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ABSTRACT

Mass spectrometry (MS) promises to be an invaluable tool for functional genomics, by sup-
porting low-cost, high-throughput experiments. However, large-scale MS faces the potential
problem of mass degeneracy—indistinguishable masses for multiple biopolymer fragments
(e.g., from a limited proteolytic digest). This paper studies the tasks of planning and inter-
preting MS experiments that use selective isotopic labeling, thereby substantially reducing
potential mass degeneracy. Our algorithms support an experimental–computational protocol
called structure-activity relation by mass spectrometry (SAR by MS) for elucidating the func-
tion of protein–DNA and protein–protein complexes. SAR by MS enzymatically cleaves a
crosslinked complex and analyzes the resulting mass spectrum for mass peaks of hypoth-
esized fragments. Depending on binding mode, some cleavage sites will be shielded; the
absence of anticipated peaks implicates corresponding fragments as either part of the in-
teraction region or inaccessible due to conformational change upon binding. Thus, different
mass spectra provide evidence for different structure–activity relations. We address combi-
natorial and algorithmic questions in the areas of data analysis (constraining binding mode
based on mass signature) and experiment planning (determining an isotopic labeling strategy
to reduce mass degeneracy and aid data analysis). We explore the computational complexity
of these problems, obtaining upper and lower bounds. We report experimental results from
implementations of our algorithms.

Key words: mass spectrometry, functional genomics, experiment planning, data analysis, methods
for biopolymer structure, protein-protein and DNA-protein complexes.

1. INTRODUCTION

We wish to develop high-throughput algorithms for the structural and functional determination
of the proteome. We believe that algorithms can be designed that require data measurements of only

a few key biophysical parameters, and these will be obtained from fast, minimal, and cheap experiments.
We envision that, after input to computer modeling and analysis algorithms, structure and function of
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biopolymers can be assayed at a fraction of the time and cost of current methods. Our long-range goal is
the structural and functional understanding of biopolymer interactions in systems of signi� cant biochemical
as well as pharmacological interest. An example of such computational approaches is the JIGSAW program
of Bailey-Kellogg et al. (2000) for high-throughput protein structure determination using NMR.

In this paper, we introduce new computational techniques for experiment planning and data analysis in
a methodology called SAR by MS (structure-activity relation by mass spectrometry) for use in functional
genomics. SAR by MS is a combined experimental–computational protocol in which the function and
binding mode of DNA–protein and protein–protein complexes can be assayed quickly.1 It uses accurate
mass measurement of degradation products of the analyte complexes, together with mathematical algorithms
for data analysis and experiment planning, in order to maximize the information obtained by the mass
measurements. In SAR by MS, a complex is � rst modeled computationally to obtain a set of binding-
mode and binding-region hypotheses. Next, the complex is crosslinked and then cleaved at predictable
sites (using proteases and/or endonucleases), obtaining a series of fragments suitable for MS. Depending
on the binding mode, some cleavage sites will be shielded by the crosslinking. Residues exposed in the
isolated proteins that become buried upon complex formation are considered either to be located within
the interaction regions or to be inaccessible due to conformational change upon binding. Thus, depending
on the function, we will obtain a different mass spectrum. Analysis of the mass spectrum (and perhaps
comparison to the spectra of the uncomplexed constituents) permits determination of binding mode and
region.

A key issue in SAR by MS is the potential for mass degeneracy: when two potential fragments have
approximately the same mass (within the resolution of the spectrum), the existence of one or the other
cannot be uniquely inferred from a mass peak. To overcome this problem, we propose the use of computa-
tional experiment planning to determine how to selectively manipulate masses (isotopically label) with 13C
and 15N enrichment in order to minimize of avoid potential mass degeneracy.2 Selective isotopic labeling
allows, for example, all Leu and Ala residues in a protein to be labeled using either auxotrophic bacterial
strains or cell-free synthesis. Mass tags—the mass differences between unlabeled and labeled proteins—can
eliminate mass degeneracy by ensuring that potential fragments have distinguishable masses. For example,
in Fig. 1, when the protein is complexed with DNA, the mass of the combined X-Y-DNA fragment is
nearly identical to that of Z. By labeling, we ensure that the masses are distinguishable, thereby allowing
SAR by MS to distinguish among the set of binding hypotheses. Figure 2 illustrates isotopic labeling of
DNA. Here, we have synthesized and recorded mass spectra for an isotopically labeled 18-mer (Kelley,
1999; Chen et al., 1999). The 13C-, 15N-labeled oligonucleotide (top) has a mass tag when compared with
its unlabeled counterpart (bottom).

Our work addresses the issue of explicitly planning experiments to minimize mass degeneracy via
the calculation and implementation of speci� c constraints. We incorporate selective stable isotopic label-
ing within the analytes. The constraints therefore re� ect the partial amino acid content (or nucleotide
composition) and the mass-to-charge ratio (m=z) of the analytes. Note that there exist other types of
constraints that could be employed in conjunction with stable isotopic labeling. For example: a) use of
a tandem mass spectrometer to generate collision-induced dissociation spectra of the (peptide) analytes
(Tong et al., 1999; Craig et al., 1999; Link et al., 1999); b) use of different enzymes to generate the
fragments prior to mass analysis (Bantscheff et al., 1999; Hubbard et al., 1998); c) use of group-speci� c
crosslinkers that would indicate the presence of a (constraining) amino acid in the peptide sequence
(Scaloni et al., 1998) (see Example 2); d) use of a crosslinker that introduces a mass increment that
reduces or eliminates mass degeneracy. None of these experimental techniques have been addressed in
terms of computational experiment planning, nor as an optimization problem, nor with the goal of au-
tomation for eliminating mass degeneracy. It is important to realize that these other methods are infor-
mationally orthogonal to stable isotopic labeling. That is, selective labeling will add information con-
tent to any of the proposed methods above, by providing very � ne-grained control of peptide and oligo
masses. Similarly, planning selective labeling can be useful in MS protocols other than SAR by MS.

1Biological function is a complex phenomenon. In this paper, we use the term “function” in the very limited sense
of structure-activity relation (binding mode and region).

2Labeling with 2H and 18O is also experimentally possible; algorithmic extensions are straightforward.



