—

Bruce R. Donald

Computer Science Department
Cornell University
Ithaca, New York 14853

Dinesh K. Pai

Computer Science Department
University of British Columbia
Vancouver, British Columbia VT6 1Z2

Abstract

We consider the problem of planning and predicting the mo-
tion of a flexible object amid obstacles in the plane. We model
the flexible object as a rigid. “root” body attached to compli-
ant members by torsional springs. The root’s position may be
controlled, but the compliant members move in response to
forces from contact with the environment. Such a model en-
compasses several important and complicated mechanisms in
mechanical design and automated assembly: snap-fasteners,
latches, ratchet-and-pawl mechanisms, and escapements. The
problem is to predict the motion of such a mechanism amid
fixed obstacles. For example, our algorithm could be used to
determine whether a snap-fastener design can be assembled
with a certain plan.

In this article we analyze the physics of these flexible de-
vices and develop combinatorially precise algorithms for
predicting their movement under a motion plan. Our algo-
rithms determine when and where the motion will terminate
and also compute the time history of contacts and mating
forces. In addition to providing the first known exact algorithm
that addresses flexibility in motion planning, we also note that
our approach to compliance permits an exact algorithm for
predicting motions under rotational compliance, which was not
possible in earlier work.

We discuss the following issues: the relevanice of our ap-
proach to engineering (which we illustrate through examples
we ran using our system), the computational methods em-
ployed, the algebraic techniques for predicting motions in
contact with rotational compliance, and issues of robustness
and stability of our geometric and algebraic algorithms. Our
computational viewpoint lies in the interface between differen-
tial theories of mechanics and combinatorial collision detection
algorithms. From this viewpoint, subtle mathematical difficul-
ties arise in predicting motions under rotational compliance,

A preliminary version of this article appeared in greatly abbreviated form
in the 1990 Proceedings IEEE International Conference on Robotics and
Automation.

The International Journal of Robotics Research,

Vol. 12, No. 4, August 1993, pp. 307-337, °

© 1993 Massachusetts Institute of Technology.

The Motion of Planar,
Compliantly Connected
Rigid Bodies in Contact,
With Applications to
Automatic Fastening

such as the forced nongenericity of the intersection problems
encountered in configuration space. We discuss these problems
and their solutions. Finally, we extend our work to predict the
forces on the manipulated objects as a function of time and
show how our algorithm can easily be extended to include
uncertainty in control and initial conditions. With these exten-
sions, we hope that our system could be used to analyze and
design objects that are easy to assemble, even given control
and sensing errors, and that require more force to disassemble
than to mate.

1. Introduction

We pursue an algorithmic theory of design for assembly.
To this end we develop and implement algorithms that
can analyze and generate designs for objects so that they
will be easy to assemble. In particular, we observe that
real objects that robots might assemble are typically not
rigid. For example, a Sony Walkman is made of plas-
tic parts that snap together. Significant advances were
made in the design of the IBM ProPrinter by replacing
traditional fasteners such as screws with plastic parts that
simply snap together. The reason these plastic parts snap
together is that they are flexible: more precisely, they are
passively compliant. This means that when the parts are
brought together and an external force is applied, the
parts deform in a prescribed way. More interestingly, the
force required to mate two parts may be much less than
the force required to take them apart.

Because we wish to be able to design and have our
robots assemble such objects given task-level descrip-
tions, we must have a systematic program for reasoning
about and predicting their motions in contact. To this end
we make precise a sufficiently powerful notion of flexibil-
ity to model the objects above that encompasses several
important and complicated mechanisms in mechanical
design and automated assembly: snap-fasteners, latches,
ratchet-and-pawl mechanisms, and escapements (Fig. 1).
We model the physics of interaction of the flexible parts

Donald and Pai 307

Escapements

Fig. 1. Examples of compliantly connected rigid bodies.

and the obstacles using generalized springs, quasistatic
analysis, and Coulomb friction. Using these tools, we
can proceed to develop combinatorially precise geometric
algorithms for predicting the motion of a flexible object
near and in contact with its mating part. A system based
on the results of this article is also described, as is the
relevance to the design of such mechanisms.

From a complexity-theoretic standpoint, our result may
also be viewed as follows. Earlier work on compliant
motion planning (Lozano-Pérez et al. 1984; Erdmann
1984; Donald 1988a) has employed a dynamic model
called the generalized damper (Whitney 1976). While
this mode] has led to exact algorithms in the case of pure
translations (Donald 1988a; Canny 1989), so far we have
not been able to provide combinatorially precise algo-
rithms once rotations are permitted. This is true even if
the commanded motion is a pure translation and the mov-
ing object (e.g., the peg) is merely rotationally compliant.
One reason for this difficulty seems to be that under the
damper model, the resulting motions are not obviously
algebraic; even more disturbing, the outer envelope (or
Jorward projection) of these motions cannot yet be alge-
braically described. (This is also a problem in many more
complicated dynamical systems.) However, under the
model in this article, rotationally compliant subparts are
permitted, and yet all resultant trajectories of the system
are algebraic. Finally, we believe that our algorithm is
sufficiently simple that it could be implemented and used
to plan and verify the design of flexible mechanisms for
ease of assembly.

308

We have implemented our algorithm and in this article
describe the details of the algorithm, implementation, and
experiments. We have built a system for predicting and
analyzing the motion of snap-fastener type devices and
we describe experiments we have run to analyze and
design particular objects.

A major impediment to developing systems such as
ours has been the apparent necessity to integrate the dif-
ferential mechanics to determine the long-term behavior
of the system. This problem is exacerbated by the fact
that in many models of rotational compliance, such as the
generalized damper (Lozano-Pérez et al. 1984; Erdmann
1986; Donald 1988a,b; Canny 1989), the resulting frajec-
tories are not known to be algebraic; neither do we have
ways of cémputing algebraic bounding approximations
(or forward projections). We begin by discussing.in quite
general terms how our model of compliance permits us to
obtain algebraic, closed-form solutions to motion predic-
tion problems for a rotationally compliant object and how
this leads to exact algorithms for analyzing designs for
assembly.

We continue by discussing the relevance of our ap-
proach to engineering. To this end, we give several exam-
ples of fastener type objects. We illustrate our discussion
with experiments performed with our system to automat- -
ically analyze and predict the motion during execution of
the assembly plan. /

Our algorithm is algebraic and exact insziinciple. How-
ever, unlike many theoretical algebraic algorithms, it is
also implementable. A chief goal of this article is to show
how we implemented it. Next, we discuss our algorithm
for motion analysis-in detail. Our work is interdisciplinary
in that it is situated at the interface between differential
theories of mechanics and combinatorially precise com-
putational approaches to collision detection and compliant
motion prediction. We employ some simple tools from
computational algebra and discuss their application in our
algorithm in some detail. Although these tools often seem
straightforward from a theoretical viewpoint, there is a
host of practical and implementational problems in trying
to build a system and reduce them to practice. Many of
these issues focus on the problems of robustness, non-
genericity, and stability. We discuss these problems in
some detail. For example, while many algebraic and
computational-geometric algorithms can assume gener-
icity (e.g., general position), we can show that in the
case of predicting rotational compliance, one is, in effect,
forced to solve nongeneric intersection problems in con-
figuration space. Careful thought is required to make such
algorithms robust. \ '

Our algorithm predicts where the motion will terminate
and the configuration and contact history as functions of
time. We also show how our algorithm can predict the
forces experienced by the manipulated parts as a func-

The International Journal of Robotics Research

tion of time. Thus, we can avoid designs that require
excessive forces to assemble and can analyze how a
design can be easier to mate than to disassemble. This
force-history extension requires the introduction of tran-
scendental functions and so results in a numerical (not an
exact) algorithm; however, any desired precision for the
forces may be obtained.!

Previous work on algorithmic motion planning has
Jargely concentrated on the movement problem for rigid
bodies (Lozano-Pérez 1983; Donald 1988b; Latombe
1991). Work in compliant motion planning under un-
certainty (Lozano-Pérez et al. 1984; Erdmann 1986;
Canny and Reif 1989; Donald 1988a,b; Canny 1989;
Briggs 1989; Friedman et al. 1989; Brost 1989, 1991)
has focused on the problem of moving rigid objects (e.g.,
pegs) in contact (i.e., compliantly) with obstacles (such as
holes) under force control, subject to bounded uncertainty
and error. The only combinatorially precise results that
have been obtained for compliant motion have been for
pure translations. Hence they are essentially inapplicable
for any real systems, which typically can rotate. Indeed,
planning and simulation for systems with rotational bod-
ies and rotational compliance have resisted solution in
the sense that only approximate, heuristic, or numerical
algorithms are known. We consider a mechanical sys-
tem of bodies that can compliantly slide on obstacles
while they translate and rotate in the plane. We provide
an exact, effic. 1t algorithm for predicting the motion of
these rather interesting devices, which, as we we discuss
later, are important in manufacturing, design, and factory
assembly. The key ideas we use are red-blue merge al-
gorithms, a simple dynamical systems model, and local
dynamic constraints. These tools permit us to reduce the
simulation to a plane sweep of a “dynamically annotated”
slice of configuration space. We hope that the paradigm
of “simulation as sweep” may be useful in other domains.

We view the simulation problem, even with rotational
compliance and quasistatic mechanics, as a problem that
can be solved by careful reduction to a plane sweep. In
particular, for each pawl, we reduce to sweeping a pla-
nar arrangement of algebraic curves of low degree. The
connected component of free space defined in this planar
arrangement has complexity O(A.(n)) and can be con-
structed in time O(\-(n) log2 n) using a red-blue merge
algorithm (Guibas, et al. 1988). Here A-(n) is the (almost
linear) maximum length of (n, r}.Davenport-Schinzel
sequences (Guibas, et al. 1988). 7 is a small constant re-
lated to the number of times two cubic? configuration

1. By substituting a polynomial approximation for the transcendental
functions, the algorithm could be made an e-approximation scheme.

. 2. By “cubic” we mean the total degree of the defining multinomial is 3.
Our curves have additional structure, such as low-degree parameteriza-
tions, as well. '

N

Fig. 2. Linked body M moving among N.

space constraint curves can intersect. Our approach to
modeling rotational compliance and incorporating fric-
tional constraints leads to the first formulation of the
simulation prediction problem that permits a reduction
of motion prediction to plane sweep. Our solution dif-
fers from previous work on predicting, bounding, and
planning rotationally compliant motions with quasistatic
mechanics in that it is (1) purely algebraic, and hence
exact; (2) combinatorially precise, in that the computa-
tional complexity is exactly known, and (3) requires no
integration.?

2. Problem Statement

We consider the problem of moving a flexible, linked
body M in the plane in a polygonal environment N.
The flexible body M is modeled as follows: polygons
My, h=1,...,k, called “pawls,” are attached to a root
polygon Mj at hinge points Pp. Each hinge is coupled
with a spring of stiffness . (Fig. 2). We refer to the
static environment, N, as “obstacles,” although in fact, it
will probably consist of fixtures and/or the mating half of
the manipulated part.

The motion of the body M consists of rigid transla-
tion of the root polygon M. The pawls M}, are free .

1o move compliantly as dictated by interactions with the
environment and the spring.

Time 7" will be represented by the nonnegative real
numbers. A solution trajectory ® for the system (M, \)
is a family of maps (¢, @1, - - -, ¢x) Where ¢g : T — R*
specifies the configuration of the root and each ¢y :

T — S! specifies the orientation of pawl polygon M,
h=1,...,k. Hence the global configuration of pawl My,
at time t is given by (p(t), #r(t)), where p(t) differs by a
constant offset from @y(t). We see that the conﬁguratioh

3. Note that Donald (1988a), Canny (1989), Briggs (1989), and Friedman
et al. (1989) address geometric reachability issues for translationally
compliant objects, but these objects cannot rotate.

Donald and Pai 309

k S's

———
space of the system (M, N) is* C=R2 x §* x --- x S

DEerFINITION 2.1.
mine:

The Simulation Problem is to deter-

1. The solution trajectory @ : T — C of the system.

2. The time of termination of the motion, the cause
of termination (such as sticking caused by friction,
sticking caused by kinematic constraints, etc.), and
the configuration of M at termination.

3. The time history of contacts between M and V.

We also address some extensions of the simulation
problem in Appendices A and B, including the determi-
nation of the time history of forces during the motion and
the effect of uncertainty.

‘We make the following assumptions about the physics
of object interactions and the motion of M:

* Object interactions are restricted to those between
Mp, and N. In other words, pawls do not collide
with each other but may collide with the environ-
ment M. The effect of this assumption is to make
the motion of each pawl independent of the motion
of other pawls. Henceforth we shall consider the
motion of a single pawl Mj,.

* Because the root M is undergoing a rigid transla-
tion, so does the hinge point P,. We shall assume
that this translation is a straight-line motion given
by

p() = po + P, (D

where © is the time, py is the initial position (at
t = 0) of Py, and p (= o) is its velocity.

* Stable contact: Suppose the pawl is in contact with
a feature (edge or vertex) of the environment (for
example, during sliding). We assume that if we per-
form a small displacement of the pawl away from
the ‘environment, the torque on the pawl caused by
the spring is such that the contact will be restored.
This assumption is not very restrictive at all; in fact,
in the face of even the smallest uncertainty, stable
contacts are the only. ones one can hope to observe
in practice. :

* Quasistatic motion: The motion is assumed to be

" slow enough that inertial effects are not significant.
This corresponds to assuming that there is no ac-
celeration of the pawl, and hence the forces on the
pawl are balanced. The quasistatic assumption is

4. This is the configuration space with no springs, only kinematic con-
straints. The introduction of springs means that it is not possible to iden-
tify a rotation of 27 with 0, since at 27 the pawl is “cocked.” Hence the
introduction of dynamics forces us to pass to the covering space RF+2.
Our analysis goes through mutatis mutandis for the covering space.

