
A Novel Ensemble-Based Scoring and Search Algorithm
for Protein Redesign, and its Application to Modify the
Substrate Specificity of the Gramicidin Synthetase A

Phenylalanine Adenylation Enzyme

Ryan H. Lilien∗,†,‡ Brian W. Stevens‡,§ Amy C. Anderson‡,¶ , ∗∗ Bruce R. Donald∗,‡,¶,‖,∗∗

Abstract: Realization of novel molecular function requires the
ability to alter molecular complex formation. Enzymatic function
can be altered by changing enzyme-substrate interactions via mod-
ification of an enzyme’s active site. A redesigned enzyme may
either perform a novel reaction on its native substrates or its na-
tive reaction on novel substrates. A number of computational ap-
proaches have been developed to address the combinatorial nature
of the protein redesign problem. These approaches typically search
for the global minimum energy conformation among an exponen-
tial number of protein conformations. We present a novel algo-
rithm for protein redesign, which combines a statistical mechanics-
derived ensemble-based approach to computing the binding con-
stant with the speed and completeness of a branch-and-bound prun-
ing algorithm. In addition, we developed an efficient determinis-
tic approximation algorithm, capable of approximating our scoring
function to arbitrary precision. In practice, the approximation al-
gorithm decreases the execution time of the mutation search by a
factor of ten. To test our method, we examined the Phe-specific
adenylation domain of the non-ribosomal peptide synthetase gram-
icidin synthetase A (GrsA-PheA). Ensemble scoring, using a ro-
tameric approximation to the partition functions of the bound and
unbound states for GrsA-PheA, is first used to predict binding of
the wildtype protein and a previously described mutant (selective
for leucine), and second, to switch the enzyme specificity toward
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leucine, using two novel active site sequences computationally pre-
dicted by searching through the space of possible active site mu-
tations. The top scoringin silico mutants were created in the wet-
lab and dissociation / binding constants were determined by flu-
orescence quenching. These tested mutations exhibit the desired
change in specificity from Phe to Leu. Our ensemble-based algo-
rithm which flexibly models both protein and ligand using rotamer-
based partition functions, has application in enzyme redesign, the
prediction of protein-ligand binding, and computer-aided drug de-
sign.

Categories and Subject Descriptors:J.3 [Life and Medical Sciences]:
Biology and genetics

General Terms: Algorithms, Measurement, Design, Experimenta-
tion

Keywords: Protein design, Enzyme design, Protein flexibility, Protein-
ligand binding, Molecular ensemble, Non-ribosomal peptide syn-
thetase, Fluorescence binding assay

Abbreviations used: DTT, dithiothreitol; GMEC, global minimum energy
conformation; GrsA-PheA, gramicidin synthetase A - phenylalanine adeny-
lation domain; LB, luria broth; NRPS, non-ribosomal peptide synthetase;
PCR, polymerase chain reaction; PMSF, phenylmethanesulfonyl fluoride;
RMSD, root mean square distance; WT, wildtype

1 Introduction
In a variety of fungi and parasites, non-ribosomal peptide synthetase
(NRPS) enzymes complement the traditional ribosomal peptide syn-
thesis pathway. NRPS enzymes produce peptide-like products via
the incorporation of both standard and non-standard amino acid
precursors. Unlike the ribosome, many NRPS enzymes methylate
or epimerize their amino acid substrates, join them with peptide or
ester bonds, and sometimes cyclize their final product. NRPS prod-
ucts include natural antibiotics (e.g., penicillin, vancomycin), an-
tifungals, antivirals, anticancer therapeutics, immunosuppressants,
and siderophores. Enzymes of the NRPS pathway have multiple
domains with individual functions acting in an assembly-line fash-
ion (Figure 1). It is believed that the substrate specificity of the
NRPS enzymes is dictated primarily by the ‘gatekeeper’ adenyla-
tion (A) domain that binds and acylates the incoming amino acid,
forming an amino-acyl adenylate [49, 7, 46]. Recent evidence also
indicates that the condensation (C), thiolation (T), and epimeriza-
tion (E) domains may carry some specificity as well albeit to a
lesser extent [1, 53, 14, 27].

Enzyme redesign of NRPS enzymes offers the opportunity to
reëngineer biosynthetic pathways, greatly increasing the number
and types of NRPS products. Therefore, the interest in redesigning
NRPS enzymes is motivated by the long-range goal of reprogram-
ming the enzymatic pathway to achieve combinatorial biosynthe-

46



sis, and the development of new libraries of antibiotics [5]. We
explore the idea of reprogramming NRPS enzymes by introduc-
ingK∗, an ensemble-based protein redesign algorithm, to analyze
and redesign the phenylalanine adenylation domain of the NRPS
enzyme gramicidin synthetase A (GrsA-PheA).

1.1 Computational Protein Design
A variety of computational protein redesign efforts have recently
been reported. Incorporation of molecular flexibility into protein
design is essential; every previous structure-based protein design
algorithm has included some notion of flexibility [51, 21, 20, 18, 3,
36, 28, 22, 47]. Many protein design algorithms treat the peptide
backbone as rigid and model amino acid side-chain flexibility with
a rotamer library containing a discrete set of side-chain conforma-
tions [30, 41].

Design algorithms have assumed that for a given protein sequence,
folding and binding can best be predicted by examining the sin-
gle global minimum energy conformation (GMEC). Unfortunately,
protein design by searching for the GMEC using rotamers and a
pairwise energy function on a rigid peptide backbone has recently
been shown to be NP-hard [39]. As a result, a number of heuris-
tic (random sampling, neural network, genetic algorithm) GMEC-
based approaches for protein design have been reported [51, 21,
20, 18, 31]; however, the dominant algorithm for assisting in the
GMEC search has been dead-end elimination (DEE) [12, 25, 40].
Given a protein backbone, a set of allowable mutations, and a ro-
tamer library, DEE employs a number of sophisticated conforma-
tion pruning techniques to prune conformations that are provably
not part of the GMEC. Typically, DEE will eliminate the vast ma-
jority of mutation sequences; remaining sequences can subsequently
be scored and ranked. Growing evidence supports the hypothe-
sis that protein-ligand binding can involve a number of low-energy
bound states [11, 42, 35, 55, 56, 33]. Therefore, we have developed
a scoring method for protein-ligand redesign based on molecular
ensembles. Molecular ensembles have been successfully utilized
in structure-based drug design: most commonly, molecular dock-
ing is performed against each member of an ensemble or a unified
ensemble model and an average or best interaction energy between
the protein and ligand may be retained [8, 37, 26, 4, 23, 6].

1.2 Previous NRPS Redesign
NRPS enzyme redesign methods can be divided into two main
techniques,domain-swappingandactive site modification through
site-directed mutagenesis. Domain-swapping techniques do not re-
quire computational analysis nor knowledge of molecular structure;
NRPS enzymes are modified by swapping an adenylation domain
of an existing NRPS enzyme for an adenylation domain from a sec-
ond, different NRPS enzyme (carrying a different substrate speci-
ficity) [50, 45, 13, 34]. Results of domain-swapping experiments
led to the hypothesis that the disruption of native domain:domain
interfaces vitiates the proper transfer of synthesis intermediates thereby
degrading catalytic efficiency [27]. Emphasis on the importance
of domain:domain interactions and domain specificity has directed
domain-swapping work to include simultaneous cloning of A, C,
and T domains, demonstrating increased yield [13, 34].

