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Abstract

We have developed an ab initio algorithm for deter-
mining a protein backbone structure using global orienta-
tional restraints on internuclear vectors derived from resid-
ual dipolar couplings (RDCs) measured in one or two dif-
ferent aligning media by solution nuclear magnetic reso-
nance (NMR) spectroscopy [14, 15]. Specifically, the con-
formation and global orientations of individual secondary
structure elements are computed, independently, by an exact
solution, systematic search-based minimization algorithm
using only 2 RDCs per residue. The systematic search is
built upon a quartic equation for computing, exactly and
in constant time, the directions of an internuclear vector
from RDCs, and linear or quadratic equations for comput-
ing the sines and cosines of backbone dihedral (φ, ψ) an-
gles from two vectors in consecutive peptide planes. In con-
trast to heuristic search such as simulated annealing (SA) or
Monte-Carlo (MC) used by other NMR structure determi-
nation algorithms, our minimization algorithm can be ana-
lyzed rigorously in terms of expected algorithmic complex-
ity and the coordinate precision of the protein structure as a
function of error in the input data. The algorithm has been
successfully applied to compute the backbone structures of
three proteins using real NMR data.
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1 Introduction1

The increasing gap between the speed of DNA sequenc-
ing and protein structure determination requires the devel-
opment of efficient algorithms for computing 3-dimensional
structures as accurately as possible using a minimum num-
ber of restraints obtainable rapidly by experimental tech-
niques. One way to achieve this is to develop algorithms
whose key components are analytic expressions computable
in constant time. Our contribution to NMR structure deter-
mination [14] is the development of an exact solution, sys-
tematic search based-deterministic minimization algorithm
for computing a protein backbone structure using only two
residual dipolar couplings (RDCs) per residue in either one
or two media and sparse distance restraints. Our newly de-
rived low-degree monomials can compute, exactly and in
constant time, the sines and cosines of individual backbone
(φ, ψ) angles from RDCs, which makes the previous grid
search-based methods obsolete. Further, our minimization
algorithm searches over all the possible conformations con-
sistent with the input data (experimental RDCs) and em-
ploys a provable pruning strategy that guarantees pruned
conformations need not be considered further. If the input
data are perfect (without any experimental error), system-
atic search is guaranteed to find a global minimum, which
differs fundamentally from heuristic search such as simu-
lated annealing (SA) and Monte-Carlo (MC) used by other
NMR structure determination algorithms [1, 6, 11]. The lat-
ter can only sample the conformation space stochastically.
Furthermore, in contrast to heuristic search, our minimiza-
tion algorithm can be analyzed rigorously. In our algorithm,
the solution (conformation) space of the systematic search
is pruned by the following three filters: a real solution filter,

1Abbreviations used: NMR, nuclear magnetic resonance; RDC, resid-
ual dipolar coupling; NOE, nuclear Overhauser effect; SVD, singular value
decomposition; DFS, depth-first search; RMSD, root mean square devia-
tion; POF, principal order frame; PDB, protein data bank; MD, molecular
dynamics; H-bond, hydrogen bond; NH, the internuclear vector between
amide nitrogen (N) and amide proton (H); PDF, probability distribution
function; SA, simulated annealing; MC, Monte-Carlo; MD, molecular dy-
namics; CH, the vector between Cα and Hα.
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a Ramachandran filter, and a geometric filter. We first quan-
tify the contributions of the three filters to the efficiency of
our systematic search. We then show that the performance
of the minimization algorithm can be profitably modeled
using branching processes [4] when real data with experi-
mental errors are used as input. The analysis concludes that
although the algorithm is exponential in the worst case, it is
quite fast in the average case due to the pruning provided by
the above three filters. Taken together, the analysis provides
a mathematical basis for the efficiency of our minimization
algorithm.

1.1 Organization of the paper

We begin, in section 2 with a description of existing al-
gorithms for backbone structure determination using RDCs,
including a discussion of their limitations. Section 3 out-
lines our algorithm. Section 4 presents the results of ap-
plying our algorithm to three proteins using real NMR data
and discusses the significance of our algorithm for structural
genomics. Section 5 present an analysis of our algorithm
including (a) the complexity of the algorithm and its perfor-
mance in practice, (b) the quantification of three filters used
for pruning, (c) a stochastic model for analyzing the per-
formances of our minimization algorithm, and (d) the com-
parison between the theory and computational experimental
results.

2 Previous work

Traditional NMR structure determination algorithms [1,
6] were designed to use distance restraints derived from
nuclear Overhauser effect (NOE) experiments. Months of
time may be required to extract enough NOE distance re-
straints to compute a well-defined structure. In contrast,
RDC orientational restraints can be obtained much faster
experimentally, and thus are more suitable for developing
high-throughput structure determination algorithms. How-
ever, previous algorithms using RDCs rely on either heuris-
tic search [5, 8] or a structural database (the PDB) [2, 11]
and require more than three RDCs per residue in order to
compute a well-defined backbone structure. Brown and
coworkers [5] applied molecular dynamics (MD) and SA
to compute the fold of human ubiquitin using three RDCs
per residue in two media (six RDCs per residue in total).
Blackledge and coworkers [8] employed least-square fitting
followed by MD/SA to compute the backbone structure of
ubiquitin using five RDCs per residue in two media. Baker
and coworkers [11] incorporated RDCs into their ab initio
structure prediction algorithm ROSETTA where RDCs were
employed to select structural fragments from the PDB. The
final structures constructed from the chosen fragments were

