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Preface

This monograph discusses the problem of determining the information
requirements to perform robot tasks, using the concept of information in-
variants. It represents our attempt to characterize a family of complicated
and subtle issues concerned with measuring robot task complexity.

We discuss several measures for the information complexity of a task:
(a) How much internal state should the robot retain? (b) How many coop-
erating agents are required, and how much communication between them is
necessary? (c) How can the robot change (side-effect) the environment in
order to record state or sensory information to perform a task? (d) How
much information is provided by sensors? and (e) How much computation is
required by the robot? We consider how one might develop a kind of “calcu-
lus” on (a) — (e) in order to compare the power of sensor systems analytically.
To this end, we attempt to develop a notion of information invariants. We
develop a theory whereby one sensor can be “reduced” to another (much
in the spirit of computation-theoretic reductions), by adding, deleting, and
reallocating (a) — (e) among collaborating autonomous agents.

This prospectus is based closely on a paper of mine to appear in Artificial
Intelligence.

Bruce Randall Donald
Ithaca and Palo Alto, 1995
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1

Introduction

As its title suggests, this book investigates the information requirements
for robot tasks. Our work takes as its inspiration the information invari-
ants that Erdmann? introduced to the robotics community in 1989 [Erd89],
although rigorous examples of information invariants can be found in the
theoretical literature from as far back as 1978 (see, for example, [BK, Koz]).

Part T of this book develops the basic concepts and tools behind informa-
tion invariants in plain language. Therein, we develop a number of motivating
examples. In part I, we provide a fairly detailed analysis. In particular, we
admit more sophisticated models of sensors and computation. This analysis
will call for some machinery whose complexity is best deferred until that
time.

A central theme to previous work (see the survey article [Donl] for a
detailed review) has been to determine what information is required to solve
a task, and to direct a robot’s actions to acquire that information to solve
it. Key questions concern:

1. What information is needed by a particular robot to accomplish a par-
ticular task?

2. How may the robot acquire such information?

3. What properties of the world have a great effect on the fragility of a
robot plan/program?

?Erdmann introduced the notion of measuring task complexity in bit-seconds; the ex-
ample is important but somewhat complicated; the interested reader is referred to [Erd89].
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4. What are the capabilities of a given robot (in a given environment or
class of environments)?

These questions can be difficult. Structured environments, such as those
found around industrial robots, contribute towards simplifying the robot’s
task because a great amount of information is encoded, often implicitly, into
both the environment and the robot’s control program. These encodings (and
their effects) are difficult to measure. We wish to quantify the information
encoded in the assumption that (say) the mechanics are quasi-static, or that
the environment is not dynamic. In addition to determining how much infor-
mation is encoded in the assumptions, we may ask the converse: how much
information must the control system or planner compute? Successful ma-
nipulation strategies often exploit properties of the (external) physical world
(eg, compliance) to reduce uncertainty and hence gain information. Often,
such strategies exploit mechanical computation, in which the mechanics of
the task circumscribes the possible outcomes of an action by dint of physi-
cal laws. Executing such strategies may require little or no computation; in
contrast, planning or simulating these strategies may be computationally ex-
pensive. Since during execution we may witness very little “computation” in
the sense of “algorithm.,” traditional techniques from computer science have
been difficult to apply in obtaining meaningful upper and lower bounds on
the true task complexity. We hope that a theory of information invariants
can be used to measure the sensitivity of plans to particular assumptions
about the world, and to minimize those assumptions where possible.

We would like to develop a notion of information invariants for charac-
terizing sensors, tasks, and the complexity of robotics operations. We may
view information invariants as a mapping from tasks or sensors to some mea-
sure of information. The idea is that this measure characterizes the intrinsic
information required to perform the task—if you will, a measure of com-
plexity. For example, in computational geometry, a successful measure has
been developed for characterizing input sizes and upper and lower bounds
for geometric algorithms. Unfortunately, this measure seems less relevant in
robotics, although it remains a useful tool. Its apparent diminished relevance
in embedded systems reflects a change in the scientific culture. This change
represents a paradigm shift from offline to online algorithms. Increasingly,
robotics researchers doubt that we may reasonably assume a strictly offline
paradigm. For example, in the offline model, we might assume that the robot,
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on booting, reads a geometric model of the world from a disk and proceeds
to plan. As an alternative, we would also like to consider online paradigms
where the robot investigates the world and incrementally builds data struc-
tures that in some sense represent the external environment. Typically, online
agents are not assumed to have an a priori world model when the task begins.
Instead, as time evolves, the task effectively forces the agent to move, sense,
and (perhaps) build data structures to represent the world. From the online
viewpoint, offline questions such as “what is the complexity of plan construc-
tion for a known environment, given an a priori world model?” often appear
secondary, if not artificial. In part I of this book, we describe two working
robots TomMy and Liny, which may be viewed as online robots. We discuss
their capabilities, and how they are programmed. We also consider formal
models of online robots, foregrounding the situated automata of [BK]. The
examples in part I link our work to the recent but intense interest in online
paradigms for situated autonomous agents. In particular, we discuss what
kind of data structures robots can build to represent the environment. We
also discuss the externalization of state, and the distribution of state through
a system of spatially separated agents.

We believe it is profitable to explore online paradigms for autonomous
agents and sensorimotor systems. However, the framework remains to be
extended in certain crucial directions. In particular, sensing has never been
carefully considered or modeled in the online paradigm. The chief lacuna
in the armamentarium of devices for analyzing online strategies is a princi-
pled theory of sensori-computational systems. We attempt to fill this gap
in part II, where we provide a theory of situated sensor systems. We argue
this framework is natural for answering certain kinds of important questions
about sensors. Our theory is intended to reveal a system’s information in-
variants. When a measure of intrinsic information invariants can be found,
then it leads naturally to a measure of hardness or difficulty. If these notions
are truly intrinsic, then these invariants could serve as “lower bounds” in
robotics, in the same way that lower bounds have been developed in com-
puter science.

In our quest for a measure of the intrinsic information requirements of
a task, we are inspired by Erdmann’s monograph on sensor design [Erd91].
Also, we note that many interesting lower bounds (in the complexity-theoretic
sense) have been obtained for motion planning questions (see, eg, [Reif, HSS,
Nat, CR]; see, eg, [Don2, Can, Bri] for upper bounds). Rosenschein has de-
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veloped a theory of synthetic automata which explore the world and build
data-structures that are “faithful” to it [Ros]. His theory is set in a logical
framework where sensors are logical predicates. Perhaps our theory could be
viewed as a geometric attack on a similar problem. This work was inspired
by the theoretical attack on perceptual equivalence begun by [DJ] and by
the experimental studies of [JR]. Horswill [Hors] has developed a semantics
for sensory systems that models and quantifies the kinds of assumptions a
sensori-computational program makes about its environment. He also gives
source-to-source transformations on sensori-computational “circuits.” In ad-
dition to the work discussed here in Section , for a detailed bibliographic essay
on previous research on the geometric theory of planning under uncertainty,
see, eg., [Donl] or [Don3|.

The goals outlined here are ambitious and we have only taken a small
step towards them. The questions above provide the setting for our inquiry,
but we are far from answering them. This book is intended to raise issues
concerning information invariants, survey some relevant literature and tools,
and take a first stab at a theory. Part I of this book (Sections -2.2.2) provides
some practical and theoretical motivations for our approach. In part 1T (Sec-
tions 2.2.2-8.10.4) we describe one particular and very operational theory.
This theory contains a notion of sensor equivalence, together with a notion
of reductions that may be performed between sensors. Part Il contains an
example which is intended to illustrate the potential of a such a theory. We
make an analogy between our “reductions” and the reductions used in com-
plexity theory. Readers interested especially in the four questions above will
find a discussion of “installation complexity” and the role of calibration in
comparing sensors in Section 4.2.1 below. Section 5.4.1 discusses the seman-
tics of sensor systems precisely; as such this section is mathematically formal,
and contains a number of claims and lemmata. This formalism is used to
explore some properties of what we call situated sensor systems. We also
examine the semantics of our “reductions.” The results of Section 5.4.1 are
then used in Section 8.10.4 to derive algebraic algorithms for reducing one
sensor to another.

1.1 Research Contributions and Applications

Robot builders make claims about robot performance and resource consump-
tion. In general, it is hard to verify these claims and compare the systems. |
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really think that the key issue is that two robot programs (or sensor systems)
for similar (or even identical) tasks may look very different. Part I of this
book attempts to demonstrate how very different systems can accomplish
similar tasks. We also discuss why it is hard to compare the “power” of
such systems. The examples in part I are distinguished in that they permit
relatively crisp analytical comparisons. We present these examples so as to
demonstrate the standard of crispness to which we aspire: these are the kinds
of theorems about information tradeoffs that we believe can be proved for
sensorimotor systems. The analyses in part I are illuminating but ad hoc.
In part II, we present our theory, which represents a systematic attempt to
make such comparisons based on geometric and physical reasoning. Finally,
we try to operationalize our analysis by making it computational; we give
effective (albeit theoretical) procedures for computing our comparisons. Our
algorithms are exact and combinatorially precise.

We wish to rigorously compare embedded sensori-computational systems.
To do so, we define a “reduction” <; that attempts to quantify when we can
“efficiently” build one sensor system out of another (that is, build one sensor
using the components of another). Hence, we write A <; B when we can
build system A out of system B without “adding too much stuff.” The last is
analogous to “without adding much information complexity.” Our measure
of information complexity is relativized both to the information complexity
of the sensori-computational components of B, and to the bandwidth of A.
This relativization circumvents some tricky problems in measuring sensor
complexity. In this sense, our “components” are analogous to oracles in the
theory of computation. Hence, we write A <; B if we can build a senso-
rimotor system that simulates A, using the components of B, plus “a little
rewiring.” A and B are modeled as circuits, with wires (datapaths) con-
necting their internal components. However, our sensori-computational sys-

tems differ from computation-theoretic (CT) “circuits,”

in that their spatial
configuration—i.e., the spatial location of each component—is as important
as their connectivity.

We develop some formal concepts to facilitate the analysis. Permutation
models the permissible ways to reallocate and reuse resources in building
another sensor. Intuitively, it captures the notion of repositioning resources
such as the active and passive components of sensor systems (e.g., infra-red
emitters and detectors). Geometric codesignalion constraints further restrict

the range of admissible permutations. [l.e., we do not allow arbitrary re-
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location; instead, we can constrain resources to be “installed at the same
location”, such as on a robot, or at a goal. Qutput communication formalizes
our notion of “a little bit of rewiring.” When resources are permuted, they
must be reconnected using “wires”, or data-paths. If we separate previously
colocated resources, we will usually need to add a communication mecha-
nism to connect the now spatially separate components. Like CT reductions,
A <y B defines an “efficient” transformation on sensors that takes B to A.
However, we can give a generic algorithm for synthesizing our reductions
(whereas no such algorithm can exist for CT.)?> Whether such reductions are
widely useful or whether there exist better reductions is open; however we try
to demonstrate the potential usefulness both through examples and through
general claims on algorithmic tractability. We also give a “hierarchy” of re-
ductions, ordered on power, so that the strength of our transformations can
be quantified.
We foresee the following potential for application of these ideas:

1. (Comparison). Given two sensori-computational systems A and B, we
can ask “which is more powerful?” (in the sense of A <; B, above).

2. (Transformation). We can also ask “Can B be transformed into A?”

3. (Design). Suppose we are given a specification for A, and a “bag of
parts” for B. The bag of parts consists of boxes and wires. Each box
is a sensori-computational component (“black box”) that computes a
function of (i) its spatial location or pose and (ii) its inputs. The
“wires” have different bandwidths, and they can hook the boxes to-
gether. Then, our algorithms decide, can we “embed” the components
of B so as to satisfy the specification of A7 The algorithms also give
the “embedding” (that is, how the boxes should be placed in the world,
and how they should be wired together). Hence, we can ask, can the
specification of A be implemented using the bag of parts B?

4. (Universal Reduction). Consider application 3, above. Suppose that in
addition to the specification for A, we are given an encoding of A as
a bag of parts, and an “embedding” to implement that specification.
Suppose further that A <; B. Since this reduction is relativized both to

3For example: no algorithm exists to decide the existence of a linear-space (or log-space,
polynomial time, Turing-computable, etc.) reduction between two CT problems.
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A and to B, it measures the “power” of the components of A relative to
the components in B. By universally quantifying over the configuration
of A, we can ask, “can the components of B always do the job of the
components of A?”

Our work represents a first stab at these problems, and there are a number
of issues that our formalism does not currently consider. We discuss and
acknowledge these issues in Section 12.1.
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2

Examples

2.1 A Following Task
2.1.1 A Method of Inquiry

To introduce our ideas we consider a task involving two autonomous mobile
robots.  One robot must follow the other. Now, many issues related to
information invariants can be investigated in the setting of a single agent.
We wish, however, to relate our discussion to the results of Blum and Kozen
(in Section 2.2 below), who consider multiple agents. Second, one of our ideas
is that, by spatially distributing resources among collaborating agents, the
information characteristics of a task are made explicit. That is, by asking,
How can this task be performed by a team of robols? one may highlight the
information structure. In robotics, the evidence for this is, so far, largely
anecdotal. In computer science, often one learns a lot about the structure of
an algorithmic problem by parallelizing it; we would eventually like to argue
that a similar methodology is useful in robotics.

Here is a simple preview of how we will proceed. We first note that it is
possible to write a servo loop by which a mobile robot can track (follow) a
nearby moving object, using sonar sensing for range calculations, and servo-
ing so as to maintain a constant nominal following distance. A robot running
this program will follow a nearby object. In particular, it will not “prefer”
any particular kind of object to track. If we wish to program a task where
one robot follows another, we may consider adding local infra-red communi-
cation between the robots, enabling them to transmit and receive messages.
This kind of communication allows one robot to lead and the other to follow.