The second method for NRPS redesign, active site modifica-
tion through site-directed mutagenesis, utilizes structural informa-
tion of the GrsA-PheA enzyme (1AMU [9]). Sequence alignment
of GrsA-PheA with 160 other known adenylation domains sup-
ports the hypothesis that NRPS adenylation domains, specific for
different amino acid substrates, share a similar overall structure
differing mainly in the composition of residues lining the active
site [49, 16, 7]. A “signature sequence” can be derived for each
adenylation domain by extracting those residues that align with the

Figure 1: Gramicidin S Synthetase is composed of two NRPS pro-
teins, GrsA (3 domains) and GrsB (13 domains). Gramicidin S is pro-
duced in an assembly-line manner where twoD-Phe-L-Pro-L-Val-L-Orn-
L-Leu peptides are joined and cyclized. (A: Adenylation, T: Thiola-
tion (Peptidyl Carrier Protein), E: Epimerization, C: Condensation,
TE: Thioesterase)

structurally-determined substrate binding pocket of the GrsA-PheA
crystal structure. By abstracting away from the GrsA-PheA crys-
tal structure, mutations are suggested for a given amino acid sub-
strate by sequence comparison alone. Using signature sequences,
Stachelhaus,et al. [49] mutated two adenylation domains: PheA,
successfully switching the substrate specificity from Phe to Leu;
and a second adenylation domain that naturally accepts Asp to ac-
cept Asn. More recently, Eppelmann,et al. [16] changed the Glu
adenylation domain of surfactin synthetase A to accept Gln.

In summary, previous NRPS redesign methods include domain-
swapping and site-directed mutagenesis from active site signature
sequences. Our method, active site manipulation by site-directed
mutagenesis from a computational mutation search utilizing en-
semble docking, adds to the armamentarium of techniques avail-
able for protein redesign and confers some significant advantages
over existing NRPS redesign methods. Signature sequence meth-
ods project active site information into a consensus sequence, thus
losing structural information. Because molecular structure is not
explicitly considered during redesign, successful redesign is more
difficult if there are significant structural differences affecting the
overall active site shape between the A domains accepting the nat-
ural and target substrates. Our method builds mutations into the
high-resolution structure of the wildtype enzyme, thus mitigating
potential problems arising from these structural differences. In
contrast to domain-swapping, our method is more likely to pre-
serve the NRPS enzyme’s native modular structure, thus maintain-
ing crucial specific domain:domain interface regions. Finally, un-
like either signature sequence or domain-swapping techniques, our
method can propose mutations for substrates for which no existing
adenylation domain sequences are known.

When considering the use of molecular ensembles for protein
design, a major challenge has been the development of ensemble-
based redesign algorithms that efficiently prune mutations and con-
formations. In this paper we introduce theK∗ method which gen-
eralizes Boltzmann-based scoring to ensembles and applies the re-
sult to protein design. The following contributions are made in this
work:

1. Introduction of the first ensemble-based protein redesign al-
gorithm;

2. Development ofε-approximation algorithms forK∗ capa-
ble of pruning the vast majority of conformations from more
computationally expensive consideration thereby reducing ex-
ecution time and making the mutation search computation-
ally feasible;

3. The use ofK∗ to reproduce known adenylation domain bind-
ing experiments;

4. The use ofK∗ to predict novel mutation sequences capable
of switching substrate specificity of GrsA-PheA;
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5. Confirmation of theK∗ method by the creation of predicted
protein mutants in the wetlab and testing of their specificity
by fluorescence quenching binding assays.

2 Methods
2.1 Ensemble Scoring Method (K∗)
Protein-ligand binding in a single mutation is modeled using the
following K∗ equation:

K∗ =
qP L

qP qL

. (1)

K∗ is derived to be an approximation to the true association (bind-
ing) constantKA by expressing each species’ chemical potential
as a function of the species partition functionq [19, 32] and solv-
ing for the equilibrium condition (full details are provided in Ap-
pendix A). Unfortunately, it is not currently possible to compute
exact partition functions for complex molecular species. This would
require integrating an exact energy function over a molecule’s en-
tire conformational space. We therefore approximate these parti-
tion functions with the use of rotamerically-based conformational
ensembles:

qP L =
X
b∈B

exp(−Eb/RT ), qP =
X
f∈F

exp(−Ef/RT ),

qL =
X
l∈L

exp(−El/RT ), (2)

whereB, F , andL represent rotamer-based ensembles for the
bound protein-ligand complex(PL), the free protein(P ), and the
free ligand(L) respectively,Es is the energy of conformations,
R is the gas constant, andT is the temperature in Kelvin. The
accuracy with whichK∗ approximatesKA is proportional to the
accuracy of the partition function approximation used.

2.2 Mutation Search
When applyingK∗ to a protein-ligand system a number of choices
must be made with respect to ensemble generation and single-structure
scoring.Single-structure scoringis the method by which each in-
dividual member of an ensemble is scored. These individual scores
are then combined using Eqs. (1, 2) to compute an ensemble score.
The choices made in ensemble scoring should strike a balance be-
tween fidelity to the underlying physical biochemistry, and com-
putational feasibility even in the inner loop of a combinatorially
expensive search. A more detailed single structure scoring model
takes longer to evaluate and typically cannot be used with large or
complex molecules. We present one implementation of theK∗

scoring function; however, alternate schemes for both ensemble
generation and single-structure scoring can be explored and utilized
within theK∗ framework. First, in this section, we present a brute-
force algorithm that does not utilize filters on mutation space nor
pruning of conformation space. The algorithm is then extended to
utilize both mutation space filters and conformation space pruning
in Section 2.3. The specific application ofK∗ to redesign GrsA-
PheA is described in Section 3.

In the general case, for each allowable active site sequence,K∗

is computed using the following three steps.
Step 1: Ensemble Generation.Molecular ensembles are generated
by fixing the protein backbone and using the Lovellet al. [30]
rotamer library to vary side-chain conformation. Each flexibly-
modeled residue is allowed to sample all allowable rotamers. Steric
clash is determined by computing the distance that two atoms’AM -
BER van der Waals’ (vdW) spheres penetrate each other. Confor-
mations containing any pair of atoms with more than 1.5Å of steric
clash are discarded. Finally, if the volume of the active site is large
relative to the size of the ligand, multiple translations of the ligand

in the active site should be generated and included in the bound
ensemble.
Step 2: Ensemble Scoring (Single-Structure Scoring).In the brute-
force algorithm, all conformations that pass step 1 are energy-minimized
using our implementation of theAMBER energy function (contain-
ing electrostatic, vdW, and dihedral terms) [54, 10]. In our model,
hydrogen atoms are added to all residues by theLEAP module of the
AMBER distribution and are used in computing the electrostatic but
not vdW energies. We perform a constrained minimization (analo-
gous to voxel minimization [52, 43]) on each rotameric conforma-
tion where side chain dihedrals on flexible residues (including the
ligand when present) may move by up to±9◦ and, for the bound
states, the entire ligand may rotate and translate in the active site.
This allows our algorithm to sample a larger region of conformation
space while not allowing one rotamer to minimize into another.
Step 3:K∗ Scoring.The three partition functionsqP L , qP , andqL

are computed separately. The energy minimized scores from Step 2
are used to compute each partition function which is then combined
to computeK∗ (Eq. 1).

After computingK∗ for each mutation, the top mutations (those
with the largestK∗) are examined graphically and selected for test-
ing in the wetlab. It is worth noting that although theAMBER scor-
ing function we use for single structure scoring only contains en-
thalpic terms, theK∗ method of ensemble scoring encompasses
conformational entropy through use of the partition function over
ligand and side chain conformations.