further refined by ROSETTA using MC search. One lim-
itation is that the accuracy of the computed structure was
rather poor when fewer than 3 RDCs per residue were em-
ployed. The database-based algorithms were first developed
by Bax and coworkers [2], who use five RDCs per residue in
two media plus chemical shifts to select seven-residue frag-
ments from the PDB. One concern about such algorithms
is that the computed fold may be biased toward those de-
posited in the PDB. The above algorithms use either heuris-
tic search such as SA [5, 8] or MC [11] to find a best solu-
tion consistent with the input data. A heuristic search sam-
ples the search (conformation) space stochastically so there
is no guarantee that the computed best solution is a true
global minimum. Furthermore, it is very difficult to analyze
and consequently to optimize heuristic algorithms. For ex-
ample, when a heuristic search is employed it is not easy or
even possible to quantify the contributions of the pruning
to the performance of the algorithm. Finally, an algorithm
using a heuristic search may require more restraints in order
to achieve an accuracy in the computed structure similar to
that obtained by systematic search.

3 The Algorithm

The inputs to our algorithm are: (a) 2 RDCs of backbone
vectors per residue (e.g., NH RDCs in two media or NH and
CH RDCs in a single medium), (b) identified α-helices and
β-sheets with known hydrogen bonds (H-bonds) between
paired strands, and (c) a few NOE distance restraints. In
the following, we briefly describe the algorithm for NH and
CH RDCs measured in a single medium. Interested readers
can see our previous paper [14] for an algorithm for com-
puting a protein backbone structure using NH RDCs in two
media. The algorithm is divided into three stages: (I) align-
ment tensor computation by singular value decomposition
(SVD), (II) computation of the orientation and conforma-
tion of a secondary structure element by systematic search,
and (III) backbone structure determination by rigid-body
minimization. The alignment tensors from stage I are used
in stage II to compute the directions of both CH and NH
vectors in a common principal order frame (POF) of NH and
CH RDCs by solving quartic equations using RDCs exclu-
sively. Given CH and NH directions, the sines and cosines
of individual (φ, ψ) angles are computed exactly by solving
a linear equation. In two media, the sines and cosines of
individual (φ, ψ) angles are computed by solving quadratic
equations [14, 15]. The (φ, ψ) angles of an entire struc-
tural fragment are computed in stage II by a minimization
algorithm as detailed in Section 3.1. The relative positions
of the fragments computed from stage II are determined in
stage III by rigid-body minimization using H-bonds and a
few NOE restraints.
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3.1 Exact solution and systematic search-based
minimization algorithm

The RDC, d, between two nuclei is related to the
direction of the corresponding internuclear unit vector
v = (x, y, z) by [12],

d = Sxxx2 + Syyy2 + Szzz
2 (1)

where Sxx, Syy and Szz are three diagonal elements of
a diagonalized Saupe matrix S (the alignment tensor)
specifying the ensemble-averaged anisotropic orientation
of a molecule in the laboratory frame; x, y and z are,
respectively, the x, y, z−components of v in a POF which
diagonalizes S. S is a 3 × 3 symmetric, traceless matrix
with five independent elements. Note that x2 +y2 +z2 = 1
and Sxx + Syy + Szz = 0. Thus, when projected onto
the XY-plane of the POF of RDCs, Eq. (1) represents two

ellipses with major axis of
√

d−Szz

Sxx−Szz
and minor axis

of
√

d−Szz

Syy−Szz
assuming |Szz| ≥ |Sxx| ≥ |Syy|. Such

a projected ellipse will be called either NH or CH RDC
ellipse, for brevity.

The minimization algorithm is divided into three phases.
The first phase is the sampling of both NH and CH RDCs
based on Gaussian distributions about the experimental data
values (the measured experimental RDC value and the ex-
perimental error define, respectively, the mean and variance
of the Gaussian distribution). The perturbation of the exper-
imental values is necessary for computing a structure with
backbone (φ, ψ) angles in the favorable Ramachandran re-
gions. The second phase is the computation of an optimal
peptide plane for the first residue and an optimal confor-
mation vector from the two sets of sampled RDCs. A con-
formation vector for an m-residue fragment is defined as
(φ1, ψ1, φ2, ψ2, · · · , φm−1, ψm−1), where (φi, ψi) are the
dihedral angles of residue i. The third phase is the con-
struction of a backbone model from the first peptide plane,
and the optimal conformation vector. Interested readers can
see our previous paper [14] for an algorithm for comput-
ing the optimal first peptide plane. The computation of
an optimal conformation vector proceeds as follows. First,
the set of all the plausible conformational vectors for the
fragment are computed by depth-first search (DFS) over the
cross product of all the sets of CH and NH directions com-
puted from RDCs. A plausible conformation vector is de-
fined as a vector with all its m − 1 (φ, ψ) angles in the
favorable Ramachandran region for the corresponding sec-
ondary structure type. Such a favorable region defines our
Ramachandran filter. Next, an optimal conformational vec-
tor is computed from the set of all the plausible conforma-
tional vectors by minimizing the following target function,∑m−1

i=1 ((φi−φµa
)2+(ψi−ψµa

)2)+
∑m

i=1((d
′
1,i−d1,i)2+

(d′
2,i−d2,i)2), where (φi, ψi) are the computed angles from

solving the quartic and linear equations for residue i and
(φµa

, ψµa
) are the average (φ, ψ) angles over the PDB for

the corresponding secondary structure type, d1,i
and d2,i

are, respectively, the experimental NH and CH RDC val-
ues and d′

1,i
and d′

2,i
are the sampled NH and CH RDC val-

ues. This minimization is a search over a finite set, namely
the (φ, ψ) angles obtained by exactly solving low-degree
monomials. The data structure utilized for DFS is a dynam-
ically constructed search tree (DFS-tree for brevity). The
maximum height of the tree is m for an m−residue frag-
ment and the first residue corresponds to depth 1. With this
convention, the residue number i is the same as the depth
i of the DFS-tree. Each node at depth i corresponds to a
solution for the backbone (φi, ψi) angles of residue i com-
puted, respectively, from the CH RDC of residue i and the
NH RDC of residue i + 1. At each step of the search, the
algorithm prunes the computed multiple (φ, ψ) angles us-
ing a Ramachandran filter. During DFS the orientation of
the peptide plane of residue i + 1 is computed from the ori-
entation of the peptide plane i and the intervening (φi, ψi)
angles.

