not lie along the lattice. The lattice is still employed to 
keep track of the planning history and the connectivity of explored neighbor- 
hoods. 

Clearly, the arcwise-connected sets of lattice points are closed under the 
operators Translate and Rotate. If a path exists at the lattice resolution, then 
the search is guaranteed to find it. We see now exactly what the resolution for 
this find-path algorithm is: by choosing a sufficiently fine lattice, the algorithm 
is (trivially) complete at the lattice resolution. One final point: the start and 
goal configurations may not lie directly on the lattice. This is not a problem, 
however, since the local operators can ensure that there exists a path from the 
start and goal to the nearest lattice point. 

2.4. Local experts for the find-path problem 

2.4.1. Path planning versus continuous intersection detection: Why we need 
local experts 

The Translate and Rotate operators detect collisions along continuous trajec- 
tories. 13 Given these operators, it is possible to devise a complete path- 
planning algorithm based on something like the bumble strategy, above. 
However, while complete, this is not a particularly good algorithm, in that it 
says nothing about how or when the operators should be applied. The domain 
of the operators is large and for realistic path planning, it is necessary to know 
where, and in what directions, to apply them. 

Algorithms which can detect intersections with obstacles for a robot 
following a continuous trajectory say nothing about how to plan 
these trajectories. However, they can be used to find a path by 
exhaustive search. 

The Translate and Rotate operators use the constraints in C-space to detect 

13 This discussion also holds for the general Move operator. 
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collisions. However,  these constraints can also be employed to plan paths. In 
Section 1, we proposed an idealized planner which constructed the intersection 
manifolds of level C-surfaces, and slid along these manifolds to navigate 
around C-space obstacles. Such a planner could exploit coherence in the 
configuration space: by examining C-space constraints an algorithm can be 
devised for intersecting and sliding on C-surfaces to circumnavigate C-space 
obstacles. In the following sections, we describe a planner which approaches 
the idealized planning algorithm of Section 1. The local experts are strategies 
for reasoning about the local geometry of the configuration space, and for 
exploiting geometric constraints to plan collision-free paths. When applied to a 
search node, each local expert examines the local geometry and history of 
planning to propose one or more path segments. Each path segment is realized 
by means of the local operators,  which ensure that a collision-free path exists. 

2.4.2. Designing local experts 

In the exploration tree of C-space neighborhoods, we have seen one type of 
information that must be maintained for planning. In designing local experts, 
we must address the following questions: 

(i) What constitutes a local description of a (level) C-surface? 
(ii) What information should be stored at a search node? 
Question (i) can be stated, "What  constitutes a sufficiently rich description 

of the local geometry in C-space to allow robust local experts?" Question (ii) 
relates more to the history of planning, and the connectivity of the explored 
search neighborhoods. For example, we want to record the results of previous 
applications of experts at a search node, and the adjacent nodes in the search 
graph. 

The local description of  a C-surface 
A C-surface has a normal at point X. Motions tangent to the C-surface at X 
will have instantaneous velocities orthogonal to the normal. We must charac- 
terize the normal and tangents to a C-surface in order to plan trajectories 
which slide along it. 

Let  f be an applicable, positive-valued C-function at X. We can check that f 
is nonredundant  at X; alternatively, we may heuristically assume f i s  nonredun- 
dant if its value at X is small. We wish to develop a local characterization of f 
at X, that is, of the level C-surface S = {Y[ f ( Y ) =  f (X)}  about X. We should 
think of S as the kernel of the auxiliary function 

fx  : ~3 X S0(3 )  ~ ~ ,  Y ~ f ( Y )  - f ( X ) .  

The local characterization will have two parts, one of which is invariant, and 
one of which will change for different subgoals. The invariant part of the 
description is a pair 
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(fix), vf) 

consisting of the value of f at X and the normal to S at X. Now, the normal 
Vf(X) to S at X will depend on the Riemannian metric defined on the tangent 
space at X. In principle, there is a natural choice for the Riemannian metric as 
follows [1, 16]. The moment  of inertia tensor of the moving object defines a 
field of inner products on C-space. This choice is natural in the sense that it 
yields a quadratic form which computes the correct kinetic energy for the 
moving object. However ,  for computational reasons we will use a simpler 
metric. For gross motion, it is sufficient to employ a metric which admits 
construction of Vf(X) using the partial derivatives of f at X, with respect to the 
parameterization of C-space. Hence if rotations are parameterized by Euler  
angles, then 

Of Of Of Of Of Of) 
Vf= -~x' Oy' Oz' Otp' O0' 04) " 

Assume that Vf is normalized to be a unit vector. We now wish to 
characterize the relationship of the C-surface to some subgoal, G: this requires 
some way of talking about directions in N3x  SO(3). Specifically, we wish 
define a "vector"  algebra on configurations, such that 

lim.II G - x l l  : o 
G + X  

and 
lim ( G -  X ) - ( G '  - X)  = 1. 

G '----~ G 

These equations express the vector space characteristics which are required for 
our computations on tangent vectors. To construct this algebra, it is possible to 
define a field of inner products over ~ 3 x  SO(3),  i.e., to define an inner 
product on the tangent space to each point. Thus ~3 x SO(3) is a Riemannian 
manifold [1]. If two tangent vectors-- i .e . ,  direct ions--are applied to the same 
point, this inner product allows us to talk about the angle between two such 
tangent vectors, or of the angle between an arbitrary tangent vector to 
~ 3 x  SO(3) and the normal to a C-surface. However,  the inner product is 
somewhat arbitrary for our application. Alternatively, we could also construct 
geodesics on p3, the 3-sphere with antipodal points identified. These ap- 
proaches are probably too elaborate for a heuristic strategy. 

Heuristics for evaluating directions in the tangent space 
A basic issue is that placing a metric on a non-Abelian group, such as SO(3),  is 
a difficult problem. We will demonstrate the metric that our planner employs, 
and then show that it is adequate for this application. In particular, the metric 
is adequate when applied to three one-dimensional slices of SO(3). (These are 
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the slices considered by the Rotate operator.)  Note, however, that a metric 
may also be derived by representing rotations as unit quaternions. In this case, 
the metric is obtained by considering rotations as points on the 3-sphere S 3 
embedded in ~4 [7]. 

Suppose we employ rotation matrices to represent rotations. (The im- 
plemented planner uses Euler angles.) If we are willing to tolerate singularities 
in the representation, it is often convenient to identify a rotation matrix in 
SO(3) with the vector of three angles, (q~, 0, 4~) which determine it. The angles 
(qJ, 0, ~b) form a three-dimensional angle space, 0 3. The rotation matrix 
corresponding to (0, 0, 4)) is of course ~ ( 0 ,  0, ~b). (The singularities induce an 
equivalence relation on Q3, where two points in angle space are equal when the 
rotation matrices they determine are equal.) Most of the time, the identifica- 
tion of SO(3) with Q3 does not lead to problems. However,  when we wish to 
compute directions, and differences of configurations, it is necessary to disting- 
uish between SO(3) and Q3. 

We can state this more concisely as follows: SO(3) is a three-dimensional 
manifold. The mapping Yt from Euler angles to rotation matrices is a chart for 
SO(3): 

: Q3---> 80 (3 )  . 

We typically describe a rotation ~ ( 0 ) ~ S O ( 3 )  by its chart coordinates 
(~b, 0, q~) = 19 E Q3. This makes it convenient to identify 19 with Yt(19), so that 
in general, instead of dealing with the manifold directly, we will work with a 
chart for the manifold. In this section alone, however, we must distinguish 
between the domain and image of gt. 

We can compute a direction in E3×  SO(3) by simply subtracting two 
configurations (of course the angles must be subtracted 14 (mod 2,n)) to yield a 
six-dimensional direction vector. Using this arithmetic, the goal direction is 
denoted G - X. We will use the convention that the first three coordinates of 
G - X arise from I~ 3, and the second three coordinates arise from 0 3. 