310

_reasonable at small speeds and is widely used (see,
for example, Whitney 1982; Mason 1982; Donald
1988b; Pai 1988). ‘

+ If the pawl slides off AV into free space, it may have
a residual torque as a result of the spring being
cocked. We shall assume that the pawl rotates back
toward its rest orientation at such great speed that
p does not change significantly during the rotation
and can be taken to be constant. This, incidentally,
is the “snap” in the snap-fasteners that we wish to
model. This assumption may appear to contradict
the assumption of quasistatic motion, but is in fact
practically a consequence. Quasistatic motion im-
plies that the root is moving “slowly enough” for
the forces to be balanced. Hence, when a pawl is in
free space and has a residual torque, its motion can
be fast compared with that of the root, resulting in a
“snap.” This assumption can be relaxed by assuming
a linear relationship between the translation p and
the rotation (Canny 1986), but we do not deal with
it here.)

* The forces of friction arising from contact cbey
Coulomb’s Law. We further assume that there is a
single coefficient of friction. This assumption is also
widely used. '

1

These assumptions define a simple but adequate dy-
namical system. We will exploit the geometry of this
system extensively to obtain our results.

3. Examples
3.1. The Two-Pawl Example

Figure 3 shows a flexible device that is to move and snap
around a mating part (a black, T-shaped object). Now, for
a real device, the pawls will be tiny in comparison to the
root body and mating parts, but we have made them very
large here so as to illustrate the geometric interaction. In
this example, the coefficient of friction is very small. This
enables the reverse motion to “pull the paw! back up” out
of its mating part.

The “assembly plan” for the parts consists of a straight-
line translation of the root body; this motion is parame-
terized by time and is specified by an initial configuration
and a velocity vector. (Throughout this article, we will
use the term “assembly/disassembly plan” to mean such
a straight-line translation.) As the pawls contact. the en-
vironment, they can move in a prescribed way from the
contact forces. In particular, each pawl is attached to the
root by a torsional spring. The pawls can also “snap” off
the obstacle edge back to their zero position; this motion
is modeled using a pure rotation. As the motion pro-
ceeds, the pawls deform (deflect) around the obstacles

The International Journal of Robotics Research

in response to the kinematic constraints and the contact '
forces (Fig. 4).

When a root collision is detected, the system attempts
to reverse the assembly plan and pull straight up. Because
there is no friction, the pawl can be removed. If the coef-
ficient of friction is increased, then the left pawl will stick
on left of the T environment, and the flexible object can-
not be pulled back up. This example shows that although
it is relatively clear intnitively that during assembly the
pawls may snap around the black T-shaped object, even
this simple problem holds some surprises. First, the right-
hand pawl cannot actually reach around the base of the T
before the root collision occurs. Second, it is not a priori
clear that the left pawl will not stick during the reverse
(disassembly) plan. In fact, it will not stick on the left of
the T merely because of kinematic constraints; friction is
required.

Figure 4 was generated by our algorithm. Kinematic
constraints are modeled using configuration space C sur-
faces, as in Lozano-Pérez (1983), Donald (1987), and
Brost (1991). Reaction forces are modeled using Coulomb
friction. The dynamics of the system are assumed to be
quasistatic (Whitney 1982; Mason 1986); we regard this

1Y I

Fig. 3. The root body is rectangular, and the motion plan
is straight down. The two pawls are hook-shaped and
are attached with torsional springs at the hinges to the
root body. The environment (“obstacles”) are the two
filled-in rectangles meeting at right angles; they form

a T-shaped black body. In this example, it seems that

the pawls will clearly comply to the T and snap around
it; presumably this device cannot be disassembled by
reversing the assembly plan. In fact, our algorithm shows
that (1) the right-hand pawl cannot reach the base of
the T, and (2) with low friction, there is no obstacle to
disassembling the device.

assumption as a Oth-order approximation of the real dy-
namical system.

3.2. “Motion Diode” Example

“In design for assembly, we often desire “locking” parts

that, when mated, cannot be disassembled by motion
plans in a particular family of directions. More generally,
we may require interlocking parts that cannot be disas-
sembled at all for any translational motion plan. Most
generally, one might want parts that cannot be disas-
sembled without exerting large forces (see Appendix A).
Following a suggestion of Mason (personal communica-
tion, 1984), we call such objects “motion diodes.” The
term is motivated by the fact that motion is possible in
certain directions, but not in others. Our usage differs
from Mason’s in that his motion diodes are geometries
from which a robot cannot be guaranteed to emerge. Our
motion diodes are (flexible object, environment) pairs
such that for some family of controls (or perhaps all con-
trols), no change in the sign of the controls can reverse
the motion to reachieve the start position. In our sim-

ple case a “plan” is a translation given as a straight-line
motion

P = Po + pt, @

where ¢ is the time, pg is the initial position (at ¢ = 0),
and p is the root velocity. A family of controls corre-
sponds to a set of velocities { p }, and changing the sign
amounts to specifying —p.

If motion diodes can be designed, analyzed, and ver-
ified, then they can be rigidly attached as “fasteners™ to
bodies that we wish to mate, but not disassemble. For
example, if the triangular pawl in Figure 5 is attached in
the z-axis (perpendicular to the figure) to a root body in a
paralle] z-y plane to the figure, then the root body can be
fastened irreversibly to its mating part.

Our algorithm can analyze designs for these kinds
of diodes. In Figure 4, the two-pawl device and the T-
shaped object would form a motion diede with respect to
pure trapslation in y, for sufficiently high coefficients of
friction.

Now see Figure 5. In this example, there is no root
body. The one triangular pawl can pivot about its center;
a torsional spring is attached at the pivot. The pawl is
moved down in a pure —y translation, and in response
to the reaction forces from the environment, it rotates
compliantly. Let us label the black obstacles, starting
with the uppermost one, in clockwise order: A, B, and
C. The pawl contacts A and rotates counterclockwise
while sliding along A’s upper left comer. Eventually, the
pawl breaks contact with A and snaps off, only to hit the
rightmost vertex of C. It briefly slides (while rotating

Donald and Pai 311

(@

©F

2 WL

Fig. 4. The result of running our algorithm on the two-pawl example. Notice how the pawls comply around the ob-
stacles as they deform in response to the kinematic constraints and the contact forces. Figs. A—G show the motion
downward. At G, the root collides with the T, and the motion is reversed. Figs. H-O show the reverse motion upward.

312 , The International Journal of Robotics Research

Fig. 5. “Motion diode” example. There is no root body and only one triangular pawl that can pivor about a torsional
spring at its center. Pure translations of the diode can be commanded, and the triangular pawl deflects in response

10 contact forces from the environment. These figures were generated by running our analysis algorithm on the data
shown. In C, the pawl snaps off the upper right obstacle and continues downward. Fig. 6 shows the reverse motion,
during which the pawl gets stuck coming back up.

Donald and Pai 313

compliantly) along C' until it hits B. The tighter con-
straint from B takes over, and the pawl is again “cocked”
counterclockwise until it breaks contact at the lower left
vertex of B. Finally, the pawl snaps off B to its rest

* position.

- This mechanical system is a “diode” with respect to
‘pure y-translation (see Figures 5 and 6)—i.e., when the
pawl is moved back up in the +y direction, it jams as a
result of incompatible kinematic constraints. More inter-
estingly, if B and C are extended to the right and left,
respectively, the system is a diode with respect to all
translational motions. That is, no commanded translation
can bring the flexible body back out of the hole between
B and C. Our algorithm can decide that for a particular
motion plan, a system is a diode. There also exists a the-
oretical extension of our algorithm, using the theory of
real closed fields, that can decide whether the system is
a diode with respect to every disassembly plan, but this
algorithm is not practical. In practice, applying the algo-
rithm to a discretization of the control set would be more
practical, although not exact.

4. Overview of Results

4.1. Differential Theories of Mechanics: An Algebraic
Approach

We view the motion prediction problem, even with rota-
tional compliance and quasistatic mechanics, as a problem
that can be solved by careful reduction to intersection (or

Fig. 6. “Motion diode” example. When we iry to pull the
flexible object back up (move in direction +y), it gets
stuck because of kinematic constraints.

314

collision detection) problems (Canny 1986; Donald 1984,
1987). Our approach to modeling rotational compliance
and to incorporating frictional constraints leads to the first
formulation of the motion prediction problem that permits
a reduction of motion prediction to collision detection.
Our solution differs from previous work on predicting,
bounding, and planning rotatiorally compliant motions
with quasistatic mechanics in that it is (1) purely alge-
braic, and hence exact; (2) combinatorially precise, in
that the computational complexity is exactly known; (3)
practical and implementable; and (4) requires no integra-
tion. In this subsection we elaborate somewhat on these
characteristics.

To predict the motion of objects in a mechanical sys-
tem, we require a computational theory of mechanics. A
differential theory of mechanics takes the instantaneous
state and forces and computes the resultant instantaneous
motion. '

Quasistatic analysis is another differential theory of
mechanics, in that it predicts the instantaneous motion
given state and friction forces.” In general, differential
theories can be integrated, in the sense that the long-
term behavior can be integrated out, given the differential

~ mechanics. We say that a theory is closed-form integrable

when we can solve for the resultant curves in state-space
in closed form. When a theory is closed-form integrable,
we can develop exact, combinatorially precise algorithms
for predicting and planning the motion of objects (Donald
1988a,b; Canny 1989; Briggs 1989). When a closed-form
solution is not known, numerical methods can be used to
integrate out solutions in some cases.

Quasistatic mechanics and generalized damper dynam-
ics are indeed closed-form theories in the case of pure
translation. However, once rotational compliance—the
tendency of a manipulated object to change its orientation
in response to reaction forces from the envirenment—
is introduced, we do not have closed-form integrable
theories of mechanics. We do have precise, algorithmic
theories of the differential mechanics, such as Erdmann’s
generalized friction cone (Erdmann 1984, 1991) and the
acceleration center force—dual model of Brost and Mason
(1989), but these theories must be numerically integrated
to obtain solutions. The best algorithms for this process
are not combinatorially precise and do not have solution
accuracy bounds. This problem is exacerbated by uncer-
tainty in sensing and control; in this case we are left with
the very different problem of trying to integrate out a
stochastic vector field on a holonomic constraint, subject
to a family of initial conditions.

In contrast, we use a well-known theory of mechanics
with rotational compliance that is not only closed-form

5. In the case of ambiguity or nondeterminism, we view such a theory as a
relation.

The International Journal of Robotics Research

integrable, but closed-form algebraic. By this we mean
the following: Our theory is based on the differential
mechanics, but can be integrated to produce solutions that
are algebraic curves in the configuration space. In fact,
the solutions paths are parameterized by time and are
piecewise quadratic or linear. Because we can represent
configuration space C surfaces as quadric surfaces, all of
the resulting intersection problems (Section 4.2) are no
harder than intersecting a quadratic path with a quadric
surface. Somewhat surprisingly, even the functions that
determine at what times sliding and sticking will occur on
a surface are also quadratic in the time parameter.

Closed-form algebraic solutions permit us to construct
exact, combinatorially precise algorithms for the mo-
tion prediction problem. Furthermore, they allow us to
straightforwardly generalize our techniques to encompass
certain simple types of uncertainty in control and initial
conditions.

In principle, our algorithms can be implemented using
exact-precision, algebraic numbers. In practice, we use
finite-precision approximation techniques. Robustness is
a key issue, and algorithms that are theoretically correct
with exact precision are often numerically unstable. A
major component of our research consists of building a
system that can strengthen the theoretical algorithms (e.g.,
by adding consistency checks) to make them practical.

4.2. Computing Motions and Intersection Problems

We now provide a somewhat informal view of our results.
Here are the qualitative states of the root body: it is either
undergoing a pure translation or is stuck as a result of
incompatible kinematic constraints. It is clear that for the
root body, all we need to compute is the time at which
this sticking occurs. This time is an upper bound on the
simulation.

The state of a.pawl is more complicated. When a pawl
is in free space undergoing a pure translation, it can strike
a surface. This requires a translational collision detection
algorithm. When the pawl is in contact with a surface, as
time increases, its configuration (orientation in this case)
must change so as to comply with this constraint. (We
use the term “constraint” as in Lozano-Pérez [1983] and
Donald [1987] to refer to the kinematic constraint that (1)
an edge of the pawl touch a vertex of the environment
or (2} a vertex of the pawl touch an edge of the envi-
ronment. These constraints form type “(A)” and “(B)”
configuration space surfaces, respectively.) See, for exam-
ple, Figure 4. In this case, the configuration space of the
flexible object is R2 x S! x §*; a point in R? specifies the
configuration of the root body, whereas each angle in S!
specifies the orientation of the right and left pawls. In this
case, we require an algorithm that can return the mapping

from time to configuration and the curve in configuration
space that is the image of this mapping.

Now, as the pawl traces out this curve, three things
can happen. First, the pawl may break contact with the
surface constraint because of incompatible kinematics.
Second, the pawl may stick on the surface, due to force-
balance from the reaction forces. (More generally, for
every constraint, there may be at most two disjoint time
intervals during which sliding (or sticking) occurs, sep-
arated by an interval during which sticking (or sliding)
occurs.) Third, the pawl may strike another constraint.

In Sections 6, 7, and 8, we perform the kinematic and
physical analysis required to compute the times at which
these events occur, and we describe the algorithms. In
particular, we show how, given a constraint, to compute
a quadratic function of time whose zeros define the end
points of these intervals of sliding and sticking behavior.

Finally, when a pawl breaks contact and “snaps off,”
we must perform a pure rotational intersection test to
determine where it snaps to. When a pawl lies on the in-
tersection of two constraints, we must determine whether
sticking occurs there because of incompatible constraints,
or which constraint takes precedence and becomes a new
constraint at that time.

4.3. Exact Solutions for Mechanical Simulations

A major impediment to developing simulation systems
has been the apparent necessity to integrate out the dif-
ferential mechanics to determine the long-term behavior
of the system. This problem is exacerbated by the fact
that in many models of rotational compliance, such as the
generalized damper (Lozano-Pérez et al. 1984; Erdmann
1986; Donald 1988a,b; Canny 1989), the resulting trajec-
tories are not known to be algebraic; neither do we have
ways of computing algebraic bounding approximations (or
forward projections). Hence the traditional numerical ap-
proach to simulating such systems has been the following:

Typical Simulation Algorithm

1. Given a state z of the system, numerically integrate
the differential equation governing motion of the
system. Step forward in time to obtain (approxi-
mately) new state z’.