REDUCING MASS DEGENERACY IN SAR 21

FIG. 1. Mass tags can eliminate potential degeneracies in fragment hypotheses. Proteolysis of an isolated protein
yields four fragments, W, X, Y, and Z, with distinct masses (top). In the protein-DNA complex, the X/Y cleavage site
is shielded, so that there are only three fragments, W, N, and Z, where N is the fragment X [ Y complexed with the
DNA. The mass of fragment N is very similar to that of fragment Z, yielding mass degeneracy (middle). Selective
isotopic labeling is planned to ensure that the mass of fragment NCtag is distinguishable from that of fragment Z
(bottom).

In this paper, we demonstrate our technique only for SAR by MALDI-TOF MS (matrix-assisted laser
desorption ionization time-of-� ight mass spectrometry); extensions to the methods above are planned in
the future.

Experimental techniques relevant to SAR by MS have been studied by a number of researchers. For exam-
ple, Scaloni et al. (1998) investigated a combined strategy integrating limited proteolysis and crosslinking
experiments with mass spectrometry. It is hypothesized that the interface regions of two interacting proteins
are accessible to the solvent in the isolated molecules, but become protected following the formation of the
complex (Bantscheff et al., 1999; Hubbard et al., 1998). Therefore, the interface regions can be inferred
from differential peptide maps obtained from limited proteolysis experiments on both the isolated proteins
and the complex. Photo- and chemical crosslinking reactions lead to the identi� cation of spatially close
amino acid residues in the complex. Mass spectrometry can be employed both to de� ne the cleavage sites
and to identify the covalently linked fragments. As another example, Young et al. (2000) determined the
fold of a model protein (basic � broblast growth hormone, FGF-2) by intramolecular crosslinking followed
by proteolysis and MS. Crosslinked fragments that were observed and distinguishable using MS were used
as distance restraints in constraining standard threading techniques; note that potential mass degeneracies
must be eliminated in order to maximize the number of distance restraints.
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FIG. 2. MALDI-TOF mass spectra of an 18 bp DNA oligonucleotide d(GACATTTGCGGTTAGGTC): 13C-,
15N-labeled 18-mer; (top) 12C,14N-labeled 18-mer (bottom). The difference between the two peaks is called the
mass tag.

In this paper, we � rst formalize the problem of SAR by MS and mass degeneracy. We then study exper-
iment planning strategies, both for optimizing a single experiment and for combining information across
multiple experiments. We prove that, under some fairly natural conditions, an abstraction of the optimal
experiment planning problem is NP-complete. We present results from the application of a randomized
experiment planning algorithm to the proteins of the complex ubiquitin carrier protein ubc9/ubiquitin-
like protein ubl1 (SMT3C). We next address the data analysis problem, introducing an output-sensitive
polynomial-time algorithm for data analysis using the technique of spectral differencing. Finally, we present
a novel probabilistic framework bridging experiment planning and data analysis, estimating actual mass
degeneracy from an analysis of the statistics of hypothesis degeneracy.

2. PROBLEM DEFINITION

2.1. Experimental setup

We now brie� y review some aspects of the experiment design.

2.1.1. Resolution and mass range. MALDI and ESI (electrospray ionization) produce gas-phase ions
of biomolecules for their analysis by MS. ESI produces a distribution of ions in various charge states,
whereas MALDI yields predominantly singly charged ions. Therefore, ESI spectra are correspondingly
more complex. Scalf et al. (1999) have shown how to reduce the charge state of ESI ions to obtain
greatly simpli� ed spectra in which fragments are manifested as single mass peaks (similar to MALDI).
The decreased spectral complexity afforded by charge reduction facilitates the analysis of mixtures by ESI
MS. While the mass limit for MALDI is about a megadalton, charge-reduction TOF ESI has a mass limit
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of about 22 kDa. ESI appears to respect weak covalent interactions (such as the hydrogen bonds) (Loo,
1997), whereas complexes for MALDI must be covalently crosslinked.

MALDI MS is orders of magnitude better than traditional get techniques in terms of mass resolution,
cycle time, and sample sizes. For example, its mass resolution is one dalton in 104–105 (or 106 with
FT-ICR (Solouki et al., 1996)). Indeed, MALDI FT-ICR allows distinguishing reduced vs. oxidized states
of Cys residues in large proteins, although to obtain this resolution, depletion of the naturally abundant
13C and 15N isotopes is often necessary (Marshall et al., 1997). These quantitative differences make SAR
by MS an attractive method for high-throughput functional genomics (Scalf et al., 1999; Loo, 1997).

2.1.2. Crosslinking. Crosslinking (the covalent linking of a multimer) is most commonly used for DNA-
protein complexes. For protein-protein complexes, a residue can be mutated to a photoreactive amino acid
such as p-benzoyl L-phenylalanine (BPA) (Cao et al., 1997). After exposure to UV light, the complex
is crosslinked. Proteins interact with their substrates on the basis of their 3D fold. If protein complexes
are digested, generally the 3D structure of the interacting segments gets distorted or destroyed and the
interactions are disrupted. Without crosslinking it is unlikely that the interactions would be preserved in the
fragments to be observed by MS. For this reason, we crosslink our complexes, and we restrict our attention
in this paper to MALDI MS. It is worth noting that selective isotopic labeling can add information content
to ESI MS, in which the experiment planning algorithm would be similar. This is an interesting direction
for future work.

2.1.3. Stable isotopic labeling. Uniform and selective labeling of proteins is a standard molecular
biology protocol (e.g., for heteronuclear protein NMR). Until recently, the methodology for the uniform
and selective labeling of DNA needed to perform these MS experiments was not available. However,
recent advances in the enzymatic synthesis of 13C and 15N-labeled DNA in milligram quantities have the
potential to revolutionize the NMR and MS analysis of nucleic acids (see Fig. 2 and Chen et al. [1999b]).
The feasibility of selective labeling for stable isotope assisted mass spectrometry has been experimentally
demonstrated by (Chen et al., 1999a; Chen et al., 2000). The experiments were planned and interpreted
manually; this paper gives algorithms for automating both processes.

2.2. Computational model

This section introduces a mathematical abstraction capturing the essence of the biological problem. In
this investigation of SAR by MS, we focus on the problem of determining the binding mode of a protein-
protein complex using 13C- and 15N-selective labeling followed by MS. We defer the problem of planning
cleavage strategies, and assume the use of a � xed protease (e.g., trypsin, which cleaves the peptide bond
following Lys and Arg residues).