2.3 Efficient Algorithms for Mutation Search
Because protein redesign is NP-Hard [39] there is most likely no
way, in the worst case, to avoid having to potentially examine an
exponential number of conformations. That is to say, the run time
of a protein design algorithm that returns the optimal mutation se-
quence (under a given metric) is likely to be inherently exponen-
tial. In contrast, a random sampling mutation search algorithm can
run in sub-exponential time, yet the mutation sequence returned
is not guaranteed to be optimal. The combinatorial nature of pro-
tein redesign is exacerbated when utilizing an ensemble-based scor-
ing function because multiple low-energy states must be considered
for each mutation sequence. Therefore, in designing an ensemble-
based mutation search algorithm it is necessary both to prune un-
likely conformations and mutations, and also to reduce the runtime
constant. Consequently, our mutation search algorithm utilizes the
following methods. First, volume and steric filters prune a combi-
natorial number of conformations from consideration. Thus, anal-
ogous to DEE, our pruning techniques eliminate the majority of
conformations early in the mutation search. Second, ourK∗ ap-
proximation algorithm quickly discards the majority of remaining
conformations by placing provable bounds on each conformation’s
contribution to the partition function; only those conformations that
significantly contribute to the partition function are further consid-
ered. This algorithm reduces the average amount of time spent
examining each conformation and is essential in practice; without
such optimizations the ensemble-based mutation search would not
be possible.
Sequence-Space Filters.A residue type filter restricts the mutation
search to include only a subset of amino acids based on compatibil-
ity with the target substrate. A volume filter removes mutations that
significantly over- or under-pack the substrate-bound active site rel-
ative to the wildtype.
Deterministic Approximation Algorithm.In a Boltzmann distri-
bution, conformations with large energies are not likely to be as-
sumed and only contribute a vanishingly small amount to the par-
tition function. We therefore prune conformations from consider-
ation (and hence minimization) when we know that they will con-
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Figure 2: An Example Conformation Tree. The rotamers of flexible
residuei are represented by the branches at depthi. Internal nodes of a
conformation tree represent partially-assigned conformations. Red×s
represent nodes of the conformation tree where steric clash has been
identified among a partially assigned conformation. All children of×
nodes are pruned and not considered.

tribute only a small percentage to the total partition function. In
Section 2.3.2 we show that the true partition function can be prov-
ably approximated to arbitrary precision.

2.3.1 Conformation Generation and the Steric Filter
Active site rotameric conformations are generated by traversing a
conformation tree in a depth-first search order. In a conformation
tree (Figure 2), the rotamers of flexible residuei are represented by
the branches at depthi. For example, in Figure 2, residue A has 4
rotamers, residue B has 2 rotamers, and residue C has 3 rotamers.
Internal nodes of a conformation tree represent partially-assigned
conformations. For example, in Figure 2, nodee represents the
partially-assigned conformation where residue A has assumed ro-
tamer 2 and residue B has assumed rotamer 1; no rotamer has yet
been assigned for residue C. Nodes of the conformation tree are
visited in a depth-first search order. As each node is visited, con-
formations with more than 1.5̊A of pre-minimization steric overlap
are not further considered, thereby pruning a branch of the confor-
mation tree. For example, when generating the children of nodeb,
rotamer 2 is not assigned to residue B since it causes steric clash.
That branch of the search tree is pruned and not considered fur-
ther. Steric clash identified at higher levels of the conformation tree
prunes more conformations than the identification of steric clash at
lower nodes of the conformation tree. Pruning at depthi eliminates
O(cn−i) conformations, wherec is the average number of rotamers
per amino acid type andn is the total number of flexible residues.

2.3.2 Intra-mutation Pruning
We now derive the energetic-based pruning method and quantify
the total error accrued by ignoring pruned conformations when
computing a single partition function. Because this technique is
applied during the computation of a single partition function for a
single mutation it is calledintra-mutation pruning. We show that
any desired approximation accuracy to the true partition function
can be guaranteed.

Assume that a partition function is to be computed overn ster-
ically allowed conformations. LetCk = {c1, c2, . . . , ck} be the
subset containing the firstk conformations such thatCn contains
all the conformations. Letqk be the partial partition function com-
puted by evaluating the firstk conformations,

qk =
X

c∈Ck

exp(−Ec/RT ).

Let q∗k be an approximation toqk determined by examining a subset
of statesSk, such thatSk ⊆ Ck,

q∗k =
X

s∈Sk

exp(−Es/RT ).

If Sk contains most of the low energy conformations ofCk thenq∗k
will represent a good approximation toqk. Let pk be the partition
function of the pruned residues(Ck − Sk) equal to the difference
qk − q∗k such that

pk =
X

s∈(Ck−Sk)

exp(−Es/RT ).

One method of ensuring thatq∗n is a good approximation toqn is to
maintain an invariant throughout the computation requiring thatq∗k
be a good approximation toqk. Therefore, we maintain that at any
pointk, q∗k must be a good approximation toqk, that is,

q∗k ≥ (1− ε)qk ∀k ≤ n. (3)

Here, ε is the desired approximation constant(ε < 1). When
Eq. (3) holds, we say thatq∗k is anε-approximationto qk. We can
maintain Eq. (3) by ensuring thatpk ≤ qkε. Since we know that
q∗k ≤ qk, we can also maintain Eq. (3) and therefore thatq∗k remains
anε-approximation toqk by ensuring that

pk ≤ q∗kε. (4)

To determine a pruning criterion, we assume that we have already
consideredk conformations and thatSk contains the subset of fully
evaluated conformations. To prune conformationck+1 we must
first guarantee that after pruningck+1, the valueq∗k+1 is an ε-
approximation toqk+1. We know that

qk+1 = q∗k + pk + exp(−Eck+1/RT ).

If we pruneck+1 then

pk+1 = pk + exp(−Eck+1/RT ) (5)

q∗k+1 = q∗k. (6)

To maintain the invariant we need to ensurepk+1 ≤ q∗k+1ε which
can be rewritten using Eqs. (5, 6) as

pk + exp(−Eck+1/RT ) ≤ q∗kε (7)

Solving Eq. (7) forEck+1 , we get that

Eck+1 ≥ −RT ln (q∗kε− pk) . (8)

Therefore, if the energy of conformationck+1 satisfies Eq. (8) then
we can prune conformationck+1 while maintainingq∗k+1 ≥ (1 −
ε)qk+1 (that is,q∗k+1 is anε-approximation toqk+1). Of course,
the purpose of pruning is to avoid the computationally expensive
energy minimization required to obtainEck+1 . In practice, we use
apairwise energy matrixto compute a lower bound onEck+1 (full
details are in Appendix D) and compare this bound to Eq. (8). Be-
cause we don’t computeEck+1 , we cannot maintain an exact value
for pk. Therefore, the lower bounds onEck+1 are used to compute
p∗k, an upper bound onpk, namely

pk ≤ p∗k =
X

s∈(Ck−Sk)

exp(−B(s)/RT ),

whereB(s) returns a lower bound on the energy of conformations.
Because−RT ln (q∗kε− p∗k) ≥ −RT ln (q∗kε− pk), the approxi-
mationp∗k can be used to determine the practical pruning criteria,
that is:conformationck+1 can be prunedif

B(ck+1) ≥ −RT ln (q∗kε− p∗k) . (9)

This leads to the following lemma:

LEMMA 1. If Eq. (9) is satisfied by conformationck+1, then
conformationck+1 can be pruned andq∗k+1 is guaranteed to be an
ε-approximation toqk+1.
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Letn← Number of Rotameric Conformations
Let c← Rotameric Conformations
Initialize: q∗← 0, p∗← 0
for k = 1 ton

if B(ck) ≤ −RT ln (q∗ε− p∗)
q∗← q∗ + exp (−ComputeMinEnergy(ck)/RT )

else
p∗← p∗ + exp (−B(ck)/RT )

Returnq∗

Figure 3: INTRA-MUTATION PRUNING. q∗ is the running approxi-
mation to the partition function, p∗ is an upper bound on the par-
tition function of the pruned conformations. The function B(·) com-
putes a lower energy bound for the given conformation. The func-
tion ComputeMinEnergy(·) returns the energy of the energy-minimized
conformation as computed using steepest-descent minimization and
our implementation of the AMBER energy function (as described inStep
2 of Section 2.2). At the end,q∗ represents anε-approximation to the
true partition function q such thatq∗ ≥ (1− ε)q.