2. Perform collision detection either at 2’ or along the
path from z to z’.

3. If the constraints have changed, reformulate the
differential equation.

4. Repeat.

Numerical simulation of mechanical systems is fraught
with error, special cases, and numerical problems. They
are rarely combinatoriaily precise and almost never come

Donald and Pai 315

with guarantees of accuracy. In this article, we show how
our simple model of compliance permits us to obtain al-
gebraic, closed-form solutions to simulation problems

for a rotationally compliant object and how this leads to
exact algorithms for analyzing designs for assembly. In
particular, the linear map p(%) is given by eq. (1), and
once we “rationalize” rotations via the standard substitu-
tion u = tan /2, each map ¢y, is piecewise cubic. Thus
numerical simulation can, in principle, be avoided, and
exact solutions can be obtained. We cannot claim that this
can be done in general. However, our method yields, in
this case, computationally efficient, exact solutions and
may possibly be useful in other domains.

In Section 9, we give a new simulation algorithm that
is exact and runs in time O(kA.(n) log2 n). Here, we as-
sume that the obstacles have m; vertices and the moving
object (root and one pawl) has m, vertices; we define
n = Mmgm; to be the measure of the geometric complex-
ity. Ar(n) is the (almost linear) maximum length of (n,7)
Davenport-Schinzel sequences (Guibas et al. 1988), and
7 is a small constant. Our method reduces the simulation
problem to a plane sweep of an arrangement of algebraic
curves in configuration space.

4.4. A Classification of Motion Diodes

Consider Figure 7, which is a gedankenexperiment illus-
trating different types of diodes. The flexible mechanism,
and in particular the pawl structure, is very similar to
Figure 3. The commanded motion is in the —y direction.
Now, for geometry (b), the pawl deflects clockwise and
snaps onto the sharp bump at the lower left of (b). The
motion is not reversible, caused by kinematic constraints
alone. Now, unless constraint (c) is present, there may ex-
ist other translations that will disassemble the mechanism.
The addition of constraint (¢) means that no translation
can disassemble the mechanism (so long as (b) is “tall
enough” (Fig. 7)). Now consider Figure 7D. This geome-
try also prevents +y motion, but the sticking is caused by
friction, not kinematics. Finally, consider Figure 7E. Here,
relatively small forces are required on the root in the —y

. direction to assemble the object; however, large forces are
required on the root in the +y direction to disassemble
the object. (E) is an object that it is easier to assemble
than it is to disassemble.

One application of our algorithm has been to deter-
mine whether a system is a motion diode and what kind
of diode it is. Flexible mechanisms that function as mo-
tion diodes can be used to fasten one part to another
and to make the mechanical connection robust with re-
spect to attempted relative motion of the two parts. This
kind of analysis could be very useful in design for as-
sembly. Using our algorithm, we can form the following
classification of flexible mechanism motion diodes. The

316

classification is “two dimensional” in the sense that one
“axis” is relative vs. total motion, and the other axis is
kinematic vs. friction vs. force diodes.

More specifically, the first classification is:

1. A relative motion diode is a (flexible object, envi-
ronment) pair such that for some family of controls,
called the relative motions, no change in the sign of
the controls can reverse the motion to reachieve the
start position.

2. A total motion diode is a relative motion diode for
all relative motions.

The second classification is:

A. A kinematic diode prevents reverse motion caused
by purely kinematic constraints.

_

Fig. 7. In (A), we see a pawl-type mechanism affixed to
a root body that is translating down in the —y direction.
The pawl is very similar to Fig. 3. (B) forms a relative
motion kinematic diode. Without constraint (C), there
exist other translations that disassemble the “snapped
onto” final configuration. If we make the distance top
long enough so that the root collides with the top of B,
then the addition of constraint (C) turns (B) into a total-
motion kinematic diode. Now, (D) forms a friction diode,
and (E) forms a force diode. The presence or absence of
(C) determines whether (D) and (E) are total or relative
motion diodes.

The International Journal of Robotics Research

B. A friction diode prevents reverse motion caused by
a combination of kinematic constraints and coulomb
friction. It depends on the coefficient of friction.

C. A force diode is described in Appendix A. Essen-
tially, one imagines replacing the control of a root
body by generalized spring position control, thus
equating displacements of and forces on the root
bedy in a first-order relation. This permits one to
ask: What forces are experienced by the pawls as a
function of time? and What force is exerted on the
root to cause the motion? A force diode, roughly
speaking, is a friction diode for all control forces
below a certain modulus bound.

Hence, we see that without friction, Figures 3 and 4
are not a diode. With sufficiently high friction, itis a
relative motion friction diode. Figure 5 is a total mo-
tion kinematic diode. Our algorithm can decide all these
classifications automatically.

In Figure 7, we see that (B) is a kinematic diode, (D)
is a friction diode, and (E) is a force diode. If we add
constraint 7C and make (B), (D), and (E) “tall enough,”
then these are total motion diodes; otherwise, they are
relative.

One goal of our algorithm has been to provide an al-
gorithmic means of classifying flexible objects such as
snap-fasteners by diode type. Obvicusly, this is just a
start, and other, finer types of classifications are possible.
Ours seems useful in design and is efficiently computable
by implemented, precise algorithms.

5. Simulation and Algebraic Intersection
Probiems

From an algorithmic point of view, our work can be
thought of as reducing the flexible object motion pre-
diction problem to intersection problems (like collision
detection) in C space. There are, of course, additional
complications, such as the presence of friction, that need
to be addressed. In this section, we show how to reduce
geometric intersection problems to problems in elemen-
tary elimination theory (particularly, the simultaneous
solution of polynomial equations and inequalities).

As the linked body M is moved in the environment
N (see Figure 2), the pawl M}, may collide with an
obstacle. We need robust algorithms to detect and report
the collision. While a pawl is sliding on a feature of
the environment, it may arrive at configuration at which
it is kinematically impossible to continue to maintain
contact—the paw! will either snap off the environment or
jam on it. We need a way to determine when this occurs.
These seemingly unrelated problems are in fact reducible
to intersection problems in configuration space.

Three types of motion are possible for the pawl in our
problem: pure translation without rotation; pure rotation
without translation; and, most importantly, the motion of
the pawl sliding while maintaining contact with a given
feature of the obstacle. The collision detection problem
is to find the times at which the pawl collides with A'and
report which features are in contact during collision.

We are able to perform this analysis efficiently by
developing a simple dynamical systems mode]l using local
dynamic constraints. These tools permit us to reduce the
simulation to a plane sweep of a “dynamically annotated”
slice of configuration space.

More specifically, two types of contact are possible
between the pawl M, and a polygon in N Following
the convention of Lozano-Pérez (1983), we say that type
A contact occurs when a vertex of A touches an edge
of the pawl; type B contact occurs when a vertex of the
pawl touches an edge of A,

‘We can now write the contact constraint equations for
the two types of contact, as in Canny (1986). We will
index features (vertices and edges) of the moving pawl by
the subscript ¢ and features of the polygonal environment
by the subscript j. Let an edge of M}, be represented by
its outward normal, n;, and its distance to the hinge point
along the normal, d;. Let p; be a vector to the contact
vertex of \. Let Ry be the linear transformation that
rotates a vector by an angle 6. Then the type A constraint
can be written as

(p; — p)-Rom — d; = 0. 3)
Similarly, the type B constraint can be written as
(Rops + p)-my — dj = 0.)

Where p; is the vector from the hinge point Py, to the
contact vertex of Mp,.

In each of the cases, the obstacle constraint equations
((3) and (4)) can be reduced to algebraic equations. This
is possible because the trigonometric functions in the ro-
tation matrix Ry can be replaced by new indeterminate
quantities (e.g., siné = s, cosd = c), with the addition
of a new constraint (s* + ¢ — 1 = 0). More practically,
the substitution » = tan §/2 yields constraint equations
that are quadratic in w, with coefficients that are affine
in z and y. Because z and y are affinely parametric in
time %, the coefficients are also affine in ¢. Intersecting
two of these constraints requires intersecting two quadrat-
ics. Pure rotational intersection detection (the “snap”)
requires solving a quadratic in u. Pure translational inter-
sections require solving an affine equation. Hence there
exists a closed-form, purely algebraic solution to these
intersection problems. The collision detection for each
obstacle constraint can be done in constant time, because
the degree, size, and number of variables in the constraint

Donald and Pai 317

polynomials are fixed. If m,, is the geometric complexity
of the pawl and m; is the geometric complexity of the
size of the environment, there are m,m; such constraints.

Because the constraint equations are quadratic in wu, it
is possible that in some interval of time the discriminant
A of the constraint equation (treated as a quadratic in
u) becomes negative, yielding no solution for u. This
corresponds to the pawl either having snapped off the
constraint or having jammed on it. By solving for the
critical times £, at which the discriminant changes sign,
we can determine, by careful analysis, which case occurs.
The details of this analysis are found in Section 8.3,
since it is related to the problem of choosing the “correct
branch” for collision detection.

The geometric intersection algorithms for our problem,
however, involve several subtle and important issues to
make them robust in practice. We go into some detail
about how to solve such systems, as specialized to our
particular application, and how to implement the solution.
We have two goals. The first is to elucidate a theoretical,
exact, algebraic algorithm that is correct. However, this
algorithm is numerically unstable when implemented
with finite precision arithmetic. Hence robustness is a key
issue. We emphasize the steps we have taken to enhance
robustness and, in particular, to strengthen the theoretical
algorithm by adding consistency checks.

Our approach to implementing a robust algorithm is
somewhat experimental. The first step is noticing what
robustness difficulties arise. The second is analyzing their
causes and placing this analysis on a firm mathematical
footing. Where possible, we propose solutions for some
of the cases in which we believe we have found a robust
strengthening of the underlying theoretical algorithms.

We implemented a specialization of Donald’s (1984,
1987) representation for 6-DOF (®* x SO(3)) configura-
tion space obstacles to the case of ®? x S'. We quickly
review that representation. Let C denote the configuration
space ®* x S', and let (x, §) be a typical configuration. A
C-space obstacle CO is defined by a predicate on config-
urations (as in Donald [1987]).

A (eem:fi(x,e)SO).)

i€c family(A,B)

Here, the functions f; : C — R are called C functions;
their negative conjunction in effect defines the C-space
obstacle. Each f; is restricted by an applicability region
A;, which is a sector (angular interval [@nin, Omax]) Of the
unit circle S'. The reason for this is that each f; is gen-
erated by considering the interaction of a feature (edge
or vertex) of a pawl polygon A with a feature (vertex
or edge) of an obstacle polygon B. Contact, or interac-
tion between generating features, is only possible for a
connected angular interval of orientations; this interval

318

is precisely the applicability interval A;. The set of all C
functions generated by A and B is called the “C family”
¢ family(A, B). See Brooks and Lozano-Pérez (1983) and
Denald (1987) for details on computing the C functions
and the applicability constraints.

A C-surface ker f; is defined as the applicable zero-
set (kernel) of a C function f;. It contains a patch of
configurations where the two generating features of f; can
be placed in contact. The key step in detecting a collision
of a path with a C-space obstacle C'O defined by (5) is to
simultaneously solve for the path’s parameter subject to
the C-surface constraint® f; = 0.

6. Sticking Caused by Friction

A careful analysis of the physics of compliant sliding is
necessary to formulate a precise, combinatorial version
of this apparently continuous problem. When the pawl

is in contact with the environment, it is possible for the
motion to stop, because the contact forces are adequate to
balance the applied forces. This is called “sticking caused
by friction,” to distinguish it from other kinds of sticking.
The algorithm must determine if this can happen during
motion. The work of Mason (1982) and Erdmann (1984)
addresses this issue in considerable detail. In this section,
we show that for our problem this determination can be
made by a simple geometric test.

Coulomb’s law of friction states that the tangential
force caused by friction, f;, on a point that is sliding on
an edge in a specified direction is given by § = ufy,
where f, is the force normal to the edge and 4 is the
coefficient of friction. In addition, the direction of the
friction force is opposite that of the motion. ”

Coulomb’s Law has a geometric interpretation that is
frequently more useful (see, for example, Mason 1982).
We provide here a slightly different interpretation which
is more applicable to our problem. Suppose point p; is
in contact with edge e;. The outward pointing umit nor-
mal vector to the edge is denoted n;. We are also given
the direction of sliding by specifying v, the unit vector
tangent to the edge in the direction of sliding (Fig. 8).

Coulomb’s Law defines a half-cone of forces acting
on the point p;. The cone is the convex combination’ of
the vectors n; and the vector fo = n; — uv. Any force
in the interior of this cone and along n; can be resisted,
and the point will stick. A force along f, will result in
pi sliding in equilibrium in the direction of v. A force
outside the cone results in the point sliding along v, out

6. We will often use the term “constraint” to blur the distinction between a
C function and its kernel.

7. The convex combination of two vectors x and y is the set of all vectors
of the form {x + ny, where {,n > 0.

The International Journal of Robotics Research

II1

Fig. 8. Geometric interpretation of Coulomb’s Law.

of equilibrium, which is precluded by our assumption of
quasistatic motion.

We first consider the type B contact: the point is the
vertex ¢ of the pawl, and the edge is the edge e; of the
environment. Let r = Rgp;. The assumption that stable
contact is maintained (see Section 2) between the point
and the edge restricts the possible values of the force f
on the pawl and the torque r x £% caused by the contact
force. First, f-n; must be positive; second, if the hinge is
in the right half-plane, we require r x £ < 0 for stability,
and if it is in the left half-plane, we require that r xf > 0.
For quasistatic sliding, the total force is given by f = ofe,
« > 0. Therefore f trivially satisfies the condition f-n; >
0. The condition on the torque r x f, however, depends on
the location of the hinge point. Let the possible locations
of the hinge point with respect to the contact point, —r,
be divided into four sectors as follows: if —r = Bn; 4 fe,
the hinge point is in

Sector I
Sector 11
Sector III
Sector IV

if3>0,v>0,
if8<0,v>0,
if 3<0,v<0,
if3>0v<0.

Figure § also indicates the sectors.

ProposITION 6.1. For type B contact, the contact point
will slide when the hinge is in sectors II and IV. The
contact point will not slide (will stick because of friction)
when the hinge is in sectors I and III.

Proof. Suppose the pawl is sliding quasistatically. Then,

f=of,
= a(nj — uv).