18



It provides an experimental setting in which to investigate the concept of
information invariants.

2.1.2 Details of the Following task

We now discuss the task of following in some more detail. Consider two
autonomous mobile robots, such as those described in [RD]. The robots we
have in mind are the Cornell mobile robots [RD], but the details of their
construction are not important. The robots can move about by controlling
motors attached to wheels. The robots are autonomous and equipped with
a ring of 12 simple Polaroid ultrasonic sonar sensors. Each robot has an
onboard processor for control and programming.

We wish to consider a task in which one robot called Lity must follow
another robot called TomMmy. It is possible to write such a control loop using
only sonar readings and position/force control alone.

We now augment the robots described in [RD] as follows. (This descrip-
tion characterizes the robots in our lab). We equip each robot with 12 infra-
red modems/sensors, arrayed in a ring about the robot body. Each modem
consists of an emitter-detector pair. When transmitting or receiving, each
modem essentially functions like the remote control for home appliances (eg,
TV’s).* Experiments with our initial design [Don4] seemed to indicate that
the communication bandwidth we could expect was roughly 2400 baud-feet.
That is, at a distance of 1 foot between LiLy and TomMy, we could expect to
communicate at 2400 baud; at 2 feet, the reliable communication rate drops
to 1200 baud, and so forth.

We pause for a moment to note that this simple, experimentally-determined
quantity is our first example of an information invariant.

Now, modem ¢ is mounted so as to be at a fixed angle from the front
of the robot base, and hence it is at a fixed angle ; from the direction of
forward motion, which is defined to be 0.

4The TR modems can time-slice between collision detection and communication; more-
over, nearby modems (on the same robot) can “stagger” their broadcasts so as not to
interfere with each other.
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Now, suppose that Tomumy is traveling at a
commanded speed of v (note v need not be pos-
itive). For the task of Following, each modem
panel ¢ on ToMMY transmits a unique identifier
(eg, *Tommy), the angle 6;, and the speed v. That
is, he transmits the following triple:® ( id, 6;, v ).

In this task, Lity transmits the same infor-
mation, with a different id of course. This means )
Flgure 1: The Cornell mobile

o ) robot TOMMY. Note (mounted
can “detect” the position (usmg sonars and IR’S)7 top to bottom on the cylindrical

. 6 enclosure) the ring of sonars, the
the heading, and the name of the other robot.® ITn ¢ Modems, and the bump

effect each robot can construct a virtual “radar sensors. LLILY is very similar.

that when the robots are in communication each

screen” like those used by air traffic controllers,

on which it notes other robots, their position and heading, as well as ob-
stacles and features of the environment. The screen (see fig. 2) is in local
coordinates for each robot.” It is important to realize that although fig. 2
“looks” like a pair of maps, in fact, each is simply a local reconstruction
of sensor data. Moreover, these “local maps” are updated at each iteration
through the servo loop, and so little retained state is necessary.

Now, robotics employs the notion of configuration space® [LoP] to describe
control and planning algorithms. The configuration of one of our robots is its
position and heading. Configuration space is the set of all configurations. In
our case, the configuration space of one robot is the space R? x S1. A related
notion is state space, which is the space of configurations and velocities of

>The identifier is necessary for applications involving more than two robots. Also, using
the id a robot can disambiguate other robots’ broadcasts from its own IR broadcast (eg,
reflections off white walls).

5This data is noisy, but since an adequate servo loop for following can be constructed
using sonars alone [RD], the IR’s only add information to the task. The IR information
does not measurably slow down the robot, since the IR processing is distributed and is
not done by the Scheme controller.

“In the language of [DJ], the sonar sensors, plus the IR communication, represent
concrete sensors, out of which the wvirtual sensors shown in fig. 2 can be constructed. The
construction essentially involves adding the IR information above to the servo loop for
following using sonar given in [RD]. The details are not particularly important to this
discussion.

8See [Lat] for a good introduction.
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Tommy Lily

Figure 2: The “radar screens” of ToMMY and LiLy. ToMMY (T) is approaching a
wall (on his right) at speed v, while LiLY (L) follows at speed w.

the robot. After some reflection, it may be seen that fig. 2 is a geometric
depiction of a state-space for the robot task of following (it is actually a
representation of the mutual configuration spaces of the robots). Depending
on where the robots are in fig. 2, each must take a different control (servo)
action. The points where one robot takes the same (parameterized) action
may be grouped together to form an equivalence class. Essentially, we parti-
tion the state space in fig. 2 into regions where the same action is required.
This is a common way of synthesizing a a feedback control loop. See fig. 3.
The point is that in this analysis, we may ask, What state must the robot
Lity retain? After some thought, the answer is, very little, since the “radar
screens” in fig. 2 may be drawn again from new sensor readings at each
iteration. That is, no state must be retained between servo loop iterations,
because in an iteration we only need some local state to process the sensor
information and draw the information in fig. 2. (We do not address whatever
state TomMy would need to figure out “where to lead,” only how he should
modify his control so as not to lose Liry). One consequence of this kind
of “stateless” following is that if communication is broken, or one robot is
obscured from the other, then the robots have no provision (no information)
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Tommy Tommy

Figure 3: The statespace “radar screen” of TOMMY is partitioned to indicate the control
for LiLy. (For the task of following, we could partition LILY’s screen instead, but this
is clearer for exposition). On the left is LILY’s direction control; and the regions are F
(follow), C' (correct), and I (intercept). The commanded motion direction is shown as
an arrow. On the right is LLILY’s speed control, with w; being very slow, w, fast, and
wy < wy < wz < wy. This control partition is conditioned on TOMMY’s speed v.

from the past on which to base a strategy to reacquire contact. They can
certainly go into a search mode, but this mode is stateless in the sense that
it is not based on retained state (data) built up from before, before the break
in contact. In short, at one time-step, Liy and Tommy wake up and look
at their radar screens. Based on what they see, they act. If one cannot see
the other, perhaps it can begin a search or broadcast a cry for help. This
is an essential feature of statelessness, or reactivity. Let us call a situation
in which the robots maintain communication preserving the control loop. 1f
they break communication it breaks the control loop.

Now, suppose that TomMy has to go around a wall, as in fig. 4. Suppose
ToMmMmy has a geometric model of the wall (from a map or through recon-
struction). Then it is not hard for Tommy to calculate that if he takes a quick
turn around the wall (as shown in trajectory p), that the line of sight be-
tween the robots may be broken. Since LiLy is “stateless” as described above,
when communication is broken the following task will fail, unless LiLy can
reacquire Tommy. It is difficult to write a general such “search & reacquire”
procedure, and it would certainly delay the task.

For this reason, we may prefer ToMmmy to predict when line-of-sight com-
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Figure 4: Following around a wall. The shorter path p is quicker by At than p’, but it
cannot be executed without more communication or state.

munication would be broken, and to prefer a trajectory like p’ (fig. 4). When
executed slowly enough, such trajectories as p’ will allow the robots to main-
tain communication, and hence allow the following task to proceed. However,
there is a cost: for example, we may reasonably assume that taking p’ will
take At longer than p. Now, let p* denote the trajectory that follows the
same path as p, but slowed-down so it takes the same time as? p’. It might
also be reasonable to assume that if ToMmmy slowed down enough to follow
p*, the robots could also maintain communication.

Hence, in this example, the quantity At is a measure of the “cost” of
maintaining communication. It is a kind of invariant. But we can be more
precise.

In particular, ToMmMY has more choices to preserve the control loop. The
distance at which Lity servos to TommyY is controlled by a constant, which
we will call the following distance'® d. Hence, Tommy, could transmit an
additional message to LiLy, containing the a new following distance d’. The
meaning of this message would be “tighten up”—that is, to tell Liry to servo
at a closer distance. Note that the message ( heel, d' ) essentially encodes
a plan D-a new servo loop—for Lity. In this case, Lirty will servo to follow
TomMmY at the closer distance d’, which will successfully permit the robots to
navigate p while maintaining contact.

Another possibility is that we could allow LiLy to retain some state, and
allow TomMy to broadcast an encoding of the trajectory p. This encoding
could be via points on the path, or a control program—essentially, by trans-
mitting the message ( p ), ToMMY transmits a plan—a motion plan—for Liry.
In this case, after losing contact with Tomumy, Lity will follow the path (or

9So, p* is the time-rescaled trajectory from p [DX1].
10For an explicit use of this constant in an actual servo loop, see, for example, [RD].

23



plan) p open loop, until ToMmMY is reacquired.

In both these cases, we must allow Lirty to retain enough state to store
d or p. Since Lity already stores some value for d (see [RD]), we need
merely replace that. However, the storage for the plan (or path) p could
be significant, depending on the detail.

Finally, we could imagine a scenario where LiLy retains some amount of
state over time to “track” ToMmy. For example, by observing ToMMY’s tra-
jectory before the break in communication, it may be possible to extrapolate
future positions (one could, for example, use forward projections [Erd86] or
a kalman filter). Based on these extrapolations, Lity could seek ToMMY in
the region of highest expectation. I will not detail this method here, but, it
is not too difficult to see that it requires some amount of state for Lity to do
this computation, and let us call this amount s.

There is a trade-off between execution time (At), communication (trans-
mitting ( d' ) or { p}), and internal state (storage for p or s). What is this
relationship? Here is a conjecture one would like to prove about this rela-
tionship. For a path or a control program p or D, we denote its information
complexity by |p|. For example, |p| could measure the number of via points
on p times their bit-complezity (the number of bits required to encode a single
point).

Idea 2.1 There is an information invariant ¢ for the task of following, whose
units are bit-seconds. In particular,

¢ = |plt, = [Dt,, = sis, (1)

where 1, L, and 1y are the execulion limes for the three strategies above.

D’

Equation (1) should be interpreted as a lower bound—Ilike the Heisenberg
principle. It is no coincidence that Erdmann’s information invariants are also
in bit-seconds. An information invariant such as (1) quantifies the tradeoff
between speed, communication, and storage. Currently, to prove such crisp
results we must first make a number of assumptions about dynamics and
geometry (see appendix F.1). Moreover, the methods we describe below
typically yield results using “order” notation (big-oh O(-) or big-theta O(-))
instead of strict equality.

One example of provable information invariants is given in the kinody-
namic literature [CDRX, DX1, DX2]. This work is concerned with provable
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planning algorithms for robots with dynamics. We give some details in ap-
pendix F.1. Here we note that Xavier, in [Xa, DX3] developed “trade-offs”
similar in flavor to Equation (1). Both Erdmann and Xavier obtain “trade-
offs” between information and execution speed. Their methods appear to
require a performance measure (eg, the “cost” of a control strategy). One
might view our work (and also [BK], below) as investigating information in-
variants in the absence of a performance measure. In this case, we cannot
directly measure absolute information complexity in bit-seconds. Instead,
we develop a way to relativize (or reduce) one sensori-computational system
to another, in order to quantify their (relative) power. See appendix F.1 for
more details on information invariants with performance measures.

To summarize: the ambition of this work is to define the notions in
Idea 2.1 so they can be measured directly. Previous work [Erd91, Xa, DX3]
has required a performance measure in order to obtain a common currency
for information invariance. In order not to use this crutch, we first define a
set of transformations on sensori-computational systems. Second, we propose
understanding the information invariants in terms of what these transforma-
tions preserve.

2.2 The Power of the Compass

In 1978, Blum and Kozen wrote a ground-breaking paper on maze-searching

automata [BK,Koz]. This section (2.2) is devoted to a discussion of their

paper, On The Power of the Compass [BK], and we interpret their results in

the context of autonomous mobile robots and information invariants. The

reader is urged to consult the clear and readable paper [BK] for more details.
In 1990, we posed the following question with Jim Jennings:

Question 2.2 [DJ2] “Let us consider a rational reconstruction of mobile robot
programming. There is a task we wish the mobile robot to perform, and the task
is specified in terms of external (e.g., human-specified) perceptual categories. For
example, these terms might be “concepts” like wall, door, hallway, or Professor
Hopcroft. The task may be specified in these terms by imagining the robot has
virtual sensors which can recognize these objects (e.g., a wall sensor) and their
“parameters” (e.g., length, orientation, etc.). Now, of course the physical robot is
not equipped with such sensors, but instead is armed with certain concrete physical
sensors, plus the power to retain history and to compute. The task-level program-
ming problem lies in implementing the virtual sensors in terms of the concrete robot
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capabilities. We imagine this implementation as a tree of computation, in which
the vertices are control and sensing actions, computation, and state retention. A
particular kind of state consists of geometric constructions; in short, we imagine
the mobile robot as an automaton, connected to physical sensors and actuators,
which can move and interrogate the world through its sensors while taking notes
by making geometric constructions on “scratch paper.” But what should these con-
structions be? What program runs on the robot? How may these computation trees
be synthesized?”

Let us consider this question of state, namely, what should the robot
record on its scratch paper? In robotics, the answer is frequently either
“nothing” (i.e., the robot is reactive, and should not build any representa-
tions), or “a map” (namely, the robot should build a geometric model of
the entire environment). In particular, even schemes such as [LS] require a
worst-case linear amount of storage (in the geometric complexity n of the
environment). Can one do better? Is there a sufficient representation that is
between 0 and O(n)?

Blum and Kozen provide precise answers to these questions in the setting
of theoretical, situated automata. This section (2.2) didactically adopts the
rhetorical “we” to compactly interpret their results. While these results are
theoretical, we believe they provide insight into the question 2.2 above.