2.2.1. Fragments. A protein or protein–protein complex is digested by a protease, yielding a set of
fragments. There may be many more potential fragments F than observed fragments F¤—exposed cleav-
age sites in the isolated proteins might be inaccessible in the complex, due to incomplete digestion,
conformation change upon binding, or shielding within an interaction region. The regions of the primary
sequence between adjacent (accessible) cleavage sites are called segments. Protein 1-fragments are formed
of sequential unions of segments.

Example 1. If a peptide of 20 residues has cleavage sites 5 and 10, then the segments are (1,5), (6,10),
and (11,20). The 1-fragments are these 3 segments, plus (1,10), (1,20), and (6,20).

When two interacting proteins are crosslinked and cleaved, a 2-fragment may be formed by the binding
of one 1-fragment from each protein. The mass spectrum will then exhibit a peak at the mass of the
2-fragment. The 2-fragment masses are not simply the sum of 1-fragment masses, since crosslinking can
increase or decrease the mass of both crosslinked and exposed residues. However, since the change is
predictable, it can easily be incorporated into our framework and modeled as a mass shift. We take a peak
at a 2-fragment mass as evidence that the two constituent 1-fragments are implicated in the interface region
of the protein–protein complex. In particular, such a 2-fragment is formed by crosslinking the interface
regions, followed by cleavage on each protein strand.
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Example 2. Consider the interaction of 1-fragments fg1; g2; g1 [ g2g of one protein with 1-fragment
h of another. One binding hypothesis is that h binds g1 or g2 and the cleavage site g1=g2 is shielded
(either by h or some other fragment). This hypothesis is encoded as the single 2-fragment g1 [ g2 [ h. Let
m.g1/ denote the mass of g1, etc. If the hypothesis is false, the mass spectrum should contain three peaks
fm.g1/; m.g2/; m.h/g, else it should contain one peak m.g1/ C m.g2/ C m.h/ C 1m.g1; g2; h/, where
1m.g1; g2; h/ denotes the change in mass due to crosslinking.

Example 3. Another binding hypothesis for Example 2 is that the complex shields the proteolytic site
g1=g2, but without h binding g1 or g2. This hypothesis is supported by a spectrum containing two peaks
fm.g1/ C m.g2/; m.h/g. However, this spectrum could also support other hypotheses (e.g., g1 and g2 are
in the core, shielded from proteolytic digestion). Thus we must compare the spectrum for the cleaved
g-protein in isolation. If the isolated spectrum contains fm.g1/; m.g2/g then the g1=g2 cleavage site is
exposed in isolation and protected (Zappacosta et al., 1996; Cohen et al., 1999) in the complex. Therefore
the residues at the g1=g2 site are considered either to be located within the interaction regions in the
complex, or inaccessible due to conformational change upon binding. On the other hand, if it contains a
peak m.g1/ C m.g2/, there is no evidence that the g1=g2 site is implicated in the interaction region.

Our algorithm is based on the assumption that the sequence segments responsible for the interactions
are a) contiguous and b) preserved if the proteins are digested; a) is assumed strictly for combinatorial
reasons. If a) fails, then our method still works, but with a penalty in combinatorial complexity. Refer to
the experimental set-up subsection on the use of crosslinking for a discussion of b).

2.2.2. Mass degeneracy. Mass degeneracy results when the masses of two fragments are indistinguish-
able within the resolution of a particular spectrum. Our goal is to use selective labeling to force the
fragment masses to be distinct. A selective labeling scheme uses different isotopes in speci� c amino acids
(e.g., Arg with 15N instead of 14N) to affect the resulting mass spectrum.

Given (any) two fragments k; l 2 F , we wish to plan a labeling such that their masses are distinct
whenever k 6D l. That is

X

i2R

nki.mi C xi/ 6D
X

i2R

nli.mi C xi/; (1)

where R is the set of residues {Ala, Arg, Asn, Asp; : : :} plus a “pseudo-residue” term for the appropriate
crosslinker (see Example 2), mi is the unlabeled monoisotopic integer mass of residue type i, xi is the
additional mass of residue i after labeling, and nki (respectively, nli ) is the number of residues of type i

in fragment k (respectively, l). Note that

xi 2 f0; Oci ; Oni ; Oci C Onig; (2)

where Oci and Oni are the additional mass after labeling residue type i with 13C and 15N, respectively. Thus,
for example, for i D 2 (Arginine), m2 D 156; Oc2 D 6, and On2 D 4. Now, let

Nkl D .nk1 nl1; nk2 nl2; nk3 nl3; : : :/; (3)

Ckl D Nkl ¢ .m1; m2; : : :/; (4)

X D .x1; x2; : : :/: (5)

Then Equation (1) can be written as the constraint

fkl.X/ 6D 0; where fkl.X/ D Nkl ¢ X C Ckl: (6)

We have a constraint of the form Equation (6) for every pair of distinct fragments k and l. Whenever a
constraint fkl is violated, we obtain mass degeneracy (two fragments with the same mass). This constraint
can be expressed as a disjunction of inequality relations (that is, < or >). Inequalities can also enforce peak



REDUCING MASS DEGENERACY IN SAR 25

separation in the spectrum. For example, to ensure a peak separation of at least ±, Equation (6) becomes
the disjunction3 fkl.X/ > ± or fkl.X/ < ±.

2.2.3. Basic combinatorics. Let p D jF j be the number of potential fragments after crosslinking and
trypsin cleavage, and n D jRj be the size of the set R, that is, the number of residue types. Then the
number of constraints m of type Equation (6) is O.p2/. Although in theory n is bounded by a constant of
about 20, exhaustive search is not possible, since there are approximately 4n different labeling schemes.
We begin by treating n and m as parameters that measure the input complexity of the problem.

To bound the number of fragments, p, we consider a 2-protein complex, in which each protein has s

cleavage sites. Since any cleavage point can be shielded, a protein with s cleavage sites can have O.s2/

1-fragments. Since we can choose any 1-fragment from each protein, there are p D O.s4/ 2-fragments.
Now, in any MS experiment, we will see only peaks from some of these fragments. That is because the
fragments may represent competing (mutually exclusive) hypotheses about binding modes. However, in
terms of experiment planning, we must be able to distinguish between any pair of hypotheses. Hence, we
have O.p2/ D O.s8/ constraints.