Let G = (Gx, Go)  and X = (X x, Xo) .  Since G - X is clearly well defined 
when G and X differ only by a translation, assume that G and X differ only by 
a rotation. Assume further that rotations are represented by Euler angles. 
Note that, in general G - X is not a rotation which carries the moving object at 
orientation X into the moving object at orientation G. However,  G - X does 
represent the difference in orientation, i.e., it specifies a displacement in the 
angle space which will carry X into G. For example, if G o = (45 °, 50 °, 90 °) and 
X o = (45 °, 45 °, 45°), then there are rotation matrices ~ ( G o )  and ~ ( X o ) .  (We 
use degrees, not radians in this example, since the symbol 7r will soon be used 
for a projection map). Note that 

~4 (mod It) for the middle Euler angle. 
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~ (45  °, 50 °, 90 ° ) ¢ ~ (45  °, 45 °, 45°) ~ (0 °, 5 °, 45°), 

where ~ '  indicates composition of rotations. However ,  the path in the angle 
space 

p ( t )  = X o + t ( G  o - X o )  

= (45 °, 45 °, 45 °) + t(0 °, 5 °, 45 °) for t e [0, 1] 

will work, since it corresponds to the rotational path 

~ ( p ( t ) )  = ~ ( x o  + t(Go - x o ) )  

= ~ ( ( 4 5  °, 45 °, 45 ° ) + t(o °, 5 °, 45°)) .  

Considering configuration space as the product space of translation space 
and the angle space, we see that G - X is well defined. G o - X o specifies a 
direction and a distance to be traveled in angle space in order  to carry X o into 
G o. Fur thermore,  along the path from X o to Go,  the corresponding rotations 
specified by the angle space trajectory p are well defined. For all G 
~3 X SO(3),  we will treat the space of directions G - X as the tangent space 
T X t o  ~3 X 5 0 ( 3 )  at X. Properly, T x is the product space of the tangent space 
to ~3 at X x, and the three-dimensional angle space Q3. 

We now define a map from T x × T x to the plane, which will function in 
place of an inner product. First, define the natural projection maps from T x 

onto its factor spaces: 

~ : T x ~ R  ~ , ( G -  X ) ~ ( G x -  X x )  ; 

Iro : Tx__ . Q3 , ( G  - X )~ - -~ (G  o - X o )  . 

Let u- v denote the standard inner product on ~3  for vectors u and v. If u and 
v are projections (under 7rR3 ) of direction vectors in T x ,  we say that u and v 
are translat ional ly  o r t h o g o n a l  if u .  v = 0. Let  (q l ,  q2, q3), (wl, w2, w3) e Q3. 
Assume that each pair of angles qi and w i (for i = 1, 2, 3) is normalized so that 

Iqi - wil <~ 180°" 

(Note that this normalization is critical.) Now, define 

nQ((  q l ,  q2, q3), (wl, WE, w3)) = q l w l  + qzW2 + q3w3 • 

ne  will function in place of an inner product on Q3. We say that two rotational 
directions q and w are rotat ional ly  o r t h o g o n a l  if nQ( q,  w)  = O. 
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We may now define q~x, which will function in place of an inner product on 
T x.  First, let 

D = G - X ,  D '  = G ' - X .  

Assume that D x, D', D o ,  and D~ are all normalized to be length 1 (where the 
length of D O is defined as n o ( D  o , 0o)1/2). Finally, 

~x : Tx x T~ ~ 2  , 

(D, D ' ) ~  (~ '#(D)-  "n'#(D'), n o ( z r o ( D ) ,  z ro (D ' ) )  ) . 

So qJx yields a pair consisting of the dot product of the translational compo- 
nents of the direction vectors, and the n o product of the rotational direction 
vectors. If ~ x ( D ,  D')  = (0, 0) we say that D and D'  are orthogonal directions 
in the tangent space T x.  Note that two directions are orthogonal if, and only if, 
their translational components are orthogonal and their rotational components 
are orthogonal. 

This discussion extends naturally to other representations for rotations. For 
example, if spherical angles [22] are used, then the difference in orientation is 
the rotation carrying X into G, that is, G o - X  o is a rotation carrying the 
moving object at orientation X o into the moving object at orientation G o. We 
should stress that the natural Riemannian inner product could be used instead 
of q~x. This would complicate the representations employed in subsequent 
sections, q~x and n o are heuristic measures on directions in T x.  We will later 
discuss why, for our purposes, they are good heuristic measures. 

Evaluat ing normals  and gradients to C-surfaces 
The local description of a C-surface relative to some subgoal is designed to 
address the following qualitative questions: 

(i) Is the C-surface locally tangent or locally orthogonal to the goal 
direction? 

(ii) Is the C-surface locally orthogonal to any rotational motion? 
Recall that a level C-surface ker f is described by a real-valued C-function f. 

Assume that normals and tangent vectors are appropriately normalized. Ques- 
tion (i) may be resolved by examining 

a,x((G - X) ,  Vf(X)) .  (2.1) 

When (2.1) approaches (0, 0), we say that ker f is locally tangent to the goal 
direction. Note that (2.1) makes sense: f maps parameters of the form 
(x, y, z, qJ, 0, 40 to real numbers, and hence the gradient of f, 
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( . I  oI oI oI oI 
-~x ' `g y ' `g z ' `9 ~b ' ,90' 

is clearly a direction in T x .  
We will also employ 

- x ) .  (2.2a) 

When (2.2a) approaches 0, we say that ker f is (locally) translationally tangent 
to the goal direction. Symmetrically, when (2.1) (resp. (2.2a)) approaches 
(1, 1) (resp. 1), we say that ker f is locally orthogonal (resp. translationally 
orthogonal) to G - X. A similar calculation yields the rotationally tangent and 
orthogonal C-surfaces to the goal direction: 

nQ(Tro(G -- X ) ,  7ro(~Tf(X))) .  (2.2b) 

W h y  @x and  nQ are g o o d  heurist ic measures  
Suppose that the rotational direction is along one of the axes. (Let us say the 
direction is 8.) To tell whether a C-surface is rotationally orthogonal (or 
tangent) to the O~-direction, we simply examine the magnitude of Of/Ocb, which 
can be obtained directly from Vf(X). This is because 

In other words, the map nQ need not be employed. Since the implemented 
Rotate operator moves along the rotational axes in directions 

+0, -0, +&-S}, 

this is the most common--but not the only--test for rotationally orthogonal (or 
tangent) C-surfaces. This information is used by the rotation experts to choose 
rotational subgoals that move away from C-surfaces. 

Descr ip t ion  o f  a search n o d e  
The following information is stored at each search node. Lazy evaluation is 
implemented so that some of these objects (for example, the set of all 
applicable C-surfaces) may not be computed until they are required. 

(i) The configuration X of the search node. 
(ii) The lattice point for X, which is the unique identifier for the neighbor- 

hood about X. 
(iii) The applicability set at X. 
(iv) A, the set of nonredundant constraints at X, sorted on increasing 
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value. The nonredundant  constraints may be approximated by the applicable 
constraints having small positive (or zero) values at X. 

(v) The parent node. 
(vi) The From-Direction (the direction traversed from the parent node to 

this node). 
(vii) The sons of this node. These include "unsuccessful" explorations 

which did not reach a subgoal, or which reached a previously explored 
neighborhood. 

(viii) The C-surfaces on which X lies which also bound C-space obstacles, 
that is, all f c A such that f (X)  = 0 and ker f bounds a C-space obstacle at X. 

(ix) An explanation of how this node was reached. An explanation typically 
includes the name of the local expert that planned the move, and enough 
information to reconstruct the move. For example, the experts which slide 
along level C-surfaces leave an explanation containing the names of the 
constraints, their levels at the parent node,  and the parameterization chosen for 
the intersection manifold. 