We define a maze to be a finite, two-dimensional obstructed checkerboard.
A finite automaton (DFA) in the maze may, in addition to its automaton
transitions, transit on each move to an adjacent unobstructed square in the
N. S, E, or W direction. We say an automaton can search a maze if eventually
it will visit each square. It need not halt, and it may revisit squares. Hence,
this kind of “searching” is the theoretical analog of the “exploration” task
that many modern mobile robots are programmed to perform. However, note
that in this entire section there is no control or sensing uncertainty.

We can consider augmenting an automaton with a single counter; using
this counter it can record state. (Two counters would not be an interesting
enhancement, because then we obtain the power of a Turing machine).!!

1A counter is like a register. A DFA with a counter can keep a count in the register,
increment or decrement it, and test for zero. A single counter DFA (introduced by [Fi]
in 1966) can be viewed as a special kind of push-down (stack) automaton (PDA) that
has only one stack symbol (except for a top of the stack marker). This means we should
not expect a single-counter machine to be more powerful than a PDA, which, in turn, is
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We say two (or more) automata search a maze together as follows. The
automata move synchronously, in lock-step. This synchronization could be
effected using global control, or with synchronized clocks. When two au-
tomata land on the same square, each transmits its internal state to the
other.

Finally, we may externalize and distribute the state. Instead of a counter,
we may consider equipping an automaton with pebbles, which it can drop
and pick up. Each pebble is uniquely identifiable to any automaton in the
maze. On moving to a square, an automaton senses what pebbles are on the
square, plus what pebbles it is carrying. It may then drop or pick up any
pebbles.

Hence, a pure automaton is a theoretical model of a “reactive,” robot-like
creature. (Many simple physical robot controllers are based on DFA’s). The
exchange of state between two automata models local communication be-
tween autonomous agents. The pebbles model the “beacons” often used by
mobile robots, or, more generally, the ability to side-effect the environment
(as opposed to the robot’s internal state) in order to perform tasks. Fi-
nally, the single counter models a limited form of state (storage). It is much
more restrictive than the tape of a Turing machine. 1 believe that quanti-
fying communication between collaborating mobile robots is a fundamental
information-theoretic question. In manipulation, the ability to structure the
environment through the actions of the robot (see, eg, [Don3|) or the me-
chanics of the task (see, eg,. [Mas]) seems a fundamental paradigm. How do
these techniques compare in power?

We call automata with these extra features enhanced, and we will assume
that automata are not enhanced unless noted. Given these assumptions,
Blum and Kozen demonstrate the following results. First, they note a result
of Budach that a single automaton cannot search all mazes.'? Next they
prove the following:

1. There are two (unenhanced) automata that together can search all
mazes.

considerably weaker than a Turing machine (see, eg., [HU; Ch. 5]). The proof that a two-
counter DFA can simulate a Turing machine was first given by Papert and McNaughton
in 1961 [Min] but shorter proofs are now given in many textbooks, for example, see [HU;
Thm. 7.9].

12See [BK] for references.
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2. There is a two-pebble automaton that can search all mazes.

3. There is a one-counter automaton that can search all mazes.

These results are crisp information invariants. It is clear that a Turing
machine could build (a perfect) map of the maze, that would be linear in the
size of the maze. This they term the naive linear-space algorithm. This is
the theoretical analog of most map-building mobile robots—even those that
build “topological” maps still build a linear-space geometric data structure
on their “scratch paper.” But (3) implies that there is a log-space algorithm
to search mazes—that is, using only an amount of storage that is logarithmic
in the complexity of the world, the maze can be searched.'® This is a precise
answer to part of our question 2.2.

However, the points (1-3) also demonstrate interesting information invari-
ants. (1) = (2) demonstrates the equivalence (in the sense of information) of
beacons and communication. Hence side-effecting the environment is equiv-
alent to collaborating with an autonomous co-agent. The equivalence of (1)
and (2) to (3) suggests an equivalence (in this case) and a tradeoff (in general)
between communication, state, and side-effecting the environment. Hence we
may credit [BK] with a excellent example of information invariance.

2.2.1 The Power of Randomization

Erdmann’s PhD thesis is an investigation of the power of randomization
in robotic strategies [Erd89]. The idea is similar to that of randomized
algorithms—Dby permitting the robot to randomly perturb initial conditions
(the environment), its own internal state, or to randomly choose among ac-
tions, one may enhance the performance and capabilities of robots, and derive

13Here is the idea. First, [BK] show how to write a program whereby an unenhanced
DFA can traverse the boundary of any single connected component of obstacle squares.
Now, suppose the DFA could “remember” the southwesternmost corner (in a lexicographic
order) of the obstacle. Next, [BK] show how all the free space can then be systematicically
searched. It suffices for a DFA with a single counter to record the y-coordinate ymin of
this corner. We now imagine simulating this algorithm (as efficiently as possible) using
a Turing machine, and we measure the bit-complexity. If there are n free squares in the
environment then ymin < n, and the algorithm consumes O(logn) bits of storage. For
details, see [BK].
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probabilistic bounds on expected performance.!* This lesson should not be
lost in the context of the information invariants above. For example, as Erd-
mann points out, one finite automaton can search any maze if we permit it
to randomly select among the unobstructed directions. The probability that
such an automaton will eventually visit any particular maze square is one.
Randomization also helps in finite 3D mazes (see Section 2.2.2 for more on
the problems that deterministic (as opposed to randomized) finite automata
have in searching 3D mazes), although the expected time for the search in-
creases some.

These observations about randomizing automata can be even extended to
unbounded mazes (the mazes we have considered are finite). However, in a 2D
unbounded maze, although the automaton will eventually visit any particular
maze square with probability one, the expected time to visit it is infinite. In
3D, however, things are worse: in 3D unbounded mazes, the probability that
any given “cube” will be visited drops from one to about 0.37.

2.2.2 What does a compass give you?

Thus we have given precise examples of information invariants for tasks (or
for one task, namely, searching, or “exploration.”) However, it may be less
clear what the information invariants for a sensor would be. Again, Blum
and Kozen provide a fundamental insight. We motivate their result with the
following

Question 2.3 Suppose we have two mobile robots, Tommy and LiLY, con-
figured as described in Section 2.1. Suppose we put a flux-gate magnetic
compass on Livy (but not on Tommy). How much more “powerful” has LirLy
become? What tasks can LiLy now perform that ToMmy cannot?

Now, any robot engineer knows compasses are useful. But what we want
in answer to question 2.3 is a precise, provable answer. Happily, in the case
where the compass is relatively accurate,'® [BK] provide some insight:

4While the power of randomization has long been known in the context of algorithms
for maze exploration, Erdmann was able to lift these results to the robotics domain. In
particular, one challenge was to consider continuous state spaces (as opposed to graphs).
15In considering how a very accurate sensor can aid a robot in accomplishing a task,
this methodology is closely allied with Erdmann’s work on developing “minimal” sensors

[Erd91].
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Consider an automaton (of any kind) in a maze. Such an automaton
effectively has a compass, since it can tell N,S;E,W apart. That is, on landing
on a square, it can interrogate the neighboring N,S,E.W squares to find out
which are unobstructed, and it can then accurately move one square in any
unobstructed compass direction.

By contrast, consider an automaton in a graph (that need not be a maze).
Such an automaton has no compass; on landing on a vertex, there are some
number g > 0 of edges leading to “free” other vertices, and the automaton
must choose one.

Hence, as Blum and Kozen point out, “Mazes and reqular planar graphs
appear similar on the surface, but in fact differ substantially. The primary
difference is that an automaton in a maze has a compass: il can distinguish
N,S,E,W. A compass can provide the automaton with valuable information,
as shown by the second of our results” [BK]. Recall point (1) in Section 2.2.
Blum and Kozen show, that in contrast, to (1), no two automata together can
search all finite planar cubic graphs (in a cubic graph, all vertices have degree
g = 3). They then prove no three automata suffice. Later, Kozen showed
that four automata do not suffice [Koz|. Moreover, if we relax the planarity
assumption but restrict our cubic graphs to be 3D mazes, it is known that
no finite set of finite automata can search all such finite 3D mazes [BS].

Hence, [BK,Koz| provide a lower bound to the question, “What informa-
tion does a compass provide?” We close by mentioning that in the flavor of
Section 2.2.1, there is a large literature on randomized search algorithms for
graphs. As in Section 2.2.1, randomization can improve the capability and
performance of the search automata.
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3

Discussion: Measuring
Information

We have described the basic tools and concepts behind information in-
variants. We illustrated by example how such invariants can be analyzed and
derived. We made a conceptual connection between information invariants
and trade-offs. In previous work, tradeoffs arose naturally in kinodynamic
situations, in which performance measures, planning complexity, and robust-
ness (in the sense of resistance to control uncertainty) are traded-off. We
noted that Erdmann’s invariants are of this ilk [Erd89].

However, without a performance (cost) measure, it is more difficult to
develop information invariants. We believe measures of information com-
plexity are fundamentally different from performance measures. Our interest
here is in the former; we will not discuss performance measures again until
appendix F.1. Here are some measures of the information complexity of a
robotic task: (a) How much internal state should the robot retain? (b) How
many cooperating agents are required, and how much communication between
them is necessary? and (¢) How can the robot change (side-effect) the envi-
ronment in order to record state or sensory information to perform a task?
Examples of these categories include: (a) space considerations for computer
memory, (b) local IR communication between collaborating autonomous mo-
bile robots, and (c¢) dropable beacons. With regard to (a), we note that, of
course, memory chips are cheap, but in the mobile robot design space, most
investigations seem to fall at the ends of the design spectrum. For exam-
ple, (near) reactive systems use (almost) no state, while “map builders” and
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model-based approaches use a very large (linear) amount. Natarajan [Nat]
has considered an invariant complexity measure analogous to (b), namely the
number of robot “hands” required to perform an assembly task. This quan-
tifies the interference kinematics of the assembly task, and assumes global
synchronous control. With regard to (c), the most easily imagined physi-
cal realization consists of coded IR beacons; however, “external” side-effects
could be as exotic as chalking notes on the environment (as parking police do
on tires), or assembling a collection of objects into a configuration of lower
“entropy” (and hence, greater information). Calibration is an important form
of external state, which we explore in part II.

In part I, we exploited automata-theoretic results to explore invariants
that trade-off internal state, communication, and external state. While part I
concentrates on information invariants for fasks, we did touch on how infor-
mation invariants for sensors can be integrated into the discussion. In partic-
ular, we reviewed a precise way to measure the information that a compass
gives an autonomous mobile robot. Somewhat surprisingly, trading off the
measures (a)-(c) prove sufficient to quantify the information a compass sup-
plies.

The compass invariant illustrates the kind of result that we would like
to prove for more general sensors. That is, we could add a fourth measure,
(d) How much information is provided by sensors? While the examples we
presented are perhaps didactically satisfying, we must introduce some more
machinery in order to extend our discussion to include two additional impor-
tant measures of the information complexity of a robotic task: (d), and (e)
How much computation is required of the robot? In part II we explore these
issues in some detail. In particular, we describe how one might develop a kind
of “calculus” on measures (a) — (e) in order to compare the power of sensor
systems analytically. To this end, we develop a theory whereby one sensori-
computational system can be “reduced” to another (much in the spirit of
computation-theoretic reductions), by adding, deleting, and reallocating (a)
— (e) among collaborating autonomous agents.
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Part II — Sensors and Computation
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4

Sensors

Intuitively, we can imagine a sensor system being implemented as a tree
of sensori-computational elements, in which the vertices are controllers and
sensors, computing devices, and state elements. Such a system is called a
virtual sensor by [DJ]. In a virtual sensor, outputs are computed from the
outputs of other sensors in the same device. Given two sensor systems F
and H, we would like to be able to quantify the information the sensors
provide. In particular, suppose F and H are different “implementations” (in
a sense we shall soon make precise) of superficially similar sensor systems. We
would like to be able to determine whether the two systems are “equivalent”
in the sense that that they deliver “equivalent” information, that is, whether
E = H. More generally, we would like to be able to write an “equation”

like

E=H4[] (2)

where we can rigorously specify what box [-] we need to “add” to H to make
sensor K. For example, the box could represent some new sensing, or some
computation on existing sensory and stored data. In part II we discuss some
methods for achieving these goals. To illustrate our techniques, we describe
two sensors, the radial sensor [Erd91], and the beacon, or lighthouse sensor.
We then develop methods to compare the sensors and their information in-
variants. These sensors bear some relation to the compass discussed in part I;
it is our goal here to quantify this relationship precisely. In the beginning,
we will allow informal definitions, which suffice for building intuition. The
following concepts will be defined precisely in section 5.4.1: the term simu-
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late, the oulput of a sensor, a sensori-computational resource, the relation =,
and the operator +. We begin as follows:

Definition 4.4 (Informal)'® For two sensor systems S and ) we say @) sim-
ulates S if the output of () is the same as the outpul of S. In this case we
write S = Q).

The operator + in Equation (2) represents “adding” something to H.
Informally, this “something” is what we would like to call a resource (later,
in Section 4.2.1). We will later see that = is an equivalence relation.

Here is a preview of the formalism we will develop. We view sensor sys-
tems as “circuits.” We model these circuits as graphs. Vertices correspond
to different sensori-computational components of the system (what we will
call “resources” below). Edges correspond to “data paths” through which
information passes. Different embeddings of these graphs correspond to dif-
ferent spatial allocation of the “resources.” We also permit resources to be
colocated. This requires that we consider graph immersions as well as graph
embeddings. Immersions are like embeddings, but they need not be injective.
Under this model, the concepts above are easily formalized. For example,
the operation + turns out to be like taking the union of two graphs.

One key idea involves asking: What information is added (or lost) in
a sensor system when we change ils immersion? and What information
is preserved under all immersions? Our goal will be to determine what
classes of immersions preserve information. Sections 4.1-5.4.1 explore this
idea through an example.