4 Biological results and significance

Our algorithm has been successfully applied to compute
the backbone structures of three proteins. We first applied
the algorithm to the 76-residue protein human ubiquitin
using NH RDCs in two media [14, 15] or NH and CH RDCs
in a single medium (manuscript in preparation), plus twelve
hydrogen bonds and four NOE distances. The backbone
RMSD between the RDC-derived backbone substructure
consisting of an α-helix (N25–E34) and a β-sheet with
five strands, and the corresponding portion of the X-ray
structure (PDB ID, 1UBQ) [13], is only 0.97 Å in a single
medium or 1.23 Å in two media. We have also applied our
algorithm to compute the backbone substructures of two
other proteins, 81-residue DNA-damage-inducible protein I
(PDB ID, 1GHH) and 56-residue immunoglobulin binding
protein G (PDB ID, 3GB1), using NH RDCs in two media
and sparse distance restraints. The backbone RMSDs
between the substructures computed by our algorithm
and the corresponding portions of NMR structures are,
respectively, 1.55 Å for DNA-damage-inducible protein I
and 0.96 Å for immunoglobulin binding protein G. Note
that the NMR structures to which we compared were com-
puted by MD/SA [1] using about 15 restraints per residue
(including both NOE and RDC restraints). In contrast, our
backbone structures have been computed using about 2.4
restraints per residue (2 RDCs and 0.4 distance restraints
per residue). All the experimental data were downloaded
from the PDB. For ubiquitin the restraints are extracted
from the PDB file 1D3Z.
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Compared with heuristic algorithms [5, 8, 2, 11] for
computing backbone structures using RDCs, our algorithm
achieves similar or better accuracy but requires less data,
is much less biased toward the PDB and does not depend
on MD. The success of our algorithm using only two RDCs
per residue and sparse distance restraints shows that solu-
tion NMR spectroscopy can play a major role in determin-
ing protein backbone fold rapidly and inexpensively, which
should be important in structural genomics.

5 Analysis

In this section, we first analyze the complexity of our
algorithm. Then we quantify three filters for systematic
search: the real solution filter, the Ramachandran filter and
the geometric filter. Finally, we propose a stochastic model
for analyzing our minimization algorithm. We also present
computational experimental results and compare them with
the theoretical analysis.

5.1 Algorithmic complexity and performance

The complexity analysis of the algorithm in section 3 is
as follows. The alignment tensor, the coefficients of the
quartic and the linear or quadratic equations and their so-
lutions (stage I) can all be computed in O(m) time for an
m-residue fragment. The search for an optimal first peptide
plane (stage II) [14], takes O(mk3

1) time on a k1 × k1 × k1

grid for three Euler angles. In practice, it takes less than
one minute on a 180 × 90 × 180 grid on a Pentium 4
(2.4GHz) Linux workstation. The search for relative po-
sitions among RDC-derived structure elements using NOE
distances (stage III) takes O(lk2

2) time on a k2 × k2 grid
for the polar angles φ and θ with l NOEs. In practice, it
takes several seconds on a 90 × 180 grid. The computa-
tion of the conformation and global orientation of an m-
residue fragment by the systematic search-based minimiza-
tion (stage II), takes O(k16m) time in the worst case, where
k is the resolution of a grid search over a Gaussian distribu-
tion about the experimental data [14], and 16 = 4×4 where
4 is the maximum number of solutions for either the φ an-
gle from a CH RDC or a ψ angle from an NH RDC. The
number 16 is also the maximum branching factor Bmax of
the DFS-tree at each node. In summary, the total run time
of the algorithm is O(n(m + lk2

2 + mk3
1 + k16m)) for n

m−residue fragments. However, despite the worst-case ex-
ponential running time the systematic search-based mini-
mization takes, in practice, only several minutes for com-
puting either a helix or strand. Furthermore, our algorithm
takes only 30-40 minutes to compute an entire backbone
substructure consisting of α-helices and β-sheets. The run-
ning time depends on the size of the protein and the quality

of the experimental data: the biggest effects are due to the
size of the experimental error and the number of missing
RDC data. In the following we prove that the average case
complexity is indeed much faster than the worst-bound.

5.2 Ellipse equations for backbone CH and NH
vectors

In this section, we state and prove four Propositions,
which provide a basis for quantifying the Ramachandran
and geometric filters used for pruning the solution (confor-
mation) space of the systematic search.

Proposition 5.1 The backbone CH unit vector of residue
i, when projected onto the XY-plane of any global coordi-
nate frame in space, lies on an ellipse. The resulting ellipse
equation can be represented in a parametric form with the
backbone φi angle as the parameter. The coefficients of the
ellipse equation are determined by the orientation of pep-
tide plane i in the global frame.