8. Herer x fis the component of the usual cross product along the axis
orthogonal to the plane (i.e., in coordinates, r x f =17y fy —ryfz).

Fig. 9. Type A contact.

r = —[fn; + A
= — [(B+ 7)my — ypv].
rxf=—a[0-@+yu+yu+0]
= ofBu. ()

Because «, ¢ > 0, the sign of r x £ is just that of 5.
Now, in sectors I and II, the right-half plane, we require
that r x f < 0 to maintain stable contact. However, from
equation (6), r x f > 0 in sector I and r x £ < O in sector
IL Hence the contact point will stick in sector I and slide
in sector II. A similar argument shows that the contact
point will stick in III and slide in IV. a

A similar argument applies to type A contact if the
sectors and related terms are defined appropriately (Fig.
9). Let f be, as before, the force on the point of contact,
which is now a vertex 7 of the environment, and let r
be the vector from the hinge point to the contact point,
which is now given by r = p; — p. Let the outer normal
of the edge e; be denoted by m; = Rgn;, v be the unit
vector tangent to the edge in the direction in which the
vertex slides with respect to the pawl’s edge, and f, =
m; — uv. To maintain coutact, £m; must be positive,
and if the hinge is in the right half-plane, we require
r x —f > 0 (ie., r x f < 0); if it is in the left half-plane,
we require that r x f > 0.

With the terms defined as above, we can divide the
possible locations of the hinge point with respect to the
contact geometry into four sectors exactly as we did for
type B contact, despite the fact that the interpretation
of the sectors is different. Now it is easy to prove the
corresponding proposition:

PROPOSITION 6.2. For type A contact, the contact point
will slide when the hinge is in sectors II and IV. The
contact point will not slide (will stick because of friction)
when the hinge is in sectors I and III.

Donald and Pai 319

Proof. 'The proof is textually identical to the proof for
type B contact, with n; replaced by my;. |

7. The Sliding Direction

The analysis of Section 6 utilized the direction of motion
to determine whether the pawl could stick as a result of
friction. It turns out that the direction of the motion can
be determined from the differential kinematics of the
contact, given the motion of the hinge, p.

Consider the motion for a type B contact. For con-
venience, assume that the y-axis of the reference coor-
dinate frame is along the outward normal of the edge
(i.e., y = mj), and the z-axis is along the edge, orien-
ted to form a right-handed coordinate system. Recall that
r = Rgp;. Define the departure speed, u, as the compo-
nent of the velocity of the contact point along the edge
normal m;. The velocity of the contact point is given by
I+ p. Hence

u=(F+p)y =wrg + Py @)

The differential kinematic constraint for sliding corre-
sponds to the requirement that the departure speed is
ZEr0.

wrg +py = 0. ®&

The sliding speed, s, is defined as the component of
the velocity of the contact point in the x direction. (The
vector v of Section 6 is therefore sgn(s)x.) Hence,

s = (F+p)x)]
= —wry + Pz (10)

Combining with equation (8),
s:m+%w. an

z

Equation (11) has a simple geometric interpretation,
shown in Figure 10. The circle represents the possible
positions of the hinge point with respect to the contact
point. The numbers on the circle indicate the sliding
speed when p, < 0. (If gy > 0, the speeds shown have
opposite sign; if g, = 0, s is constant.) Notice that the
sliding speed is O when r-p = 0. Also, from equation (8),
w < 0 when the hinge point (—r) is in the right half-
plane of the figure and w > 0 in the left half-plane.

We can now combine the above results with those of
Section 6. Suppose, without loss of generality, that the
hinge point is in the right half-plane. If the hinge is in the
region corresponding to s < 0, the possible direction of
slide is to the left. If, in addition, the hinge is in sector
I, it will stick. If it is outside sector I, the location of
the hinge will move in the direction of w; at some point
(corresponding to r-p = 0), the direction of slide will

320

III
Fig. 10. The sliding direction for type B contact.

reverse to s > 0. This also brings sectors Il and IV
to the right half-plane. Eventually, the hinge will enter
sector III for s > 0, and stick. Figure 10 also depicts the
evolution of the hinge point.

The time at which the contact will stick in sector III is
easily computed by letting

Ipi|
14 p?

in the constraint equation (4) and solving the resulting
linear equation for ¢. N

A similar but slightly more complicated analysis ap-
plies to type A contact. We will first derive an expression
for the velocity w of the contact point with respect to
a frame fixed on the moving pawl and expressed in the
world coordinate frame. We will assume, for simplicity
of derivation, that the coordinate frame attached to the
pawl has its y-axis along the edge normal m; = Rgmn;, and
the z-axis is along the edge so as to form a right-handed
coordinate system. As in Section 6, for type A contact,
r = pj —p, and let ’r = RsTr be the corresponding
vector in the coordinate frame fixed to the pawl. Let Q be
the skew-symmetric angular velocity matrix, given by

0 —w
2= (27):

where w is the angular velocity of the pawl. From ele-
mentary kinematics (see, for example, Bottema and Roth
1979), Q = RyRs".

Rgp; = (o + pv)

(12)

The International Journal of Robotics Research

The velocity in the frame attached to the pawl, RgTw,
can now be calculated by differentiation:

R(;TW =7y
= ReTi+ R, Tr
= Ro" i+ ReT 7. (13)
Therefore,
w=r+Tr. (14)

The differential constraint corresponds to the departure
speed, u, being zero. Therefore,
U = W-In

=Ty — Wy

={. (15)

Solving for w, .
=l
Tz

— Py (16)

W

Hence, the sliding speed, s, is given by
s=WwWX
= Ty + wry

=Tz + Py
"

Ty
T

= o~y L. an
Tz

The map of sliding speeds for type A contact is almost
identical to Figure 10, except that the direction of the
vector p is reversed. However, the orbit of the hinge
point during sliding is more complicated than in the type
B case. The time at which the hinge point will enter
sector III and stick can be computed as follows. At the
time of entry into sector IIL, the r is given by

Ir,

m (mi - ,U'V)

r=

_ 1“'_‘ . (i '1“> - as)
Hence,
o 1 1w
oA () o

Plugging this back in equation (3), we get

1 1 u
dz-=————__’f< ’“‘) —d; (20
m H_#zr 41 r» (20
- -0 @1)

1+ p?

rm; —

Because r is a linear function of ¢, this is a quadratic
equation in time and can be solved for ¢.

8. Collision Detection in Configuration Space

We now describe the collision detection algorithms we
implemented. These algorithms are essentially a special-
ization to }®? x S* of the 6-DOF collision avoidance
algorithms of Donald (1984, 1987). The basics of this
geometric representation may be traced to Lozano-Pérez
(1983) and Brooks and Lozano-Pérez (1983); in partic-
ular, see Brooks and Lozano-Pérez (1983) and Donald
(1987) for a discussion of applicability constraints.

The special structure of the C functions f; permit us
to define combinatorially precise algorithms for collision
detection and for solving general intersection problems.
In particular see, for example (Brooks and Lozano-Pérez
1983; see Section 5), the general form of a C function in
our application is

A1z8 + ArxC + AsyS + AgyC
+ AsS + AsC + Ajx + Asy + A 22)
where X = (z,y), C =cosf, and S = sin#.
Now, as is well known, we can make the substitution
v = tanf/2 in (22). Because S = (2u/1 + %) and
C = (1 — u?/1 + u?), we obtain a form of the C surface
(22), which is quadratic in u:

Biu? + Byu+ B; =0, 23)
where the coefficients B; are all affine in z and y. When
the root position X is parameterized by eq. (2), then note
that B; are all affine in the time ¢ in the initial position of
the root py and in the root velocity vector p.

Pure translational collision detection is straightforward,
see, for example {Lozano-Pérez 1983; Donald 1987).

8.1. Computing the “Snap”: Pure Rotational Collision
Detection

For pure rotational collision detection at a fixed trans-
lation x, we implement the following algorithm. First,
pote that we must solve (23) for its u-zeros; these zeros
determine the orientation at which the pawl can cross
the boundary of the C-space obstacle CO defined by (5).
Each u-zero can be found by solving a quadratic (23).
For each of these events, we construct an infersection that
is a tuple (@, f;, A;, ¢ family(A, B)). These intersections
are sorted around the unit circle (by #). The intersections
are traversed in order, and the first valid one is returned.
A valid intersection is one where:

Donald and Pai 321

Intersection Validity Tests

1. The constraint is zero: f;(X,8) = 0. (This is true by
root finding.)

2. The constraint is applicable: 8 € A;.

3. The intersection configuration is on the boundary of
the CO 5. For all applicable f; at orientation ¢ in
c family(A, B), f;(x,0) < 0. Thus, we must test the
.signs of all other applicable constraints f; in f;’s
family.

If A and B have size m, and mg, respectively, this
algorithm runs in time O(mgm%). We can achieve a better
bound of O(m,my) by employing the algorithm of®
(Donald 1987). Letting n = mgmyp, we can thereby
achieve an overall exact simulation algorithm that runs
in time O(n?logn). We provide a much faster algorithm
in Section 9 that asymptotically beats this approach by
almost a linear factor of n.

Finally, since one C family is generated for each
convex-convex pawl-obstacle pair, this rotational inter-
section test must be iterated for each C family, and the
minimum valid intersection returned.

8.2. Collision Detection Subject to a Holonomic
Constraint

A more complicated intersection problem arises when the
pawl is sliding on a surface (23), subject to (2) (which
specifies the motion of the root). Hence, we view the sit-
uation as follows. Suppose the pawl is sliding subject to
a type B (vertex-edge) or type A (edge-vertex) constraint.
This corresponds exactly to the reference point sliding on
a quadric C-space surface ker f;, which is generated by
those contact features. The constraint on position (2) de-
fines a “plane” in configuration space. The intersection of
this plane and ker f; form a quadratic curve in C space,
parameterized by time. Using this parameterization, we
can generate the configuration of the pawl at any time;
that is, we have solved for how the pawl moves subject
to the root motion (2) and subject to the C surface (23).
We must do this for each pawl (since, as in Figure 4, it is
possible for both pawls to be in simultaneous contact with
different features of the environment).

The first problem we must solve is how to detect when
the quadratic path above intersects another C surface.
At that point, the new constraint may take over, or the
pawl may snap off because of incompatible kinematic
constraints.

9. We have given the slower algorithm here, because we have found that
while it has higher asymptotic complexity, it is more robust geometri-
cally and stable numerically. This is probably because of the redundant
information in the representation of a C family.

322

Each C surface has form (23), where the coefficients
B; are affine in x, and hence affine in ¢, pg, and P (see
(2)). We call this a trigonometric quadratic form (TQF)
(Donald 1984, 1987). To solve for the simultaneous in-
tersection of two C surfaces in TQF, we view them as
simultaneously quadratic in « and affine in £. We treat
the variable ¢ as indeterminate and use the resultant to
obtain a quartic in {. We solve for the {-roots, and back-
substitute for the u-roots. Naturally, we must check for
the degenerate case where the leading coefficients of the
TQFs are zero (however, see Section 8.4.1). Finally, given
the (¢, u)-roots, we must then perform the intersection
validity tests described above in Section 8.1 (or the faster
test in Donald [1987]). While there exist closed-form so-
lutions to quartics, we can also solve them numerically
using Ferrari’s method.

In general, it is very difficult to find exact algebraic
procedures for predicting motion subject to a holonomic
constraint. This is because most dynamical systems do
not lend themselves to such solutions. Our formulation
of rotational compliance enjoys purely algebraic solution
trajectories that can be computed using simple algorithms
and that require no integration. Of course, this is largely
because of the simplicity of the dynamic model. Never-
theless, from the examples in Section 3, it is clear that it
is capable of producing complex behaviors.

8.3. Choosing the Correct Branch

This section deals with the following difficulties. When
we reduce motion prediction problems to the existential
theory of the real numbers, we obtain our answers by
solving polynomial equations. These equations may have
multiple roots. However, our system only has one evolu-
tion. We must have a method for choosing which root is
correct. Conversely, situations will arise where the alge-
braic equations fail to have roots. We must handle these
cases also.

The situation of multiple roots corresponds precisely
to the existence of several “statically” or “kinematically
feasible” solutions to the dynamical system, only one of
which is feasible (or reachable) from the initial condi-
tions. We present a method for choosing the correct root.
When the correct root is parameterized by time, it sweeps
out a connected component called a branch. This occurs
in our case, where the formal coefficients are parameter-
ized by t.

The absence of roots corresponds precisely to the pawl .
breaking contact with a C surface or jamming on the C
surface so that no further motion is possible. We show
how to determine which of these events has occurred.
These cases are important to handle in practice, and our
methods are both theoretically well founded and imple-
mentable.

The International Journal of Robotics Research

p®)

o

Fig. 11. There are two orientations (u-roots) at which the
C function f; generated by (v;, e) is zero. Which of these
two solutions should we choose?

Consider Figure 11. Clearly, when we solve a TQF
such as (23) for its u-roots, we are solving a quadratic;
hence we obtain two roots. Now, often one root will be
inapplicable, or not on the boundary of the C space ob-
stacle CO (eq. (5)). However, in Figure 11, both are good
roots. Which one should we pick? This is an important
question for an implementation. First, we note that even
though both are good roots, there is no realizable path
between them (and so they are disconnected). Consider
the problem of generating a path in C space subject to
C surface constraint (23) and to the straight-line motion
(2). (This corresponds to intersecting a quadric C surface
with a plane to obtain a quadratic curve, parameterized
by time.) The path is constructed using elimination meth-
ods; consider the problem of “following” this path. One
reason we need a systematic way of choosing the correct
root is that, because of numerical errors, often one root
will appear to become inapplicable “too early” (see, for
example, Section 8.4.2) or else a root appears to just slide
off the boundary of the C space obstacle. At this point
the implementation finds the other root (as in Figure 11).
This root is applicable and on the boundary, and so the
predicted path “jumps” discontinuously from one root to
the other, even though no such path is physically feasible.

This example illustrates pathologic behavior. Fortu-
nately, we can give a principled way for choosing the
correct root. Essentially, one is finding zeros of a simple
algebraic variety in the plane; the problem is equivalent
to choosing the correct “branch” of the variety. We show
how to do this algorithmically. In the process, we also
derive a method for determining when a pawl “‘jams”
against a constraint and when a pawl “snaps off” a con-
straint as a result of incompatible differential kinematics.
The two prove to be related problems.