4.1 The Radial Sensor

We begin with a didactic example. In [Erd91] Erdmann demonstrates a
method for synthesizing sensors from task specifications. The sensors have
the property of being “optimal” or “minimal” in the sense that they convey
exactly the information required for the control system to perform the task.
For our purposes, it is sufficient to examine a particular sensor, called the
radial sensor, which is the output of one of his examples. The radial sensor
arises by considering manipulation strategies in which the robot must achieve
a goal despite uncertainty.

6 Definition 4.4 is formalized in Section 8.1.
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The radial sensor works as follows. Consider a small robot in the plane.
Suppose there is a goal region G which is a small disc in the plane. See fig. 5.
The robot is at some configuration x € R*, and at some heading h € S'.
Both these state variables are unknown to the robot. The robot can only
command relative motions (relative to the local coordinate system specified
by (x, h)). Thus, it would command a velocity v,,, and the robot would move
in relative direction A#, which is global direction A + Af. The radial sensor
returns the angle #, which is the angle between h and the ray between x and
the goal. The robot need only command v, to reduce its distance to the
goal.!” This example easily generalizes to the case where there is uncertainty
in the robot’s control system (that is, the “aim” of v,,) see [LMT, Erd91]. It
is plausible (and indeed, Erdmann proves) that this sensor is necessary and
sufficient to write a feedback loop that provably attains the goal.

To summarize: the radial sensor returns information that encodes the
relative heading 6, of the goal G—relative to the robot’s current heading h.
See fig. 5. We emphasize that the radial sensor does not reveal the configu-
ration (x, h) of the robot beyond this. We will not describe possible physical
implementations of the radial sensor, but see [Erd91] for a discussion.'®

4.2 Lighthouses, Beacons, Ships, and Airplanes

We now describe another sensor. Our goal is to compare this sensor to
the radial sensor using information invariants. See fig. 6. We call this a
lighthouse sensor system. We call this a sensor system since as described,
it involves two physically separated “agents.” We motivate this sensor as
follows. Consider two mobile robots, which we denote L and R (see fig. 6).
L will be the “lighthouse” (beacon) and R will be the “ship.” The robots
live in the plane. In introducing the lighthouse system, we will informally
introduce machinery to describe sensori-computational resources.

"In the language of [DJ], the perceptual equivalence classes for this sensor are the rays
emanating at x.

18Erdmann emphasizes the special cases where the robot always knows its heading, or,
where the robot’s heading is always fixed (say, due North, so that A is always identically
zero). In these cases, the radial sensor returns the global heading to the goal. This special
case arises in the domain of manipulation with a robot arm, which, of course, 1s why it is
natural for Erdmann’s theory. The radial sensor we present is just slightly generalized for
the mobile robot domain.
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Figure 5: The Radial Sensor E, showing heading h and relative goal direction 6,.

4.2.1 Resources

Now, to analyze the information invariants, we must be careful about the
implementation of the sensor system, and, in particular, we must be careful
to count how resources (a) — (e) (Section 2.2.2) are consumed and allocated—
much the same way that one must be careful in performing a complexity
analysis for an algorithm. Let us catalog the following kinds of resources:
Emitters. On L, there are two lights which we call physical emitters.
There is a unidirectional green light [g] that rotates at a constant angular
velocity. That is, the green light shines along a ray that is anchored (at its
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Figure 6: The “beacon” sensor H, which is based on the same principle employed by
lighthouses.

origin) at L. The ray sweeps (rotates) about L. The green light can only be
seen by points on that ray. Second, there is an omnidirectional white light
that flashes whenever the green light is pointing due North. That is, the
white light can be seen from all directions.

Concrete Sensors. On R, there is is a photo-electric sensor that detects
when a white light illuminates R. Another sensor detects green light. There
is also a clock on R.

Computation. There is a computer on R that we can program in Scheme,
following [RD]. The concrete sensors above are interfaced to Scheme via li-
brary functions (as in [RD]). The functions (white?) and (green?) are of
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type UNIT — BOOL, and return #t when light is sensed and #f otherwise
The clock is available as the function (time), which returns the time mea-
sured in small units. We can measure the time and space requirements of a
computation using standard techniques. Furthermore, we may quantify the
amount of sensor information consumed by counting the number of calls to
(white?), (green?), and (time) and the number of bits returned.

Now, here is how lighthouses work. See fig. 6. The “ship” R times the
period 1, between white flashes. Then it measures the time ¢ between a
white flash and the next green flash. Clearly the “angle” € of the robot—the
angle between North and the ray from L to R—can computed as 6 = 2xt/t,,.
(Assuming the ship is moving slowly, relative to ¢,,).

Virtual Sensors. We can implement this as a virtual sensor [DJ] called
(orientation) shown immediately below. The orientation sensor is spec-
ified as a computation that (i) calls concrete sensors, (ii) retains some local
state (T0), and (iii) does some computation (*, /, etc). It is easy to measure
the time and space requirements of the “circuit” that computes #. Hence,
we can implement certain virtual sensors to compute orientation. We detail
this implementation below:

Given the resources above, we can implement the following virtual sensors
“OH” R.19

; Virtual sensor:
;  construct orientation sensor out of time,
;  and the beacons.

(define (orientation)
(/ (x 2 xpix
(time-beacons white? green?))
(time-beacons white? white?)))

19We must make some assumptions to prove this real-time program is correct. For
example, we must assume the clock and the processor are very fast relative to the green

light (and the ship).
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;  time between beacons
; eventl and event2 are type UNIT — BOOL.?
(define (time-beacons eventl event2)
(sleep-until event1)
(let ((TO (time)))
(sleep-until event2)
(- (time) TO)))

0

utility in scheme48 [RD].
; sleep-until waits until thunk returns #t,
; and then returns.
(define (sleep-until thunk) ....)

Resources R does not have. Let us contrast our exemplar robot ship R
with an enhanced version R’ that corresponds to a real ship navigating at
sea using lighthouse sensors. We should not confuse R with a real ship. A
real ship R’ has a map, on which are located a priori features, including a
point which R’ will assume corresponds to the location of L. True North is
indicated on the map. R’ computes # as above (see fig. 6), and draws a ray
on the map, anchored at L, that is 6 degrees from North. R’ now knows
that it is on that ray. In addition to possessing a map, and knowing the map
coordinates of L, a real ship often has a compass. In the robotics domain,
orientation odometry could approximate an accurate compass. Real ships
also have communication devices like radios. We observe communication
resources compare roughly to (b) in Section 2.2.2. Our unenhanced robot R,
however, is not a real ship, and it has none of these resources.

Modern aircraft navigate using two sensors similar to the radial and light-
house sensors. An Automatic Direction Finder (ADF) is a radial sensor. An
ADF is simply a needle that points to a ground radio transmitter, in relative
airplane coordinates. You do not need to know where you are or which way
you are headed. You simply make the needle point straight ahead, by turning
the airplane. So it is a radial sensor, and you track into the goal. A VOR
(VHF Omnirange) is a lighthouse sensor. The VOR ground transmitter has
the equivalent of a green and white light arrangement. The radio receiver in
the plane decodes it, and then tells you the radial direction from the trans-
mitter, in global coordinates. Then, if you actually want to fly to the VOR

200bjects of type UNIT — BOOL are called boolean thunks.
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you have to have a compass, look at it, and turn the plane to fly in the same
direction as your radio indicates. The VOR uses a clock, just like in the
lighthouse. The “green emitter” in the VOR rotates at 30 Hz, and the white
“North” light flashes 30 times a second. The receiver in the plane decodes
the difference, just like in the lighthouse example, to give a direction. VORs
do not use light, but they broadcast in the Megahertz range instead of the
visual range.

To follow a radial sensor you only need to make the source be straight
ahead of you; to follow a lighthouse sensor you need a compass. The radial
sensor is in local coordinates and the lighthouse sensor is in global coordi-
nates.

The ADF requires fewer instruments, but pilots tend to use the VOR.
Why? Because that way you can look up your position on a chart, which
is often what you care about (one VOR gives you a line; two give you your
location). But if you just want to get somewhere, all you need is the ADF.?!

1 There are some other reasons for using VORs, such as the fact that VORs are VHF
while ADFs are LF/MF, so ADF reception gets blocked by thunderstorms while VOR
reception does fine. On the other hand, VORs require line-of sight, whereas ADFs will
work over the horizon.
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5

Reduction of Sensors

5.1 Comparing the Power of Sensors

Let us call the radial sensor F and the (unenhanced) lighthouse system H.
The sensors are, of course, superficially similar: both have components at
two spatially separated locations. Both sensors measure angles. Of course,
they measure different angles. We cannot transform the information deliv-
ered by H into the information specification of F, without consuming more
resources. These sensors deliver incomparable information, in that neither
delivers strictly more information than the other.

We wish to be able to compare two sensors even when they deliver incom-
parable information. To do this, we introduce a mechanism called reduction,
which allows us to compare the power of two sensor systems such as £ and
H. Hence, even though neither £ nor H delivers strictly more information,
they are comparable under a partial order induced by our reduction.

5.2 Sensor Reduction

The analytic goal of sensor reduction is to be able to write “equations” like
Equation (2). The operational goal is to build one sensor out of another, and
to measure the “power” of the construction by a careful accounting for the
resources we add. To illustrate the concept, we give two ways of constructing
sensor F from sensor H. First, following Section 4.1, we assume that R is
located at x € R* and has heading & € S'. However, R cannot sense these
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Figure 7: Reduction using a compass h ..

state variables and it does not know its configuration (x, ). Before we begin
we stress the following: our goal is to change sensor H (by adding resources)
so as to simulate sensor K. We have accomplished this task when R knows

the angle 6,, which is shown in figs. 5, 7, and 8.

5.2.1 A Reduction by Adding a Compass

We sketch a way to construct sensor F from H. This way is easy since it
involves adding a powerful resource, namely a compass, to H. We will model
this reduction as a function s from sensors to sensors. The reduction contains
the following steps , which we denote Sy, Sy, and S5 (see fig. 7):

(1) We place the beacon L at the goal G.
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(S2) We add a concrete sensor called a compass** to R. The compass
senses the heading h.

(s3) The devices on R compute 6 using the function (orientation)
above, and then compute §, = 7 — h — 6. (See fig. 7).

The reduction also adds a small amount of computation (but only a con-
stant amount—two subtractions). We handle this by defining the compass
to include this computation. Specifically, we define a sensor %, to be a de-
vice that (i) computes the heading h, (ii) takes the output value of 8 from
(orientation) as an input, and (iii) outputs 6, as specified in step S3. h,
could be implemented by a compass plus a small “circuit” to compute the
value 0, given h and 6. The subscript R of h, denotes that it is installed on
R. We will continue to refer call A, a “compass” even though it is really a
compass plus a small amount of computation.

In this reduction all the changes are made to R; L remains the same.
Now, recall Equation (2). Intuitively, we can substitute A, for the box [-]in
this Equation, and define the 4 operator to encode how £, is added to H,
as specified in steps Sq,...,S3 above.

5.2.2 Reduction using Permutation and Communication

The reduction in Section 5.2.1 requires adding new resources (the compass
h.). The next reduction we consider involves two new concepts. The first
is permutation, and it involves redistributing resources in a sensor system,
without consuming new resources. Surprisingly, a redistribution of resources
can add information to the system. In order for permutation to add informa-
tion, it is necessary for the sensor system to be spatially distributed (as, for
example, H is; see fig. 6). When permutation gains information, it may be
viewed as a way of arranging resources in a configuration of lower entropy.
The second concept is communication. It measures resource (b) in Sec-
tion 2.2.2. We consider adding communication primitives of the form coMM (7. — R,
info), which indicates that L sends message info to R. Like permutation,

22In using the term “compass” we make no commitment to a particular technology
for implementation (such as sensing magnetic fields). In particular, the “compass” is
an orientation sensor that could in principle be implemented using odometry or dead-
reckoning, plus some initial calibration. Moreover, “North” N can be any fixed direction
for our purposes, and need not be “true North.” In the language of [LMT], the compass

senses the projection of a perfect position sensor p* € R* x S* onto S*.
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communication only makes sense in a spatially distributed sensor system.
That is, because spatially colocated components can communicate “for free”
in our model, only “external” datapaths add information complexity to the
system. Internal datapaths have the same (spatial) source and destination.
Faternal datapaths have a different (spatial) source and destination. Hence,
permutation (alone) can change the information complexity of a system by
“externalizing” internal datapaths. To analyze a system like H, we view it
as a system composed of autonomous collaborating agents L and R, each
of which has certain resources. The COMM(-) primitive above we view as
shared between L and R. We measure communication by counting the num-
ber of agents and the bits required to transmit info. This is the only kind of
communication we will consider here (i.e., L — R), and so we will henceforth
abbreviate it by coMM (info).

Given these concepts, we can sketch another reduction Y. See fig. 8. The
reduction contains the following steps, which we denote Y1, Y5, and so forth.

(Y1) As before, we place L at the goal G.

(Y2) We move the physical emitters = from L to R (i.e., we mount them

on the robot). “North” for the emitters should be installed in the direction
of R’s heading. That is, the white light flashes when the green light passes
the local (to R) North, which is defined to be the robot’s heading, h.

(Ys) We move the concrete sensors (green?), (white?),and (time) from
R to L.

(Y4) We move the virtual sensor (orientation) coded above to L. That
is, now this program will run on L.

See fig. 8. Given (Yi,...,Y4), by calling the procedure (orientation),
L can now compute the value of the angle 6, shown in the figure. However,
although L now knows 6,, R does not. We solve this problem by allowing
L to communicate the value 8, to R using the COMM(-) primitive described

above:
(Ys) L communicates the value of 8, to R using the primitive comM(4,).
Note that the permutation steps (Ysq,...,Ys4) require no new resources.