Maintaining the invariant that after consideringk conformationsq∗k
is anε-approximation toqk leads to the following lemma:

LEMMA 2. If q∗k is anε-approximation toqk for all k (0 < k ≤
n) then by induction, at the end of the computation,q∗n will be an
ε-approximation toqn.

The intra-mutation pruning algorithm is shown in Figure 3.

When usingK∗ to perform a mutation search we can bootstrap
the pruning condition for improved efficiency (by caching partition
functions, we can exploitK∗ bounds from other mutations in the
same search). Our search algorithm has the desirable property that
provably accurateε-approximations are computed for top-ranking
mutations, while the bounds we can prove on the quickly-computed
K∗ values for lower-ranked mutations do not enjoy the same degree
of accuracy. Our algorithm requires anε-approximation only for
those mutations withK∗ ≥ γmax

i≤m
K∗

i , whereK∗
i is theK∗ value

of theith mutation,m is the total number of mutations, andγ (0 <
γ ≤ 1.0) is a user-specified constant defining a range ofK∗ values
that must be computed accurately. Since the value of the largest
(best)K∗ is not known during the mutation search, we useK∗

o ,
the largestK∗ value encountered so far. Similarly to Eq. (9), after
examiningk of n total conformations of a partition functionqP L ,
evaluation of conformationck+1 can be skipped if

B(ck+1) ≥ −RT ln (ψk − p∗k) , (10)

whereψk = max (εK∗
o qLγqP , q

∗
kε). The full derivation of Eq. (10)

is in Appendix C.

3 Results & Discussion
3.1 Structural Model
Our structural model employs the previously solved structure of
GrsA-PheA (1AMU) [9] and consists of the 9 active site residues
(D235, A236, W239, T278, I299, A301, A322, I330, C331) (Fig-
ure 4), the 30 residues with at least one atom within 8Å of the
active site, termed the steric shell, the amino acid substrate, and
the AMP cofactor. The steric shell allows us to compute the inter-
action energy of the active site residues with neighboring regions
of the protein and constrains the active site residues from assum-
ing conformations that would sterically clash with the body of the
PheA protein.

3.2 Comparison to Wildtype PheA
We performed a series of experiments to confirm the proper im-
plementation of the steric filter, the rotamer library, theAMBER

energy function, and the minimization algorithm. The first test was
designed to confirm that we could find an accepted (crystallograph-
ically confirmed) conformation for Phe in the PheA active site. The
bound partition functionqP L was computed for Phe in the GrsA-
PheA wildtype (WT) protein. The energy calculated for the best
minimized rotamer structure (i.e., the lowest computed energy) and
that calculated for the crystal structure are within 5% of each other
and have a non-hydrogen atom RMSD of 0.66Å (Figure 4A). In
the bound molecular ensemble, approximately 39 conformations of
the PheA:Phe complex have energies within 5% of the minimum
(Figure 4B). This observation supports the hypothesis that multi-
ple structures have energies contributing to the weighted ensemble.
This test confirmed that we were able to generate structures com-
patible with the X-ray structure and therefore demonstrated the fea-
sibility of both the rotamer search strategy with minimization and
the scoring scheme.

3.3 T278M/A301G Double Mutant
To further test our model we simulated the biochemical activity as-
says ofL-Phe andL-Leu against wildtype PheA and the T278M/A301G
double mutant [49]. The T278M/A301G double mutant was de-
signed by signature sequence homology modeling by Stachelhaus
et al. [49] to be similar to a known Leu adenylation domain.K∗

scores were computed for each substrate in each active site and
compared with activity assays performed by Stachelhauset al.[49].
Because the experimentally measured solvation energy of Leu and
Phe are similar (2.3 vs. 2.4 kcal/mol) [15, 17], in these experiments
we chose not to determineqL computationally but rather treat the
qL values of Leu and Phe as equivalent. Stachelhauset al. nor-
malized the activity of each protein such that the substrate with the
most activity was assigned a specificity of 100%. The wildtype
enzyme has a normalized specificity of 100% for Phe and approx-
imately 10% for Leu while the T278M/A301G double mutant has
a normalized specificity of approximately 40% for Phe and 100%
for Leu [49]. Our normalizedK∗ results closely agree with these
specificity scores. For the wildtype enzyme, PheA has a normal-
izedK∗ for Phe of 100% and for Leu of 6%. The double mutant
enzyme has aK∗ of 10% for Phe and 100% for Leu. AlthoughK∗

is a binding constant approximation, its results qualitatively agree
with the activity assays of Stachelhauset al.

3.4 Redesign for Leu
A K∗ mutation search was performed to redesign GrsA-PheA to
bind and adenylate Leu instead of Phe. The 9 active site residues,
30 active site neighboring residues, substrate, and AMP were mod-
eled as described above. We performed a 2-residue mutation search,
where any 2 of the 9 active site residues were allowed to mutate to
any of the hydrophobic residues (GAVLIFYWM) (2916 possible
mutations, appx.6.8 × 108 conformations). Each mutation was
checked against the volume filter. Active sites that were over- or
under-packed relative to Phe in the PheA wildtype by more than
30Å3 were eliminated. 1011 mutations (35% of the total), con-
taining 1.98 × 108 conformations, passed the volume filter and
were fully evaluated. Of the 822,061 conformations that pass the
steric pruning step, 742,116 (90.3%) are pruned based on minimum
energy bounds (Eq. 10) leaving only 79,945 conformations of the
original6.8×108 that were then energy minimized and scored (Ta-
ble 1). The 2-residue mutation search took less than 1 day on a clus-
ter of 18 1.6GHz Athlon processors. Without energetic pruning ap-
proximately 10 times as many conformations would require mini-
mization taking approximately 10 times longer to execute. Compu-
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Figure 4: Comparison ofK∗-Predicted and Crystal Structures of GrsA-PheA. (A) The lowest-energy ensemble member of Phe in WT GrsA-PheA
is shown with the crystal structure (RMSD: 0.66Å). Active site residues are yellow (predicted) and blue (crystal), Phe substrate is ball and stick, AMP
is green, and residues immediately surrounding the active site (the steric shell) are grey wireframe. The energy-minimized rotamer-based prediction
accurately reproduces the crystallographic conformation. The main structural difference occurs in 239W where a small difference in the (Cα-Cβ -
Cγ ) bond angle (118.3 (resp. 115.1) degrees in the crystal structure (resp. prediction)) prevents the rotamer-based conformation from more closely
matching the crystallographic conformation. (B) Conformational energy (kcal/mol) vs. RMSD for conformations in theK∗ generated ensemble
for Phe in wildtype GrsA-PheA. RMSDs are computed between each ensemble conformation and the crystal structure [9] using all non-hydrogen
atoms. Low-energy conformations have a lower RMSD than high energy conformations and conformations with low RMSDs have lower energies
than conformations with larger RMSDs.

tationally, for comparison, a three-point mutation search has been
run in 10 days; consequently, due to the computation required in
minimizing each rotameric conformation, execution without prun-
ing is impractical. In practice, the accuracy of the computed solu-
tion is significantly higher than that guaranteed by the approxima-
tion. When a 3% approximation (accuracy = 97%) is requested, the
accuracy achieved is over 99% which suggests that we may relax
the pruning criteria and still maintain an excellent approximation.