Much of the information stored at a search node is used to record the history 
of the planning. An expert which planned the move to a search node s will not 
be applied again with the same parameters.  As an example, consider the 
intersection expert, which attempts to slide along intersection manifolds, and 
the greedy expert, which attempts to move straight towards the goal. We 
discuss these experts in more detail in the next section. If applied to s, the 
C-surface intersection expert will not attempt to construct and slide along the 
same intersection manifold which led to s, unless it can slide in a different 
direction along the intersection manifold. By recording the From-Direction for 
a node, the planner can avoid repeating unfruitful explorations. In particular, 
different experts can advise motion in the same direction; thus a particular 
intersection manifold may point in the same direction which was previously (or 
simultaneously) attempted by the greedy expert. Whether  successful or not, 
reexploration in this direction may be avoided by examining the From- 
Directions of the sons of s. An additional constraint is provided by the 
From-Direction of s itself: there is typically no point in exploring back in the 
direction we came from. The process of leaving information for some expert 
which may be applied in the future is known as "forwarding." As we shall see, 
the performance of one expert can provide strong hints as to what expert 
should be applied next. 

The planner computes computes local descriptions for the C-surfaces in A. 
Naturally, parts of these descriptions will change for different subgoals. The 
local characterizations of C-surfaces allow the planner to find the set of 
C-surfaces to which the goal direction is tangent (or  orthogonal) as described 
above. When a planning direction is chosen, these C-surfaces clearly provide 
strong constraints. 

We are now ready to discuss the experts themselves. The bumble strategy is 
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also applied at each node,  since it is a guarantee of completeness. In light of 
the previous discussion, we will omit any discussion of the detection and 
pruning out of explorations in unfruitful directions (as determined by the 
planning history). We will consider the application of particular experts to a 
search node s (at configuration X)  which has  parent  s 0. 

2.4.3. The greedy expert 

The greedy expert attempts to translate or rotate directly towards the goal. The 
expert is necessary as an "end-game" strategy, in order to close in on a 
particular subgoal without worrying about finding the appropriate intersection 
manifold. The greedy expert  illustrates two important heuristics: forwarding 
and backing off. Suppose the greedy expert translates from a parent node s o to 
a son s. An appropriate explanation for the move will be left at s. If the same 
subgoal is intact when the planner explores s, the greedy expert will not 
attempt translation again. Instead, the rotation expert (see Section 2.4.6) might 
be invoked. The effect is one of translating until an obstacle is hit, and then 
rotating to get around it. Alternatively, the sliding expert (which slides along 
level C-surfaces) might be invoked. This coupling of experts is termed the "hit  
and slide" strategy (see Fig. 14). However ,  the planner does not directly 
recurse by calling the sliding expert immediately after the greedy expert. 
Instead, a suggestion is left by way of explanation at s, and when s is explored 
in the search, the appropriate follow-up expert is invoked. The exact choice for 

slide 

i i 1 | |  i ~ /////////////~/~ 
FIG. 14. An idealized illustration of the hit and slide strategy. Some expert moves the robot in 
direction • until a C-surface S is hit at X. When the planner tries to move from X, the sliding 
expert is invoked to slide along S in the goal direction. 
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which expert is invoked will depend on the history of planning (typically, what 
neighborhoods and directions have been explored from s o and s), and on the 
local geometry of C-surfaces about  s. 

Suppose that all experts moved the robot as far as they could, that is, moved 
until a constraint was hit and left the robot touching the constraint. This could 
result in jamming the robot up against many C-surfaces at once. It can prove 
very difficult to extricate the robot from this logjam situation. In fact, it is 
usually not preferable to move all the way up to an obstacle. Instead, we wish 
to detect this intersection with a planned trajectory p, and then back off from 
the obstacle boundary (along p).  Thus if p(0)  = X and p(1)  = Y is the first 
intersection of p with a C-space obstacle boundary,  then it makes good sense to 
move to p(0.8).  This has the effect of leaving the robot in the channel between 
obstacles instead of jamming it up in corners. Of  course, if it is necessary to 
move to p(0.95),  then the greedy and bumble strategies will ultimately 
converge. 

2.4.4. The intersection expert 

The mathematics of intersection manifolds in ~3 × SO(3) is sketched in the 
appendix. The intersection expert  at tempts to find two C-surfaces in A whose 
intersection manifold contains a path which makes progress towards a subgoal. 
The path may be a pure translation or a pure rotation. We will begin by 
describing the process of finding a translational path which slides along an 
intersection manifold. First, all C-surfaces in A which are nearly translationally 
tangent to the goal direction are selected. We select the first few of these which 
have the smallest value at X. Ideally, these are the closest nonredundant  
constraints at X. Call this set A'. The explanations for the moves from s 0 to s 
and from s to any sons of s will yield a set of previously explored intersection 
manifolds. (An intersection manifold may be identified by the name of the 
intersected C-surfaces, their levels, and the chosen parameterizat ion.)  The 
C-surfaces in A' are pairwise intersected [12], after appropriate  pruning as 
indicated by previously explored intersection manifolds. Each intersection 
manifold ker f A ker g is constructed. A translation or rotation vector 6j, g is 
chosen such that the path pr, g ( t )=  X +  tt~1,,g slides along the intersection 
manifold of the two level C-surfaces ker f and ker g at X. The intersection 
expert then selects the direction 6y, g which is closest to the goal direction (and 
which is not pruned out by consideration of the planning history). Suppose tTj,g 
is a pure translation. The local opera tor  Translate is called to move from X in 
direction 6r, g until a C-surface is struck 15 or the point on the trajectory py, g 

which maximizes proximity to the goal is reached. 
Now, suppose tTf, g is a pure rotation. Our experimental  implementat ions 

~ Although we also employ the backing off heuristic here. 
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have intersected two level C-surfaces k e r f  and ker g to yield pure rotational 
paths sliding along the intersection manifold of k e r f  n ker g (see [12] for the 
details). It is not hard to show that these paths may be approximated to an 
arbitrary resolution by successive applications of the local operators ,  with only 
a linear increase in the number  of path segments as the resolution grows finer. 
We have also found it useful to approximate  the rotational path along the 
intersection as follows. 

Given two level C-surfaces k e r f  and ker g at configuration X, we wish to 
choose a direction f rom X tangent to both. For example,  if the configuration 
space were isomorphic to ~3, then ker f and ker g would both be two- 
dimensional surfaces in 3-space, and this direction would be V f ( X ) x  Vg(X)  
(where x denotes the standard cross-product on ~3). In the tangent space to a 
six-dimensional C-space, there is a four-dimensional subspace of tangent 
vectors to ker f and ker g at X. We will demonstra te  an ope ra to r  analogous to 
x which produces one such tangent vector in a natural way. (It  is also possible 
to solve for all such tangent vectors.) 

We begin by defining an extended product  on the tangent space to ~ 3 x  
SO(3) at X. Let  V =  (V x, Vo) e T x be a tangent vector at X. We may think of 
V x and V e as the translational and rotational components  of a six-dimensional 
velocity vector V at X. If W =  (W x, W e )  e T x is another  tangent vector at X, 
we define the ex tended 'product  of V and W by 

v ;< w=(v x %, % x wo). 

The cross-products on the right-hand side are simply the standard three- 
dimensional cross-products. (See (2.3) for why this makes sense for the 
rotational components ,  V o x W e.)  If V = Vf and W = Vg then V >2 W is tangent 
to both k e r f  and ker g at X. Since >2 only operates  on tangent vectors to 
N 3 x  SO(3) which have the same point of application, we will never  have 
reason to confuse it with x ,  which can only be applied to three-dimensional 
tangent vectors. ~6 

Let f,  g e A'  be C-functions generating the C-surfaces ker f and ker g at X. 
Observe that the tangent vector Vf(X)>< Vg(X) is tangent to both ker f and 
ker g at X. We can locally approximate  a pure rotational trajectory sliding 
along the intersection of f and g by a path in direction 

× (2.3) 

Note that this is well defined since 

~6The >2 operator may be viewed as follows. SO(3) is a Lie group, and so there exists a 
canonical smooth identification of any tangent space with the tangent space at the identity, 
T, SO(3). TeSO(3 ) is the Lie algebra of SO(3), and is isomorphic to R 3. The Lie algebra enjoys a 
commutator bracket operation, which in this case is simply the usual cross-product. 