They merely require permuting the sensors and emitters. We do not view the
relocation of the virtual sensor as “moving the computer to L.” Instead, we
view the virtual sensor (orientation) as a computational circuit; we move
that circuit to L.
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; Virtual sensor:
; construct orientation sensor out of time,
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Figure 8: Reduction using Permutation and Communication.

5.3 Installation Notes

Crucial to installing a sensor is describing how the various physical resources
should be lined up. We call these alignments calibrations. Since these cali-
brations constrain the spatial relationships among the various resources, as
opposed to leaving them arbitrary, they effectively add information to the
system. A calibration is some spatial relationship that is locked into place
at the outset. This relationship may (or may not) change over time. Even
when it does change, the initial calibration may still add information to the
system, since the system can measure relative distances to the initial setting.
Hence, calibration introduces an invariant that persists (at best) for the life-
time of the system. For example, by eliminating uncertainty at installation,
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we perform a kind of calibration, thereby eradicating that uncertainty for
the duration of the calibration. Hence, calibration can displace the task of
dealing with sensor uncertainty from the execution phase to the installation
or layout phase. The purpose of this section is to introduce formal means
for describing these calibrations, which we call installation notes. To make
this more concrete, let us consider the calibrations necessary to permute
and install sensor system H in the two reductions $ (Section 5.2.1) and Y
(Section 5.2.2).%°

The installation notes are numbered I, I3, and so forth.

Note I (step s1) and Note I (step Y1). The installation notes for steps
S1 and Yy are identical. When installing L at G, we must make sure that L
and G line up perfectly; otherwise, the angle measured will not be exactly
0,.

Note 3. When installing the physical emitters on L, we must make sure
that “North” for the emitters line up perfectly with true North. Compare
Note I5, below.

Note I (step Sz). When installing the compass, we must make sure that
it lines up perfectly with the heading of the robot.

Note I5 (step Y3). We want the white light to flash when the green light
passes through R’s heading h. Hence, when installing the physical emitters
on R, we must make sure that “relative North” for the emitters line up
perfectly with the robot’s heading h.

5.3.1 Calibration Complexity

It is difficult to precisely measure the information gained in calibration. How-
ever, we note the following. First, the calibrations in I3, I, and I5 each add
an equivalent amount of information to the system: each installation re-
quires calibration of two 1 degree of freedom (1DOF) systems, each of which
has configuration space S'. Hence we say that Is, Iy, and I5 are equivalent
installation calibrations.

Now let us consider calibrations I; and I, above. This installation requires
a careful calibration of two 2DOF systems. To calibrate H so that at L is
located at the point GG clearly adds information. More precisely, note that we
have so far considered the radial sensor F at a fixed goal G in the plane. Let

ZThis section (5.3) devolves to a suggestion of Mike Erdmann [Erd], for which we are
very grateful.
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us denote this particular installation by E_. More generally, for a point y in
the plane, we make the dependence explicit by writing F,; thus we obtain a
family of sensors { F, } parameterized by y € R”.

Similarly, let us denote by H, the sensor system H installed so that L
is located at the point y. Now, our goal is to approximate one particular
E_ using some H,. Clearly, we could consider the case G # y; however in
specifying F_ we specify (G, and so this information is given. That is, it
is no more work to locate H at G than to locate F at (G, and the latter
is unavoidable; it is the only way to implement .. Hence, we should be
allowed to do at least this much work in installing H. In other words, merely
in order to specify the sensor task, it is necessary to calibrate a 2DOF system
to G—there is a sense in which the problem of approximating F cannot be
specified without calibrating to some y € R? This argument is similar to
saying that certain algorithms must at least read all their input. In this case,
we say that the calibrations [; and I, are necessary to specify the sensor E.
That is, the calibration required to install H_ is necessary to specify E,,.
When the calibration parameter (the subscript GG in this case) is understood,
we will drop it.

Definition 5.5 (Informal) Consider two sensor systems S and Q. When S
and () require equivalent installation calibrations, and when the calibrations
required to install () are necessary to specify S, we say that S dominates )
in calibration complexity.

In Section 5.2.1 we described a reduction using a compass that yields a
new sensor system from H. In Section 5.2.2 we described a reduction using
permutation and communication, obtaining a different new sensor system
from H. From the preceding discussion (Section 5.3), we conclude that £
dominates both of these new sensor systems in calibration complexity.

Now it is clear that calibration is a source of information. We view
calibration as a measure of the external state (see resource (c), Section 2.2.2)
required for the task. Quantifying external state is tricky, since the time at
which the resource is allocated (eg., the time of calibration) may be much
earlier than the time of the task execution. We developed the relatively
sophisticated perspective of calibration complexity in this Section, precisely
to deal with this problem. Finally, it is worth noting the special role of time
in this analysis (in that calibration and execution may be distant in time).
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We found it surprising that time would appear so crucial not only here, but
also in the virtual sensor (orientation).

5.4 Comments on Power

The reduction in Section 5.2.1 requires adding an orientation sensor (which
may be implemented using a compass or odometry). The reduction in Sec-
tion 5.2.2 requires permuting resources (sensors and emitters). It also re-
quires adding communication, since . must now communicate 4, to R.

Let H* denote the permutation of H described in steps (Yz,...,Y4) in
Section 5.2.2. Thus, in H*, L has not been assigned any particular location,
and while L knows 6,, R does not. By installing H* so that L is assigned the
location (7, we obtain a sensor called H”. Now, recall the orientation sensor
h, for R, described in Section 5.2.1. Thus in the language of Equation (2),
we have sketched how

EG
E

H_ +h, 3)
H? 4 comm(d,).

R 1R

G

Equation (3) holds for all G. The operator + denotes “combining” the
two sensor subsystems. If this sounds somewhat operational, we will give
a more analytic discussion below in Section 5.4.1 and a formal definition in
section 5.4.1, where we describe the semantics of our sensor model in detail.

5.4.1 Output Communication

The term coMM (6,) in Equation (3) says that we permit the permuted sys-
tem H’ to route the information 6, from one subsystem of H to another,
spatially removed subsystem (these subsystems happen to be L and R in
our case). First, note that 6, is exactly the desired output of the sensor
E_. Hence the term coMM(#, ) denotes an internal rerouting (L — R) of this
information within the permuted sensor system H*. Let us generalize this
construction.

Definition 5.6 Let b be a variable thal ranges over all possible values that
a sensor system can compute. We call b the output of the system. Let k(b)
be the number of values b can take on, and define logk(b) to be both the size
of b and the output size of the sensor. The output size is an upper bound
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on the bit-complexity of b. For example, if b takes on integer values in the
range [1,q], then k(b) = ¢, and logk(b) = logq. In our example, 0, is the
output of E_; the quantity logk(6,) is the output size of E,. Now, suppose
the information b ts communicated over a datapath e. We will assume that
the information is communicated repeatedly; without loss of generality, we
take the unit of time to be the interval of the occasion to communicate the
information. Thus we can take the size of the output b to be the bandwidth

of e.

To return to our example, it is clear that we can make the permuted sensor
system H satisly the information specification of £ if we merely add one
internal re-routing operation of bandwidth logk(6,). In this case, we say we
have added output communication to the permuted sensor system.**

More precisely, let S be a sensor system with output b. Let () be another
sensor system. We imagine () as a “circuit” embedded in (say) the plane.
Let coMM(b) be a “sensor system” with one datapath e, that has band-
width logk(b). Then, adding output communication to ) can be viewed as
the following transformation on sensor systems: @ — @ + comM(b). The
transformation is parameterized by (the bandwidth of) S. The bounded-
bandwidth datapath e can be spliced into ) anywhere. We note that this

transformation can be composed with permutation (in either order):
Q Q* — Q"+ coMM(b)

Q@ +— @Q+comMm(b) — (Q+coMmm(b))*.

We give a fully formal, graph-theoretic model of this transformation in sec-
tion 8.7.2.

24To borrow a UNIX metaphor, this transformation allows the system to do an internal
rcp, but not RPCc—that is; it can copy information between subsystems, but it cannot
request arbitrary remote evaluations.
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6

A Hierarchy of Sensors

The examples above illustrate a general principle. This principle is anal-
ogous to the notion of reduction in the theory of computation. We would
like our notion of reduction to do work analogous to the work done by
computation-theoretic reductions. Consider two sensor systems S and ).
Recall the definitions of simulation (Definition 4.4) and calibration complex-
ity from Section 5.3.1.

Definition 6.7 We define the internal (resp. external ) bandwidth of a sen-
sor system S to be the greatest bandwidth of any internal (resp. external) edge
in §. The output size of S is given by Definition 5.6. We define the maxi-
mum bandwidth mb(S) to be the greater of the internal bandwidth, external
bandwidth, and the oulput size of S. We call a sensor system monotonic if
its internal and external bandwidths are bounded above by ils output size.

Definition 6.8 We write S < ) when
1. Q simulates S (S = Q),
2. S dominates @) in calibration complexily, and

3. mb(Q) is bounded above by mb(S).

Calibration exploits external state. Definition 6.8 allows us to order systems
on how much information this external state (from calibration) yields. We
will complete the formalization and analysis of calibration complexity later,
in Sections 8.7.4 and Appendix A.1. Here is the basic idea. Calibration
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complexity measures how much information we add to a sensor system when
we install and calibrate it. Installing a sensor system may require physically
establishing some spatial relation between two components of the system.
In this case we say the two components codesignate by the spatial relation.
More generally, we may have to establish a relation between a component
and a reference frame in the world. Most generally, when we compare two
sensor systems S and (), we typically must install and calibrate them in
some appropriate relative configuration—again, in a spatial relation. When
all these relations are (in)equalities of configuration, we say the system is
simple. When all the relations are semi-algebraic (s.a.), we say the system is
algebraically codesignated.

Now, let Q* denote a permutation of sensor system (), as described in
Section 5.2.2. (For a formal definition, see Definition 8.18.)

Definition 6.9 We write S <* @) if there exists some permutation QQ* of
sensor system ) such that S < Q)*.

Recall the meaning of cOMM (info) from Sections 5.2.2 and 5.4.1. Finally,

Definition 6.10 Given two sensor systems S and @), choose b such thal
logk(b) = mb(S). We say S is efficiently reducible to @) if

S <F Q4 comm(b). (4)
In this case we write S <q Q).

For monotonic sensor systems, it suffices to take b to be the output of
S (see Appendix A.4). This special case motivates the construction on the
r.h.s of (4), where we add “output communication” to the sensor system @

(Section 5.4.1).

We now recap a couple of crisp results using reductions:

Claim 6.11 (a) E_ < H_+ h, and
(b) E, < H* +comm(d,).

Proof: Recall the discussion from Section 5.3.1 on calibration complexity. To
obtain (a), we use the reduction that employs a compass (Section 5.2.1). The
proof of (b) obtains by the reduction using permutation and communication

(Section 5.2.2). U
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Now, recall Equation (3). The relation £, = H_+h,, which derives from
the compass reduction in Section 5.2.1, does not imply efficient reducibility,
since adding a new concrete sensor h, is too powerful to imply efficient
reducibility. However, by the reduction in Section 5.2.2:

Proposition 6.12 Erdmann’s radial sensor E is efficiently reducible to the
lighthouse sensor system H, that s K <; H.

Proof: Recall from Equation (3) that £, = H* + comMm(6,), and that 0, is

the output of £_. From this, and claim 6.11(b), we conclude that £ <, H.
a

23



7

Information Invariants

The relation <y defines a hierarchy of sensors. Compare the perceptual
lattice of [DJ], who propose a geometric program for the analysis and syn-
thesis of sensors based on their perceptual equivalence classes. The relation
<, orders sensor systems on the complexity of their information invariants.??

At this point it would be useful to review the particular information
invariants in our example. Here is the basic idea. The invariants may be
analyzed by first examining Equation (3). Since & is an equivalence relation,
we obtain the peculiar equation

H,+h, = H 4+ comm(d,). (5)

Now, what exactly does Equation (5) mean? We understand that at
present, this equation is not yet formal. Our goal is to understand this
intriguing result. To do so, we must give a formal account of the colocation
of resources. Here is a general idea of how we will proceed:

Recall the transformation described in Section 5.4.1 and Definition 6.10,
where we added output communication to a sensor system. Recalling that

251t is possible to develop a geometric account of information invariance by pursuing
the direction of [DJ]. For more on this connection, see appendix C.3. The account we
give in section 5.4.1 is also geometric but with a different flavor. Appendix C.3 deals
with the geometry of lattices, where an element of the lattice represents (essentially) a
knowledge state. In section 5.4.1 we examine different immersions of sensor systems.
“Permutations” or “automorphisms” of the function space of immersions that preserve
the sensor functionality are viewed as a kind of information-preserving transformation,
and, hence, a model of information invariance.

54



h, denotes the compass, at first glance, we would appear to obtain the fol-
lowing information invariant: a compass is equivalent to permutation plus
output communication. This idea is tantalizing because it seems to define an
information equivalence between normally unapposed categories: it yields an
information invariant relating sensors, communication, and resource permu-
tation. The invariant (5) is valid. However, it appears that this invariant is
critically conditioned on the type of information being rerouted by the output
communication. Qutput communication permits us to transform between lo-
cal and global coordinates; however, if some form of orientation sensing (at
L) is not present before the output communication step, then no amount of
permutation and communication can simulate a global compass.?® In sec-
tion 8.8, we address the generality of Equation (5). There we model the
colocation of resources as geometric codesignation constraints. This coloca-
tion can be modeled as a quotient map, and in section 8.8 we discuss its
relationship to information invariance.