Let us assume that the C surface is in the form (from

(23))

S(u,t) = At + Bty + C(t) = 0, (24)

where

AR = Ap+ At
Bty = By+ Byt (25)
Clt) = Co+ Oyt

and v = tan (6/2) as usual. Then the branch problem is
essentially the problem of choosing the correct sign of the

radical in
—Bx+vVB2-44C
U= oA . (26)

The problem of determining when the pawl snaps off
or jams is essentially that of determining if the discrimi-
nant A(f) = B? — 4AC is becoming negative and hence
failing to have a real solution. Let us discuss this second
case first, and then we will return to discuss the branch
problem (how to choose the sign of v/ B2 — 4AC) after-
ward.

8.3.1. Application: Snapping Off and Jamming

In Figure 12, we plot the discriminant A(f) = B? — 4AC
vs. time, for type (B) and (A) constraints. We illustrate
the qualitative contact regions in the space. In the type
(B) case, the “pawl” here is drawn as a straight-line seg-
ment pivoting about its end point. (The pivot is the center
of rotation of the pawl—where it would be attached to

a root body.) The other end point is in contact with an
edge. A type (B) constraint is a C surface generated by a
vertex of the moving pawl and an edge of the obstacle. A
type (A) constraint is generated by an edge of the moving
pawl and a vertex of the obstacle. Hence in the type (A)
figure, the edge moves with the pivot p, and the vertex v
is stationary, whereas in the type (B) figure, the edge is
stationary, and the vertex at the end of the line segment
pawl moves.

Now, the discriminant A(f) is non-negative if and only
if eq. (24) has a real solution. Hence we need the follow-
ing test for the zero crossings of the discriminant A(t),
which is obtained by solving the quadratic A(t) = O for
its root ¢,. That is,

A@) = B?-4AC
= (B? — 44,0)t? 27
+2(BsB; —24,C1 — 2A:Co)t + B(% — 44,C,.

This will produce two times, t,, and t,,, with £, < ¢;,.
Clearly, the time of the first collision with this surface,
t., must satisfy t, < t. < t,, for type (B) C surfaces, -
and £, > t, or t. > t,, for type (A). Therefore, the next
critical time £, is ¢,,, = t,, for type (B) C surfaces. For
type (A) C surfaces, t,, = t,, if . < t,,. Otherwise,
t,, = oc if t; > t,, (ie., there is no critical time).

If ¢,,, is finite, we must now check the behavior at this
time. Two things can happen as £ is increased a small
amount from ¢, (Fig. 13). The pawl-obstacle contact is

Donald and Pai 323

represented as in Figure 12. For either type (B) or (A)
contact, we can either (i) break contact or (ii) jam. The
figure shows these possibilities.

Now, which behavior occurs can be determined from
the C surface equation. We assume that S(u,t) > 0 means
that the vertex is outside the half-space bounded by the
edge.

Equation (24) for S(u,t) can be rewritten as

S(u,t) = (A10® + Bru+ C)t + (Apu® + Bou+ Cp). (28)

First, we solve for u, at time £, from eq. (24). There
should be only one solution:

_ —B(@.,) —(By+ Bit,,)

Y= A, T At Aty P
TYPEB r
A
JANA U

) | l

Lecccccccecnd P

No Solution

e
X~ N/ s
<~ -

R

o P
No Solution

Fig. 12. Plotting the discriminant A(t) = B* — 4AC
vs. time, for type B and A constraints. We illustrate the
qualitative regions in the space. The “pawl” here is rep-
resented as follows. For a type B constraint, the pawl

is a straight line connecting the pivor p with the con-
tact vertex. The obstacle edge is stationary. For a type
A constraint, the edge moves rigidly with p, and v is a
Stationary obstacle vertex.

324

p(®

TYPEB

TYPE A

Fig. 13. If t,, is finite, we must now check the behavior
at this time. Two things can happen as t is increased a
small amount from t, . We can break contact (1) or jam
(2). See Fig. 12. p is the pivot point, and p the pivot ve-
locity. Type B and A contacts are shown. Case B (break
contact) shows the friction cone. Case A is impossible
and cannot occur unless we started from this configura-
tion.

p(t)

Vzzzz 7 7|
Fig. 14. Nongeneric case of translation parallel to the
edge.

Next, we examine the sign of the coefficient of ¢ in eq.
(24) for this value of u,. Let ¢ = Aju? + Bju, + Cj.

1. If ¢ > 0, then the pawl breaks free. It performs a
“snap” (pure rotation) toward the zero position.

2. Else, o < 0. The pawl is jammed.

3. Note: 0 = 0 is the nongeneric case of translating
parallel to the edge (Fig. 14). This should probably °
be considered a “snap”, but the exact semantics are
somewhat unclear. ’

8.3.2. The Branch Problem

We now return to the branch problem. This is essentially

the problem of choosing the correct sign of the radical in

eq. (26). This may be done as follows. First we define the
following algorithm, which computes the branch sign for

a C surface at time ¢ and orientation u.

The International Journal of Robotics Research

Algorithm Branch-Sign(u, t, C surface)

1. Let A(%), B(t), C(t) be the coefficients of the C

surface.
B@®)
2A(t)"

Y — 5im VB2 — 4ADCEO).
If u = + v, then return Plus.'?
If u =z — y, then return Minus.

. LA

TR NEPREN

Now, every time we move onto a new C surface, we
record its sign Branch-Sign(t.,t., Csurfacel). When
new candidate intersections are produced when sliding
along csurfacel, then we check that the corresponding
Upew a0d they for the intersection fall on the branch of
csurface] with the same branch-sign. That is, we check
whether or not Branch-Sign(u,, t., Csurfacel) = Branch-
Sign(Unew, tnew, Csurfacel).

8.4. The Genericity of Intersection Problems

Many algebraic robotics and motion planning algorithms
make certain “genericity” or general position assumptions
about the systems of polynomials they manipulate. We
now discuss how certain of these assumptions are not
necessary in our algorithm, because (in one sense) our
constraints are “never singular.” (We make this notion
precise below.) On the other hand, there are other general
position assumptions that would seem safe (and are, in
fact, common in geometry) but, as it turns out, are rnot
valid in our application. We call this situation “forced
nongenericity.” Intuitively, this occurs with rotational
compliance because of the tendency of the manipulated
parts to rotate until many features are simultaneously
aligned. In such cases, special techniques are needed to
solve the nongeneric intersection probjems.

8.4.1. The Inherent Genericity of C functions in
Trigonometric Quadratic Form

In essence, our model permits a reduction of the mo-
tion prediction problem to solving polynomial systems
of equations. Now, for arbitrary polynomials, the leading
coefficients of these systems can vanish. This singular
situation is undesirable, since in these cases the resultant
- gives us no information, thereby necessitating special
checks. However, in the special case of TQFs that arise
from C functions, it turns out that we do not have to
check explicitly for this case. More specifically, the de-
generate case of the formal leading coefficients vanishing
does occur. However, if this happens, it means that in
the case of TQFs, # = 7 (mod 27) is a solution for the
trigonometric equations (Pai 1988). This means that for

C surfaces in TQF, we can blindly apply elimination the-
ory (and, especially, the theory of resultants) to solve the
polynomial systems. This fortuitous circumstance is only
true in our special application, where the quadric surfaces
come from TQFs such as (23). Thus, while many alge-
braic algorithms require the system of polynomials to be
in general position (this is called a genericity assump-
tion), our method has no such genericity requirement.

8.4.2. On the Forced Nongenericity of Intersection
Problems Subject to a Holonomic Constraint

‘Whereas many algebraic motion planning algorithms can
make assumptions about general position (or genericity)
of the polynomial constraints, when we predict motions
subject to a holonomic constraint, we find that these as-
sumptions may not hold and that we are forced to solve
nongeneric intersection problems.

In Figure 15, the geometry of the flexible object and
the environment are the same as in Figure 4. However,
the assembly plan is to move diagonally in direction
(1, —%) instead of straight down. (See Figure 16 for a
detail of the bottom of the pawl.) The bottom vertex v;
of the left pawl hits the obstacle edge e first. The next
segment of the motion is subject to this constraint. That
is, the motion is compliant subject to the C surface ker f;
generated by (v;, e). Now, refer to Figure 16 again, and
consider an arbitrary (generic) motion of the triangle
(a path in C space). Obviously, this path can cause ei-
ther constraint (v;, e) or (v;, €) to be violated. However,
we say that generically, both will not be violated at the
same time. That is, for a path ¢ : [0,1] — C, it will be
generically true that fi(@(t)) or f;(é(t)) is nonzero. (f; is
generated by (v;, e)). This would be a good general po-
sition assumption, but unfortunately, it is simply not true
for collision detection subject to a rotationally compliant
motion constraint. In Figure 15, we see that as the motion
evolves, A rotates about v; as v; slides on e. Eventually,
this rotation brings v; down on e. In fact, constraint f;
expires (that is, we pass out of its applicability region)
at the precise time that f; is activated (we pass into its
applicability region); at the same time, f; changes sign
from positive to zero.!! More precisely, at this time ,
the orientation 6(¢) crosses the boundary of A; and A;
(which share an end point), and ¢(¢) hits the zero set of
f; (Fig. 17).

The nongenericity illustrated in Figures 15 through
17 in fact occurs for a large (generic) class of paths and
initial conditions. This is not surprising, since one of
the outcomes of rotational compliance is to align parts.
Second, it is not surprising that when one constraint (C
function) expires, it is “replaced” by a constraint with

10. With finite precision arithmetic, these equality checks cannot be exact.

11. We use “expire” and “become active” following Donald (1987).

Donald and Pai 325

Fig. 15. The geometry of the flexible object and the environment are the same as in Fig. 4. However, the assembly plan
is to move diagonally in direction (1, —14—0) instead of straight down. The bottom vertex of the left pawl hits first. The
next segment of the motion is subject to this constraint, in 15B. At the end of 15B, both pawl vertices lie on the edge.
In 15C-D, the pawl is dragged over the top of the T. In I15F—G, it snaps off to the rest position.

Fig. 16. A detail of the bottom of the pawl from Fig. 15.

“neighboring generators.” This observation has been
formalized by Donald (1984, 1987) and also exploited
by Erdmann and Lozano-Pérez (1987). For these rea-
sons, naturally, it would seem as if nongeneric examples
such as Figure 15 would happen all the time with our
system. In fact, this has been our experience. It is unfor-

326

tunate in that it places high demands on the robustness

of our algebra system. In particular, the applicability con-
straint boundaries of A; and .4; are computed as the
zeros of polynomials also. Hence, in observing that three
events occur simultaneously (Fig. 17), we are effectively
saying that three polynomials (in £) have simultaneous
zeros. When these zeros appear to occur at different times
because of numerical errors, then consistency is not main-
tained, and errors can occur. For example, if we find

that ¢ crosses ker f; before it crosses the applicability
boundary A; N A;, then that intersection will be judged
nonapplicable and discarded. If the events are ordered the
other way, the intersection is detected.

We can attempt to maintain consistency by introducing
additional tests into the algorithm based on topological
information. For example, (Donald 1987), the polynomial
gs; whose zeros define the applicability boundary 4; N A;
is essentially f; — f;. Hence, at any given configuration,
there are consistency constraints between the signs (and
values) of f;, f;, and g;; = f; — f;. Second, we could em-

The International Journal of Robotics Research

Fig. 17. ker f; is the C surface for contact (v, €) (see
Fig. 16). ker f; is the C surface for contact (v;,e). The
rotationally compliant path ¢ is following ker f;, when
it simultaneously (1) strikes the boundary of f;’s ap-
plicability region A;, (2) pierces the boundary of f;’s
applicability region A;, and (3) hits the zero-set of f;.
¢ is shown schematically in solid lines.

ploy the techniques of Donald (1987) and Erdmann and
Lozano-Pérez (1987), which compute, when a constraint
“expires,” which constraints with neighboring genera-
tors become applicable. Thus, when f; expires at time %,
we have ¢(t) = A; N A;. We can look at ¢(t) and the
neighboring generators of v; and e to determine that f;
must “replace” f; in the applicability set (see Fig. 16).12
Finally, we must perform these constraint replacement
computations “subject to a holonomic constraint.” That is,
if f; replaces f; in free space, it suffices to simply substi-
tute f; for f; in the applicability set. However, in contact,
subject to the holonomic constraint
fi(x,0) =0, (30
we must not only update the applicability set, but we
must also update the constraint (30). That is, we must
simultaneously replace f; by f; in the applicability set,
and replace (30) by the constraint f; = 0. This constraint
replacement mandates that f; = 0. (This is equivalent
to saying that we maintain contact.) Hence, we know
that at time ¢, we should simultanecusly have f;, f;,
and g;; vanishing. If, because of numerical errors, these
zeros occur at different times, then we should in effect
“identify” these times into one canonical, simultaneous
zero-crossing time for topological consistency.

Finally, we note that the issue of forced nongenericity
is mathematically subtle, and has connections to other
branches of singularity theory. For example, consider
Figure 18. In general, we have a configuration space C
containing a lower dimensional singular set S that is al-
gebraic. (In our case, S is the boundaries in Fig. 16.)
Now, if we choose two points z; and 2, randomly in C,

12. The applicability set is the set of all constraints (C functions) that are
applicable at a configuration.

Fig. 18. Abstract depiction of forced nongenericity. In
a configuration space C, consider a lower dimensional
algebraic singular set S of “bad” points that we wish
to avoid. For example, S could be the set of singular
configurations of the forward kinematic map.

the chance that one will lie in S is essentially zero (this
is really the definition of measure zero). However, if we
now fix 2z; and 2, and consider all paths from one point
to the other, it turns out that “many” of them—a mea-
surable set——cross S. In particular, if .S separates C, then
one might expect this probability to be roughly propor-
tional to the ratio of the measure of the two components
of C — S. Finally,

FACT If 21 and z, are disconnected by S in C, then any
path from z to z, will cross S.