328 B.R, DONALD 

((Of Of Of Of Of Of)) (Of Of Of) 
~r° Ox' Oy' Oz' O~O' O0' = at)' o0' " 

The differential rotations from X are isomorphic to a three-dimensional vector 
space, and hence the cross-product 

Of Of Of (x)/  × (x), (x), (x), (x), 

is also well defined, and guaranteed to be tangent to ker f and ker g at X. The 
Rotate operator  can be called in succession on the largest components of (2.3) 
in order to approximate the sliding trajectory. Of course, it is also possible to 
reevaluate the tangents after each step. 

Planning along intersection manifolds of three or more level C-surfaces is 
analogous but more complicated. See [12] for details. 

2.4.5. The sliding expert 

The sliding expert attempts to find a path sliding along one level C-surface at 
X, which makes progress towards the goal. The sliding expert can be thought 
of as a less constrained version of the intersection expert. The sliding expert 
tries to choose a C-surface in A' to which the goal direction is (almost) tangent. 
As Donald [12] shows, it is possible to choose a parameterization along a 
C-surface which maximizes progress. This path along the C-surface can then be 
realized (at a desired resolution) by successive applications of the local 
operators. However  since there are many paths from X sliding along a 
C-surface at X, we need to develop a good heuristic strategy. 

Our motivation is as follows. There are an uncountable number of paths 
from X sliding along a C-surface at X. We could maximize a directional 
derivative at X to choose a locally optimal search direction. This would work 
once; however, this would not solve the problem of state: it is necessary to 
partition the set of paths into "neighborhoods,"  and to mark a neighborhood 
of paths as explored when a representative from that neighborhood is selected 
and attempted by a local operator.  In principle, this suggests a computation 
involving homotopic equivalence classes [11, 12]. However,  this requires a 
global computation in C-space. In particular, the image of all paths in an 
equivalence class may cover ~3 × SO(3),  even if there are several classes. We 
wish to find a way to partition the paths from X into neighborhoods, sample a 
canonical element from the neighborhood, and evaluate it as a local move in 
the search. 

Given a C-surface normal Vf at X, we wish to choose a direction t~ sliding 
along the C-surface ker f which maximizes progress to a subgoal. Let  ~ - -  
(2, ~, ~, ~, 0, ~ )  be the obvious orthonormal basis for the tangent space to 
N3 x SO(3), and - N  = ( - 2 ,  -3), - 2 ,  -q}, -~}, - ~ ) .  
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Next, we form a set of vectors orthogonal to Vf(X) as follows: 

D = {Vf(X)} ® (~  U - ~ ) ,  

where @ ® ~ = { p > k q I p ~ @ , q ~ } .  All of these vectors are tangent to 
ker f at X. We then choose the direction 6 ~ D which maximizes Ox(6, (G - 
X)), where the G - X is the goal direction. If Ox is the heuristic product on 
tangent vectors instead of the single-valued Riemannian inner product, then 
both components of the image of Ox should be maximized. 

To understand this strategy, consider the following example: Suppose we 
employ a basis ~ '  which only spans ~3. Then the expert will choose the 
available translation sliding along the level C-surface which maximizes progress 
towards the goal. Once the direction t~ is chosen, the Translate operator is 
invoked to slide along the level C-surface until a constraint is reached. 

There is no need for the basis ~ to be orthogonal; this was merely adopted 
for the sake of intuitive development. The basis provides a sampling of the 
function space of paths tangent to the C-surface about X. 

A conjecture on completeness using extended spanning sets 
By using the basis ~,  we obtain a 12-way sampling of the space of directions 
orthogonal to Vf at X--in other words, there are 12 vectors in D. Imagine using 
another set of vectors, ~ +, which is larger than ~ ,  to construct D. Then D 
would provide a finer sample of the space of directions, since more directions 
would be sampled. In principle it should be possible for a sample to be 
complete at a given resolution. We formalize this idea as follows: 

A spanning set for a space V is a set of vectors which spans V yet which is not 
necessarily a basis. A spanning set is a basis for V which has been extended by 
adding other vectors. We conjecture that there exist certain spanning sets 
which might be employed to construct a complete planning algorithm without 
the bumble strategy. What constitutes such a complete spanning set? The 
analogue of resolution for an arbitrary spanning set ~ ÷ would consist in (1) 
the cardinality of the spanning set and (2) the uniformity of distribution of the 
vectors 

~ + U _ ~  + 

about the unit five-dimensional sphere S 5 in the tangent space at X. The 
greater the number of vectors in the spanning set, and the more uniform their 
distribution about S 5, the finer the resolution of the planner. The development 
of such a planning algorithm requires surmounting additional theoretical and 
technical difficulties. 

2.4.6. The rotation expert 

The rotation expert is built on the rotational operator Rotate, and is designed 
to handle some of the special problems of moving through rotation space that 
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are discussed in the appendix. The rotation expert might be called to accom- 
plish a simple rotational subgoal, or in conjunction with some more elaborate 
strategy. In particular, when a translational motion terminates by striking a 
C-surface, forwarding messages are left for both the sliding expert and the 
rotation expert. The former has been discussed as the "hit and slide" strategy 
(Fig. 14); the latter is known as the "hit and rotate"  technique (Fig. 15). 

The first problem that the rotation expert must deal with is the "wrap 
around" in rotation space. A subgoal ~b 0 can be reached in directions + ~b and 
- 6 ,  although typically one is "shor ter ."  In conjunction with the planning 
history, the rotation expert,  on successive applications to the same node, can 
develop strategies for rocking back and forth on a slice of rotation space. 

The Rotate operator  is more constrained than the Translate operator  (in that 
it can only be applied in +_ $, +0, and + 6)-  Hence the rotation expert must 
have a method for approximating rotational trajectories (specified in the angle 
space) which are linear combinations of the rotational basis vectors, such as 

6 = a~ + b0 + c6  (2.4) 

for some scalars a, b, and c. 
In terms of the completeness of the algorithm, there is no need for a Rotate 

operator  in direction (2.4) (provided a path along t3 lies in open sets of free 
space). Donald [12] shows that a continuous path may be approximated as 
closely as desired by a sequence of moves along the rotational axes, and that 
the number of staggered path segments required grows only linearly as the 
resolution becomes finer. In practice this use of the restricted Rotate operator  
has proved adequate in our path-finding experiments. However,  it is heuristi- 
cally useful to realize such paths as accurately as desired, since this allows 

T 

f - I  ? ] 

///////////I" 
FIG. 15. An  idealized illustration of the hit and rotate strategy. Some expert  moves  the robot in 
direction 6 until a C-surface S is hit at configuration X. When the planner  tries to plan a move from 
X, the rotation expert  is called to calculate a rotation away from S (in direction q~). From the new 
configuration, direction 6 can be pursued again. 



SEARCH ALGORITHM FOR MOTION PLANNING 331 

higher-level experts to suggest arbitrary rotational trajectories. Given such a 
trajectory, the rotational directions are ranked by magnitude of change, and 
the unexplored direction of greatest change is first attempted. On failure, or 
upon successive applications of the rotation expert to the search node, the 
other directions in (2.4) will be attempted. This process leads to the approxi- 
mation of arbitrary pure rotations by a staggered sequence of rotations along 
the axes. If the extent of each rotation is limited, the approximation can be 
made arbitrarily fine. To approximate motion in a direction such as (2.4), the 
planner actually attempts several of the directions simultaneously, which 
results in a spanning "box" of rotational moves about the idealized trajectory 
(in the absence of obstacles). 

Suppose a, b, and c in the idealized trajectory (2.4) are positive. This yields 
a set of positive, or "forward" rotational directions, and a set of "backwards" 
rotational directions which can attain the goal. Which directions are forward 
and which are backward depend upon the distance (in the vector parameter 
space Q3) of the goal from X, that is, on zro(G - X). For example, if G~ - X~ 
is negative and small, then + ~ will be a backwards direction, and - 4~ will be a 
forward direction. 