26Tn the language of [DJ], communication and permutation permit us to map between
the perceptual equivalence classes (PEC’s) of E (the rays described in Section 4.1) and
the PEC’s of H.
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8

On The Semantics of Situated
Sensor Systems

In this section, we formalize our model of sensor systems. We give formal
definitions of the reductions using permutation, and by “combining” sensor
systems and “adding” resources. Section 5.4.1 discusses the semantics of
sensor systems precisely; as such this section is mathematically formal, and
contains a number of claims and lemmata. This formalism is used to explore
some properties of what we call situated sensor systems. We also examine
the semantics of our “reductions.” The results of Section 5.4.1 are then
used in Section 8.10.4 to derive algebraic algorithms for reducing one sensor
to another. Below, we use the term “sensor system” to mean “sensori-
computational system” where it is mellifluous.

8.1 Situated Sensor Systems

We formalize our model of sensor systems using a concept similar to the
communication graph from distributed systems [FLM].

Definition 8.13 A labelled graph G is a directed graph (V, E) with vertices
V' and edges FE, together with a labelling function that assigns a label to
each vertexr and edge. Where there is no ambiguity, we denote the labelling
function by £.
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Definition 8.14 A sensor system S is represented by a labelled graph (V, F).
FEach vertex is labelled with a component. Fach edge is labelled with a con-
nection.

In Section 4.2.1 we defined components and connections operationally.
We now give a formal definition. Components and connections are defined
by their simulation functions. Simulation functions describe the behavior of
both components and connections.

Consider a component /(v) associated with vertex v. To simulate a com-
ponent, we need to know (i) its inputs and (ii) its configuration. Suppose a
component has r inputs and s outputs, each of which lies in some space R.
Let C' be the configuration space of the component. A simulation function
for a component {(v) is a map?” €, : R" x C — R®.

Now we connect the components together. Assume for a moment that all
the components have the same input-output structure as €2, above (i.e., that
r and s are fixed throughout the system, but that the components themselves
may perform different functions). We model an edge e between vertices v
and u by its label, {(e) = b, and by a pair of integers, (z,7). logk(b) is the
bandwidth of the edge (Section 5.4.1) and the index ¢ (resp. j) specifies to
which of the r outputs of £(v) (resp., s inputs of {(u)) we attach e (1 < ¢ <r
and 1 <j <s).

Now, a simulation function for this edge e is taken to be a function €2, :
R — R. We will usually restrict the edge functions to be the identify function
(but they also check for bandwidth, i.e., that the transmitted data has size
no greater than logk(b)).

We also define a resource called the “output device.” Each sensor sys-
tem must have exactly one vertex with this label, called the ouput vertex.
The output vertex of the sensor system is where the output of the sensor
is measured. The simulation function for the output device is the identity
function, but the output value of this device defines the output value of the

Y

sensor system. In the examples introduced in Section 2.2.2 (the radial sensor
E, lighthouse sensor system H, and the permuted lighthouse sensor H*), we
locate the output vertex on the “ship” at R.

2"Components that retain state can be modeled by a function Q, : R" xC xS — R* x S,
where S is a store that records the state. For example, a state element with & bits of state
would be modeled with S = {0,1}*. Alternatively, S can be absorbed as a factor subspace
in the configuration space of the component.
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A simulation function ), for an entire sensor system U, then, is a col-
lection of component simulation functions such as €, and edge simulation
functions such as Q.. The function €, simulates all the component simula-
tion functions in the correct configuration, and simulates routing the data
between them using the edge simulation functions. We adopt the conven-
tion that two components can communicate without an (explicit) connection
when they are spatially colocated. When all these component and edge func-
tions are semi-algebraic, then the sensor simulation function €Y, is also semi-
algebraic (see Section 8.10.4). These concepts will be used to implement our
notions of a “specification” for a sensor system (Section 1.1, application 3)
and “universal reductions” (Appendix A.4).

Definition 8.15 Consider a sensor system U with simulation function (.
The output value of U at a particular configuration ts the value yy computes
for that configuration. Hence the oulpul value of U is a function of U’s
configuration.

The notions output value and output (Definition 5.6) are related as fol-
lows. The output of U is a variable that ranges over all possible output values
of U. Given another sensor system V, we say the output of U is the same
as the output of ¥V when Qy and Qy are identical.

Under this model, we can simulate trees of embedded sensorimotor com-
putation. It is also possible (in principle) to simulate more general graphs and
systems with state, but in this case the value at the output vertex may vary
over time (even for a fixed configuration). In this case we need some explicit
notion of time and blocking to model the (a)synchronous arrival of data at
a component. Such extensions are considered in [Jen94]; for now we restrict
our attention to trees, which suffice to model our examples.?® In general our
discussion is restricted to consider one clock-tick; however, generalizations
are possible to consider the time-varying behavior of the system [Jen94].

Let us relate these new definitions to the examples from part 1. Examples
of components are given by the resources described in Section 4.2.1. Con-
nections are like data-paths in that they carry information; a connection’s

Z8Note the sensor system H: + coMM(6f,) in Equation (3) is effectively a tree, and not
a graph, even though there is data flow both from R to L and L to R. This is because the
output vertex u, on R does not feed back into the system.
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label represents the information that will be sent along that path. Connec-
tions carry data between components. One common connection is specified
using the COMM (info) primitive defined in Section 5.4.1. For example, recall
the the permuted sensor system H* introduced in Section 5.4. Next, recall
Equation (3):

E

G HG—I_hR
E

: (3)
H 4 comm(d,).

1R

G

Consider the sensor system specified by the bottom r.h.s. of Equation (3):
H? 4 comm(6,) (*)

In the graph representation of (), the edge from the virtual (orientation)
sensor at G to the output device at R, is labelled “6,”.

Now, for each vertex v in V', we assume there is a configuration space C,,.
A point in this space U, represents a possible configuration of the component.
Some components have configurations that change during the operation of
the system (for example, in the lighthouse sensor system, all components
mounted on the ship change configuration as the ship moves). Others are

installed at fixed configurations. For example, the emitters in the light-

house example, are installed at a specific position (L) and orientation (the
white light flashes when the green light points North). So, the configuration
space C' for these emitters is R* x S'. For convenience, let us assume that
all components have the same configuration space C, and so C' = C, (for all
veV).

To summarize: a component is a primitive device that computes a a
function of (i) its inputs and (ii) its configuration z € C'. Each component is
installed at a vertex of communication graph with d vertices, whose edges are
the connections described above. The graph is immersed in a configuration
space C?, and the configuration z of a component is the configuration of
its vertex. More generally, components can be actuators. An actuator is
a component whose output forces the configuration of the graph to change
or evolve through a dynamics equation. If the configuration of the entire
graph is z = (z1,...,2,...,24) € C% then the dynamics equation models
a mapping from the actuator component £(v)’s output at z to the tangent
space T,C'? to the configuration space. See [DJR, Jen94] for more discussion
of actuators.
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Now, we give

Definition 8.16 A situated (or immersed) sensor system S is a sensor sys-
tem S = (V. F), together with an immersion ¢ : V — C of the vertices. If
v €V, then we call ¢(v) the configuration of the vertex v. When there is no
ambiguity, we also call $(v) the configuration of the component £(v).

A situated sensor system is modeled by an immersed graph. If the map ¢
in Definition 8.16 is injective, then we call ¢ an embedding. Immersions need
not be injective. In particular, in order to colocate vertices, it is necessary
for immersions to be non-injective.

In Definition 8.16, the immersion ¢ may be a partial (as opposed to total)
function, indicating that we do not specify the spatial configuration of those
components whose vertices are outside the domain of the immersion. We
denote the domain of a (partial) immersion ¢ : V — C by ¢~'C. We denote
its tmage by im ¢.

Example 8.17 H, is a situated sensor system (H,v). H* is a different
immersion 1* of the same sensor system H, and so H* = (H,¢*).

This example illustrates a general concept: permutation of a situated
sensor system corresponds to the choice of a different immersion with the
same domain. Formally:

Definition 8.18 LetS = (S, ¢) be a situated sensor system. A permutation
S* of S is a situaled sensor system (S, d*) such that the domain ¢~'C of ¢
and the domain ¢*~'C of ¢* are the same.?

Furthermore, for technical reasons, we also permit a permutation to
change which vertex has the “output device” label. See Appendix C.2.

We can now formalize Definition 4.4 to say precisely what it means for
two partially situated sensor systems to be equivalent:

Z9Technically, there are two kinds of permutation. Definition 8.18 is called vertez per-
mutation; in Appendix A.2.1 we discuss a more general model called graph permutation.
Vertex permutation suffices for all examples in this book, but our results go through for
graph permutation as well.
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Definition 4.4 (Formalized) Given two sensor systems S and @), we say Q)
simulates S if the output of () is the same as the output of S. In this case
we write S = Q). More generally, suppose we wrile

(5,0) = (U, ) (6)

for two situated sensor systems. Equation (6) is clearly well-defined when ¢
and ¢ are total. Now, suppose that ¢ and v are partial, leaving unspecified
the configurations of components {(v) of S and {(u) ofU. Then Fquation (6)
is taken to mean that (U, ) simulates (S, @) for any configuration of v and
u.

For Definition 4.4, in the case where (say) ¢ is partial, we operationalize
Equation (6) by rewriting it as a statement about all extensions ¢ of ¢.
That is, we define ex ¢ to be the set of all extensions of ¢. Then, we write:
“Yé € ex ¢, Equation (6) holds (with bars placed over the immersions).” We
treat 1 similarly, with an inner universal quantifier, although codesignation
constraints (Sections 8.3,8.5.1) allow us to make the choice of extension 1
of ¥ depend on the extension ¢ that is bound by the outer quantifier. For
example, Definition 4.4 becomes, “for all configurations € C of v, for all
configurations y € Dgs(x) of u, Equation (6) holds.” Here Dg(x) is a set in C
that varies with x; the function Ds(-) models the codesignation constraints.
Definition 4.4 can be generalized to any number of “unbound” vertices; see
Equation (34) in Section 8.10.4.

Definition 4.4 uses a strong notion of simulation (in which the outputs
of the sensor systems must be identical). A weaker notion, which merely
requires the same equilibrium behavior, is introduced in Section 11.1.

8.2 Pointed Sensor Systems

Suppose we wish to consider a sensor system S = (V, F), where one compo-
nent ¢(v) for v € V is in a particular configuration GGo € C'. This corresponds
to immersion via the partial function ¢ with domain {v } and range { Gy }.
We may abbreviate the situated system (S, ¢) by writing Sg,, to distinguish
it from the un-situated system &. This is the notation we use in Section 5.3.1
and after. Of course, for this notation to capture all the information above
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about v, we must specify the preimage® of G under ¢, but we did that in
Section 5.3.1 when we wrote down

“ .. let us denote by H, the sensor system H installed with L = G.”

We now explain the notation used in example 8.17. First, we formalize
our discussion of Sg,, above:

Definition 8.19 A Pointed Immersion of a sensor system S = (V, F) is a
pair (¢, @) where ¢ : V. — C is an immersion of the vertices of S, and G €
im¢. G is called the base point. An extension of a partial pointed immersion
(¢, G) is any total pointed immersion (6, ) where ¢ is an extension of ¢.°!

Definition 8.20 A Pointed Sensor System is a triple (S, ¢, G) where (S, ¢)
is a situated sensor system and (¢, ) is a pointed immersion (Definition 8.19)

of S. We abbreviate (S,¢,G) by Se.
Hence, H_ in example 8.17 is a pointed sensor system. Next,

Definition 8.21 A Pointed Permutation of a sensor system (S, ¢) is a pointed
sensor system (S, ¢*, ), where ¢* is a permutation of ¢.

Hence, H in example 8.17 is a pointed permutation of the pointed sensor
system H_. In general, if S& is a pointed permutation of Sg, then Sg is a
pointed permutation of S¢.

8.3 Codesignation: Basic Concepts

If we view the configurations of components in a sensory system as “vari-
ables,” then convention 4.4 gives a “default” for determining which variables
are “free” and which are “bound.” Here is another view:

The partial immersion specifies which variables are specialized to be con-
stants. These are the vertices in the domain of the immersion. Their con-
figurations correspond to bound variables (constants). The configuration

30More precisely: we must write down that the preimage of Gy under the immersion ¢
contains v.
3¢, G) is called weakly pointed if ¢ is partial and G is not necessarily contained in im ¢.
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variables for vertices outside the domain of the immersion are not yet spe-
cialized, and hence are free.

We now have two concepts to define and investigate. First, we show how
to specify systems which contain some constant configuration variables. After
that, we must find a way to make two free variables codesignate (see [Chal).
Two vertices r and u codesignate under an immersion ¢ when ¢(r) = ¢(u).
More generally, r and u codesignate under different immersions ¢ and ¥ when
é(v) = ¥(u). We now proceed with these two tasks.

Recall our example of a pointed sensor system Sg, from Section 8.2 above.
Recall S¢, = (S, ¢, Go), and S = (V, E). The domain of ¢ is the single vertex
v € V. Now, to continue, suppose that r € V is the vertex of component
{(r), and that r # v so that ¢ does not specify how to immerse r. Consider
a different sensor system U, with at least one vertex u. We wish to consider
“combining” U and § by saying something like this:

Immerse § with vertex v at Gg. Now, vertex r of § will be somewhere,
say, R; but we want to immerse i so that u is at R also.