The two mutation sequences with the bestK∗ scores are A301G/
I330W and A301G/I330F: these novel mutations are unknown in
nature and have never been tested before. The lowest energy pre-
dicted conformations of the bound ensemble for the best two muta-
tion sequences are shown in Figure 5. The first mutation in both se-
quences, A301G, sterically allows for the difference in position of
the Cδ atoms between Phe and Leu. Residue 301G appears in 69%
of the top 40K∗-ranked mutations (Figure 5C) and is also present
in all 19 known native Leu adenylation domains [7]. The second
mutation (I330W, I330F) fills the bottom of the substrate bind-
ing pocket accounting for the difference in size between Phe and
Leu. Both mutations I330W and I330F form a staggered stacked
ring structure [44] with the existing residue 239W (Figure 5). The
previously-reported T278M/A301G mutant [49] is ranked 12th out
of 2916 byK∗, thus demonstrating that a known Leu binding mu-
tation is ranked highly in our mutation search.

The GrsA-PheA gene was cloned into the QE60 vector using
PCR.E. coli M15 cell lines were transformed with the constructed
plasmid. These genes where then modified to incorporate the two
desired mutations, 301G/330W and 301G/330F. The reader can
find complete expression and purification details in Appendix E.
For both mutations, the presence of Trp239 in the active site al-
lowed us to determine the dissociation constants for substrate bind-
ing (KD ) by measuring the change in fluorescence of Trp at 340nm
after titrating substrate and exciting at 280nm. The dissociation
constantKD is inversely proportional to the binding constantKA =
1/KD . Hence, a smallerKD is associated with tighter binding.
Both mutations clearly exhibit stronger binding for Leu than for
Phe (Table 2), and theKD measured for Leu in both redesigned

Conformations Pruning Pruning
Remaining Factor (%) Type

Initial 6.8× 108 - -
Volume Filter 1.98× 108 3.43 (70.9) C
Steric Filter 8.22× 105 240.86 (99.6) C
Energy Filter 7.99× 104 10.28 (90.3) CF

Table 1: Conformational Pruning. The initial number of conforma-
tions for the GrsA-PheA 2-residue Leu mutation search is shown with
the number of conformations remaining after the application of vol-
ume, steric, and energy (Eq. 10) pruning. The pruning factor repre-
sents the ratio of the number of conformations present before and after
the given pruning stage. The pruning-% (in parentheses) represents the
percentage of remaining conformations eliminated by the given prun-
ing stage. The combined pruning factor of all filters is 8510. The prun-
ing type column indicates if the pruning represents a combinatorial (C)
or a constant factor (CF) speedup.

proteins is approximately half that for Phe, strongly demonstrating
the success of the protein redesign.

4 Comparison to GMEC Search
For comparison, we explored whether the mutation sequences sug-
gested by theK∗ mutation search were indeed different from those
that would have been found using a GMEC type search. We there-
fore compared theK∗-based mutation sequence ranking to two
non-ensemble based scoring techniques. The first alternative mu-
tation scoring method scores each mutation sequence by the low-
est minimum energy bound conformation (among all allowable ro-
tameric conformations for the given mutation sequence). We re-
fer to this brute-force approach as theminimum energy (ME)tech-
nique. The second alternative scoring method simulates the rank-
ings that would be returned by a DEE-type search. This method
consists of two stages. The first stage is an initial pruning step
based on the lowest-energy bound rotameric conformation (no en-
ergy minimization is performed). In the second stage, a ranking is
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Figure 5: The top twoK∗-predicted mutations and the mutation frequency in the 40 top-ranking mutations. Shown are the lowest energy ensemble
members of the bound partition functions for (A) A301G/I330W and (B) A301G/I330F. Residue 301G sterically allows for the Leu Cδ atoms while
residues 330W and 330F both stack on residue 239W and serve to fill a void at the bottom of the active site created by the difference in size between
Phe and Leu. Mutated residues are shown in orange. (C) The fraction of the top 40K∗-ranked sequences involving the specified residues. If
mutations were randomly distributed one would expect that each residue would mutate 2/9 (22.2%) of the time (indicated by the vertical black line).
Therefore, residues 235, 236, 330, and 331 tend to assume the wildtype amino acid in theK∗-predicted distribution.

computed for each remaining mutation based on an energy-minimized
binding energy(Ebound − Eunbound). We therefore refer to this
method as the theminimized binding energy (MBE)technique. In
computing the MBE ranking, the top 10% scoring mutations from
the first stage are scored in stage two. The rankings produced by
this method therefore approximate those of a DEE-type search in
that the vast majority of mutation sequences are pruned in the DEE
stage based on the lowest energy bound rotameric conformation,
and unpruned mutations are subsequently scored using a more so-
phisticated method. To compare the mutation sequence scoring
technique rather than the energy function, both the ME and MBE
techniques use the same implementation of theAMBER empirical
energy function and steepest descent energy minimization used by
K∗.

The 3 scoring methods were applied to all 1011 2-residue mu-
tation sequences that passed the volume filter during Leu redesign.
Of the top 40K∗-ranked mutations, only 2 (5%) appear among
the top 40 ME-ranked mutations and only 7 (17.5%) appear among
the top 100 ME-ranked mutations. Conversely, of the top 40 ME-
ranked mutations, only 2 (5%) appear among the top 40K∗-ranked
mutations and only 8 (20%) appear among the top 100K∗-ranked
mutations. When compared to the MBE method, of the top 40K∗-
ranked mutations only 10 (25%) appeared in either the top 40 or the
top 100 MBE-ranked mutations. Conversely, of the top 40 MBE-
ranked mutations, 10 (25%) appear among the top 40K∗-ranked
mutations and 23 (57.5%) appear among the top 100K∗-ranked
mutations. Perhaps most interesting is the result that neither of the
top twoK∗-ranked mutations (A301G/I330W and A301G/I330F)
were found among the top 100 ME- or MBE-ranked mutations.
Furthermore, the previously reported (T278M/A301G) Leu bind-
ing mutation [49] is ranked 80th by the ME method, 3rd by the
MBE method, and 12th by theK∗ method.

Most of the topK∗-, ME-, and MBE-ranked mutations remain
biologically untested, thus precluding an exhaustive comparison of
the mutations predicted by the three scoring techniques; however,
we can conclude that the top mutation sequences returned byK∗

are different from those returned by either ME or MBE. The tested
topK∗ mutations, shown in this paper to have Leu binding speci-
ficity (by wetlab experiments), provide evidence that theK∗ rank-
ings provide an additional and effective method for ranking muta-
tion sequences.

Dissociation Constant (µM) KD

Substrate WT 301G/330W 301G/330F
L-Phe 26 91 52
L-Leu 50 44 31
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Table 2: (Top) Dissociation Constants measured by fluorospectropho-
tometry for amino acid binding to GrsA-PheA and the novel mutants
301G/330W and 301G/330F. A lower dissociation constant is associated
with tighter binding. (Bottom) Change in fluorescence vs. Leu con-
centration for 301G/330F. (Inset) Reciprocal plot of the fluorescence
quenching data and the linear regression (correlation coefficient of
0.977) showing a dissociation constant of 31µM.

5 Conclusions
TheK∗ ensemble scoring method presented here was successfully
applied to redesign the Phe adenylation domain of gramicidin syn-
thetase A. This represents the first use of an ensemble-based scor-
ing function for enzyme redesign. Despite the inherently exponen-
tial nature of ensemble-based scoring, a deterministic approxima-
tion algorithm for computing each partition function enables suffi-
cient pruning to make the search feasible. The redesigned enzymes
demonstrate a specificity switch from Phe to Leu in binding affinity
and we are now pursuing enzyme activity assays to determine the
rate of amino-acyl adenylate formation for the designed proteins.
Our ensemble-based mutation search algorithm represents a novel
and effective alternative to both domain-swapping and the use of
signature sequences for NRPS adenylation domain modification.