The rotation expert develops and ranks these sets of forward and backward 
rotational directions. By examining the planning history and the local geometry 
of C-surfaces at X, these sets of directions are in turn pruned. In particular, 
local C-surfaces that would block a particular rotational motion are detected. 
For a direction t~, this is done by examining the magnitude of the directional 
derivative in t~. The importance of such an impediment is then heuristically 
ranked by the closeness of the C-surface at X. Special consideration is given to 
C-surfaces which have a history of proving troublesome. For example, when an 
expert runs into a C-surface, the reason for stopping is left as part of the move 
explanation. If the rotation expert is invoked as part of a "hit and rotate" 
strategy, then we must ensure that the planner tries to rotate away from the 
C-surface(s) which blocked progress. The rotational directions which point 
away from C-surfaces may be found by examining Vf. The process of determin- 
ing the rotational constraints from the local geometry of C-surfaces is closely 
related to our earlier discussion of detecting rotationally orthogonal C-surfaces. 

Thus the requested rotational trajectory and rotational goal provide a set of 
desired rotational motions. The planning history supplies a set of rotational 
constraints, and from the local C-surface geometry can be inferred a set of 
preferred and prohibited motions. The constraints, preferences, and prohibi- 
tions are intersected with the forward and backward desires. This yields a set of 
rotational directions which will be attempted using the Rotate operator. 
Depending on the kind of invocation, the rotation expert may apply the Rotate 
operator up to some fixed number of times--this is particularly useful when it 
must attempt to approximate an idealized rotational trajectory which is a linear 
combination of the basic rotational directions. 
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Canny [8] has recently extended the Rotate operator for directions such as 
(2.4), corresponding to uniform rotation. 

2.4.7. The around expert 

The around expert attempts to circumnavigate obstacles by sliding around their 
boundary. An idealized illustration of the around expert is shown in Fig. 16. 
The around expert is similar to the sliding expert, except that instead of 
attempting to find a C-surface which contains a path towards the goal, the 
around expert searches for a C-surface which is (roughly) locally orthogonal to 
the goal direction. Next a path is planned sliding along this surface in the 
direction 6' orthogonal to the goal direction; the path is attempted using a 
local operator. Typically, this motion will result in a search node s' which is 
farther from the goal than the parent node, s. Ordinarily, s' would not be 
explored soon, since other search nodes would appear more promising to the 
planner's best-first strategy. In order to give the around strategy a chance, the 
around expert explicitly places s' at the front of the search queue and calls the 
planner recursively. 

? A ¥ 

ly 

FIG. 16. An idealized illustration of the around expert. When progress for the moving object in the 
goal direction 6 is blocked, the expert attempts to find a C-surface which is roughly orthogonal to 
6. A sliding motion (either 6' or - 6 ' )  is then planned along this level C-surface (around the 
obstacle). The resulting search node is then expanded. 
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The around expert can also invoke the intersection expert. Recall that the 
intersection expert ordinarily tries to construct tangent intersection manifolds 
which contain paths towards the goal. However, when called from the around 
strategy, it can construct intersection manifolds locally orthogonal to the goal 
direction. To construct the intersection set of locally orthogonal level C- 
surfaces, we perform a pairwise intersection of C-surfaces locally orthogonal to 
the goal direction at X. 

2.4.8. The suggestor 

The suggestor is a strategy for proposing good subgoals in configuration space. 
As we saw in [11], one of the problems with local operators even if they are 
complete (that is, their closure covers configuration space), is that without 
good subgoals, they may take a long time to converge. The suggestor is a 
heuristic strategy for setting subgoals in C-space. 

First, a very coarse lattice is thrown over C-space. This lattice is then 
searched for a sequence J of free configurations (not a path) stepping through 
the lattice to the goal. If no such sequence can be found, then configurations 
on a promising partial sequence are employed. These configurations may then 
be set as subgoals, and the planner can be called recursively. The configura- 
tions J represent intermediate planning islands of safe configurations. If paths 
can be found between these configurations, then the find-path problem is 
solved. Otherwise, expanding from any partial paths found can also prove 
useful, in that the planning islands effectively distribute the application of local 
experts and operators over more of configuration space. 

The suggestor complicates the connectivity of the explored neighborhoods 
graph. The ability to explore arbitrary subgoals and suggested paths requires 
more complicated bookkeeping for neighborhood exploration: we must employ 
the connect strategy, in order to know when partial paths link up. If partial 
paths not rooted at the start neighborhood are permitted, then the graph of 
explored neighborhoods will not necessarily be connected, and the mark 
strategy will fail (the mark strategy constructs a directed, spanning tree for a 
connected, rooted graph of explored neighborhoods). Happily the connect 
strategy will succeed, since it is defined on an arbitrary graph. An algorithm for 
the connect strategy is discussed in Section 2.3.2. 

2.5. Examples of  the local experts in use 

In Fig. 17, we show a very simple example of a path found using local experts. 
Listing I (Fig. 18) shows a log of the expert explanations for each move. 

The "Thor's Hammer" example in Section 1 was produced by disabling all 
experts, and employing only the bumble strategy (see Figs. 2 and 3). In the 
accompanying figures (Figs. 19-24), we show a path found by a strategy 
comprising all the experts described above. The solution path is very different, 
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0 1 1 11) 

~ <-1101111) 

k> 
(-6 1 0 1 1 ll) 

FI6. 17. A path which was found using local experts. This find-path problem is very easy (it is used 
as an example in Section 1). The lattice points of configurations along the solution path are as in 
listing I, Fig. 18. 

(find-path *sl *gl) 
Verifying the start and goal points...  
start: (0 0 0 1 1 11) ,goa l : ( -6  10 0 0 0 0). 

Starting search, boss. . .  
Exploring (0 0 0 1 1 11) . . .  
Local expert: I translated straight towards goal, reaching ((-1 1 0 1 
Exploring (-1 1 0 1 1 11). . .  
Local expert: I slid along a level C-surface, reaching ((-6 1 0 1 1 11)) 
Explor ing(-6 1 0 1 1 11) . . .  
Local expert: I translated straight towards goal, reaching ((-6 10 0 1 1 
Exploring ( -6  10 0 1 1 11) . . .  
Rotation expert: Found 0 guiding constraints on rotational motion. 
Rotation expert: Intersected rotational constraints with desired 

rotations yielding possible motions in 
(MINUS PHI) (MINUS PSI) THETA). 

Rotation expert: I am trying to rotate in (PLUS THETA).. .  
Local expert: I rotated to reach ((-6 10 0 1 1 0)) 
Exploring ( -6  10 0 1 1 0 ) . . .  
Rotation expert: Found 0 guiding constraints on rotational motion. 
Rotation expert: Intersected rotational constraints with desired 

rotations yielding possible motions in 
((MINUS PHI) (MINUS PSI)). 

Rotation expert: I am trying to rotate in (MINUS PHI). . .  
Local expert: I rotated to reach ((-6 10 0 0 1 0)) 
Exploring ( -6  10 0 0 1 0) . . .  
Rotation expert: Found 0 guiding constraints on rotational motion. 
Rotation expert: Intersected rotational constraints with desired 

rotations yielding possible motions in 
((MINUS PSI)). 

Rotation expert: I am trying to rotate in (MINUS PSI). . .  
Local expert: I rotated to reach ((-6 10 0 0 0 0)) 
Exploring ( -6  10 0 0 0 0 ) . . .  

[success!] Saving and drawing final path. . .  
Back to Lisp Top Level in Lisp Listener 2 

FIG. 18. Listing I: The log of expert explanations for the path in Fig. 17. 

1 11)) 

11)) 



SEARCH ALGORITHM FOR MOTION PLANNING 335 

I 

[4) 

[,,q 

t6) 

(s) [9) 

F]6. 19. View I: frames 1-9. These 18 frames show a solution path for the "Thor's Hammer" 
Movers' problem. Local experts (as described in Section 2) are employed to slide the moving 
object along level C-surfaces. Three views are shown. The final configuration is only visible in view 
II (Fig. 23). 
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F[6. 20. View I: frames 10-18. 
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Fro. 21. View II: f rames 1-9  of the Thor ' s  H a m m e r  example using local experts. 
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FIG. 22. View II: frames 10-18. 
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FIc. 23. View II: frame 19. The final configuration 

i t )  
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FIG. 24. View III: A detail of frames 1-6. 