Hence, we don’t care where R is, save that we wish to colocate r and w.
To do this, we make r and u codesignate under the immersions of § and U.
We call this a codesignation constraint after [Cha]. Here is how we may say
this more precisely:

Let Sg, denote sensor system § immersed with vertex » at G (as
above). Immerse the rest of S in any consistent manner, and denote
this immersion by ¢. Thus ¢ is the extension of ¢ so that the restriction
$|{v} of ¢ to { v} is identical to ¢. Now, let R € C be the configuration

of 7 under ¢, i.e., R = ¢(r). Denote by % the (partial) immersion of
U defined as follows. 1 sends vertex u of U to R. Note that Gg is a
“constant” and R is a “free variable,” in the sense that R depends on
which extension ¢ of ¢ we choose, whereas Gy does not.

In Equations (2-5), we abbreviated this construction as follows:

Sa, + Ur. (7)
which is short for (S, ¢) + (U, ) with ¢ and ¢ defined as above. Note that

(7) is not sufficient to specify the desired (partial) immersion unless we also
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note that the preimage (under the immersion ¢) of Gy contains vertex v of

S, and that

¢(r) = R =(u). (+)
(*) represents a codesignation constraint; we will define such constraints
formally below in Section 8.5.1. We must also specify that GGy is a constant
and R is a free variable. The notation explained in (7) is used in the body
of the book, for example, in Equation (3).
It remains for us to define precisely the + operator we just used, and we
do so below in Definitions 8.22- 8.24 below.

8.4 Combining Sensor Systems

The + operator is defined on two graphs as a way of taking their union.
Specifically:

Definition 8.22 Consider two graphs G = (V, F) and G' = (V' E"). We
define the combination G + G’ of G and G' as follows:

G+G =(VUV',EUE).

We may define 4+ on sensor systems (Definition 8.14) by lifting the defi-
nition for graphs. We may define + on two immersed graphs whenever the
immersions are compatible. An immersion ¢ of G and an immersion @ of G’
are said to be compatible when the two immersions agree on the intersection
V NV’ (for total immersions) or more generally, on ¢='C' N~ (for partial
functions). Given this definition 8.22 we have:

Claim 8.23 The operator + defined in Definition 8.22 is associalive and
commutative.

Proof: Definitional. [

8.5 The General Case

Let (S,¢) and (U,1)) be two situated sensor systems. Let V' denote the
vertices of S and U the vertices of ¢. Our notation above (Sg, Ur, H_, h,,
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etc.) is effective when the image of each partial immersion is a singleton, eg,

S(V)={G} and ¥»(U) = { R}. In these cases it suffices to abbreviate

Se = (S,¢) and Ur = (U,7),

and to specify which (if any) of the configurations G and R is constant and
which (if any) is free. We now generalize this notation for more complicated
partial immersions.

Suppose (S, ¢) and (U,1) have compatible partial immersions. Now,
#(V) and ¥(U) (which need not be singletons, in general) represent the
“constant” configuration bindings of vertices (analogous to the singleton G
above). We now consider codesignation constraints. All the codesignation
constraints we have seen so far in section 5.4.1 have this form: each was
a pair (v,u) € V x U. A codesignation constraint is compatible with the
immersions ¢ and v if one of the following is true:

1. v is not in the domain ¢='C of ¢;

2. u is not in the domain ¢ ~1C of ;
3. ¢(v) = (u).

This definition is not quite general enough; we must also be able to specify
(a) that two vertices of U (resp. V) codesignate—this means two components
of § must be colocated. (b) we must also be able to specify that that two ver-
tices not codesignate, for example, that ¢(v) # ¢(u). The general definition
is complicated and is given in Definition 8.26 below.

However, putting off the formal definitions for a moment, we can see
what a combined sensor system really is. In summary: the immersions
and ¢ specify which component configurations are to be held constant. The
codesignation constraints specify which components are to be co-located.

Definition 8.24 Let (S,¢) and (U,v) be two situated sensor systems with
compatible partial immersions. The combined sensor system

(8,¢)+ (U, ) (8)
is specified by (8), together with a set of codesignation constraints compati-

ble with ¢ and . We say the combination (8) is defined when the partial
immersions ¢ and b are compatible.
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Now, consider two sensor systems S and Y. Both have output vertices,
say, v, and u, resp. If v, = u, then this vertex remains the output vertex
of S +U. In the case where v, # u,, we must naturally specify which is the
unique output vertex of the new, combined sensor system. By convention
we will declare it to be either v, or u, (we must say which).** We adopt
one default convention for this choice in Section 8.7.3. For more on output
vertices, see Appendices C.1- C.2.

Definition 8.24 specializes to the particular cases such as Equation (3) we
have considered, by appropriate choice of partial immersions and codesigna-
tion constraints. To illustrate these choices, we give an example below, in
section 8.6. The operator + is associative and commutative (see claim 8.23
and Appendix A.4).

8.5.1 Codesignation Constraints

Throughout this section, we let (S,¢) and (U,) be two situated sensor
systems with compatible partial immersions ¢ : V — C' and ¢ : U — C'.

Definition 8.25 Define the partial immersion ¢ + v as follows:

b+ — C
i H{ d(z) it z € V;
p(z)if e U.

We say the map ¢ + o is defined when the partial immersions ¢ and
are compatible.

Definition 8.26 A codesignation constraint is a pair (z,y) € (V U U)?.

Definition 8.27 We say a codesignation constraint (z,y) is compatible with
the partial immersions ¢ and ¢ if one of the following is true:

1. z is not in the domain (¢ +)7'C of (¢ + ¢¥);
2. y is not in the domain (¢ + )7 'C of (¢ + 1);
3. (64 ¢)(x) = (¢ +¢)(y).

32This is not a severe restriction when we are considering permutations like (S +#)* of

S+ U. See Appendix C.2.
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Noncodesignation constraints are modeled symmetrically to codesignation
constraints. A codesignation constraint (z,y) indicates that we require that
for any total immersion ¢ 4 ¢ that extends ¢ + v,

(6+¥)(z) = (6+4)(v) (*)

holds. A noncodesignation constraint requires inequalily (instead of equality)
in (k).

8.6 Example: The Basic Idea

As an example, let us interpret Equation (3). We give it again:

E

G

E

G

H_.+h, 3)
H* + comm(6,).

1R

Recall £, and H_ are situated sensor systems. F_ is the radial sensor

located at G € R?. H,

at (G and oriented Northward.

When H is situated at GG as above to obtain H, the immersion is partial,
leaving the position R of the ship, unspecified in H . h, denotes the compass
installed at R, calibrated towards North. Equation (3) (top) holds for any
ship’s position R so long as the sensor system £, is co-located at R. Compare
the r.h.s. of Equation (3) to (7). As in (7), in Equation (3), once the
preimages (under the immersion) of G and R are specified, the immersion of

G

is the lighthouse sensor with the emitters located

the combined sensor system becomes clear.

Now, H? defines a new immersion of H (by “new” we mean different from
H_). The immersion depends on R but the equation (3) holds for any R.
COMM (0,) defines a graph with exactly one edge e. e is an edge with label
l(e) = 0,, from the virtual sensor (orientation) to the ship (the output
vertex) at R. Thus, e is an edge between two vertices of H* (or H) but
note that e is not part of the graph H* (nor H}); e is only present in the
combination H; + coMMm(6,).

Finally, by convention, Equation (3) (by itself) only holds for G. But, we
specify in the sentence below Equation (3) that it holds for any G. This is
equivalent to placing the symbols “VG” before Equation (3). This effectively
“frees” (. The appearance of (G as a subscript on the L.h.s. and both r.h.s.
of Equation (3) indicates a codesignation constraint.
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8.7 Example (continued): A Formal Treatment
8.7.1 The Top of Equation (3)

We now rewrite Equation (3) using the general notation of section 8.5. In this
example we do not explicitly consider orientation of components. However,
the discussion can be generalized by taking the configurations G and R to
lie in the configuration space R* x S*.

Let ¢ be a partial immersion of F. Let ¢g be a partial immersion of £
that installs it at G, so that £, = (£, ¢q).

Let ¥ be a partial immersion of H. Let ¥ be a partial immersion of H

that installs the emitters at G, so that H, = (H,¢¥¢g). We will define

codesignation constraints so that all the concrete and virtual sensors are
installed on the ship (i.e., at R).

Let vy and v be the vertices of H such that ¢(v) =[z} and {(vy) =[w]

Let wuq,...,u; be the vertices of H corresponding to the concrete and
virtual sensors described in Section 4.2.1. In particular, u; is the vertex of
the virtual sensor (orientation).

Let u, be the output vertex of H.

Let p be a partial immersion of the compass h. Let w be the vertex of
the compass in h. Then we can rewrite the top of Equation (3) as:

(Ea qu) = (H7 ¢G) + (ha P) (3—t0p)

together with the codesignation constraints™

{ (ulv ul) }1<i§k

U { (v1,02), (Ug, u1), (u1,w) }

(9)

33A careful analysis will show that, while it is necessary that the rotating emitter [g] be
located at GG, the ommidirectional[w ] can be anywhere. Hence the codesignation constraint
(v1,v2) is unnecessary. However, by removing it, we are left with the problem of synchro-
nizin and [w]. Either we must add communication, or else calibrate the emitters and
give a clock. These issues complicate the example and so we will not deal with them
further.
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8.7.2 The Bottom of Equation (3): The Sensor System coMMm ()

Now, H* denotes a different immersion of H. Call this immersion *. Let ¢7
denote the partial immersion that installs the concrete and virtual sensors at
(G. We will define codesignation constraints so that the emitters are installed
on the ship. We must now precisely define what COMM () means.

We can be sure of getting the semantics of COMM(+) correct by treating
it as a sensor system in its own right (albeit, a small one). Now, comMM(6,)
defines the graph with vertices® { uy,u, } and a single edge e = (u1,u,) with
l(e) = 6,. We observe that the transformation on sensor systems whereby
we add output communication (Section 5.4.1 and Definition 6.10) implies the
following:

The “head” vertex u, of the edge e = (u1,u,), is defined to be the
output vertex of the sensor system comm(4,).

Our model of communication is fairly abstract. External communication
is probably not possible without some form of buffering by either the sender
or the receiver. COMM(-) should include this buffer to be more realistic about
modeling internal state.

Hence the bottom half of Equation (3) may be written:

(K, ¢c) = (H,v5) + coMmm(6,) (3—bot)

together with the codesignation constraints

{ (uh ul) }1<i§k

U {(vl,vg)}. (10)

Hence the bottom codesignation constraints (10) for (3-bot) are different
from the top codesignation constraints (9) for (3-top), in that in the bottom
constraints, w does not appear (since it is associated with the compass).
Second, in the bottom equation, the output vertex is not constrained to be
colocated with the virtual sensor (orientation). Thus the codesignation
constraint (uy,u,) disappears.

34n this example, the vertices of coMM(-) are also vertices of H*; but more generally
the vertex sets can be disjoint.
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8.7.3 Bandwidth and Output Vertices

We have defined cOMM(-) as a graph with a single edge e. The argument
(parameter) b to COMM(b) determines the bandwidth of e. Thus, for example,
COMM (b) specifies a graph with one edge e whose label is b. This specifies that
the edge is a datapath that can carry information b; if b requires k = logk(b)
bits to encode then k is the bandwidth of e.

Now recall the discussion on how to choose output vertices in combined
sensor systems (Section 8.5). Here, (Section 8.7.2, Equation (3-bot)) we have
u, as the output vertex of both H* and coMM(6,), and so it unambiguously
remains the output vertex of the combined system H* + comMm(6,). More
generally, we adopt the following

Convention 8.28 Lelt S be a sensor system. Unless otherwise stated, we
take the output vertex of the combined sensor system S + COMM(-) to be the
oulput vertex u, of COMM(-).

For more on bandwidth see Appendix A.4; for more on output vertices
under permutation see Appendices C.1- C.2.

8.7.4 Calibration Complexity and Codesignation

The size of the set (9) or (10) (number of codesignation constraints) is one
measure of calibration complexity (see Section 5.3.1). However, this should
be only part of the measure. One reason that the number of codesignation
constraints, alone, is not a good measure, is that one sensor system (say H,
for argument) could have a single component that functions in the place of
several colocated components in another sensor system (say, V). For exam-
ple, we could build a sensor V as follows: Consider the emitter [g] in H.
Break up the emitter [g] into all its tiny wires, power supply, filaments, ro-
tating actuator, etc. All these components must then be colocated. This
would result in more codesignation constraints for V than for H and thus, a
spuriously high measure of calibration or installation complexity.

Instead, in order to measure calibration complexity we should compare
“size” using something like order (Big-Oh O(-)) notation. This is the basic
idea we use, but there are some additional subtleties that we defer to ap-
pendix A.1. There we propose a measure of calibration complexity that is
more reasonable. This measure retains, however, one useful property: it is
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easy to compute it (in fact, like “size” above, it can be computed in the same
time it takes to read the input).

8.7.5 Noncodesignation Constraints and Parametric Codesigna-
tion Constraints

To complete our model for this example, we must also introduce noncodes-
ignation constraints so that G # R; this is necessary for our sensors to work.
Suppose the radial sensor £ has two vertices, ¢, and t;, where ¢, is the output
vertex, and t; is the “central vertex” of F (this is the vertex located at (G in
fig. 5). The noncodesignation constraints for both (3-top) and (3-bot) are

{ (u1,v1), (T ta) 3 (11)

The former is a constraint on H (and H*). The latter is a constraint on K.
Finally, we require the codesignation constraint

(tos Uo). (12)

Equation (12) is called a parametric codesignation constraint; it ensures that
fo_r all extﬂsions Gy Y, and ¥ of ¢, b, and Y% (resp.), we have ¥ (u,) =
¢ (to) = Y2 (u,). Parametric codesignation constraints are discussed further
in Appendix A.3.