Many previous modeling algorithms have used biophysically-
motivated scoring functions to rank results (i.e., LUDI score [2],
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DOCK score [24, 29]). Although based on biophysical phenomenon,
these scores often do not provide accurate absolute binding infor-
mation but rather are useful in predicting relative binding.K∗ rep-
resents a similar type of scoring function. At present,K∗ can best
provide relative binding to rank mutations for a given ligand. In
the future, we hope to enhanceK∗ to provide more information on
absolute binding.

While GMEC-based approaches remain the dominant algorithm
for protein design, because of their ability to handle the design of
large proteins, we propose that, when active site flexibility and
multiple binding modes must be considered for the redesign of
a moderate-sized system,K∗ represents an accurate and feasible
approach to ensemble-based redesign. Although in this paper we
demonstrateK∗ as a stand-alone algorithm, in larger systems DEE
can be used to reduce the exponential number of mutation sequences
and conformations prior toK∗ scoring. In this manner,K∗ could
be used to efficiently rank those mutation sequences that survive
DEE pruning, leading to a DEE-K∗ hybrid search. Enhancements
to our pruning methods should increase both the fraction of se-
quence space searched during protein design and the size of active
site for whichK∗ is feasible.

It would be interesting to extend our algorithm to create ‘sloppy’
adenylation domains capable of adenylating several types of amino
acids thereby facilitating combinatorial biosynthesis. Such enzymes
could, potentially, play a role in drug synthesis analogous to “generic
operations” in computer science. Modified synthesis pathways will
create multiple final synthesis products, each demonstrating slight
variations on the designed product [5]. Such biosynthetic combina-
torial diversity should prove useful during the lead-discovery phase
of pharmaceutical development.
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APPENDIX
In Appendix A,K∗ is derived from first principles by examining
the sum of chemical potentials at chemical equilibrium. Details
of our structural model are provided in Appendix B. Appendix C
presents the derivation of inter-mutation pruning (Eq. 10). A de-
scription of how a bound is computed on a conformation’s mini-
mum energy is presented in Appendix D. Finally, in Appendix E
we provide details on the cloning, mutation, expression, and purifi-
cation of our novel mutant proteins as well as details of the fluores-
cence quenching experiments.

A Detailed Derivation of K∗
K∗ represents a biophysically-motivated scoring function over molec-
ular ensembles. By using the Boltzmann probability distribution,
K∗ satisfies the Ergodic hypothesis and can be proved to approx-
imate the true association (binding) constantKA . If K∗ is com-
puted using exact partition functions thenK∗ will equalKA . In
practice, we sample conformation space, replacing the continuous
integral with a discrete summation and use a molecular mechan-
ics scoring function to compute the energy of each conformation.
Hence, our algorithm represents an approximation to the true asso-
ciation (binding) constant.

We describeK∗ for the protein-ligand binding reactionP + L 

PL, whereP represents the protein andL can represent either a
small molecule in protein-ligand binding or a complete protein in
the case of protein-protein binding. Our scoring method represents
an approximation to the association constant,KA , by

K∗ =

P
b∈B

exp(−Eb/RT )P
l∈L

exp(−El/RT )
P

f∈F

exp(−Ef/RT )
, (11)
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whereB is the set of bound protein states,F is the set of unbound
(free) protein states,L is the set of unbound ligand states,Es is
the energy of conformations, R is the gas constant, andT is the
temperature in Kelvin. We will now motivate this equation and de-
scribe our physically derived approximation. We first note that for
the enzyme/ligand system the true association (binding) constant is
defined as:

KA =
[PL]

[P ][L]
.

It is known in statistical mechanics [19, 32] that at chemical equi-
librium the sum of the chemical potentials,µ, is equal to zero. In
our ligand binding example,

µP + µL − µP L = 0 (12)

whereµP , µL , andµP L are the chemical potentials for the free
protein, free ligand, and protein-ligand complex respectively. The
chemical potential,µJ , for a speciesJ of indistinguishable parti-
cles is

µJ = −kT ln

„
qJ (V, T )

NJ

«
, (13)

wherek is Boltzmann’s constant andqJ (V, T ) is the partition func-
tion for theNJ molecules of speciesJ at constant volumeV and
temperatureT . The partition function includes all allowable states
of a system. By substituting the chemical potentials Eq. (13) into
the equilibrium condition Eq. (12) we obtain the result that at equi-
librium:

qP L(V, T )

qP (V, T )qL(V, T )
=

NP L

NPNL

= KA . (14)

Thus the association constantKA is the quotient of the individual
species partition functions. Unfortunately, it is not currently pos-
sible to compute exact partition functions for a complex molecular
species. This would require integrating an exact energy function
over a molecule’s entire conformational space. We therefore ap-
proximate these partition functions with the use of rotamerically-
based conformational ensembles. The partition function is approx-
imated by our rotamerically-based conformations as:

qP L =
X
b∈B

exp(−Eb/RT ), qP =
X
f∈F

exp(−Ef/RT ),

qL =
X
l∈L

exp(−El/RT ), (15)

whereB, F , andL represent our rotamer based ensembles for the
bound protein-ligand complex, the free protein, and the free ligand
conformations respectively. When combined this gives the binding
constant approximationK∗ in Eq. (11).

The accuracy with whichK∗ approximatesKA is proportional to
the accuracy of the partition function approximation used. There
are two components to an ensemble-based approximation to the
partition function: the set of conformations used in the ensemble,
and the method used to score each conformation. While a molec-
ular ensemble can be generated by multiple techniques (rotamers,
multiple NMR structures, multiple crystal structures, molecular dy-
namics) [38, 30, 23], it is important that the ensemble sample all
appropriate regions of conformation space. For example, an en-
semble of structures generated from NMR experiments on an apo
protein may not sample regions of protein conformation space that
are compatible with ligand binding. Rotameric-based ensembles
have the potential to sample this space more evenly. When en-
sembles containing a large number of conformations are used it is
important to choose an energy function that can be computed effi-
ciently.

B Details of the Structural Model
Our model consists of a portion of the GrsA-PheA protein (pdb:
1AMU [9]) including the active site and a shell of surrounding
residues (termed thesteric shell). The residues of the active site
modeled as flexible using rotamers and subject to energy minimiza-
tion include: 235D, 236A, 239W, 278T, 299I, 301A, 322A, 330I,
and 331C. The steric shell was selected to include all residues not
modeled as flexible and that contain at least one atom within 8Å of
the active site. The steric shell residues include: 186Y, 188I, 190T,
210L, 213F, 214F, 230A, 234F, 237S, 238V, 240E, 243M, 279L,
300T, 302G, 303S, 320I, 321N, 323Y, 324G, 325P, 326T, 327E,
328T, 329T, 332A, 333T, 334T, 515N, and 517K. In addition to the
active site flexible and steric shell residues the model also includes
the substrate and AMP.

Flexible residues are represented by rotamers from the Lovellet
al. rotamer library [30]. Each rotameric based conformation inB,
F , andL is minimized by steepest descent minimization using the
AMBER energy function (electrostatic, vdW, and dihedral energy
terms) [54, 10] and is then combined using Eqs. (11, 15) above.

C Detailed Derivation of Inter-mutation
Pruning
In Section 2.3.2 we described conditions under which a conforma-
tion could be pruned when computing a single partition function
for a single mutation. When performing a mutation search, we
can bootstrap the pruning condition for improved efficiency. As
in Section 2.3.2, pruned conformations are not energy-minimized,
thereby saving time in the overall mutation search. We will show
how, in a mutation search, theε-approximation pruning conditions
derived below make use of the partition functions previously com-
puted for other, different mutation sequences evaluated earlier in
that search. Therefore, we call this pruninginter-mutation prun-
ing. The intuition is that we assume a lower bound on the parti-
tion functionq∗n that allows us to prune more conformations earlier
in the search. Inter-mutation pruning can only be applied during
the computation of a bound partition function,qP L ; the unbound
partition functionqP must be computed using the intra-mutation
pruning method of Section 2.3.2.