FIG. 25. The reference point on the L-shaped object. 
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![1] ( V i e w  II. P r o b l e m  7) 
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19] 

FIG. 26. Solution path. View II: frames 1-9. 

and tends to slide around obstacles instead of finding convoluted paths between 
them. 

Figures 25-32 show the solution for a find-path problem in a Cartesian 
workspace. A Cartesian workspace is a bounding box beyond which the 
reference point may not translate. However,  the bounding box imposes no 
restrictions on rotations. The Movers'  problem in a Cartesian workspace is 
similar to the motion planning problem for Cartesian manipulators, and the 
L-shaped object may be thought of as the (wrist and) payload. First, we show 
the reference point on the L-shaped object. Next two views are presented of 
the path found within the workspace, around a large, diagonally-placed 
obstacle. View II is a view from the side; view I is a view from the top. Only 
the back faces of the rectangloid workspace are shown. Since the rotation from 
frames 13 to 14 is very large ( > ~r in the - ~ direction), a detail of the rotation 
is also shown. 
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FIG. 27. Solution path. View II: frames 10-18.  
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FIG. 28. Solution path. View II: frames 19-21.  
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Fro. 29. Solution path. View I: frames l -9 .  

[q  

[9] 

% /  

2.6. Complexity 

The search algorithm is polynomial in the size of the lattice. In general, one 
envisions a planner which employs a finer resolution for more complicated 
environments. It appears that the number of lattice points would have to grow 
exponentially with the environmental complexity; thus, of course, our al- 
gorithm is not polynomial in the size of the input. 

2.7. Implementation 

The planner was implemented on a Symbolics 3600. The running times for the 
examples in Figs. 2, 3, 5-8,  and 26-31 were on the order of several hours. The 
examples in Figs. 19-24 took about 20 minutes. The example in Fig. 17 took 
under two minutes. 

3. Conclusions 

In this paper we developed a search algorithm for find-path problems with 
six degrees of freedom. The algorithm is based on the representations and 
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[to] i11] 

[14] 

[ tz]  

115] 

[tT) [lS] 

FIG. 30. Solution path. View I: frames 10-18. 

119] [ lo] [zs] 

FIG. 31. Solution path. View I: frames 19-21. 

mathematics developed by Donald [12]. To demonstrate the competence of the 
representations and the feasibility of the algorithm, a planning system for the 
classical find-path problem with six degrees of freedom was implemented. The 
planner is of considerable intrinsic interest, in that it is complete (for a given 
resolution). Experiments have demonstrated that this algorithm can solve 
find-path problems requiring six degree of freedom solutions that were beyond 
the competence of earlier, approximate planners. We believe this argues that 
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FIG. 32. Detail of the rotation from frames 13-14 

the mathematical framework of Donald [12] impacts a class of geometric 
planning problems for three-dimensional objects. 

The planning algorithm may be explained by analogy with the point naviga- 
tion operators. The C-space transformation reduced the motion planning 
problem to the task of navigating a point in ~3 × SO(3), Since the path for the 
point must avoid the C-space obstacles, which are curved, six-dimensional 
manifolds with boundary, clearly paths can be found in C-space by the closure 
of three operators: 

(i) slides along one- to four-dimensional intersections of level C-surfaces; 
(ii) slides along five-dimensional level C-surfaces; 

(iii) jumps between six-dimensional obstacles. 
While these operators define a complete search space, it is clearly too big, in 

general, to be searched in its entirety. Therefore we developed local experts to 
guide and to limit the search. The algorithm is a best-first search employing a 
set of heuristic strategies that evaluate local geometric information. Each 
strategy plans motions that are realized using the point navigation operators. 
At the heart of this research lie the design and implementation of strategies for 
planning paths along level C-surfaces and their intersection manifolds, and for 
reasoning about motions with three degrees of rotational freedom. The prob- 
lems of controlling the interaction of these strategies, and of integrating diverse 
local experts for geometric reasoning provide an interesting application of 
search to a difficult domain with significant practical implications. 

There is much work to be done. The find-path algorithm can be easily 
extended to robot manipulators with six degrees of freedom in which transla- 
tions can be decoupled from rotations. This class includes Cartesian man- 
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ipulators (for example, the IBMRS/1). The adaptation of this work to a 
production environment presents interesting engineering challenges. 

In principle, our algorithms and representations can be extended to revolute- 
joint, linked arms with six degrees of freedom. However, the C-space of the 
linked-arm problem is the six-dimensional torus, 

S 1 x . . .  x S 1 (to 6) 

which has a very different structure from E3 × SO(3). It is our hope that this 
research can present a methodology for formulating the geometric constraints 
for arbitrary configuration spaces, and that a similar structure will be found for 
constraints on the 6-torus. See [26] for work in this direction. 

Our planning algorithm is complete (at a resolution), in that the representa- 
tion employed is complete, and in that the search is guaranteed to find a path if 
one exists at that resolution. However, since it is a search algorithm, we cannot 
provide a polynomial time bound. (Although clearly the algorithm is polyno- 
mial in the resolution.) Our motivation has been to address the completeness 
issue first, by resolving fundamental representational questions; now, one of 
the most important remaining tasks is to develop complete, polynomial-time 
algorithms which can actually be implemented. We do not believe that the 
worst-case behavior of the six degree of freedom planner is inherent in the 
representation, and conjecture that a polynomial-time algorithm which plans 
paths along intersection manifolds can be devised. Indeed, the theoretical 
results on the C-Voronoi diagram (CVD) [12] are suggestive that the limiting 
complexity of the approach may be the complexity of constructing the CVD or 
an equivalent chain of intersection manifolds. More research is needed on the 
topology of the CVD. A fast planning system might determine what constraints 
construct the CVD, and, using these constraints, construct a chain of intersec- 
tion manifolds which could attain the goal. The first step in this effort would 
bound the complexity of the CVD and the intersection chains. In this vein, 
Canny [9] has suggested an algorithm for computing the CVD. 

Appendix A. Representing Constraints in the Configuration 
Space 

C-functions model constraints on motion generated by pairs of cells (ga, gb) 
where ga and gb are boundary cells on the robot and on an obstacle, 
respectively. The constraints are defined such that their conjunction enforces a 
disjointness criterion for A and B. Lozano-P6rez [24] identified three types of 
interactions: (face, vertex), (vertex, face), and (edge, edge), which to preserve 
tradition we shall term type (a), (b) and  (c) constraints. However, these 
interactions can only occur in certain orientations; for example, it is easily seen 
that although two cuboids generate 144 type-(c) constraints, at any fixed 
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orientation only certain edges can interact and hence only certain type-(c) 
constraints are applicable. The region of rotation space where a C-function f~, 
is applicable is its applicability region, ~/i C SO(3). The domain of the partial 
function f~, then, is ~3 x ~¢,. 

For the two-dimensional Movers'  problem, the rotation space is the 1-sphere 
and the applicability regions ~/~ are simply sectors on S 1. While Lozano-P6rez, 
in [24] was able to define the form of C-space constraints f,, Donald, in [12], 
first formulated the applicability regions in SO(3). 

We begin by defining CO C R 3 x SO(3), the space of forbidden configura- 
tions: 

c o :  ( x l  v ca(x)), (A.1) 

where (7, is a constraint sentence [6]. a is indexed by C-space obstacles. For 
each C-space obstacle O a, C a maps a configuration X to true or false, 
depending on whether X is inside O a. Equation (A. 1) states that if X is inside 
any C-space obstacle, then it is in CO. For X = (x, ~)), 

Co(x, o)  = A (o  c ~, ~ f,(x, e )  <~ o). (A.2) 

Let us parse (A.2). For a configuration X, for each C-function f~ such that X is 
in the domain of fs, f i (X) must be negative-valued (or zero) for X to be inside 
the C-space obstacle O,. To determine whether X is in the domain of f ,  test 
whether the rotational component  of X is within the applicability region Mi. 
The index i in (A.2) ranges over the set of all C-functions {fl ,- - •,  fn} which 
define the C-space obstacle O a. We call such a set of C-functions a family of 
C-functions. This family is generated by considering pairwise interactions of 
features on the boundary of A and features on the boundary of B, where A is a 
convex polyhedron on the moving object, and B is a convex obstacle polyhed- 
ron. In three dimensions, a family of C-functions corresponds to a set of 
constraints resulting from the possible interactions of one polyhedral compo- 
nent of the moving object, and one obstacle polyhedron, whence 

family(A, B) = (faces(A) x vert(B))  U (vert(A) x faces(B)) 

U (edges(A) x edges(B)) .  