2.2.4. Prior information. It is clear that not all 1-fragment/1-fragment interactions are possible. Some
may be excluded based on 1-fragment length. For example, it may be impossible to shield two cleavage
sites that are t-apart with a single u-mer if u ¿ t . Such reasoning requires careful modeling: for example,
the longer strand may be heavily kinked. In general, the set of possible binding modes can be constrained
by a variety of techniques, for example by docking studies (e.g., Bohm and Klebe [1996]), chemical shift
mapping for protein–protein complexes (Takahashi et al., 2000), and docking algorithms (e.g., Gabb et al.
[1997], Norel et al. [1997]), together with homology searching, DNA footprinting, and mutational analysis.
When available, this information restricts the set of a priori fragment interpretations. In turn, this should
greatly help the combinatorics, since an experiment would need only to distinguish the fragments identi� ed
by hypothesis and could allow degeneracy in unrelated fragments. In this model, predictions of docking
and binding would be made on the computer and labelingCMS would be performed as a way of screening
these hypotheses to test which are correct.

3. EXPERIMENT PLANNING

3.1. Single-experiment planning

The goal of single-experiment planning is to � nd a labeling X that minimizes the amount of mass
degeneracy. To do this, we attempt to minimize the number of constraint violations of the form fkl.X/ D 0
(refer to Equation (6)). An exact solution to this optimization problem would � nd the best labeling—
that is, the labeling that minimizes the number of constraint violations and hence the “amount” of mass
degeneracy. An approximate solution would come “close”—for example, within a .1 C "/ factor of the
minimum, for some small ".

The problem of planning a single-experiment labeling plan can be viewed as an optimization problem.
We call this problem OMSEP for optimal mass spectrometry experiment planning. Experimentally, OM-
SEP appears dif� cult to solve ef� ciently. OMSEP is an instance of the NP-complete problem minimum
unsatisfying linear subsystem (MULS) (Arora et al., 1997; Feige et al., 1992; Arora and Safra, 1992; Arora
et al., 1992; Ausiello et al., 1999; Halldorsson, 1995; Almaldi and Kann, 1995). We show that a variant
of OMSEP is NP-complete (the proof is in the appendix):

Lemma 1. OMSEP, even restricted to using only 13C selective labeling, is NP-complete.

3In practice, mass degeneracy is given in parts per thousand, not as constant. We can encode this by making ±

dependent on k and l and rewriting this equation as fkl.X/ > ±kl or fkl.X/ < ±kl .
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3.2. Multiple-experiment planning

The single-experiment planning problem OMSEP is intractable. Even if we could solve it, the resulting
labeling might have too much mass degeneracy. Therefore, we pursue a different approach, allowing
experiment plans to use several different labelings. First, we explore a necessary condition for experiment
planning. Next, we present a stronger, suf� cient condition and then discuss how a practical, necessary, and
suf� cient condition may be obtained.

3.2.1. A necessary condition. In the necessary condition approach, we label the proteins in several
different ways, to produce several samples. MALDI MS is performed on each sample. We do not require
that each pair of fragments have distinct masses in every labeling-MS experiment. However, we do require
that for every pair of fragments, there exists some labeling in which their masses are distinct.4

Let L be a set of labelings. L may be represented by a set L D fX1; X2; : : :g where each Xi is a point
of the form X in Equation (5). For a pair of fragments k and l, and a labeling X 2 L, we can ask whether
their masses are distinct under labeling X. That is:

fkl.X/ 6D 0?

(The constraint fkl is given in Equation (6).) Hence, our necessary condition is:

Feasibility condition. Find a set of labelings L D fX1; X2; : : :g such that, for every pair of fragments
k and l, either k D 1 or there exists some labeling Xkl 2 L such that fkl.Xkl/ 6D 0. We call L a feasible
set of labelings.

The feasibility condition can be converted into an optimization problem—for example, minimizing the
number of experiments or the number of different amino acids labeled in each experiment. Let us focus
on the � rst. The feasibility condition requires that we � nd a set of labelings such that for every pair of
fragments, there is at least one labeling in which the pair is not mass degenerate. If there are p fragments,
the feasible labeling set L (when it exists), could be large, which would not be practical. Obviously, the
smaller p is, the better. This leads to the optimization version of our problem, which can be given as
follows:

Labeling-Set Optimization. Minimize the size jLj of the feasible set of labelings L.

3.2.2. Necessary versus suf� cient conditions. We say that ambiguity occurs when, in a data spectrum,
it is impossible to assign each mass peak to a unique fragment, due to mass degeneracy. This makes it
impossible to infer which fragment caused each peak, and therefore we cannot infer which fragments are
experimentally present.

Claim 2. The Feasibility Condition is worst-case necessary and suf� cient to eliminate ambiguity in
the case jLj D 1.

Claim 3. For jLj > 1, the Feasibility Condition is necessary but not suf� cient.

Proof. Necessity is de� nitional. We show it is not suf� cient. Suppose L D fX1; X2g. Let k; g1; g2

be fragments, and let Ãi.k/ denote the mass of fragment k in labeling scheme Xi . Suppose Ãi.k/ D
Ã1.g1/; Ã1.k/ 6D Ã1.g2/; Ã2.k/ D Ã2.g2/, and Ã2.k/ 6D Ã2.g1/. Then the Feasibility Condition holds, but
it is impossible to assign the k-g1 or k-g2 peaks. In particular, we cannot guarantee that k’s presence or
absence can be inferred.

Claim 4. A Suf� cient Condition for jLj > 1 is given as follows: Find a set of labelings L such that
for every fragment k there exists a labeling Xk 2 L such that, for every fragment g 6D k; fkg.Xk/ 6D 0.

4Note that fragments whose primary sequences are permutations of one another cannot be distinguished by
labelingCMS.



REDUCING MASS DEGENERACY IN SAR 27

Table 1. Randomized Experiment
Planning Algorithm

Let L D ;.
Let D D F £ F.
Repeat

Let X D a random labeling.
Set L Ã L [ fXg.
Set D Ã f.k; l/ 2 D j fkl.X/ D 0g.

Until D D ;.

In practice, the suf� cient condition in Claim 4 is much stronger than we need. One intuitive reason is the
potential for use of negative evidence: the absence of a peak in one labeled spectrum can disambiguate a
potential mass degeneracy in another. For example, in the proof of Claim 3, if fragment g1 does not occur,
then the peak Ã2.g1/ will be missing if Ã 1

2 .Ã2.g1// is a singleton. In this case, the k-g1 peak in labeling
X1 can be unambiguously assigned to k. Thus, the suf� cient condition does not take into account the
expected information content of negative evidence. Note that this assumes that the quantity of a particular
fragment is dramatically reduced or completely absent. Since MS is not a quantitative method, a reduction
in peak size under some conditions could not be construed as negative evidence. The key point is that we
do not require that any peak must be absent; however, when a peak is experimentally absent, the algorithm
can exploit that information to make valid inferences about function. Since roughly s4 s fragments will
not occur in any experiment, we expect to � nd a great deal of negative evidence. In the next section, we
incorporate negative evidence into the data analysis phase.