This means that any such path must experience a sin-
gular configuration at some time. This situation is exactly
parallel to ours, in which a singularity cannot be avoided.
Note that this problem arises in other applications—for
example, in Pai and Leu (1992), we observed S as the
singular set of a forward kinematic map. By the above
claim, this means (for example) that any path from z; to
2, must pass through a singularity.

We have sketched an approach to handling forced non-
genericity that exploits the specific characteristics of our
domain. General techniques for handling these problems
await further research. '

9. A Sweep Algorithm for Simulation

The focus of our work has so far been on modeling and
robotics issues. In this section we give a fast algorithm by
mounting a computational geometric attack. In addition,
the new algorithm sheds light on several interesting com-
binatorial and structural issues. Furthermore, it leads to a
systematic classification of special cases and has connec-
tions to the qualitative analysis of dynamical systems.

We have shown how our model of compliance permits
us to obtain algebraic, closed-form solutions to simulation

Donald and Pai 327

problems for a rotationally compliant object. In partic-
ular, the linear map p(%) is given by eq. (1), and once
we ‘‘rationalize” rotations via the standard substitution
u = tané/2, each map ¢, is piecewise-cubic. Based
on these results, a simple algorithm for simulation is as
follows.

Simple Algorithm

1. Given a state z of the system, possibly subject to
a configuration space constraint f (f has form eq.
(3) or (4)) calculate a local solution trajectory &
respecting f. © will be a linear or cubic curve in
the configuration space.

2. The configuration space constraints are algebraic
surfaces of bounded degree. Intersect ® with the
surfaces to perform exact collision detection.

3. A collision results either in termination of the mo-
tion or in a change of constraint. Update f if neces-
sary.

4. Repeat.

Suppose the obstacles have my vertices and the moving
object (root and one pawl) has m, vertices. Let n =
memy be the measure of the geometric complexity. In
Section 8 we were able to show that this simple algorithm
runs in time O(n?logn). For k pawls, the complexity of
the simple algorithm was O(kn?log n).

In this section, we give a new simulation algorithm
that is also exact and runs in time!® O(kA-(n)log?n).
Our method reduces the simulation problem (Def. 2.1) to
a plane sweep of an arrangement of algebraic curves in
configuration space. To obtain this result, we prove the
following points. For simplicity of presentation, assume
below that £ = 1, and hence configuration space C =
R? x S1.

1. The simulation never leaves a connected component
Ey of free configuration space.

2. 'The solution trajectory ® of the system is piecewise
cubic in the configuration space, and the dynamics
may be reduced to erecting cubic “local” configura-
tion space constraints.

3. Translational motion of the root polygon (eq. (1))
restricts the reachable configurations to a 2D cylin-
der Y C C.

4. Y embeds in C as follows:

Y — ®Rxgs!

t,0) — ©(),0). D

13. Recall that Ar(n) is the (almost linear) maximum length of (n, r)
Davenport-Schinzel sequences (Guibas et al. 1988) and r is a small con-
stant. For practical purposes, A-(n) should be regarded as just a tiny bit
bigger than O(n). For more on the the theory of Davenport-Schinzel se-
quences and theijr applications in computational geometry, see Agarwal
et al. (1987), Hart and Sharir (1987), and Kedem and Sharir (1985).

328

where ¢ moves along the axis of the cylinder. Hence we
view Y as ® x S'. The time evolution ¢ € T of the
system corresponds to the & factor. Hence the solution
“sweeps” along the cylinder Y in the direction of the
axis.

5. The configuration space constraints are manifest as
cubic curves on Y.

6. As we sweep the cylinder Y, a simple dynamical
system models the motion of the configuration point
on the configuration space constraints. The orbits
of this system are piecewise algebraic of bounded
degree.

7. Parameterize Y to the plane (this only takes two
charts). Then F' = Y N Fy is defined by a planar
arrangement of cubic curves.

8. F' has size O(A\~(n)) and can be constructed in time
O\-(n) log2 7)) using a red-blue merge algorithm,
as described in Guibas et al. (1988).

9. We can compute the solution ® by a plane-sweep of
the slice F' (i.e., by sweeping a planar arrangement
of cubic curves). This allows us to solve the mo-
tion prediction problem exactly in O(\(n) Iog2)
overall time.

Hence we prove

THEOREM 9.1. The Simulation Problem defined above
(Def. 2.1) can be solved in time O(\-(n) log2 n) and
space O(A.(n)), where r is a small constant.

We outline the proof in the following sections.

9.1. Computing the Connected Component of Free
Space

Consider the motion of a single pawl, M}y, whose trans-
lation is governed by eq. (1). As is well known, if we
“rationalize” rotations using the standard substitution
u = tan(#/2), the n constraints given by egs. (3) and
(4) are manifest as algebraic ruled surfaces { fi,..., fn }
in a 3D configuration space with coordinates (x,y, u).
These constraints are simultaneously linear in the position
parameters and y and quadratic in the rotational para-
meter . Each surface is only “applicable” for some range
of orientations [ug, u1], by which we effectively mean)
that the surface only “exists” for v in this range (Donald
1987). See Figure 19 (Brost 1989).

Let U be a vector along the u-axis (think of i as
(0,0, 1)). Now, the constraint of pure translation (eq.
(1)) of the hinge point P, of the pawl M, restricts any
possible evolution of the system to lie in a “plane” (2D
subspace) of (x, y, u)-space (see Fig. 19). We call this
“plane” Py; it has “normal” @ X (p, 0), and it corresponds
to a chart for the cylinder Y discussed earlier. We note

The International Journal of Robotics Research

Fig. 19. Configuration space constraints for a moving pawl. The sweep plane L(t) intersects the C space obstacles in
a planar arrangement of cubic curves. (Reprinted courtesy of Randy Brost.)

that furthermore, at time %, the state of the system is con-
strained to lie on a line L(¢) parallel to U in the plane
Py-. This is the line of points (p(t), w), for v € K. The
line L(t) sweeps across the plane in direction (p,0) as ¢
increases, and thus we call L(t) the sweep line.

Hence, a natural coordinate system for the plane Py
is given by (t,u). As time ¢ increases, the vertical line
L(t) sweeps across Py. This line contains the state of
the system. It is our task to calculate the u coordinate
as t evolves (i.e., increases). Now, Py has degree 1 and
hence, when intersected with a constraint f; we obtain
a cubic curve segment <y; in the (¢, u) plane. Thus all
the configuration space constraints are manifest as an
arrangement of cubic curve segments { vi,...,V, } in
this plane, where v; = i NPy ¢ = 1,...,n). In
our algorithm, the sweep line sweeps across this planar
arrangement of curves, and as we sweep, we compute the
trajectory of the system. “Events” caused by crossing the
curves ~y; will modify the trajectory, as we discuss below.

A priori, the arrangement of curves can have complex-
ity O(n?), and in fact, the set of free configurations in Py
can also have size Q(n?) in the worst case (Kedem and
Sharir 1985; Guibas et al. 1988). However, we can di-
rectly apply the results of Guibas et al. (1988) as follows.
‘We note that the system begins at some configuration
Zy € Py. 7y lies in one connected component F' C Py
of free space, and the resulting path can never leave F,

since it corresponds to a physical simulation. Guibas et al.

(1988) show that:

LemMMA 9.2. The combinatorial complexity of F' is
O(Xs42(n)), and we may precompute it (i.e., compute

14. In fact, each curve -y; is simultaneously quadratic in v and linear in £.

it before our plane sweep) in time O(A;12(n) log2 n)
(Guibas et al. 1988). Here s is a small constant bounding
the number of times that two configuration space con-
straint curves +y; and y; can intersect.

Recall A-(n) is the (almost linear) maximum length of
(n,) Davenport-Schinzel sequences (Guibas et al. 1988;
Hart and Sharir 1987; Agarwal et al. 1987). It is very
likely that for a wide variety of situations encountered in
practice (Brost 1989, 1991), s < 1. However, it is certain
that a worst case bound is s < d? for curves of degree
d. Note that s < 1 would tighten our bound to space
O(na(n)) and time O(no(n) log2 n) (Hart and Sharir
1987).

9.2. Sweep Events in Configuration Space Slice
9.2.1. Kinematics

We postpone our discussion of friction until Section 9.3.
Here we treat the frictionless case first, defining six types
of local geometric events, called “sweep events,” that will
be detected and handled during the plane sweep. These
events are purely kinematic—i.e., they do not depend on
friction.

Having computed the connected component F' C Py
containing the initial configuration, we now sweep F' with
the line L(t) in the (¢, w)-plane. By an abuse of notation,
we will now let ;, ¥, etc., denote the curves bounding
F that we precomputed (along with their intersections) in
Section 9.1. We now define the following sweep events:
(1) translational collision, (2) sliding collision, and (3)
Jjamming due to incompatible kinematics. The sweep al-
gorithm will detect sweep events. Each event will be
handled, by which we mean that the solution trajectory

Donald and Pai 329

LR~
AY
A l/ M
8
tang =u
2

Jamming due to .
incompatible constraints

13

T

]

]

3

1

I

] , N
‘ s
: Sliding collision °

- .

1

t

[}

1

1

]

0

Fig. 20. Sweep events: translational collision, sliding col-
lision, and jamming caused by incompatible kinematics.

tang =u

Snap free
Jam on a single constraint

Fig. 21. Sweep events: snapping free and jamming on a
single constraint.

we compute may be modified. Between events, the trajec-
tory is piecewise algebraic.

First, suppose there are no obstacles. Then the trajec-
tory of the system will stay at v = 0 in the (¢, u)-plane
(i.e., the orientation of the pawl will not change). Call
the point z(¢) on L(t) representing the state of the system
the sweep point. Thus z(¢) is the solution trajectory we
compute.

Now, in the presence of obstacles, sweep events occur
as the sweep line crosses the curves {y; }. These events
are enumerated in Figures 20 through 22. We can explain
the trajectory computation algorithm like this: the dy-
namical system described in Section 2 has the following
geometric interpretation in slice Py. As the sweep line
L(t) crosses the (t,u)-plane, the u-coordinate u(t) of the
sweep point z(t) € L(t) moves. In the plane Py, the line
u = 0 is an attractor, and we imagine a vector field on
Py parallel to the u-axis and pointing toward the ¢-axis.
Hence the attracting vectors are parallel to —u for u > 0
and parallel to +u for u < 0. The curves ~; act as (holo-
nomic) constraints. The sweep point cannot cross these
curves, but it can follow them as L(¢) moves. They can
prevent motion of the sweep point from attaining u = 0.

For example, see Figure 20. If the trajectory is at the
u = O position and the sweep point z(t) encounters a

330

o

tang =u

Fig. 22. Sticking events and qualitative dynamical
regions.

constraint «y;, then the sweep point complies to the con-
straint and is forced to move away from the zero line

(u becomes positive here). This corresponds to a pure
translational collision, followed by a continued motion

of the root, which “cocks” the pawl against an obsta-

cle. During this motion, the sweep point follows ;. If a
new constraint v; is reached, then the sweep point slides
along the curve y; in turn. This corresponds to a sliding
collision: while sliding on constraint -y;, the pawl hits
constraint ;. The motion continues, following v; compli-
antly. Hence the sliding collision can result in a constraint
change. Finally, if the sweep point is following a curve ~;
that crosses u = 0, the trajectory breaks contact there and
continues along the ¢-axis. This event is a “dual” subcase
of type (i).

As can be seen from Figure 20, some constraint
changes result in jamming as a result of incompatible
kinematics. This occurs as follows. Define the outward
normal 77; of a curve y; to point into free space F'. Let
t be a unit vector in the positive ¢ direction. Jamming
occurs at y; M <y; when both the inner products

m-t and ;- (32)

are negative. At this point the simulation is terminated,
because further motion is impossible.

Pure translational collision events can occur where a
curve -y; intersects the line w = 0. Sliding collisions can
occur when two boundary curves of F' intersect (iie., at
v¥; M 7y;). Jamming events can occur when both normals at
v¥; N ~y; point in the (—?) direction. A nonjamming sliding
collision causes a change of constraint (i.e., the sweep
point now follows -y; instead of ;). It is clear that sweep
events of type (i), (ii), and (iii) are local geometric condi-
tions and can be detected and handled while sweeping the
line L(t) over F'. Similarly, it is clear that modifying the
trajectory z(%) at a sweep event can be done in O(1) time.

The International Journal of Robotics Research

9.2.2. Snapping Free or Jamming on A Single Constraint

We now define the sweep events (iv) snapping free from
and (v) jamming on a single constraint. Suppose the
sweep point is following a constraint curve . A singu-
larity occurs at vertical tangencies of + (Fig. 21). Assume
wlog that - lies in the half-plane v > 0. There are two
possibilities. If the F' is concave at the singularity, then
the sweep point has been following the “upper” branch of
the curve. After the singularity, the sweep point follows
the vector field attracting it toward « = 0. That is, the
sweep point moves parallel to the u-axis toward the -
axis. It stops at the first new constraint curve it hits while
moving away from the singularity toward the line v = 0.
If no constraints are encountered, it stops at v = 0. This
motion corresponds to the pawl “snapping free” from a
single constraint edge. It executes an instantaneous pure
rotation toward the zero position. If another constraint is
in the way, then it stops there.

If F is convex at the singularity, then no further mo-
tion is possible, and the motion jams there on a single
constraint. At this point the simulation is terminated.

Clearly, singularity (vertical tangency) is a local ge-
ometric condition that can be detected during the plane
sweep of F, since each curve is algebraic.

There is one more kinematic sweep event that is “dual”
to type (iii) jamming due to incompatible kinematics. It
is type (vi), snapping free from a vertex. It occurs at a
constraint change ; N «y; (i.e., the sweep point is follow-
ing a curve v;, and it hits another curve ;). However, in
this case, both outward nermals n; and 17; point in the
positive ¢ direction. That is, the dot products in eq. (32)
are both positive. In this case, the sweep point “snaps
free” from ; N 7; and moves vertically toward the at-
tractor « = 0. The snapping free happens just as in event
(iv) above. Snapping free from a vertex corresponds to
the situation where suddenly there are no holonomic
constraints on the pawl, so it can move toward its rest po-
sition u = 0. Conceptually, there is little difference from
event (4) (snapping free from one constraint).