During a mutation search, our primary goal is to compute a prov-
ably accurateε-approximation for the top-ranking mutations while
quickly computingK∗ values for lower-ranked mutations that do
not require the same degree of accuracy. As each mutation is exam-
ined in the mutation search, it suffices to compute anε-approximation
for only those mutation sequences withK∗ ≥ γmax

i≤m
K∗

i , where

K∗
i is theK∗ value of theith mutation,m is the total number of

mutations, andγ (0 < γ ≤ 1.0) is a user-specified constant defin-
ing a range ofK∗ values that must be computed accurately. Setting
γ = 1.0 will compute anε-approximation for only the best scor-
ing K∗ value. Settingγ = 0.0 will compute anε-approximation
for all K∗ values. We typically setγ = 0.01 which causes the
approximation algorithm to computeε-approximations for all mu-
tation sequences withK∗ scores within two orders of magnitude of
the best. Since the value ofmax

i≤m
K∗

i is not known during the mu-

tation search, we computeε-approximations for allK∗ ≥ γK∗
o ,

whereK∗
o is the largest (best)K∗ value seen thus far in the muta-

tion search. By definition, all values ofK∗
o satisfy the inequal-

ity K∗
o ≤ max

i≤m
K∗

i (in other words, all local maxima must be

less than or equal to the global maximum). As a result, by com-
puting anε-approximation for all mutations withK∗ ≥ γK∗

o we
will have computedε-approximations for all mutations withK∗ ≥
γmax

i≤m
K∗

i . When
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K∗(1− ε) ≤ K̃∗ ≤ K∗ 1

1− ε
, (16)

we sayK̃∗ is an ε-approximation toK∗. To prove that the com-
putedK̃∗ is an ε-approximation toK∗ we first show that inter-
mutation pruning can compute anε-approximation forqP L and
then combine the result with the intra-mutation pruning of Sec-
tion 2.3.2. The following proof builds from the ideas used in the
intra-mutation pruning of Section 2.3.2. Assume that we’ve com-
putedqP (Eq. 2) using intra-mutation pruning and now want to
efficiently computeqP L (Eq. 2). As stated in the previous para-
graph, it is only necessary to computeqP L accurately for muta-
tion sequences with correspondingK∗ values that are larger than
our minimum accepting score(γK∗

o ). That is, we require anε-
approximation toqP L when

qP L

qP qL

>
q′

P L

q′
P
q′

L

γ, (17)

whereqP L , qP , andqL are the partition functions used to com-
puteK∗ andq′

P L
, q′

P
, andq′

L
are the partition functions used to

computeK∗
o . Since we are performing a mutation search to find

good mutation sequences for a single ligand, we knowq′L = qL .
Therefore, it is only necessary to computeqP L accurately when

qP L >
q′

P L

q′
P

γqP . (18)

For notational convenience, we defineK† =
q

P L
q

P
andK†

o =
q′

P L
q′

P

.

PROPOSITION 1. The algorithm in Figure 6 computes anε-
approximationq∗

P L
for a bound partition function,qP L , whenqP L >

K†
oγqP . If qP L ≤ K†

oγqP then an(ε+ δ)-approximation(δ ≥ 0)
is computed.

Proof: To prove Proposition 1 we consider two cases. Case 1,
Equation (18) holds thus requiring anε-approximation. Case 2,
Equation (18) does not hold thus requiring only an(ε+δ)-approximation.
We derive pruning criteria for Case 1. The pruning criteria will
compute a correctε-approximation for Case 1 and will compute an
(ε + δ)-approximation(δ ≥ 0) for Case 2. We will show that the
(ε+δ)-approximation holds only for partition functions falling into
Case 2 and that these are situations for which we do not require an
ε-approximation (see Proposition 2).

After computing anε-approximation to the partition function, it
must be the case thatq∗n ≥ (1− ε)qn which implies thatpn ≤ εqn.
If we assume Eq. (18) holds (Case 1) thenqn ≥ K†

oγqP and we
can conservatively conclude thatpn ≤ εqn if

pn ≤ εK†
oγqP. (19)

In reality, pn can be as large asεqn but during the conformation
search we don’t yet know the value ofqn. Therefore, givenpk, we
can prune conformation,ck+1 if pk+1 remains less thanεK†

oγqP

thereby satisfying Eq. (19), i.e.,

pk+1 = pk + exp (−B(ck+1)/RT ) ≤ εK†
oγqP . (20)

If we solve forB(ck+1) then the pruning criterion becomes

B(ck+1) ≥ −RT ln
“
εK†

oγqP − pk

”
. (21)

Becausepk ≤ p∗k, Eq. (21) can be rewritten as

B(ck+1) ≥ −RT ln
“
εK†

oγqP − p∗k

”
. (22)

Eq. (22) is the same as Eq. (9) if(εK†
oγqP ) is substituted for(q∗kε).

Therefore, when computingqP L during a mutation search we use
the pruning criterion

B(ck+1) ≥ −RT ln (ψk − p∗k) , (23)

Letn← Number of Rotameric Conformations
Let c← Rotameric Conformations

Initialize:ψ← εK†
oγqP , q∗← 0, p∗← 0

for k = 1 ton
ψ← Max (ψ, q∗ε)

if B(ck) ≤ −RT ln (ψ − p∗)
q∗← q∗ + exp (−ComputeMinEnergy(ck)/RT )

else
p∗← p∗ + exp (−B(ck)/RT )

Returnq∗

Figure 6: INTER-MUTATION PRUNING used in computing the bound
partition function qP L . The valuesq∗ and p∗ and the functions B(·)
and ComputeMinEnergy(·) are as described in Figure 3. For all mu-
tations with qP L ≥ K†

oγqP , the computed q∗ will represent an ε-
approximation to the true partition function q such thatq∗ ≥ (1− ε)q.

whereψk = max
`
εK†

oγqP , q
∗
kε

´
andp∗k is an upper bound on

the partition function of the pruned conformations(Ck − Sk) as
described in Section 2.3.2.

LEMMA 3. When Eq. (18) holds, any conformationck+1 that
satisfies Eq. (23) can be pruned during computation of the bound
partition function while maintaining the invariant thatq∗k is an ε-
approximation toqk (whereqk is qP L computed through confor-
mationk andq∗k is q∗

P L
computed through conformationk).

By maintaining the invariant throughout computation of the bound
partition function the following lemma holds:

LEMMA 4. When a bound partition function is computed for
a mutation sequence satisfying Eq. (18) while maintaining the in-
variant thatq∗k is anε-approximation toqk for all k (0 < k ≤ n)
then, by induction, at the end of the computation,q∗n will be anε-
approximation toqn.

The inter-mutation pruning algorithm is shown in Figure 6.
We have shown that whenqP L > K†

oγqP (Case 1) pruning us-
ing Eq. (23) will produce anε-approximationq∗

P L
. WhenqP L ≤

K†
oγqP it is possible that Eq. (23) will prune the wrong conforma-

tions resulting inq∗
P L

< (1− ε)qP L . Thus, the computedq∗
P L

will
be too small and we will not have computed anε-approximation.
However, by definitionqP L will have been from a mutation whose
correspondingK† ≤ K†

oγ (K∗ ≤ K∗
oγ) (Case 2) and thus (by

Proposition 1) it was not necessary to compute anε-approximation.
These partition functions are easily identified by their magnitude.
This completes the proof of Proposition 1. 2

We now have the necessary tools to prove Proposition 2.
PROPOSITION 2. Anε-approximation,K̃∗, is computed forK∗

whenK∗ > γK∗
o .