More intuition as to why the suf� cient condition might be stronger than needed follows from recognizing
that the necessary condition imposes O.s8/ constraints on O.s4/ fragment hypotheses. However, in any
physical experiment, only O.s/ fragments will appear. These fragments are so constrained by the O.s8/

clauses of the necessary condition that mass degeneracy under a feasible labeling is rare. The randomized
experiment planning algorithm described above can be viewed as “satisfying a necessary condition,” as
opposed to optimally satisfying a necessary condition (which would mean minimizing jLj), or satisfying
a worst-case suf� cient condition like Claim 4 (which would be so pessimistic as to demand a very large
number of experiments). Our goal is to minimize or reduce the ambiguity from mass degeneracy in an
O.s/-size sample F¤ that is selected “randomly” from a larger, O.s4/-sized set F of fragment hypotheses,
given statistics on the mass degeneracy in F . In the probabilistic framework section below, we quantitate
these observations by modeling the statistical properties of mass degeneracy.

3.3. Experimental results

It follows immediately from Lemma 1 that labeling-set optimization is NP-hard. Therefore, we explored
how feasibility (without optimality) could be computed (i.e., to obtain a “small” number of unsatis� ed con-
straints), with the randomized algorithm in Table 1. This algorithm merely checks the necessary condition.
Somewhat remarkably, in practice, this results in satisfying much stronger conditions (see below). One
of our goals is to elucidate why this is so. We believe that such an algorithm can yield ef� cient labeling
strategies.

We applied the randomized algorithm to experiment planning for the proteins ubiquitin carrier protein
(ubc9)5 and ubiquitin-like protein (ubl1)6 under trypsin cleavage. The algorithm was run for 1000 trials,
with each trial identifying a set of experiments that disambiguate the fragments. A minimally sized experi-
ment set (not necessarily unique) was chosen from this group. Two fragments were considered ambiguous
if their masses differed by less than one part per thousand. The computation required about three minutes
of real time on a 400MHz Pentium II machine, running interpreted Scheme code. Results, detailed in
Table 2, show that fragments of ubl1 can be disambiguated with one correctly-chosen isotopic labeling,

5ubc9 (or Human ubci), Accession #P50550/Q15698.
6ubl1 (or Human sm33), Accession #P55856/Q93068.
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Table 2. Isotopically Labeled Experiment Planning
Results from the Randomized Algorithma

13C-labeled 15N-labeled P(interp)

Unlabeled Unlabeled 0.43
ARCEGILKSWV NDQEHILSWV 1.0

(a)

13C-labeled 15N-labeled Â P(interp)

Unlabeled Unlabeled 27 0.021
NDQEHILKSTWV RCQHKMSTWYV 18 0.88
QGISWV ACQEGIKPY 10 0.99
ANDCEGHILS RCQGILMFPSWY 3 0.9998
ARNQEHKMSV ACQGLMWY 1 0.99999
DCQEILSW ANEGLKMFTWY 0 0.9999997

(b)

a (a) Single experiment disambiguating fragment masses for ubl1. (b) Se-
quence of experiments collectively disambiguating fragment masses for
ubc9. Â D number of remaining ambiguities. P(interp) is the probability
that spectral differencing can eliminate all incorrect fragments (Eq. (11)).

and fragments of ubc9 can be disambiguated with no more than � ve labelings: the � rst labeling leaves 18
ambiguous pairs, of which only 10 are ambiguous with respect to the second labeling, and so forth. In a
later section, we calculate a probabilistic measure of how well these planned experiments are expected to
eliminate mass degeneracy (P(interp) in Table 2).

For the ubl1-ubc9 complex, the program identi� ed 120 fragments for ubl1 and 276 fragments for ubc9,
and thus 33516 fragments for the cross-product. It then identi� ed 434241 mass-degenerate pairs in this set
of fragments. This is far too many pairs for a small set of experiments to disambiguate, underscoring the
importance of computational modeling and prediction of feasible fragments in the complex. A reasonable
set of priors would restrict the number of functional hypotheses to a few hundred. Our experiments are
evidence that SAR by MS can discriminate among hundreds of hypotheses, which should be suf� cient for
many complexes of interest.

4. DATA ANALYSIS: SPECTRAL DIFFERENCING

Optimal experiment planning attempts to carefully design the experiments so that the data analysis de-
volves to a table-look-up. The process is designed to minimize ambiguity in fragment hypothesis interpre-
tation. Without experiment planning to minimize mass degeneracy, the data analysis may yield ambiguous
results (i.e., competing fragment and binding-mode hypotheses). Since optimal experiment planning ap-
pears dif� cult, we now investigate an alternative approach, obtaining polynomial-time algorithms when
some potential ambiguity can be tolerated. A continuum of design tradeoffs is possible between planning
and analysis. To explore this idea, we picked a point near the other end of the design spectrum, in which
we assume that the experiment plan (labelingCcleavage) is given a priori, and the data analysis algorithm
reports on the hypotheses than can be inferred from the collected spectra. The hypotheses will typically
not be unique, since the experiment was not optimally planned. The next section presents a probabilistic
framework that uses the insights of this section to predict how well a nonoptimal experiment plan will
actually perform.

Trained spectroscopists interpret mass spectra using a technique called spectral differencing, in which
two spectra from different labelings of a complex (but using the same cleavage agents) are compared. For
example a peak in an unlabeled (natural isotopic abundance) mass spectrum will shift to a higher mass
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in a selectively 15N-labeled spectrum (cf. Figs. 1 and 2). When peaks can be tracked across spectra, the
corresponding mass shifts can be used to infer which fragment generated the peak.