1t is clear that sweep events of type (iv), (v), and (vi)
are local geometric conditions and can be detected and
handled while sweeping the line L{t) over F. It is clear
that modifying the trajectory z(f) at a sweep event can be
done in O(1) time. To see that six event types suffice,
simply enumerate the ways ; can (a) intersect 75> ()
intersect u = 0, or (¢} become vertical. Hence we have,

LEMMA 9.3. There are six types of kinematic sweep
events, as described earlier. There are O(A;12(n)) such
events overall. Each event is a local geometric condition
that can be detected and handled in O(1) time. The output
trajectory is piecewise algebraic with at most O(As42(n))
pieces and degree of at most 3.

COROLLARY 9.4. A plane sweep of F that handles

all kinematic sweep events can be performed in time
O(As12(n)log As—2(n)). This sweep solves the frictionless
simulation problem (given F) for a single pawl.

9.3. Friction

We now briefly describe how friction is handled. From
the analysis in Section 6, the following is clear: for each
configuration space surface f; we can define two con-
straints, g; and h;, that are also algebraic surfaces of the
same degree as f;. g; and h; depend on the direction of
assembly p in (1).

The surfaces g; and h; break up f; into sliding and
sticking regions. We call these qualitative dynamical
regions (QDRs), by analogy with Briggs and Donald
(1990). In. a sliding region, motion is possible as ¢ in-
creases. In a sticking region, equilibrium results, and no
further motion is possible. (Compare work on transla-
tional compliant motion: e.g., Donald [1988a]; Briggs
[1989].) Now, when we intersect f; with the plane Py to
obtain a curve y; (Fig. 22), we obtain a 1D slice of these
qualitative dynamic regions (sliding and sticking). Now,
the Bezout bound gives an a priori O(1) bound on the
number of QDRs per surface. However, in fact, the spe-
cial structure of our constraints ensures that there will be
at most three QDRs per connected curve +y; on the bound-
ary of F'. Type B constraints have (at most) one sliding
region surrounded by two sticking regions. Type A con-
straints have (at most) one sticking region surrounded by
two sliding regions.

Now, we define a seventh type of sweep event, (vii)

a sticking event, as follows. Suppose the sweep point is
following a curve «y;. If it enters a sticking region on the
curve, then equilibrium is reached, and the simulation is
terminated. Entry into the sticking region corresponds to
crossing another algebraic curve h; or g; and hence is a
local geometric event that can be detected and handled
during the sweep. Note that g; and h; apply only to f;
and do not affect any other surface f;; hence we call
them local dynamic constraints.

Finally, we must slightly modify our kinematic plane
sweep. After a pure translational or pure rotational col-
lision with a curve ~y;, we first check to see whether we
are in a sticking or sliding region on that curve. If it is
a sticking region, we terminate the simulation in equi-
librium; otherwise, we proceed as above (Section 9). To
summarize:

PROPOSITION 9.5. There are O(1) sticking events per
constraint curve -y;. Each occurs at the intersection of ~;
with a local dynamic constraint (another algebraic curve)
in Py.

This completes our proof of the main Theorem 9.1.

Donald and Pai 331

9.4. Summary

Red-blue merge algorithms allow us to construct a con-
nected component of free space F’ containing the initial
configuration in time O(\,42(n)log® n). We desire to
simulate a simple dynamical system within F. We com-
pute the simulation trajectory using a plane sweep of F.
To do this, we augment I with a vector field (defining
an attractor at v = 0) and “annotate” each curve -y; on
the boundary of F' with certain “markings” at which the
dynamical behavior of a sweep point traversing -y; can
change. The markings break the curve into a finite num-
ber of subsegments. The markings are (1) sticking/sliding
transition, (2) vertical tangency, and (3) intersection with
the line u = 0. Each marking is determined by the inter-
section of +; with a line (such as u = 0) or a curve (g; or
h;), or by vertical tangency. Hence each marking is alge-
braic, and there are O(1) markings per curve. Finally, at
an end point of +; we have an intersection with the next
cubic curve «y; on the boundary of F.

10. Conclusions

In this article we addressed the problem of predicting the
motion of a flexible object amid a polygonal environ-
ment. To this end, we presented a careful analysis of the
physics of the interaction of the flexible body with the
environment. The analysis yielded several simple tests

to determine the motion of the body that were then inte-
grated into an algorithm for predicting the motion under a
given motion plan.

This motion prediction problem is the first step in
reasoning about such devices. We also described the
implementation of the algorithm and related issues, as
well as the significance of the algorithm for designing
compliant parts for ease of assembly. In Appendix B we
describe the effect of uncertainty.

Suppose we wish to build a system for reasoning about
and analyzing the motion of a “flexible object” (i.e., a
compliantly connected system of rigid bodies). To this
end, we developed a basic theory on the motion predic-
tion problem for such bodies, at a fairly abstract level,
emphasizing connections to computational mechanics
and the long-term behavior of dynamical systems. We
discussed how our formulation of the problem led to the-
oretically precise algorithms for motion prediction with
rotational compliance and showed how these algorithms
could be implemented and used to analyze designs for
assembly. We stressed the fact that while the theoretical
algebraic algorithms we give are correct when exact arith-
metic is employed, in practice we must strengthen the
algorithms to make them robust when implemented using
finite-precision arithmetic. We showed how this may be
done in a systematic fashion. Issues of robustness and

332

numerical stability turned out to be related to problems
of genericity and branch choice, and we described the
theory behind these problems and their practical solution.
‘We emphasized our computational approach while con-
sidering the pitfalls and subtleties that an implementation
foregrounds.

10.1. Summary of Results

The research contributions of this article include:

1. New algebraic techniques for predicting the motion
of objects in contact under our model of rotational
compliance.

2. A systematic catalog of singular and nongeneric
situations that must be handled and algorithms for
dealing with these events.

3. An extension of our algorithm to compute mat-
ing force information. This facility can be used to
design objects that are easier to mate than to disas-
semble.

4. An extension of our algorithm to efficiently predict
motions given uncertainty in sensing and control
(Appendix B).

5. A manifesto for the relevance of our approach to
engineering, and particularly to design for assem-
bly. As an application, we studied several classes
of flexible devices that we term “motion diodes.”
We developed a classification of these devices into
total vs. relative motion diodes and described kine-
matic, frictional, and force diodes. Our algorithm
can analyze designs and classify the diode type. We
suggested how motion diodes could be useful in
design for assembly.

6. We considered the problem of simulating the motion
of compliantly connected rigid bodies in frictional
contact with obstacles during an assembly motion.
While compliant motion has been considered in a
computational geometric setting for pure transla-
tions (Donald 1988a; Briggs 1989; Friedman et al.
1989), the problem for rotational compliance has
proved resistant to solution. We showed that, unlike
many simulation problems for rotational bodies, we
can obtain exact solutions without integration. We
first developed a naive yet combinatorially precise
O(n? log n) algorithm based on collision-detection
techniques such as those in Donald (1987).

7. We improve on this algorithm by the introduction
of several techniques. The key ideas we use are red-
blue merge algorithms, a simple dynamical systems
model, and local dynamic constraints. These tools
permit us to reduce the simulation to a plane sweep
of a “dynamically annotated” slice of configura-
tion space. More specifically, first we precompute

The International Journal of Robotics Research

the connected component of the simulation. This
component of free space has low combinatorial
complexity (by Davenport-Schinzel arguments) and
can be computed efficiently using a red-blue merge
algorithm (Guibas et al. 1988). Next, we reduce the
simulation problem to a plane sweep of F. To do
this, we first introduce additional local constraints
(O(1) per curve bounding F'), an attractor at the rest
orientation « = 0, and a corresponding attractive
vector field on F. These constructions allow us to
view the plane sweep as a simple dynamical sys-
tem. This in tarn permits us to bound the number
of sweep events by O(As42(n)), which yields our
main result. This is one of the first combinatorially
efficient, exact solutions to any simulation problem
for a rotational mechanical system or for rotational
compliant motion.

10.2. Discussion and Future Work

There are many problems left for the future. First, we
would like to extend our work to “trees” of compliantly
connected bodies (articulated bodies). Our flexible ob-
jects are trees of depth 1; however, one could imagine
" many compliantly connected links in a chain. Future work
includes the incorporation of more complicated mod-
els of the flexible objects (such as that of Trantina and
Minnichelli [1987]) and the dynamics of interaction. For
example, we hope to add more sophisticated dynamics to
our work and to model continuously deformable bodies as
well.

Second, we believe our work can be extended to in-
corporate uncertainty in the initial conditions and in the
control. This result would be of considerable interest,
since it would permit simulation of a differential inclu-
sion. Exact simulation does not take into account the
uncertainty (e.g., the impossibility of a comprehensive
description of the dynamics of a system) or error in ac-
tuation. We view the introduction of a more realistic
mechanical model (rotationally compliant bodies) as a
step in this direction. We feel that the key property that
allowed us to reduce the local dynamics to a plane sweep
is a kind of “monotonicity” that is inherent in our sys-
tem. It is our hope that other “monotonic™ systems (and
even differential inclusions) may be simulated using the
concept of “simulation as sweep.”

We also wish to extend and test our system in analyz-
ing real designs. We are also fabricating parts we have
designed and testing them by assembling them with real
robots (Bohringer 1992). Perhaps the most challenging
area for the future involves the interaction of our analysis
approach with uncertainty. We hope to extend the analy-
sis and algorithms in Appendix B to model uncertainty

more precisely and to generate designs that can be assem-
bled robustly. In particular, we hope to develop a precise

notion of the “stability” of a motion with respect to a de-
sign. For example, an assembly plan might be “stable” if

the qualitative outcomes of execution are equivalent.

We feel that algorithmic research on design for assem-
bly represents a new direction in robotics that could have
some impact on the field. In the future, one could imagine
our techniques employed in an approach to “design as
search,” in which we medify and improve an existing
design by changing its geometry incrementally and ap-
plying our analysis algorithm. For example, suppose we
are given geometric models of two parts to mate and an
approximate “assembly plan” (direction of mating). We
envision an algorithm that searches around the bound-
aries of the models and modifies the shape by introducing
snap-fasteners and ratchet-and-pawl mechanisms. After
each modification, the analysis algorithm described above
could be run to determine how the parts will mate and the
forces required to mate and disassembie them. Depending
on the results of the analysis, the design change could
be modified, retracted, or declared suitable. Of course,
there is a host of conceptual and algorithmic problems
that must be solved to make such an approach possible,
but we believe that with the algorithmic underpinnings
described in our analysis algorithm, a research program
in this area is now viable. Such research could help to
put design for assembly on a firm algorithmic footing,
build software tools for generating good designs, and re-
sult in a unified framework for designing and assembling
mechanisms.

Appendix A: Computing Mating Force
Information

Consider Figure 7E once again. We wish to make precise
the notion that this is a force diode.

Force diodes are interesting and useful in that we can
use them to build objects that are easier to mate than
to take apart. More generally, we wish to compute the
forces required to assemble and disassemble our parts,
because we must determine that excessive forces that
could damage the parts are never exerted. Conversely, if
an assembly we have designed can be taken apart with
very small forces or by a wide range of motions, then the
mechanical connection between the parts may be insuffi-
cient. By extending our algorithm to calculate the forces
the robot is required to exert (external forces) and the
forces the parts experience while mating, we can develop
a general tool that performs all these computations.

The forces and torques experienced by the root as
result of the interaction of the pawls with the obstacles
can be computed by considering the force balances on
the pawls. We shall show the computation of the force

Donald and Pai 333

and torque at the hinge point of a single pawl due to

its contact. This information is useful to ascertain that
the pawl does not experience excessive loading during
assembly. It is straightforward to transform this force
and torque into some other coordinate frame on the root
body. The total force and torque on the root is found by
summing the contributions of the individual pawls. The
total force and torque information is important, as it has
to be supplied by the robot or assembly machine.

First of all, we observe that if the pawl sticks because
of friction (as in the case of a friction diode) or because
of incompatible kinematic constraints (as in the case of
a kinematic diode), the forces will be infinite as time is
increased. This is due to the assumption that the root and
pawl are rigid bodies, but even in practice, we expect
the forces to get extremely large. Hence, we need only
to examine the case of the pawl sliding on the obstacles.
Second, our results provide us with a mapping from time
to configurations (i.e., to the angles of the paw!). Hence
we shall derive the dependence of force on the configura-
tion & instead of on time.

We first consider type B contact. The torque T at the
hinge point is only due to the displacement of the pawl
from its resting configuration, 6. Hence,

T = k(8 — 6p), (Al)

where k is the torsional stiffness of the spring connecting
the pawl to the root. Now the force on the contact point
during quasistatic sliding is some multiple of the vector f,
(ie, f = ofe). (fe is the vector along the friction cone
edge in the opposite direction of sliding.) Therefore,
balancing the torques on the pawl about the hinge point,

T=rxf=k®6—). (A2)

Simplifying and rearranging terms, we can express o as a
function of only &:

o= k(0 — o)
Ropi x (nj — uv)’

The type A case is similar. As in Section 6, we rede-
fine r to be the vector from the hinge point to the contact
vertex, r = pj — p, and fo = FRyn; — pvge. We have
written the vector in the sliding direction as vy instead of
the usual v to emphasize that the direction depends on 9;
more precisely, v¢ = R, =n;. Then, performing a torque

(A3)

0+
2
balance as in the type B case, we get

T=r1 X —f =k —). (A4)

The negative sign appears in front of f because it was
defined as acting on the obstacle. Simplifying and rear-
ranging, .
o k(G — o)
(Remi — pivg) X (pj — P)

(A5)

334

The above expressions could be used directly to nu-
merically compute the maximum force during sliding,
using well-known one-dimensional optimization methods.
However, the maximum force and torque computation
for a single pawl turns out to be much simpler. We de-
fine a sliding segment as a connected interval of time in
which the pawl is sliding along an obstacle feature, with-
out changing the contact topology. Because the torque
varies linearly with 6, its maximum clearly occurs at a
boundary of a sliding segment. We shall show below that
the force maximum in a sliding segment-can also occur
only at a boundary of the segment. Hence one need only
check the force and torque at these transition points. We
have thus reduced the apparently continuous problem of
finding the maxima to a discrete one.