Proof: We start by determining bounds on the computedK∗ for
Case 1 and Case 2. In both cases the unbound partition function
q∗

P
was computed according to the intra-mutation pruning of Sec-

tion 2.3.2 and the bound partition functionq∗
P L

was computed ac-
cording to the inter-mutation pruning described above in this sec-
tion. Note that because each term in the summation of each par-
tition function (Eq. 2) is positive, all approximationsq∗n computed
by omitting terms must be less thanqn. Thus for both intra- and
inter-mutation pruning, whenq∗n is an ε-approximation toqn we
know thatqn ≥ q∗n > (1− ε)qn. Therefore,

qP ≥ q∗
P
> (1− ε)qP and

Case 1) qP L ≥ q∗
P L

> (1− ε)qP L

Case 2) qP L ≥ q∗
P L

> 0.
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The resultingK̃† (the approximation toK†) for high-scoring mu-
tations (Case 1) will fall within the range»

K†(1− ε),K† 1

1− ε

–
,

which implies thatK̃∗ (the approximation toK∗) lies in the range»
K∗(1− ε),K∗ 1

1− ε

–
,

as desired. For lower-scoring mutations (i.e., mutations withK∗ ≤
γK∗

o ) (Case 2), the resulting̃K† will fall within the range»
0,K† 1

1− ε

–
,

which implies thatK̃∗ lies in the range»
0,K∗ 1

1− ε

–
.

Therefore anε-approximation,K̃∗ is computed forK∗ whenK∗ >
γK∗

o and an(ε + δ)-approximation(δ ≥ 0) is computed when
K∗ ≤ γK∗

o . This completes the proof of Proposition 2. 2

D Computing a Bound on a Conforma-
tion’s Minimum Energy
In our structural model, we treat some residues as rigid while others
have a rigid backbone but flexible side-chains. If we letR represent
the set of all rigid atoms (all atoms of the steric shell and backbone
atoms of the flexible residues) then for a system withk flexible
residues the energy of this system can be computed as

E0 = A00 +
X
i≤k

A0i +
X
i≤k

Ai0 +
X
i≤k

X
i<j≤k

Aij , (24)

whereA is a precomputed residue-indexed pairwiseenergy matrix.
A residue-indexed pairwise energy matrix is a(k + 1) × (k + 1)
matrix composed of energy terms describing each residue’s inter-
action energy with the backbone, itself, and all other residues. A
detailed description of the matrix elements is as follows:A00 is the
sum of all energy terms exclusively involving atoms inR, A0i is
the sum of all energy terms involving at least one atom of residuei
and at least one atom from setR,Ai0 is the sum of all energy terms
involving only atoms of residuei (intra-residue energy), andAij is
the sum of all energy terms involving at least one atom from each
of residuesi andj.

Similarly, one can define the energyEm of a minimized con-
formation, using a different matrixM of pairwise energy terms
evaluated on the energy minimized conformation:

Em = M00 +
X
i≤k

M0i +
X
i≤k

Mi0 +
X
i≤k

X
i<j≤k

Mij , (25)

whereM00, M0i, Mi0, andMij are the analogues ofA00, A0i,
Ai0, andAij except that they are computed based on the positions
of the atoms in the energy minimized structure.

During both intra- and inter-mutation pruning (see Section 2.3.2
and Appendix C) a lower bound on the energy of the energy-minimized
conformation is required. If we replaceM00, M0i, Mi0, andMij

in Eq. (25) with lower boundsD00, D0i, Di0, andDij such that
D00 ≤ M00, Di0 ≤ Mi0, D0i ≤ M0i, andDij ≤ Mij , then we
can compute a bound:

Eb = D00 +
X
i≤k

D0i +
X
i≤k

Di0 +
X
i≤k

X
i<j≤k

Dij , (26)

such thatEb ≤ Em.
BecauseEb is simply the sum ofO(k2) pairwise energy terms, if

a precomputed residue-indexed lower-bound pairwise energy ma-
trix is available thenEb can be computed in timeO(k2). The use

of a precomputed residue-based pairwise energy matrix thus avoids
the costly computation ofO(a2) energy terms, wherea is the total
number of atoms in the system andk � a.

In our implementation of theK∗ algorithm, we precompute a
residue-indexed lower-bound pairwise energy matrixV over all
rotamers for each residue. This matrix contains a lower bound
(Vij) on the energy for all allowed pairs of rotamers as well as
lower boundsV00, V0i, andVi0 on the shell-shell, shell-residue,
and residue-self energies (respectively as described above). The
matrix we use in computation is thus slightly different than those
described in Eqs. (24, 25, 26). The matrixV contains lower-bound
energy terms for all rotamers for all residues. Therefore, the matrix
has size(km+ 1)× (km+ 1) wherek is the number of flexibly-
modeled residues andm is the number of allowed rotamers (span-
ning all residue types). When computing an energy bound, terms
corresponding to the currently assigned rotamers are used in a man-
ner similar to those described for Eqs. (24, 25, 26).

To prevent one rotamer from minimizing into another, the max-
imum dihedral movement allowed during energy minimization is
bounded (as described inStep 2of Section 2.2). As a result, one
can easily compute the terms of matrixV by examining all pairs
of residues in their active site specified relative orientations. The
lower-bound energy matrices are precomputed beforeK∗ evalua-
tion or a mutation search is performed.

E Cloning, Mutation, Expression,
Purification, and Fluorescence
Cloning. GrsA-PheA was cloned from GrsA by PCR as described
previously [48]. PCR reactions were performed using PfuTurbo
DNA Polymerase (Stratagene) per manufacturer’s directions. PCR
products and pQE-60 were digested with 10U NcoI and 10U BamHI
for 2 hrs at 37◦C (50mM Tris-HCl pH 8.0, 10mM MgCl2, 100mM
NaCl). PCR products and linearized vector were gel purified and
recovered using the QIAquick gel extraction kit (Qiagen), and lig-
ated (2U T4 ligase, 50mM Tris-HCl pH 7.6, 10mM MgCl2, 1mM
ATP, 1mM DTT, 5% (w/v) PEG-8000, 1 hr at 24◦C). Escherichia
coli M15(pRep4) were transformed with the PheA pQE-60 con-
struct and selected by growth on Luria Broth (LB) supplemented
with 50µg/ml ampicillin and 30µg/ml kanamycin.
Mutation. Mutations were introduced by site directed mutagene-
sis using the QuikChange Site-Directed Mutagenesis Kit (Qiagen).
Protocols were carried out per manufacturers instructions with the
following primers: 301G:CGTTAATTACAGGAGGCTCAGCTACC
(Tm = 72◦C) 330F:CCTACGGAAACAACTTTTTGTGCGACTACA
TGG(Tm = 76◦C) 330W:GGCCCTACGGAAACAACTTGGTGTGC
GACTACATGG(Tm = 77◦C).
Expression.1 Liter of LB was inoculated and grown at 37◦C until
OD600 = 1.5-1.8. IPTG was added (1.5mM) and cultures grown for
an additional 3 hr. Cells were harvested by centrifugation at 2,500g
for 40 min, resuspended in 20 mL LB, pelleted by centrifugation at
2,000g for 30 min, and frozen at -80◦C.
Purification. Cells were thawed, resuspended in buffer (20mM
Tris-HCl pH 7.4, 50mM NaCl, 50µM PMSF) and lysed by soni-
cation. Cell extract was clarified by centrifugation at 40,000g for
40 min and 0.45µm syringe-driven filtration. PheA-His6 was puri-
fied by Ni2+ affinity chromatography using a gradient of 0-100mM
imidazole. Pure PheA-His6 was dialyzed in 50mM Hepes pH 7.6.
Fluorescence.Each protein solution (50mM Hepes pH 7.6) was
supplemented with 2mM dithiothreitol (DTT), 100mM NaCl, and
10mM MgCl2. The excitation wavelength was 280nm. Substrate
was titrated into the protein solution and fluorescence quenching
was measured at 340nm.
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