Given a complex and a � xed cleavage agent, let Si be a mass spectrum, represented as a set of masses
(at observed peaks) fs1; s2; : : :g, under labeling scheme Xi . Xi D fx1; x2; : : :g is a vector of labels as in
Equation (5). Let Ái.s/ be the set of fragments which could have produced peak s:

Ái.s/ D fk 2 F j s ¼ Ãi.k/g (7)

where Ãi.k/ is the mass of fragment k under Xi . Spectral differencing then identi� es pairs of peaks in
two different spectra S1 and S2 such that the same fragment could have caused both peaks. We de� ne the
set of interpretations of the mass shift (s1; s2) for peaks s1 2 S1 and s2 2 S2 as Á1.s1/ \ Á2.s2/. Due to
mass degeneracy, s1 in spectrum S1 could have multiple explaining fragments k 2 Á1.s/. However, each
such k must also have a peak s2 in spectrum S2 with k 2 Á2.s2/ in order to be consistent with the spectral
difference. This approach uses negative evidence to rapidly prune the fragments being considered.

We now develop a fast algorithm for spectral differencing, which devolves to computing the intersection
over spectra of possible explaining fragment hypotheses. The spectral intersection of S1 and S2 is the set
of fragments that could appear in both spectra:

I .S1; S2/ D Á1.S1/ \ Á2.S2/: (8)

The set I .S1; S2/ represents the fragment hypotheses consistent with the spectral intersection.
In order to bound the number of observed spectral peaks for which explanations must be intersected,

consider a dimeric protein complex P with n residues. Given a cleavage agent ° , we obtain a crosslinked
and cleaved system P.° /, containing both 1- and 2-fragments. While the set of possible fragments that
could make up P.° / is large (O.n4/), in any particular P.° / we will see only O.n/ 1-fragments (see
the section on basic combinatorics). A priori, there could be O.n2/ 2-fragments, but we do not expect it
is geometrically feasible for every pair of 1-fragments to crosslink. Therefore, we expect to observe only
O.n/ 2-fragments. Hence, we expect the size c of the crosslinked and cleaved system P.° / to be O.n/.

We use 1D range-searching (Bently, 1980) to � nd spectral intersections, assuming the mass values are
only accurate to some uncertainty bound ".

Claim 5. Suppose we are given two spectra S1 and S2 under labelings X1 and X2, respectively, of
a crosslinked and cleaved system, together with a tolerance " representing the resolution of the spectra.
Then the spectral intersection I .S1; S2/ can be computed in time O.c log n/, where c is the size of the
spectra (number of peaks) and n is the number of residues, using O.n4 log n/ preprocessing time.

Proof. For each labeling Xi , create a binary range tree, storing for each fragment hypothesis f the
interval [Ãi.f / "; Ãi.f / C "], where Ãi.f / is the mass of fragment f under labeling Xi . This pre-
processing requires time O.n4 log n/ for the O.n4/ fragments. Each peak can be looked up in time
O.logn/, so the fragments explaining each spectrum can be computed in total time O.c logn/. Assuming
a constant amount of mass degeneracy per peak, these two sets, each of size O.c/, can be intersected in
time O.c log c/, which is O.c logn/.

Corollary 6. Spectral intersection under uncertainty can be extended to analyze spectra from d selec-
tive labeling schemes, with O.dc logn/ running time and O.dn4 logn/ preprocessing time.

In an alternative algorithm, we could store the spectral peaks in range trees and look up the fragment
hypotheses; this would require O.c log c/ preprocessing and O.n4 log c/ look-up time. However, the algo-
rithm in Claim 5 allows the range trees to be built in a preprocessing step performed in parallel with the
wet-lab molecular biology (selective labeling), which can take on the order of days. After preprocessing,
the computational look-up phase should be very fast, on a similar timescale to MS recording.

Spectral differencing can also be used to compare spectra from single proteins against spectra for a
complex of the proteins (see Example 3). While we omit a detailed discussion, the algorithm is similar to
the one given above.
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5. PROBABILISTIC MASS DEGENERACY

The data analysis techniques discussed in the previous section correlate information among multiple
spectra from different labelings, overcoming mass degeneracy by eliminating fragment hypotheses that are
not consistent with all spectra. Since there are a large number of fragment hypotheses (O.s4/) but only
a small number of observed peaks (O.s/), it is likely that many potential ambiguities can be resolved
by spectral differencing, given experimental data. The experiment planning suf� cient condition (Claim 4)
operates without experimental data, assuming the worst case, and thus may be far too strict in practice. This
section derives probabilistic measures that approximate the likelihood that spectral differencing will be able
to resolve potential ambiguities. In particular, we distinguish correct and incorrect fragment hypotheses as
those that respectively do and do not correspond to peptides existing in the sample. We then address the
following question: How likely is it that some incorrect fragment hypotheses cannot be eliminated due to
mass degeneracy with correct fragment hypotheses?

Claim 7. Spectral differencing fails to eliminate all incorrect fragment hypotheses if and only if there
exists an incorrect fragment hypothesis k, such that, for each labeling X 2 L, there exists a correct
fragment hypothesis lX such that fklX .X/ D 0.

The negation of the condition in Claim 7 indicates when spectral differencing can eliminate all incorrect
fragment hypotheses. Note that this does not mean that all peaks will be uniquely assigned, since the
correct fragment hypotheses might be mass degenerate. However, it does mean that exactly the correct
hypotheses will be identi� ed, which is our objective. This novel approach of identifying correct answers
without relying on assignment has also proved useful in NMR data analysis (Bailey-Kellogg et al., 2000).

5.1. Probabilistic framework

To compute the likelihood of satisfying Claim 7 with a given set of labelings L, � rst impose a distribution
on the a priori probability that a fragment is correct. For simplicity, we assume here that this is uniform:
the expected number of correct hypotheses p¤ D E.jF¤j/ divided by the number of possible hypotheses
p D jF j. An upper bound can be derived by setting the expected number of correct hypotheses p¤ to
the number of fragments in the completely digested protein. Any available modeling assumptions can
be incorporated into this distribution. In the derivation below, let } D 1 p¤=p denote the fraction of
incorrect fragment hypotheses and let Ãi.f / denote the mass of fragment f in labeling i. The derivation
assumes the mass degeneracies in the different labelings are independent; if that is not the case, a longer
but qualitatively similar formula results.