Proposition 5.2 The backbone NH unit vector of residue
i + 1, when projected onto the XY-plane of any global co-
ordinate frame in space, lies on an ellipse. The resulting el-
lipse equation can be represented in a parametric form with
the backbone ψi angle as the parameter. The coefficients of
the ellipse equation are determined by the φi angle and the
orientation of peptide plane i in the global frame.

We sketch a proof for Proposition 5.1. Proposition 5.2
can be proved similarly. In the following we let the global
coordinate frame be the POF of RDCs.

Proof. From protein backbone geometry we have

vM = (x, y, z)M
= (Cx cos φi + Cz sin φi, Cy,

− Cx sin φi + Cz cos φi), (2)

where v = (x, y, z) is a backbone CH unit vector in the
POF of RDCs, and (Cx, Cy, Cz) is a unit vector known
from the fixed protein backbone geometry taken from table
4 in [14]. The 3 × 3 matrix M is defined as follows

M(αi, βi, γi) = R
B
R

G
(αi, βi, γi), (3)

where R
G
(αi, βi, γi) is the rotation matrix between the

global POF of RDCs and a local coordinate frame defined
in the peptide plane i, and (αi, βi, γi) are three Euler
angles. The 3 × 3 matrix R

B
is known from the fixed

backbone geometry [14].

Defining a new unit vector w = (x′, y′, z′) = vM and

letting Cd =
√

1 − C2
y , Eq. (2) can be written as

(x′, y′, z′) =
(Cd sin (φi + φ0), Cy, Cd cos (φi + φ0)) (4)
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where sin φ0 = Cx√
1−C2

y

and cos φ0 = Cz√
1−C2

y

. Eq. (4)

represents a curve (in fact, a circle) in the XZ-plane of a
coordinate frame with +Z axis in peptide plane i and +Y
axis along the

−−→
NCα vector. In the POF of RDCs the curve

becomes

x = M11x
′ + M21y

′ + M31z
′

= Cd(M11 sin (φi + φ0) + M31 cos (φi + φ0)) + M21Cy

y = M12x
′ + M22y

′ + M32z
′

= Cd(M12 sin (φi + φ0) + M32 cos (φi + φ0)) + M22Cy

z = M13x
′ + M23y

′ + M33z

= Cd(M13 sin (φi + φ0) + M33 cos (φi + φ0)) + M23Cy.

When a rectangular Ramachandran filter for the φ angle is
applied, the arc length L of this curve is

L(φl, φh) =
∫ φh

φl

√
(

dx

dφi
)2 + (

dy

dφi
)2 + (

dz

dφi
)2 dφi .

(5)
where φh and φl are the range of φ angle defined by the
filter. By the orthogonality property of the matrix M, the
expression for L can be simplified as

L(φl, φh) = Cd (φh − φl) . (6)

Eq. (6) is consistent with the geometric intuition that in
space the curve is still a circle. However, the projec-
tion of this circle onto the XY-plane of the POF is, in
general, an ellipse, which will be called the CH vec-
tor ellipse for brevity. Letting x0 = M21Cy, y0 =
M22Cy, sin θ

X
= M11√

M2
11+M2

31

, cos θ
X

= M31√
M2

11+M2
31

and sin θ
Y

= M12√
M2

12+M2
32

, cos θ
Y

= M32√
M2

12+M2
32

, we have

x − x0 = a sin (φi + φ0 + θ
X

)
y − y0 = b cos (φi + φ0 + θ

Y
) . (7)

Eq. (7) is an ellipse equation in parametric form with φi as
the parameter, and major axis a = Cd

√
(M2

11 + M2
31) and

minor axis b = Cd

√
(M2

12 + M2
32). Letting φa = φi +

φ0 + θ
X

, φb = φi + φ0 + θ
Y

, the arc length L becomes

L(φl, φh, αi, βi, γi)

=
∫ φh

φl

√
(

dx

dφi
)2 + (

dy

dφi
)2 dφi

=
∫ φh

φl

√
b2 sin2 φb + a2 cos2 φa dφi (8)

According to Eqs. (7, 8), the length L, the center of the
ellipse, (x0 , y0), and the axes a, b all are functions of the
rotation matrix R

G
between a local frame defined in pep-

tide plane i and the global POF since M is a function

of R
G
(αi, βi, γi) (Eq. (3)). Eq. (8) is an elliptic integral,

which can be represented as a Legendre elliptic integral of
the second kind by algebraic manipulation. Letting t = φa

and θ = θ
Y
− θ

X
the integrand in Eq. (8) can be written as

b2 sin2 φb + a2 cos2 φa = a1 sin 2t + b1 cos 2t + c1, (9)

where a1 = 1
2b2 sin 2θ, b1 = 1

2 (a2 + b2 cos 2θ) and c1 =
1
2 (a2 + b2 cos 2θ + 2b2 cos2 θ). Letting r1 =

√
a2
1 + b2

1,
cos t0 = b1

r1
and sin t0 = a1

r1
we have

b2 sin2 φb + a2 cos2 φa = (r1 + c1)(1 − K sin2(t − t0
2

)),
(10)

where K = 2r1
r1+c1

. It can be shown that 0 ≤ K ≤ 1,
thus, Eq. (8) is a Legendre elliptic integral of the second
kind. The integral (Eq. (8)) can be computed accurately
using quickly convergent expansion [3, 10].