Of course, in both two and three dimensions, at a given orientation, only a 
subset of this family is applicable. 

Next, we define F = (~3 × SO(3)) - CO to be the space of free configura- 
tions. We construct ~/i as the intersection of a set of half-hyperspaces on 
S0(3) :  

~, = {O eso(3)  I A (gj(O)~>o)}, (A.3) 
l 
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where gj :SO(3)-- ->~ is an applicability constraint function (ACF). A C- 
function f~ is said to be applicable for a configuration X = (x, 19) if 19 e ~1i. In 
this section, we will summarize the form of the ACFs. Geometrically, the 
applicability regions ~/i are three-dimensional manifolds (with boundary) on 
the projective 3-sphere. Their  boundaries comprise the two-dimensional man- 
ifolds ~1~ A ker gj. ( j  indexes over the set of functions used to construct ~/ .  
There  are typically three or four gj, as we will see later.) We call ker gj an ACF 
boundary. 

For a C-function f~ we define a level C-surface to be the set of configurations 
X where f~ is applicable and f~(X) = l, for some level l. Thus a level C-surface is 
the level set f~( l ) .  Of particular interest is the C-surface 

kerf,. = fT ' (O)  = {X I f~(X) = 0} ,  

which contains a boundary patch of a C-space obstacle. An intersection 
manifold of m level C-surfaces therefore has the general form 

(fT'(l,) n x 
i = 1  

We now define paths in C-space. Given a start configuration s and a desired 
goal configuration g, a successful collision-free path is an embedding 
P : i~__> ~3 × SO(3) such that p(0)  = s, p(1)  = g, and p ( l l )  C F. 11 denotes the 
closed unit interval, [0, 1]. 

A.1. The geometric interpretation for C-functions 

Let P denote any rigid, convex set, or the normal to a face of a polyhedron in 
~3. In our case, P will be a polyhedron,  a face, edge or vertex of a polyhedron,  
or the normal to a face. If O is an orientation, and ~ ( O )  is the corresponding 
rotation operator ,  then P(O) denotes ~ ( O )  applied to P. Note that the results 
of this section are independent  of any particular representation chosen for 
rotations. Consider the interaction of an obstacle polyhedron B and a moving 
polyhedron A, where both A and B are convex, with outward normals. Let  fp 
be in the family of C-functions generated for A and B. fp models a constraint 
on the motion of A. For  example, fp might be generated by considering the 
interaction of a face of A and a vertex of B. For a given orientation O, the 
projection into R 3 of any (applicable) C-surface f71(0)  is a plane corresponding 
to a face of the polyhedron resulting from the Minkowski sum of B and 
@ A = { - a  I a ~ A), that is, 

B @ A ( O ) = { b + a ( O ) l b ~ B ,  ae @A}.  

B @ A(O) is the projection into ~3 of the C-space obstacle at orientation 19. In 
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effect, we have parameterized the plane equations of faces of B @ A(O) by O. 
Here is the form of the parameterized plane equations derived by Lozano- 
P6rez [24]: ai(O ) is a vertex of @ A ( O )  and bj is a vertex of B. Then 
C-functions take the form: 

fp(x, O) = (N(O), x) - (N(O), (ai(O) + bj)) , (A.4) 

where x is a point in R 3 and ( . , .  ) denotes the inner product. N(O) is the 
real-space component  of the C-surface normal at orientation O, and is defined 
as follows: for a type-(a) C-function, N(O) is the normal of a face of @ A(O). 
For a type-(b)C-function,  N(O) is the normal of a face on B, and hence is 
constant. For a type-(c) C-function, N(O) is the cross-product of an edge on B 
and an edge on @ A(O) .  

A.2. Applicability constraints 

To define the applicability constraints, we consider a family of C-functions in 
isolation (that is, an environment comprising only the obstacle B and the 
moving polyhedron A). We perform an analysis to see what generators can 
interact at what orientations. While C-functions are defined on @ A(O), 
applicability constraints are defined from A(O). 

Definition. Consider a constraint c, generated by (g , ,  gb) where the pair 
(g,~, gb) is either (a) a face of A and a vertex of B, (b) a vertex of A and a face 
of B, or (c) an edge of A and an edge of B. We say c is applicable at orientation 
O if some pure translation of A(O) can bring g,(O) in contact with gb, such 
that the interiors of A(O) and B remain disjoint. 

Suppose constraint c is applicable and its generators are placed in contact. 
The convexity of A(O) and B implies the existence of a separating plane P 
between their interiors. Obtaining the equation of this plane, when it is unique, 
provides necessary and sufficient conditions for applicability. The applicability 
constraints ensure that the vertices adjacent to g,,(O) on the edge graph of 
A(O) lie on one side of P, and that the vertices adjacent to gb on the edge 
graph of B lie on the other side of P. The generators themselves may lie on P. 

Let f(O) be a face on a moving polyhedron A(O), with a normal N(@). Let 
bj be a vertex on obstacle B. ( f ,  bj) generates a type-(a) constraint. The plane 
containing f(O) must be our separating plane, when the constraint is applic- 
able. Let R be the set of adjacent vertices to bj on the edge graph of B. Then 
the type-(a) constraint is applicable at orientation O if, and only if, for all 
b n ~ R, 

b n • N(O) - bj. N(O)  ~> 0.  (A.5) 

Now, let f be a face of B with normal N. Let  a i be a vertex of A, so (ai, f )  
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generates a type-(b) constraint. Then the plane containing f will be our 
separating plane when the constraint is applicable. Let R be the vertices 
adjacent to a i on the edge graph of A. Then the type-(b) constraint is 
applicable at orientation ~9 if, and only if, for all a n e R, 

a,(~9) • N - ai(~9 ) • N/> 0.  (A.6) 

Consider 

gk(~9) = b,,. N(fg) - bj.  N(~9) (A.7) 

as a mapping gk :SO(3 ) - ' -~ .  We call gk a type-(a) applicability constraint 
function (ACF). (There are several ACFs for one type-(a) C-function or 
indeed for any C-function, and they are indexed here by k.) For the symmetric 
case from (A.6), we call 

gk(~9) = a ~ ( O ) .  N - ai(~)  ) • N (A.8) 

a type-(b) ACF. The region on SO(3) where gk is positive-valued defines a 
half-hyperspace of SO(3). Equations (A.6) and (A.5) define the applicability 
region for a type-(a) or type-(b) constraint as the intersection of these 
half-hyperspaces. This yields the conjunction promised earlier in (A.3). The 
number of ACFs for a type-(a) or type-(b) constraint is equal to the cardinality 
of the coboundary of the generating vertex (i.e., [R[). 

A type-(c) constraint is generated by (ea, e b) ,  where ea and e b are edges of A 
and B (resp.) The separating plane (when the constraint is applicable) has the 
normal N e ( O  ) = e a ( O  ) x eb, that is, the cross-product of the directed edge 
vectors. Now, let N I ( O ) ,  N2(• ) be the normals to the faces ea(~) ) bounds. Let 
TI(O ), T2(O ) be the tangents to these faces, as shown in Fig. A.1. Let N 3, N 4 
be the normals to the faces e b bounds. Let T 3, T 4 be the tangents to these 
faces, as shown in Fig. A.2. Then, the type-(c) constraint generated by (ea, eb)  
is applicable at orientation ~9 if, and only if, 

k B = sign(T 3 • N p ( 6 ) ) )  = sign(T a • N p ( 6 ) ) ) ,  

k A = s i g n ( T ~ ( O ) . N p ( 6 ) ) )  = sign(T2(O))- N v ( O ) )  , (A.9) 

k A ~ k B . 