We say a particular incorrect fragment hypothesis f appears in a particular experiment i unless all of the
fragment hypotheses with which it would be mass degenerate are also incorrect. Let C.f; i/ D Ã 1

i .Ãi.f //

denote the con� ict set (mass-degenerate fragments) of fragment f in experiment i and c.f; i/ D jC.f; i/j
be the size of the con� ict set. Then

P .appears.f; i// D 1
Y

g2C.f;i/

P .incorrect.g//

D 1 }c.f;i/ : (9)

We say a particular incorrect fragment hypothesis f is eliminatable unless for all experiments i 2 L; f

appears in i:

P .elim.f; L// D 1
Y

i2L

P .appears.f; i//

D 1
Y

i2L

.1 }c.f;i//: (10)

An incorrect fragment hypothesis f is uneliminatable when it is not eliminatable.
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FIG. 3. Interpretability of randomly planned sets of 1, 2, and 5 labelings (left to right), for (a) ubl1 and (b) ubc9.
Each bar indicates how many sets, out of 100, have the given probability of interpretability.

Finally, a set of labelings L is interpretable (Claim 7 is unsatis� ed) if, for all fragments f , f is not
both incorrect and uneliminatable:

P .interpretable.L// D
Y

f 2F
.1 P .incorrect.f // ¢ .1 P .elim.f; L////

D
Y

f 2F
.1 } ¢

Y

i2L

.1 }c.f;i///: (11)

Equation (11) de� nes an interpretability metric for a set of labelings, indicating how likely it is that
spectral differencing will be able to eliminate all incorrect fragment hypotheses.

5.2. Experimental results

We have tested the interpretability metric for the proteins previously discussed. Refer again to Table 2:
the last column gives the interpretability metric for both the unlabeled protein and the labeled protein. Note
that the metric converges to 1.0 with the addition of more labelings distinguishing more mass-degenerate
pairs, demonstrating the power of spectral differencing to combine information across experiments. In the
extreme case, when the suf� cient condition (Claim 4) is satis� ed (as with the planned labeling for ubl1),
the metric equals 1.0.

We have studied also the ability of random labeling sets to satisfy the interpretability conditions. Figure 3
shows histograms of the metric for sets of 1, 2, and 5 random labeling sets, with 100 samples generating
each histogram. As these plots illustrate, the interpretability metric provides a concrete indication that ubl1
is easier to disambiguate than ubc9. Randomization is able to effectively sample the space of labelings,
and our planning algorithm can � nd sets of labelings that, with high probability, spectral differencing will
be able to interpret. Figure 3 shows empirical evidence that the Randomized Algorithm (Table 1) and
the interpretability metric (Equation (11)) are mutually bene� cial and may be combined in a package for
experiment planning to probabilistically eliminate mass degeneracy.

6. CONCLUSION

MALDI MS is a fast experimental technique requiring subpicomolar sample sizes. It is therefore attractive
for high-throughput functional genomics studies. However, the information extracted is rather minimalist
compared to NMR or x-ray crystallography, so a large burden is placed on the algorithmic problems
of experiment planning and data analysis. In this paper, we explored the problem of eliminating mass
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degeneracy in SAR by MS, developing an experiment planning framework that seeks to maximize the
information content of an SAR by MS experiment and an ef� cient data analysis algorithm that interprets the
resulting data. We investigated optimal experiment planning (OMSEP) where the objective is to minimize
mass degeneracy and showed that, under fairly natural conditions, a 13C-only variant of this problem
is NP-complete. We then explored more tractable subclasses, tradeoffs, and implementation experiments.
We developed a randomized algorithm that processes across spectra to eliminate mass degeneracy. While
this technique appears to be ef� cient, it does not minimize the number of experiments. We implemented
and tested the algorithm in a study of the protein–protein complex ubiquitin carrier protein/ubiquitin-like
protein (SMT3C).

On the other hand, if we are given an a priori experiment plan, we can use the information content in the
difference spectra to track mass shifts. This more sophisticated data analysis can be done ef� ciently, and we
provide an output-sensitive, polynomial time algorithm for the spectral-differencing data analysis. Using
spectral differencing, we then derived probabilistic bounds on actual mass degeneracy using an analysis of
the statistics of hypothesis degeneracy. This let us quantitate the effectiveness of the randomized algorithm.
Computational experiments on the SMT3C system support our construction of a data-driven necessary and
suf� cient condition (Equation (11)) for probabilistic mass degeneracy.

The algorithms and bounds we explored represent � rst steps in a computational framework for SAR by
MS. We believe this will be a dynamic and fruitful area for future research.

APPENDIX

A. Lower bounds (proof of Lemma 1)

We wish to show that OMSEP is a dif� cult problem, by showing that it is NP-complete. There are
several dif� culties in proving a real biological or biochemical problem to be NP-hard. First, the number of
amino acids is � xed at 20 and the maximum “reasonable” size of a protein is also � xed by nature, so in a
complexity-theoretic sense all problems can be solved in constant time. Of course this doesn’t capture the
observed complexity of these problems. Thus, we will allow the number of amino acids and the length
of the protein to be variables. In the case of protein size, this is a standard abstraction that has been
used elsewhere. It is less standard for the number of amino acid types, but we believe the combinatorial
argument in the problem de� nition section justi� es this abstraction.

There is another way in which an NP-completeness proof may fail to capture true biochemical problems.
A biochemical problem may have restrictions on the possible input parameters that don’t arise in other
types of problems. For example, to show that a problem with a nonnegative input parameter x in NP-hard,
it is suf� cient to show that it is NP-hard when x is restricted to be 0 or 1. However, this might not be
suf� cient for a biochemical problem in which x is a physical parameter, such as mass, and restricting it
to be 0 or 1 leaves a set of problems that are not physically realizable or interesting. Thus the challenge,
roughly, is to show that the set of instances which are hard has a nonempty intersection with the set of
problems that arise biochemically.

The following problem, BIN FLS 6D (Feasible Linear System with {0, 1} variables and 6D constraints),
is known to be NP-complete (Amaldi and Kann, 1995, 1998):

Problem name: BIN FLS 6D

Input: aij 2 Q; i D 1; : : : ; n; j D 1; : : : ; m and bi 2 Q; i D 1; : : : ; n.

Problem de� nition: Does there exist xj 2 f0; 1g; j D 1; : : : ; m such that

mX

jD1

aij xj 6D bi ; i D 1; : : : ; n? (12)

See Arora et al. (1992, 1997), Feige et al. (1997), Arora and Safra (1992), Ausiello et al. (1999), and
Halldorsson (1995) for other related work on BIN FLS.
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Lemma 8. For every instance of BIN FLS 6D, and any set of ri , with the size of each ri bounded by
a polynomial in the original input size, i D 1; : : : ; n, there is an equivalent instance with n C m variables
and 2n inequalities, in which n of the right-hand sides are ri ; i D 1; : : : ; n, and n are 0.