To prove Proposition 5.2, we note that in the POF of
RDCs, given φi, the NH vector of residue i + 1 lies on a
circle with ψi as a parameter. Similarly to Eq. (6), when
a Ramachandran filter for the ψ angle is applied, the arc
length of this circle can be written as

L(ψl, ψh) = Dy (ψh − ψl) (11)

where Dy is a constant known from the fixed backbone
geometry [14], and ψh and ψl are the range of ψ angle
defined by the filter. When projected onto the XY-plane of
the POF, the circle becomes an ellipse, which will be called
the NH vector ellipse. The length L(ψh, ψl), the center and
both axes of the NH vector ellipse, all are functions of both
the φi angle and the rotation matrix R

G
(αi, βi, γi).

By Propositions 5.1 and 5.2 and the RDC equation
(Eq. (1)) we can easily prove the following two Propositions
for computing, respectively, the sines and cosines of φ and
ψ angles from the CH and NH RDCs measured in a single
medium. Interested readers can see our previous paper [14]
for similar Propositions for computing (φ, ψ) angles from
NH RDCs measured in two media.

Proposition 5.3 Given the orientation of peptide plane i in
the POF of RDCs, the x-component of the CH unit vec-
tor v of residue i, in the POF, can be computed by solv-
ing a quartic monomial in x derived from the CH RDC el-
lipse equation (Eq. (1)) and the corresponding CH vector
ellipse equation (Eq. (7)). Given the x-component, the y-
component can be computed from either Eq. (1) or Eq. (7),
and the z-component from x2 + y2 + z2 = 1. Given v, the
sine and cosine of the φi angle can be computed by solving
a linear equation.

Proposition 5.4 Given the orientation of peptide plane i in
the POF of RDCs, the x-component of the NH unit vector
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v of residue i + 1, in the POF, can be computed by solving
a quartic monomial in x derived from the NH RDC ellipse
equation (Eq. (1)) and the corresponding NH vector ellipse
equation. Given the x-component, the y-component can be
computed from Eq. (1), and the z-component from x2+y2+
z2 = 1. Given v, the sine and cosine of the ψi angle can be
computed by solving a linear equation.

Geometrically, the solutions to a quartic equation are just
the intersections of the corresponding RDC and vector el-
lipses.

5.3 A probabilistic model for pruning

We begin our analysis of the average-case complexity of
the minimization algorithm with the quantification of fil-
ters contributing to the reduction of branching factors of the
DFS-tree for each systematic search. As stated previously
(Section 5.1), even though the branching factor, Bi, at a
node of depth i can be 16 in the worst case, a much smaller
Bi is observed in practice. In the following we show how
Bi is reduced. We represent each filter as a probability that
a solution passes that filter. Hence, a maximum probabil-
ity of 1 corresponds to no filter (all solutions pass), and 0
would be the most restrictive filter (no solutions pass). For
convenience, we do not normalize the corresponding prob-
ability distribution. In this paper, we present our computa-
tional experimental results for NH and CH RDCs in a single
medium and compare them with the theoretical analysis. A
similar analysis can be applied to NH RDCs in two media
since the practical performance of the search in both cases is
very similar. Since the running time is directly proportional
to the total number, Si, of paths (conformations) at depth i
of the DFS-tree (Fig. 1), the theoretical and computational
experimental results are compared using Bi and Sm, where
Sm is the total number of paths at the leaves of an m-depth
DFS-tree. Note that Sm =

∏m
i=1 Bi and Bi = Si

Si−1
where

S0 = 1. Furthermore, we argue that it is more proper to an-
alyze the performance of the search by studying the value
of Bi, rather than to analyze its asymptotic behavior when
the number of residues in an α-helix or a β-sheet gets very
large, since the number of residues in a typical α-helix or β-
sheet is, most likely to be small (< 20 for a large majority
of proteins and almost never > 50). Note that according to
our convention (Section 3.1), residue number i is the same
as depth i of the DFS-tree. In the following, depending on
which filters are used, a different branching factor Bi is ob-
tained. In sections 5.3.1 − 5.3.3 the branching factor Bi is
analyzed for systematic searches using some of the 3 filters
either in isolation (i.e., with all other filters turned off), and
in pairs. Later we also analyze the branching factor associ-
ated with the Gaussian distribution. In each case, we will
state which filters are being used when we calculate Bi.

Figure 1. The running time vs. the number of
paths (Si). The x-axis is the number of paths of a sys-
tematic search over a ten-residue ideal α-helix using the
back-computed CH and NH RDCs of the protein ubiqui-
tin. The y-axis is the running time in minutes. At the lower
end of the line, there are 7 overlapping data points.

5.3.1 Real solution filter

It has been shown in algebraic geometry [9] that an r-degree
monomial with random real coefficients has, on average,√

r real solutions. In our case, r = 4 since both φ and ψ
are computed by solving quartic equations. Thus, we expect
that there are only

√
r × √

r = 2 × 2 solutions for (φ, ψ)
angles for any residue. In practice, with a real solution filter
alone we observe an average Bi = 4.19 for all the residues
when the input to the systematic search are RDCs back-
computed from an ideal α-helix (Fig. 2A). Back-computed
RDCs mean the RDCs simulated from an ideal α-helix us-
ing Saupe matrices computed in stage I of our algorithm
(Section 3). We call this reduction in Bi the real solution fil-
ter. We represent this filter as P

M
=

√
r

r ×
√

r
r = 2

4× 2
4 = 1

4 .
Without the filter, in contrast, P

M
= 1.