Thus (A.9) defines analogous ACFs for type-(c) constraints. It is actually 
possible to define a less complicated, but weaker form of the type-(c) ACFs, 
which is necessary but not sufficient for applicability. The weak ACFs have the 
property that each is the scalar product of two type-(a) or two type-(b) ACFs. 
It is easier to find their zeros. Our implementation finds the zeros of the weak 
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~ ) )  

A¢)) 

FIG. A.1. The tangent vectors T~(O), T2(O ) and normals NI(O), N2(O ) to the faces cobounding 
ea(O ). These vectors rotate with eo(O). 

B 

FIG. A.2. The tangent vec to r s  T3, T 4 and normals N3, N 4 to the faces cobounding e b. These vectors 
are fixed with e b. 

A C F s  and  then uses (A.9)  to check for sufficiency. 17 For  proofs and more  
detail ,  see [12]. 

Appendix B. Mathematical Tools for Motion Planning in a 
Six-dimensional Configuration Space 

We now discuss specific issues which are critical for the i m p l e m e n t a t i o n  of the 
point  naviga t ion  operators .  The  fundamen ta l  topic is the i n t e r s e c t i o n  p r o b l e m  

a7 Thus (A.9) are called disambiguating applicability constraints in [12]. 
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in high-dimensional configuration spaces: 
(i) How do we intersect high-dimensional level C-surfaces to construct an 

intersection manifold? 
(ii) How do we intersect a trajectory in configuration space with C-space 

constraints? 
In ~ 3 ×  SO(3),  the equations for some constraints (notably, type-(c) con- 

straints) can fill several pages. For this reason, I first computed the general 
form of the intersections for an arbitrary constraint, and then solved all 
intersections using MACSYMA [23]. The results were then optimized and 
compiled into LISP. 

Our approach has been to (1) derive these constraints (and the ACFs) from 
some arbitrary representation for rotations, (2) reduce each constraint to a 
series of simpler, canonical forms which are affine, bilinear, or quadratic in the 
terms of interest, and (3) develop simple mathematical procedures for operat- 
ing on the canonical forms. For example, to construct an intersection manifold 
for n constraints, we essentially need to solve a set of n simultaneous 
equations, each of the form f ( X )  = 0, where X e ~3 x SO(3). We proceed as 
follows. Let  D = {x, y, z, ~b, 0, th} be the set of all the degrees of freedom. 
First we select P, a subset of 6 - n  elements of D. P will parameterize the 
intersection manifold. The variables in P will be the free variables which the 
planner can choose; the variables D - P will vary dependently with P so as to 
stay on the intersection manifold. Mechanically, this entails (1) solving the n 
constraints simultaneously eliminating all but one variable in D -  P, and (2) 
expressing all dependent  degrees of f reedom D -  P in terms of the free 
variables P. 

B.1. Canonical forms for C-functions and AFCs 

At this point we must commit ourselves to a particular representation for 
rotations. The implemented planner uses a rotation matrix specified by Euler  
angles, ~9 = (~b, 0, 4~). The results of this section all extend trivially to other 
representations for rotations, although the coefficient-level detail is different. 18 

Definition. The linear form for a C-function f : R 3 x SO(3)--~ R is an equival- 
ent expression 

f(x,  y, z, O) = EIX + E2Y + E3z + E 4 , 

where Ei : SO(3)---~ ~ for i =  1 , 2 , 3 , 4 .  

Definition. A trigonometric quadratic form (TQF)  (in th) for a C-function f is 
an equivalent expression 

18 See [12] for comments on implementing a different representation for rotations (such as 
spherical angles, quaternions, or joint angles for a Cartesian manipulator). 
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f ( x ,  y, z,  6, O, 49) = F 1 sin 49 + F 2 cos 49 + F 3 , 

where F i : ~3 X (I]/, 0 ) ' ' >  ~ for i = 1, 2, 3. 

Analogously, a TQF (in 49) for an ACF g :  SO(3)-->~ is an equivalent 
expression 

g(g,, 0, 49) = G l sin 49 + G 2 cos 49 + G3, 

where G i : ( 0 ,  0)---~[R for i = 1,2, 3. The TQFs are defined here in 49--of 
course we must also define the TQFs in ~b and in 0 in the natural way. 49 will be 
our typical example angle in this discussion, however. 

Claim. Every C-function can be expressed as a linear fo rm and as a T Q F  in ~b, 
O, and 4); similarly, every A C F  can be expressed as a T Q F  in ~b, O, and 49. 

It is possible to develop simple mathematical intersection procedures operat- 
ing on the canonical forms: Once the C-functions and ACFs have been 
expressed in the canonical forms, the intersection algorithms of [12] may be 
employed to calculate intersection manifolds of level C-surfaces, and to 
compute the intersection of a path with a C-surface. Let us consider some easy 
examples: Solving for the intersection to three level C-surfaces in linear form is 
clearly no harder than intersecting three planes. The obvious representation for 
the resulting intersection manifold is a map h:(~b, 0,49)--->~3×SO(3),  
whence the translational degrees of freedom are parameterized by the rotation- 
al degrees of freedom along the manifold. The intersection of two TQFs may 
be effectively calculated by a procedure for intersecting quadratics. Intersecting 
a pure translational path with a C-surface is equivalent to intersecting a line 
with a plane. A T Q F  surface is a level set f - l ( l )  whose defining function f is in 
TQF.  Intersecting a TQF surface with a pure rotational path in the -+ 49, -+ q,, 
_+~} directions reduces to finding the roots of a quadratic. Such paths move 
along the rotational "axes" of C-space. It is not hard to show that a continuous 
path through rotation space can be approximated as closely as desired by a 
sequence of linear motions along the rotational axes. Furthermore,  the number 
of path segments required grows only linearly as the resolution of the approxi- 
mation becomes finer. 

B.2. Moving through rotation space 

Thus it is possible to intersect trajectories with C-surfaces. Once an intersec- 
tion is found, we must then determine (1) whether the C-surface is applicable, 
and (2) whether it lies on the boundary of a C-space obstacle. The question of 
applicability may be resolved a priori by maintaining and updating an accurate 
set of applicable constraints as the planner moves through rotation space. This 
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set is called the applicability set. As the planner moves from O to O', the 
updating algorithm must detect which constraints have expired (ceased to be 
applicable) and which new constraints have been activated (become applic- 
able). The expired constraints are deleted from the applicability set, and the 
new constraints are added. In this manner the trajectory will be intersected 
only with the applicable constraints. 

A constraint expires when the trajectory passes out of its applicability 
region; symmetrically, a constraint is activated when the trajectory enters its 
applicability region. Both events may be detected by intersecting the trajectory 
with the ACF boundaries. Donald [12] shows that whenever a constraint 
expires, it is replaced by one or more constraints with neighboring generators. 
Thus it is possible for the dynamic computation of replacement applicability 
sets to be highly local in character. Since ACFs can be expressed in TQF, the 
same procedure used to intersect trajectories with C-surfaces can be employed 
to intersect trajectories with ACF boundaries. The algorithm decomposes the 
image of the trajectory into equivalence classes where the applicability set is 
invariant. Hence it can in principle be used to map out these equivalence 
classes on SO(3). 

There are also two ways to determine if an intersection lies on the boundary 
of a C-space obstacle. Let X be the intersection point of a trajectory with an 
applicable C-surface k e r f .  Then ker f bounds a C-space obstacle at X if either 
of the following holds: 

(i) All applicable C-functions in f ' s  family are negative or zero-valued at X. 
(ii) If the projection of X into real space lies within the displaced face of the 

Minkowski solid corresponding to the generators for f. 
Note that if all intersections with C-surfaces--including nonapplicable C- 

surfaces--have been sorted along the trajectory and if X is the first intersection 
for which (ii) holds, then f is applicable and X lies on the boundary of the 
C-space obstacle. 
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