Proof. Let the n additional binary variables be called y1; : : : ; yn. Then we form the following system
of 2n inequalities. Consider the following modi� ed problem:

mX

jD1

aij xj C .ri bi/yi 6D ri ; i D 1; : : : ; n (13)

yi 6D 0; i D 1; : : : ; n: (14)

Since in any satisfying assignment all the yi’s must be 1, this instance is algebraically equivalent to the
BIN FLS 6D one.

Lemma 8 tells us we have the freedom to choose any rational right hand sides; in particular we can
choose them as functions of biochemical parameters and still have an NP-complete problem.

We now introduce a variant of OMSEP, in which only 13C selective labeling is permitted. We call this
problem 13C-omsep-sat:

Problem name: 13C-omsep-sat

Input: m amino acids z1; : : : ; zm, each with cj carbons and mass mj .cj > 0 and mj > 0 for proteins)
and n constraints, where a constraint i can be speci� ed by m coef� cients hij where .hi1; hi2; : : : ; him/

is the “difference vector” Nkl in Equation (3) (hij , the j th element of the vector Nkl, corresponds to the
difference in the number of residues of amino acid type j ).

Problem de� nition: Each of the n constraints can be written as

mX

jD1

hij .cj xj C mj / 6D 0 (15)

where xj 2 f0; 1g. Can we simultaneously satisfy all the constraints?

Claim 9. 13C-omsep-sat is NP-hard.

Proof. The proof is by reduction from BIN FLS 6D. The basic approach of the reduction is to encode
an instance of BIN FLS 6D in an SAR by MS problem (13C-omsep-sat) such that each constraint in the
BIN FLS 6D system corresponds to a pair of fragments whose masses must be distinguishable by MS.
We rely on the use of binding mode hypothesis priors (see Section 2.2.4) in order to ignore the quadratic
number of degeneracies possible between fragments from different constraints. The biological relevance
of this assumption is discussed at the end of the section.

Assume WLOG that aij 2 Z .i D 1; : : : ; nI j D 1; : : : ; m/ (if not, multiply both sides of Equation (12)
by 1=q where q is the LCM of the denominators of the aij ). By Lemma 8, we know we can create an
instance in which we specify the right hand sides. We will set

bi D
mX

jD1

aij mj

cj
: (16)

Given such an instance of BIN FLS 6D, we create an instance of 13C-omsep-sat. Note that all mj and
cj ; j D 1; : : : ; m, are chosen by nature. For each j D 1; : : : ; mI i D 1; : : : ; n, we set

hij D aij

Y

k 6Dj

ck : (17)
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This corresponds to building a protein with 2n fragments, and hence . 2n
2 / potential degeneracies, and

using priors to limit planning to only the n relevant degeneracies speci� ed in Equation (17). That is, for
each constraint i D 1; : : : ; n, include a pair of fragments with the appropriate mass difference given by
the difference vector Nkl in Equation (3), namely .hi1; hi2; : : : ; him/. Then focus experiment planning on
only the designated pairs by using an input set of a priori hypotheses, eliminating from consideration other
pairwise fragment–fragment constraints.

Now let’s look at our system of inequalities:

mX

jD1

hij .cj xj C mj / 6D 0 i D 1; : : : ; n: (18)

Making the substitutions from the mapping, we get, for i D 1; : : : ; n:

mX

jD1

aij

0

@
Y

k 6Dj

ck

1

A .cj xj / C
mX

jD1

aij

0

@
Y

k 6Dj

ck

1

A mj 6D 0 (19)

or

mX

jD1

aij

0

@
Y

k 6Dj

ck

1

A .cj xj / 6D
mX

jD1

aij

0

@
Y

k 6Dj

ck

1

A mj : (20)

But

mX

jD1

aij

0

@
Y

k 6Dj

ck

1

A .cj xj / D
mX

jD1

aij

³
Y

k

ck

!

xj

D
³

Y

k

ck

!
mX

jD1

aij xj ; (21)

so we can rewrite the inequalities as

³
Y

k

ck

!
mX

jD1

aij xj 6D
³

Y

k

ck

!
mX

jD1

aij mj

cj
(22)

so this system is just the system (12) scaled by .
Q

k ck/ and so is satis� able if and only if (12) is. Note
that we can add a set of dummy variables and set them to one to obtain the exact form of Lemma 8. If
any rational coef� cient ri D bi is nonintegral, we can clear denominators by multiplying by one over the
LCM as described above.

If we let the largest number in the input be D, then the input to BIN FLS 6D is of size O.nm log D/. In our
problem, the largest number can be as large as n!D, which means that the input is of size O.nm.n log n C
log D/,which is just a polynomial blow-up.

Problem name: 13C-omsep

Input: Identical to 13C-omsep-sat. The constraints are again given in the form of Equation (15).

Problem de� nition: Can we � nd a set of assignments xj 2 f0; 1g; .j D 1; : : : ; m/ that minimizes the
number of unsatis� ed constraints?
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Lemma 9. 13C-omsep is NP-complete.

Proof. NP-hardness follows directly from Claim 9. 13C-omsep is in NP because it is an instance of
the NP-problem minimum unsatisfying linear subsystem (MULS) (Arora et al., 1992, 1997; Feige et al.,
1997; Arora and Safra, 1992; Ausiello et al., 1999; Halldorsson, 1995; and Amaldi and Kann, 1995).

We have thus shown that the problem of determining whether a set of mass degeneracy constraints is
simultaneously satis� able is NP-hard. It is natural to ask whether there exists a real protein that could
actually generate the constraints that arise in our reductions. If we take the view that all pairs of fragments
potentially interact and we don’t know a priori which ones will interact, then we cannot answer this
question. On the other hand, by using a priori binding-mode and -region hypotheses to limit the constraints
that the planner must address (see Section 2.2.4), we were able to build a protein encoding at least the
desired constraints, along with other eliminated by priors.

It is worth asking whether such a reduction is biologically relevant. It may be unlikely that such a
protein will be expressed naturally in the proteome of an organism. However, making such a protein is
certainly within the capability of standard biotechnology (where, given any de novo, designed, primary
sequence, the techniques of standard recombinant DNA, protein overexpression, and puri� cation can be
used to produce a sample). Until a distribution of “hard” versus “easy” naturally occurring proteins can
be obtained, we feel the result of Lemma 1, which is realizable biotechnologically, provides insight into
the empirically observed combinatorial dif� culty of the problem.
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