5.3.2 Ramachandran filter

We assume that the number of (φ, ψ) solutions, that is, Bi,
computed from the quartic and linear equations is, on av-
erage, a function of the arc lengths of the two intersecting
ellipses. Hence, as shown in the proofs of Propositions 5.1-
5.2 (Section 5.2), in the POF of RDCs, a Ramachandran
filter defined by [φl, φh], [ψl, ψh] can be represented as a
probability P

R
(i) = P (φi)P (ψi), where P (φi) is a prob-

ability representing the pruning of φi solutions by the fil-
ter, and P (ψi) is a probability representing the pruning of
ψi solutions by the filter. Formally, given a single RDC
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value, the distributions for P (φi) and P (ψi) can each be
defined as a conditional probability distribution using the
Lebesgue-Stieltjes integral for a discrete random variable
on a curve [7]. Here, the curve is an ellipse (Sec. 5.2).
With continuously varying RDC values, the distributions for
P (φi) and P (ψi) can each be defined as a Lebesgue inte-
gral on a 2D band (area) on the surface of a sphere. We as-
sociate the same probabilities with the Ramachandran filter
when the curves or bands are projected onto the XY-plane
of the POF of RDCs. As an approximation, we will assume
that

P (φi) =
φh − φl

2π
, and P (ψi) =

ψh − ψl

2π
, (12)

that is, the probability, P (φi), is simply the ratio between
the length of a circular arc defined by [φl, φh] and the
perimeter of the unit circle (2π). Similarly, the probability,
P (ψi), is simply the ratio between the length of a circular
arc defined by [ψl, ψh] and the perimeter of the unit cir-
cle. Without such an approximation, the probability can not
be written as simply as Eq. (12) since, in principle, the arc
length of an ellipse must be represented as an elliptic inte-
gral, which is a function of the rotation matrix R

G
(α, β, γ)

(Eq. (8)). Our computational experimental results show that
it is reasonable to make such an assumption. Indeed, the re-
sults in Fig. 2B show that the average Bi is reduced to about
1.11 by using a Ramachandran filter of [φl, φh] = [−π, 0]
and [ψl, ψh] = [−π, 0], which is approximately one quar-
ter of the average Bi = 4.19 (using only the real solution
filter).

The Ramachandran filter is very effective in reducing
the number of paths explored by the systematic search
(Fig. 3). A conservative filter such as [φl, φh] = [−π, 0]
and [ψl, ψh] = [−π, 0] can reduce the running time of the
systematic search considerably. For example, at depth 10,
without a Ramachandran filter, S10 = 5, 433, 078, and it
takes 25 minute to compute all these conformations, while
with the above filter S10 = 32 and it takes less than 0.002
minutes to compute them. We also assume that the Ra-
machandran filters for depth i and i + 1, P

R
(i + 1) and

P
R
(i), are independent of one another.

5.3.3 Geometric filter

It is well known that in a typical α-helix or β-sheet, both the
orientations of peptide planes and the directions of back-
bone vectors have certain periodicity along the backbone.
For example, the peptide planes in a typical α-helix make
a turn every 3.6 residues. Thus, the rotation matrices
R

G
(α, β, γ) (Eq. (3)), along the backbone of an α-helix,

oscillate with a 3.6 period, which will induce a similar os-
cillation in the coefficients of both the CH and NH vector
ellipses (Eq. (7)) since these coefficients are functions of
R

G
(α, β, γ). Indeed, in practice, we observed that average

arc lengths of CH vector ellipses have a 3.6 period along the
backbone of an ideal α-helix (Fig. 4A). Similarly, according
to Eq. (1), the oscillation in the direction of backbone vec-
tors is expected to induce similar oscillation in RDC values,
and further to induce oscillation in the coefficients of both
CH and NH RDC ellipse equations (Eq. (1)). Indeed, we
found that the major axes of both NH and CH RDC ellipses
have a 3.6 period along the backbone of an α-helix (Fig. 4).
Note that the major axis of an RDC ellipse is a function
of its RDC value (Section 3.1). According to Propositions
5.3-5.4, the (φ, ψ) angles are computed from the quartic
equations obtained from an RDC ellipse equation and the
corresponding vector ellipse equation. Therefore, the co-
efficients of the quartic equations will oscillate with a 3.6
period for a typical α-helix. As is well known in algebra,
the number of real solutions to a monomial is a function of
the coefficients of the monomial. Thus, in the present case,
the number of (φ, ψ) solutions to the quartic equations will
oscillate with a 3.6 period. The average number of (φ, ψ)
solutions for residue i is the same as the branching factor,
Bi, at depth i of the DFS-tree. We conclude that Bi will
oscillate along the backbone of an α-helix with a 3.6 pe-
riod. We call such an oscillation in the Bi value along the
backbone the geometric filter for brevity. In practice, the os-
cillation is especially obvious when back-computed RDCs
are used (the magenta line in Fig. 5). For real experimental
RDCs the oscillation is less significant but still discernible
(the red line in Fig .5). The reduction in the amplitude of the
oscillation, when real experimental RDCs are used, is pos-
sibly caused by the large RMSDs between the RDCs back-
computed from an ideal helix (E24–E34) and the real ex-
perimental RDCs. The RMSD is, respectively, 4.16 Hz for
CH RDCs and 1.25 Hz for NH RDCs. Our Gaussian sam-
plings are centered on the mean (the experimental value).
Thus, the difference between the backbone (φ, ψ) angles
computed using the sampled CH and NH RDCs close to
their means and the average ideal (φ, ψ) angles is relatively
large. A helix built with the computed (φ, ψ) angles will
have a period different from 3.6. The Bi’s are computed
by averaging over the size of the Gaussian sampling with
each successful sampling corresponding to a helix with a
different period. Consequently, the amplitude of the ob-
served oscillation can be reduced. By a similar argument to
the above, for a β-strand, the oscillation is expected to be
sinusoidal with a period of 2. Note that the oscillations in
coefficients and Bi do not depend on where you start in the
helix: they are a function of the orientations of the peptide
planes, not a result of the algorithm’s starting conditions.
The geometric filter is really a discrete function of depth i
with a 3.6 period for a typical α-helix, not a proper prob-
ability. Here, we represent it formally as a probability for
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Figure 2. The Logarithm of the number of paths (Si) with respect to the depth of the DFS-tree. The x-axis is the
residue number i along the backbone (also the depth of the DFS-tree). The y-axis is the logarithm of the number of paths (Si). The
y-axis also gives the branching factor, Bi, using the same scale. (A) The solid line is Si vs. depth i for the systematic search with
the real solution filter but no Ramachandran filter, the two dashed lines are, respectively, a fit linear line and the branching factor Bi.
(B) The same as (A) but with both the real solution and Ramachandran filters ([−π, 0], [−π, 0]) applied. The label “Experimental”
means the data from computational experiments using back-computed RDCs. The data are presented for the protein ubiquitin using
back-computed NH and CH RDCs.