ProposiTION A.1. Let

_Av+B
W)= Cang (46)
Subject to
o) >0 for all ¢ € I = [Yrmin, Ymax]- (AT)

Then o does not achieve a relative maximum (and hence
a global maximum) in the interior of 1.

Proof. We look at the relative extrema of & in I and
show that they are minima. Differentiating with respect

to 1,
o = sintp A — (Ay + B)cos ¥

Csin® ¢

(A8)

At a relative extremum, o = 0; hence the numerator
of equation (A8) must be zero. Computing the second
derivative of « at the extremum and simplifying, we find

A+ B
! = ———=
o = Csing a > 0. (A9)

Hence, the extremum is a relative minimum. O

Our claim follows by showing that our expressions
for o are of the form required by the proposition. First,
notice that for both equations (A3) and (A5), the denomi-
nators simplify to the form

Cysinf + C; cos b,

where C; and C, are independent of §, which can be
easily rewritten as

C'sin(@ + ¢),

C=4/C2+C} and ¢:tan'-1%‘.
1

The International Journal of Robotics Research

where

Hence, by making the substitution ¥ = & + ¢, the ex-
pressions for o have the desired form for both type B and
type A contacts. Finally, the requirement that & > 0 in
the sliding segment is nothing but the requirement that
to maintain contact, the force has to be a positive mul-
tiple of £, (see Section 6). Hence the above proposition
applies, and the maximum ¢, and hence the maximum
force, can occur only at the boundaries of a sliding seg-
ment.

With this extension to our algorithm, our system can
compute the force required in assembly and disassembly
and also the forces experienced by the pawls during exe-
cution. However, the computation of forces is not exact,
because they involve transcendental functions that can-
not be “rationalized” as in Section 8 for pure kinematic
constraints to make them algebraic; hence this extension
makes our algorithm approximate. (The use of provably
good polynomial approximations to the transcendental
functions will make the algorithm a provably good ap-
proximation algorithm, however.) The computation of
mating forces is perhaps one of the most important as-
pects of our algorithm for design for assembly.

Appendix B: Incorporating Uncertainty in
Control and Initial Conditions

B.1. Assumptions

Real robots are subject to significant uncertainty and error
in sensing and control. For this reason we would like to
generalize our algorithm to deal with uncertainty in initial
conditions and in control. In this section we show how
this may be done using a simple model of uncertainty.
We can easily extend the simple algorithm of Section 9 to
handle a very simple form of uncertainty. We expect that
the sophisticated sweep line algorithm could be similarly
extended, but we have not done so.

The introduction of uncertainty changes the complexity
of our naive algorithm from O(n? logn) to O(n?logn);
the algorithm remains combinatorially precise and alge-
braic.

First, we assume that the initial position py of the root
body is known to start within some “start region” R. This
region represents uncertainty in the initial conditions.

We will still assume that the root body is controlled as a
“moving constraint,” parameterized by time. However, we
assume that it is controlled by something like a general-
ized spring controller with feedback position correction.
This model is very similar to that analyzed by Buck-

ley (1987) (the spring-damper model), and we adopt it
because Buckley’s error analysis is convenient algorithmi-
cally. However, we will not use the damper component of
the model to slide on surfaces. Under these assumptions,
the set of possible positions that the root position p can

Fig. 23. With uncertainty, the root position starts out in
some region R. The control system ensures that as time

evolves, the root position stays in a cylinder Tp.

reach (in free space, without obstacles) is bounded by a
cylinder. In short, we incorporate sensing in control by
assuming that with initial conditions pg in R, the set of
positions that the root position p can reach is contained in
a cylinder Tp starting at R. (Fig. 23).

The geometric formalization of our assumptions is that
(i) po € R, and (ii) for all times ¢, the root position p(f)
lies in a cylinder Tp from R, as in Fig. 23 (see eq. (2)).
The practical realization of these assumptions requires
(1) a bound on sensing errors so that the initial position
can be ascertained to some known accuracy, and (ii) a
feedback control system with bounded error, such as that
of Buckley (1987).

B.2. Algorithms

B.2.1. Motion Prediction Under Uncertainty Is
Computable

It is immediately clear that with this formulation of un-
certainty, the motion prediction problem (to predict all
possible outcomes from R subject to T3) is decidable.
We see this as follows. First, our algorithm for motion
prediction from a single initial condition, given p (as de-
scribed above), defines an algebraic predicate Fy, (g, z)
that decides whether a configuration z is reachable from
initial condition py, given commanded motion p. In ef-
fect, our algorithm computes the entire set

Jz Fp(po,2)- B

That is, our algorithm outputs the entire set Z(py, D)

satisfying (B1). Thus we can define another predicate
F(x,z) <= (Jz) (Ix € R) Fp(x, 7). (B2)

Correspondingly, predicates can be defined to decide
all surfaces on which the pawls might stick, all surfaces

Donald and Pai 335

the pawls might slide omn, etc. Because the predicates are
algebraic, they are decidable.

B.2.2. A Practical Algorithm

More practically, we can define a direct algorithm with a
computational geometric flavor. Assume that, generically,
only one initial contact can occur at a time. Imagine

that we “project” R onto the obstacle environment in
“direction” p. This is similar to “intersecting” Ty, with the
environment. That is, we sweep the flexible body along p
from R and find all edges of the environment it can hit.
We find all initial contact tuples

(94, tepns tenexs 9B X(te))

such that pawl feature g4 can strike obstacle feature gp
at times £¢, to,, < tc < ic,,.. Note that at initial contact
of (g4, gB), the orientation of g4 and the other pawls is
unchanged. x(f.) is a function that maps initial contact
times to root positions. Hence, the initial contact tuple
represents the fact that for ¢, < t. <., pawl feature
ga can strike obstacle feature gp if the root position is at
x(te).

For example, in Figure 23, assume the pawl is a line
segment anchored at p (as in Figure 12). There would
be three initial contact tuples, one for each type (B) C
surface of {v} x {1,2,3}. We call the set of initial
contact tuples the projection Wp(R) of R under T3.

Given the initial contact tuples, we chose a “sample
point” for each one and run our standard, no-uncertainty
algorithm from that sample point. The algorithm is given
below.

Algorithm for Motion Prediction Under Uncertainty

1. Compute the initial contact tuples 7rp(R).

2. For each initial motion tuple (94, temn, tema> 958, X(Ee))s
do:

3. Assume type (B) contact, so that gp is an obstacle

edge.l® Segment gg into three regions:

The sliding region ey,

The sticking region e*

and the portion ey of e that cannot be hit initially.

Output e*. » A

Choose a sample point X € e;.

Compute and output the reachable set Z(x, p) (eq.

(B1)) using our motion prediction algorithm for

perfect initial conditions and no uncertainty.

Wk

As usual, let n be the geometric complexity—that is,
the product of the number of moving object features and
the number of obstacle features. Then there are at most

15. The case for type (A) contact is very similar.

336

O(n) initial contact tuples. Thus the loop is executed
O(n) times. e;, e*, and eg have size at most 2. Hence
there are at most O(n) sample points X, and so the ba-
sic algorithm is called O(n) times as a subroutine in the
last step. Because the basic naive algorithm runs in time
O(n?logn), that means the algorithm for motion predic-
tion under uncertainty takes time O(n? logn).

B.3. Extensions and Limitations

Ideally, one would like to extend our model of uncer-
tainty to be more realistic. Ideally it should cover un-
certainty in the direction of the moving constraint, and
uncertainty in initial orientation. As of now, we hope it

is rich enough to model interesting phenomena but still
be computationally feasible. Much work remains to be
done in reasoning about assemblies in the presence of
significant uncertainty. Our initial algorithm is just a start.

Acknowledgments

We would like to thank Randy Brost for very helpful
comments on these ideas and on a draft of this article
and Mike Caine for helpful discussions. We are also
very grateful to John Hopcroft for his enthusiasm and
intellectual support of this work.

This article describes research done in the Robotics and
Vision Laboratory and the Computer Science Department
at Cornell University. Support for this robotics research
was provided in part by the National Science Foundation
under grants no. IR1-8802390 and IRI-9000532; by a
Presidential Young Investigator award to Bruce Donald;
and by the Air Force Office of Sponsored Research, the
Mathematical Sciences Institute, Intel Corporation, and
AT&T Bell Laboratories. Dr. Pai was supported in part by
ONR grant N00014-88K-0591, ONR grant N00014-89]J-
1946, NSF grant DMC-86-17355 at Cornell University,
and NSERC operating grant OGP0122128 at UBC.

References

Agarwal, A., Sharir, M., and Shor, P. 1987. Sharp upper
and lower bounds for the length of general Davenport-
Schinzel sequences. Tech. rep. 332. Computer Science
Dept., Courant Institute.

. Bohringer, K.-F. 1992. Computational aspects of the de-

sign of micro-mechanical hinged structures. Presented
at AAAI’92 Fall Symposium on Design from Physical
Principles, Cambridge, MA, October.

Bottema, O., and Roth, B. 1979. Theoretical Kinematics.
Amsterdam: North Holland.

Briggs, A. 1989. An efficient algorithm for one-step com-
pliant motion planning with uncertainty. Presented at
the 5th ACM Symposium on Computational Geometry,

The International Journal of Robotics Research

Saarbrucken, Germany. Revised version in Algorith-
mica, 8(2):195-208, 1992.

Briggs, A., and Donald, B. 1990. Geometric algorithms
for simulation of quasi-static mechanical systems under
control uncertainty. Unpublished Manuscript, Cornell
University.

Brooks, R., and Lozano-Pérez, T. A subdivision algo-
rithm in configuration space for findpath with rotation.
Eighth International Joint Conference on Artificial
Intelligence, Karlsruhe, Germany, August, 1983.

Brost, R. 1989. Computing metric and topological proper-
ties of configuration space obstacles, IEEE Int. Confer-
ence on Robotics and Automation, Scottsdale, AZ.

Brost, R. 1991. Analysis and planning of planar manipu-
lation tasks. Ph.D. thesis. CMU-CS-91-149.

Brost, R., and Mason, M. 1989. Graphical analysis of
planar rigid-body dynamics with multiple frictional
contacts. Preprints, S5th Int’l. Symp. on Robotics Re-
search, Tokyo, Japan, August, pp. 367-374.

Buckley, S. J. 1987. Planning and teaching compliant
motion strategies. Ph.D. thesis. MIT, Department of
Electrical Engineering and Computer Science. Also
MIT-AI-TR-936.

Canny, J. 1986. Collision detection for moving polyhedra.
IEEE Trans. PAMI 8(2):200-209.

Canny, J. 1989. On computability of fine motion plans.
Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 177-182.

Canny, J., and Reif, J. 1987. New lower bound techniques
for robot motion planning problems. IEEE FOCS, pp.
49-60.

Donald, B. R. 1984. Motion planning with six degrees of
freedom. MIT Artificial Intelligence Laboratory, memo
AI-TR-791.

Donald, B. R. 1987. A search algorithm for motion plan-
ning with six degrees of freedom. Artificial Intelli-
gence 31(3):295-353.

Donald, B. R. 1988a. The complexity of planar compliant
motion planning under uncertainty. Proc. ACM Sym-
posium on Computational Geometry, June. Revised
version in Algorithmica 5(3):353-382, 1990.

Donald, B. R. 1988b. A geometric approach to error
detection and recovery for robot motion planning with
uncertainty. Artificial Intelligence 37:223-271.

Erdmann, M., and Lozano-Pérez, T. 1987. On multiple
moving objects. Algorithmica (2):477~521.

Erdmann, M. A. 1984. On motion planning with uncer-
tainty. Technical report 810, MIT AI Laboratory.

Erdmann, M. 1986. Using backprojections for fine motion
planning with uncertainty. Int. J. Robot. Res. 5(1):19—
45.

Erdmann, M. A. 1991. A configuration space friction
cone. Proc. of the 1991 IEEE Workshop on Intelligent
Robots and Systems, Osaka, Japan, pp. 455-460.

Friedman, J., Hershberger, J., and Snoeyink, J. 1989.
Compliant motion in a simple polygon. 5th ACM
Symposium on Computational Geometry, Saarbrucken,
Germany.

Guibas, L., Sharir, M., and Sifrony, S. 1988. On the gen-
eral motion planning problem with two degrees of
freedom. Proc. ACM Symp. Comp. Geom., Urbana, IL.

Hart, S., and Sharir, M. 1987. Nonlinearity of Davenport-
Schinzel sequences and of generalized path compres-
sion. Combinatorica (2):209-233,

Kedem, K., and Sharir, S. 1985. Efficient algorithms
for planning translational collision-free motion of a
convex polygonal object in 2-dimensional space amidst
polygonal obstacles. Proc. ACM. Symp. Comp. Geom.,
pp. 75-80.

Joskowicz, L., and Addanki, S. 1988. Innovative shape
design: A configuration space approach. Technical Re-
port 356. Courant Institute of Mathematical Sciences,
New York University, March.

Latombe, J.-C. 1991. Robot Motion Planning. London:
Kluwer.

Lozano-Pérez, T., Mason, M., and Taylor, R. 1984. Auto-
matic synthesis of fine-motion strategies for robots. Int.
J. Robot. Res. 3(1):3-23.

Lozano-Pérez, T. 1983. Spatial planning: A configuration
space approach. IEEE Trans. Computers C-32(2):108~
120.

Mason, M. T. 1982. Manipulator grasping and pushing
operations. Ph.D. thesis, MIT, June.

Pai, D. K. 1988. Singularity, uncertainty and compliance
of robot manipulators. Ph.D. thesis, Cornell University,
Ithaca, NY, May.

Pai, D. K., and Leu, M. C. 1992. Genericity and the
singularities of robot manipulators. J[EEE Trans. Robot.
Automation 8(5):545-559.

Trantina, G. G., and Minnichelli, M. D. 1987. The effect
of nonlinear material behaviour on snap-fit design.
ANTEC '87, pp. 438-441.

Whitney, D. E. 1976. Force feedback control of manipula-
tor fine motions. Joint Automatic Control Conference,
West Lafayette, IN, pp. 687-693.

Whitney, D. E. 1982. Quasi-static assembly of compli-
antly supported rigid parts. J. Dynam. Sys. Meas. Cont.
104:65-77.

Donald and Pai 337