convenience. Quantitatively, it can be approximated by

P
G
(i) = c1 sin

2πi

3.6
+ c2 sin

2πi

18
(13)

where i is the residue number or depth of the DFS-tree, and
c1 and c2 are constants. The number 3.6 is the period for
an ideal α-helix while 18 = 5 × 3.6 is another period for
the helix. In most cases, c2 is close to 0.

In our implementation, the real solution and Ramachan-
dran filters are represented explicitly (although clearly, the
real solution filter is an intrinsic property of a polynomial
with real coefficients). The geometric filter can be viewed
as an analysis tool to describe the behavior of the algebraic
system, namely, how the number of solutions varies with
the geometry of the protein backbone. It is also an intrinsic
property of the peptide plane geometry of regular secondary
structures and is implicitly represented in the code as the
modulation of the combined action of the real solution and
Ramachandran filters.

In summary, assuming independence of the three fil-
ters (which is consistent with the computational experimen-
tal results), it is possible to assign a probability P (i) for
depth i of the DFS-tree (corresponding to residue i) with
P (i) = P

M
(i)P

R
(i)P

G
(i), where P

M
(i), P

R
(i) and P

G
(i)

correspond, respectively, to the real solution, Ramachan-
dran and geometric filters defined above. Then, with the

above three filters Bi = BmaxP (i), where Bmax = 16
is the theoretical worst-case branching factor without prun-
ing by any filter (Section 5.1). As an approximation, it is
reasonable to model the pruning of the three filters for the
systematic search over an entire m-residue fragment by as-
signing a probability as follows:

P (φ1, ψ1, . . . , φm, ψm) =
m∏

i=1

P
M

(i)P
R
(i)P

G
(i). (14)

5.4 Using a stochastic model to analyze a deter-
ministic algorithm

The above results and analysis for a single systematic
search shows that, on average, Bi can be reduced from
the maximum value, Bmax = 16, to about 1.11 using
back-computed RDCs and all the above three filters. As
stated previously (Section 3.1), it is necessary to perturb
the real RDC data due to experimental errors and we model
this perturbation with a Gaussian (normal) distribution,
N (µ, σ), where µ is the experimental (or back-computed)
RDC and σ is the experimental error. In the implementa-
tion of our minimization algorithm, instead of using a grid
search over a Gaussian distribution, we employ Gaussian
sampling. The interested readers can see [14] for a detailed
discussion of the Gaussian sampling. In the following
we will present and analyze computational experimental
results for the minimization, but first we will show that the
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Figure 3. The distributions of (φ, ψ) solutions with respect to the depth of a DFS-tree without a Ramachandran
filter (A, B) and with a Ramachandran filter (C, D). The x-axis is backbone φ angles, the y-axis is backbone ψ angles. The
applied Ramachandran filter is ([−π, 0], [−π, 0]). Also shown are the numbers of paths (conformations) at the corresponding depth.
The data are presented for the protein ubiquitin using back-computed NH and CH RDCs.
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Figure 4. The major axes of NH and CH RDC ellipses (A) and the average arc lengths of CH vector ellipses
along the backbone of an α-helix of the protein ubiquitin (B). The x-axis is the residue number along the α-helix. (A)
The major axes of back-computed NH RDC ellipses (Eq. (1)) (dashed line) and real experimental NH RDC ellipses (solid line), as
well as the average arc lengths of CH vector ellipses (dashed line) computed by Eq. (8). (B) The major axes of back-computed NH
and CH RDC ellipses (dashed lines) and a sinusoidal curve (solid line) with a 3.6 period.

Figure 5. Branching factors (Bi) along the backbone of an α-helix of the protein ubiquitin. The x-axis is the
residue number along the α-helix. The y-axis is the branching factor (left), and the major axes of NH RDC ellipses (right). The
black solid line is the major axes of back-computed NH RDC ellipses. The dashed black line is the Bi of the systematic search
using back-computed NH and CH RDCs with a Ramachandran filter of [−π, 0], [−π, 0] but without Gaussian sampling. The dashed
magenta line is the average Bi of the systematic search-based minimization using back-computed NH and CH RDCs with the
same Ramachandran filter and Gaussian sampling. The red line is the Bi using real experimental NH and CH RDCs with the
same Ramachandran filter and Gaussian sampling. The B1 of depth 1 for both back-computed (the dashed magenta line) and real
experimental (the red line) NH and CH RDCs with a Ramachandran filter and Gaussian sampling is computed from the number of
(φ, ψ) solutions divided by the size of the sampling. Excluding B1, the average branching factor is 0.96 for back-computed (the
dashed magenta line) RDCs, and 0.95 for real experimental RDCs. The solid blue line is a sinusoidal curve with a 3.6 period.
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systematic search using a set of sampled CH and NH RDCs
can be modeled as a branching process [4].

Empirically, if our algorithm is run with ideal back-
computed RDCs, the average Bi = 1.11 (Section 5.3). If it
is run on RDCs sampled from a Gaussian distribution away
from the ideal back-computed value (the mean of the dis-
tribution), the average Bi = 0.96 (excluding B1) (Fig. 5).
Intuitively, this is because more conformations are pruned
since they deviate from the ideal helix geometry that gen-
erated the back-computed RDCs. This reduction in average
Bi can be explained, partially, by the following considera-
tion: in order to have a real solution from the quartic equa-
tion the sampled RDC, d′, must be in the following range:

|d′| ≤
√

2(S2
yy + S2

zz + SyySzz). Note that the range can

be derived directly from Eq. (1) by applying the Cauchy-
Schwarz inequality. We define a probability P

N
(i) to de-

scribe such a reduction in average Bi at depth i, that is, the
Bi with a Gaussian sampling and the above three filters be-
comes

Bi = BmaxP
M

(i)P
R
(i)P

G
(i)P

N
(i), (15)

assuming that the sampling is independent of the three fil-
ters. Although the mathematical expression and estimation
for P

N
(i) in terms of N (µi, σi) are complicated, in prac-

tice, we observe that with Gaussian samplings using the
back-computed RDCs as their means, P

N
(i) decreases with

increasing depth: P
N

(1) = 0.50, P
N

(2) = 0.22, P
N

(3) =
0.12, ..., P

N
(10) = 0.003. Here, the experimental errors

(σi) are set to be 3.0 Hz for CH RDCs and 1.5 Hz for
NH RDCs. When the real experimental RDCs are used
as the means, the probability, P

N
(i), is further reduced

about 100-fold compared with the corresponding P
N

(i)
using the back-computed RDCs as the means since for the
latter, most of the sampled points are close to the mean,
µi, while for the former, most of the sampled points are
away from µi. As stated previously, when the branching
factor for depth 1, B1, is excluded, the average Bi = 0.96
(Fig. 5) when the back-computed RDCs are used as the
means. Similarly, excluding B1, the average Bi = 0.95
(Fig. 5) when the real experimental RDCs are used as the
means. In both cases, P

N
(i) is smaller than 1 (excluding

B1) and is much smaller than 1 (including B1). Thus, with
Bi computed by Eq. (15), each systematic search over the
DFS-tree with Gaussian samplings and our three filters
can be modeled as a branching process [4]. As is well
known in the theory of branching process [4] such a search
(process) will extinct with probability one if Bi is less than
1, and often the process stops rather soon. In practice, for
back-computed RDCs we found that about 85% of all the
processes started at depth 1 stopped before depth 8. For
real experimental RDCs, only 1% of the processes can start
at depth 1, and among those started at depth 1, only 20%

can go up to depth 8.

Finally, we are in a position to analyze our minimiza-
tion algorithm. We assume that each search (process), j,
starting successfully at depth 1 is itself a branching process
described by a random variable Sm(j) (the total number of
paths at depth m of an m-depth DFS-tree) [4] with an av-
erage branching factor well below 1, where 1 ≤ j ≤ k
with k being the size of the sampling, that is, the resolu-
tion of a grid search over a Gaussian distribution at depth
1. Then, the number of paths at depth m > 1, Np(m),
can be represented as the sum of all the Sm(j)’s, that is,
Np(m) =

∑k
j=1 Sm(j). Thus, according to the central

limit theorem [4], the total number of paths at depth m
should have a normal distribution. In practice, we found that
the number of paths with respect to the depth of the DFS-
tree of the systematic search for both the back-computed
RDCs and the real experimental RDCs, can be fit reason-
ably well with normal distributions (Fig. 6). In other words,
the computational experimental data and our analysis show
that asymptotically (as the sampling gets large), our mini-
mization algorithm is a linear time algorithm and should be
efficient in practice, consistent with our experimental obser-
vations.

5.5 Conclusion

We have developed an exact solution and systematic
search-based minimization algorithm to compute the pro-
tein backbone structure using only two RDCs per residue
and very sparse distance restraints. The algorithm has been
implemented and demonstrated on three proteins using real
experimental NMR data. Furthermore, we show that the av-
erage case complexity of our minimization algorithm with
pruning provided by the real solution, Ramachandran and
the geometric filters can be profitably modeled as branching
processes. The analysis concludes that despite the worst-
case exponential running time, our minimization algorithm
should be quite efficient in practice, consistent with our ex-
perimental observations.
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Figure 6. The number of paths (Np(i)) along protein backbone. The x-axis is the depth, i, of the DFS-tree, the y-axis
is the total number of paths, Np(i), as defined in the main text. (A) With back-computed NH and CH RDCs and a Ramachandran
filter of ([−π, 0], [−π, 0]). The solid line is the computational experimental data while the dashed line is a normal PDF, N (µ, σ),
multiplied by a sinusoidal function with a 3.6 period. (B) With real experimental NH and CH RDCs and a Ramachandran filter
of ([−π, 0], [−π, 0]). The solid line is the computational experimental data, and the dashed line is a normal PDF multiplied by a
sinusoidal function with a 3.6 period. The data are presented for the protein ubiquitin with a sampling size = 512 × 1024. Note no
normalization has been applied.
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