This completes our detailed discussion of the sensor systems in Equa-
tion (3). The example is designed to explain most facets of our theory in
a simple setting. Let us sketch how to make this analysis computationally
effective. We choose two arbitrary points G and R in C. We begin with
the two pointed immersions ¢, and ¢, with domains {¢1,¢, } and {vq,u; }
(resp). (So, ¢, is total and v is partial). These functions and the desired
permutation ¢ are:

L Juftfw]o]
6. [G|R

b, R|G
0 G| R

We want our analysis to be true for any R and G (with R # () and
not just the ones we chose. To do this, we in effect wish to universally
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quantify over R and (G and treat these configurations as variables. To do this
carefully and computationally requires the quantification machinery from
Section 8.10.4. Here, we give the basic idea. Now, after our first use of
Equation (3), we wrote

“Fquation (3) holds for all G.”

This sentence effectively adds “YG” to the front of Equation (3), and
hence to Equations (3-top) and (3-bot). We call this freeing G. To obtain
this effect, we rewrite Equations (3-top) and (3-bot) as follows: Remove the
(7 subscripts: that is, replace ¢, by any immersion ¢ of E. Similarly, replace
¥ by i and % by ¥*. (See Section 9.2 for more details). We have chosen
this notation because our constructions are parameterized by the task, and
the task is specified by . The notation leaves this parameterization explicit.
As we shall see below, perhaps the cleanest way to model this example is to
treat all the sensor systems as initially unsituated, yet respecting all the
(non)codesignation constraints above. This may be done using the tools
developed in the sequel (Sections 8.8-9.2).

8.8 Generality and Codesignation

Consider a sensor system & with d vertices V', immersed via a map ¢ :
V — C. The configuration space of this sensor system can be viewed as C?,
since any immersion ¢ can be represented as a point in® C?. Consider a
codesignation constraint (u,v) for u,v € V. This specifies a new immersion
of § in a quotient C%/(u ~ v) of C'? in which the images of u and v are
identified. This quotient construction can be used to analyze information
equivalence in certain cases. We give an example below.

In Section 5.4.1, we discussed how general Equations (3) and (5) are.
We can now address this question more precisely by noting that the top
and bottom of Equation (3) have different codesignation constraints. This
means that equivalence only holds under the appropriate spatial identifica-
tions. (Recall each codesignation constraint specifies such an identification).
Hence, Equation (5) is a relation that holds only on a quotient of config-
uration space. It is analogous to a “projective invariant” in geometry: an
invariant relation that holds for projective space but not for affine space.

35This just says that the function space CV is isomorphic to C?.
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To see this analogy, recall that, for example, real projective space RP? is
obtained as a quotient of real Euclidean space R® by identifying all nonzero
points on a line through the origin to a single point. There exist projective
relationships in RP? (for example, invariants in projective geometry) that
do not hold in R®. In our case, it seems that by investigating the structure
of these quotient relations one may measure the generality of information
invariants, and, more generally, information-preserving transformations (eg.,
reductions and immersions) on sensor systems.

It is interesting to note that the geometric structure of noncodesignation
constraints is different from the quotient construction given above. The
quotient construction can be viewed as follows. Let 7 : C¢ — C?%! be
the projection of C'¢ onto C'~'. This map models the quotient construction
since C*~! is isomorphic to C?/(u ~ v). Hence 7 models the identification
of v and v. 7 then induces a new immersion qz~§ =7(¢):

¢ € Cc
) K (13)
¢=7(¢) € C/(u~no)

One the other hand, noncodesignation constraints are essentially a kind
of genericity requirement. To see this, let us assume that v and v are the
first and second of the d vertices of V. We then consider an immersion to
be “generic” when it sends v and v to different values. Define the diagonal
A ={(z,2) € C?* | z € C}. Then the noncodesignation constraint insists
that we avoid the embedded diagonal, that is, we must have an immersion

¢ e (C*—A) x C2 (14)

Combining (13) and (14) gives the general form for the configuration space
of the sensor.

8.9 More General Codesignation Relations
8.9.1 The Semantics of Codesignation Constraints

The codesignation constraints we have encountered so far model the neces-
sary equality of images of vertices under immersions. For example,

$(u) = ¥(v) (15)



for (some particular) v € U and v € V:

U
¢
N
c. (16)
/
v
Vv

Let us call this simple kind of codesignation constraints in (15), equality
codesignation constraints.

More generally, we could consider relations of the form “The three points
z, ¢(u), and ¥ (v) are colinear” or “¢(u) is within distance d of ¥ (v),” etc.
This other kind of codesignation constraints could be called general codes-
ignation relations. We could model such a relation as follows: consider a
triple (u, v, ®) where @ is a semi-algebraic (s.a.) predicate on C' x C'. So far,
in considering equality codesignation constraints, all the predicates we have
used have been diagonals:?®

O(z,y) iff z=y. (17)

This choice (17) explicitly encodes the assumption that all working sensor
configurations can be specified using colocation (or noncolocation). For ex-
ample, for the lighthouse sensor H it is necessary for the green and white

lights to be colocated. Similarly, the sensor only works when the ship

R is not at G. These statements give geometric constraints on the sensor
semantics: the (non)codesignation constraints specify what (non)colocations
must occur for the sensor to function properly. Hence, equality codesigna-
tion constraints such as (17) encode the assumption that the only geometric
characteristic that affects sensor semantics is the colocation of components.
Obviously this is not true for all sensors, but it is true for the sensors we have
considered in this book. We call such sensors simple, and they are worth a
definition (Definition 8.29) below.

More generally, we could, in principle, require general codesignation re-
lations to hold between component configurations—or, more generally, it
may be true that there exist relationships other than (in)equality that must

36For a noncodesignation constraint, we complement the diagonal.
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hold for the sensors to function properly. In this book, we primarily discuss
simple sensor systems, and only in Sections 5.4.1-8.10.4 do we consider the
ramifications of such extensions. However, we feel our framework could (and
should) be extended to handle at least restricted algebraic codesignation. To
see how this would go, assume for a moment semi-algebraic (s.a.) predicates
for general codesignation relations. The effect of general codesignation re-
lations would be (geometrically) as follows. First, for a noncodesignation
constraints, the “forbidden diagonal” would generalize to be an arbitrary va-
riety Y in C'%; Y would be characterized by some polynomial inequalities, and
immersions ¢ € Y would be forbidden. For general codesignation relations,
we would construct a quotient whereby points in C'? would be identified via
an algebraic map (a polynomial equation). The geometry of such spaces can
be complicated; however, from a theoretical point of view, a line of attack
can be seen.

We can summarize this discussion with a definition that captures the kind
of sensor systems this book addresses:

Definition 8.29 A sensor system thal can be specified using only a finite
number of equality codesignation (and noncodesignation) constraints is called
simple. A sensor system that can be specified using only a finite number of
semi-algebraic predicates in ils general codesignation (and noncodesignation)
constraints is called algebraically codesignated.

Since (17) is algebraically codesignated, all simple systems are algebraic
codesignated. We consider only simple sensor systems in Sections —5.4.1.
However, the algorithms in Section 8.10.4 apply to all algebraically codesig-
nated systems.

8.9.2 The Semantics of Permutation

The semantics of permutations is intimately bound up in the semantics of
codesignation. We now discuss the connection. The results of this section
not only clarify our semantics, but also lead to a computational result, which
we describe later in Section 8.10.4.

The meaning of a permutation (see Definition 8.18) is clear for a totally
situated sensor system (i.e., a sensor system with a total immersion). Recall
from section 8.8 that we can view an immersion ¢ and its permutation ¢*
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as elements of the configuration space®” C'?. Now, suppose, for a moment,
that for every immersion ¢ € C? it is possible to choose®® a permutation
¢* satisfying Definition 8.18. Imagine that for each ¢y € C?, we build a
sequence of such choices, { dg, b1, b2, ¢3,...} C C?, where é;41 = ¢7. This

defines a map

ct - ¢t - C! -
o = g1 gy
Hence, a permutation can be viewed as a way of “permuting” the compo-

nents of a sensori-computational system, or, it may be viewed as a kind of
automorphism of sensor configuration space.

(18)

Now, suppose we now allow ¢ to be a partial immersion. Then by a
permutation ¢* of ¢ we mean a different partial immersion with the same
domain (the definition 8.18 still applies).

Permutations of a partial immersion have a structure that is related to
codesignation constraints, in that each can be characterized geometrically
via regions in C¢. Consider a partial immersion ¢. Given ¢ we can define
the set of extensions of ¢:

exp={6eC |, =0}

which is a region in C%. A permutation ¢* of ¢ corresponds to selecting a
new region ex ¢* of C'?, with this property:

$7'C = N0 = ¢TI0 = N F0 ()
PEex b P*Eexg*

Now, it would be convenient if we could treat the regions ex ¢ and ex ¢*
like “equivalence classes” in C?. That way we could view ¢ and ¢* as the
“generators” of different classes of immersions. A partial function then corre-
sponds to a region in C'?, and permutation corresponds to choice of a different

region in C?%. To take this view, we need the following:

Proposition 8.30 Let ¢* be a permutation of ¢. Then ex¢ and ex ¢* are
disjoint, unless ¢ = ¢*.

37"We defer the necessity of quotienting C'¢ and removing diagonals, until Section 9.2.
38The choice will not, in general, be unique.
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Proof: Let ¢ € ex ¢ Nex¢*. Since ¢ is an extension of both ¢ and ¢*, we
have

Fyre =0 e, ="
But ¢ is a permutation of ¢, which implies that ¢ and ¢* have the same
domain (Definition 8.18). Since ¢*7'C' = ¢~'C, therefore ¢ = ¢*. [

Let ¥(¢) denote all permutations of ¢. Essentially, prop. 8.30 tells us
that the map ex : ¥(#) — { Regions in C?} has an injection-like property:
the images of distinct permutations under ex do not intersect. The map ex
also has a surjection-like property which we characterize as follows:

Claim 8.31 Let ¢, : V — C where ¢ is partial and ¢ is total. Then there
exists a permutation ¢* of ¢ such that v is an extension of ¢*.

Proof: Take ¢* = ¢|¢—1c‘ (]

Proposition 8.32 Fiz a partial immersion ¢. The images of ex : ¥(¢) —
{Regions in C?%} cover C'?, that is,

U ex ¢* = C%.

¢*€X(¢)

Proof: Immediate from claim 8.31. [

We can summarize this as follows: we have viewed permutation as a
bijective self-map of ¥(¢). It is equivalent to view permutation as a bijective
self-map of the disjoint “equivalence” classes

{exo™}

(for all permutations ¢* of ¢) in C'?. This viewpoint is justified by the
following two claims:

Proposition 8.33 The map

Py ct - Y(o)

Voo PF s.t. ) € ex¢* (20)

is well-defined.
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Proof: Observe that p,(v) = ¢|¢_1C (see claim 8.31). The map p, is defined

for every v» € C'%, by props. 8.31 and 8.32. That p, () is uniquely defined
by (20), we see from prop. 8.30. U

Now, suppose the domain ¢='C of ¢ contains k vertices, 1 < k < d. We
can represent any permutation ¢* of ¢ by the k images (z1,...,2;) of the
vertices of ¢~'C under ¢. That is, we can represent any such permutation
#* by a point in C*. Conversely, any point in C* defines a permutation ¢*.

Lemma 8.34 The following properties hold:>°
1. Y(¢) ~ C*.

2. The map py is a projecltion and we can gwve il in C'-coordinales as:

P, Cd — O

(2150 ey Zhy ooy 2a) = (21,00, 28).

(21)

3. Lelt ¢* be a permutation of ¢. Then ex¢* C C? is a cylinder over
¢* € CF, and ex ¢* = py~1¢*.

4. The map py is a quolient map.
J. Cd/p¢ ~ Ck.
Proof: Definitional. [

Finally, we note that our discussion of permutation for partially immersed
sensor systems can be specialized to pointed sensor systems and pointed
permutation (with the same base point). If ¢* is a pointed permutation of ¢
with point G, then the classes ex ¢ and ex ¢* have these additional properties
(see Definition 8.19):4°

Geim¢ = ) imd, G €im¢* = [} imo¢™ (22)
dEex ¢ ¢*Eex
3%We use ~ to denote isomorphism.
40For pointed sensor systems, the surjection-like properties (props. 8.31 and 8.32) only
hold for the class of pointed immersions (with the same base point).
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Thus for (partially) immersed systems, we have a handle on permutation,
and now we know more precisely what the difference between (eg.) H_ and
H? s, (see Section 5.3.1) in terms of permutation. Permutation corresponds
to choosing a different equivalence class of C?. For most of this book we
examine a special case, where the sensor systems are partially situated (that
is, the domains of the immersions are non-empty). A powerful generalization
is given in Section 9.2, where the sensor systems can be unsituated. This
will allow us to understand the unsituated sensor system H* precisely as a
permutation of the (unsituated) system H.

8.10 The Semantics of Reductions

Recall the definition of efficiently reducible (Definition 6.10). To explore this
notion, we first turn to the question of whether or not the relation <* in
Definition 6.9 is transitive.

Consider three sensor systems, U, V, and W, and their permutations:*!

Sensor System Vertices Immersion  Permutation 1 ~ Permutation 2
U U={uo,us,...} U=(U, a«)
V V=Avo,v1,...} V=(V,B) V= (V5%
4% W =A{wy,wy,...} W=(W,y) W=(W,~") W+(2:3)(W,’y+).

If <* is transitive, then if 4 <* V and V <* W, then U <* W. We
explore when this property holds. From Definitions 6.9 and 6.10 we can see
that dominance in calibration complexity (Definition 5.5) is transitive, and
so we will concentrate here on the less obvious aspects of transitivity.*? To
simplify the discussion we only deal with codesignation constraints, but the
argument generalizes mutatis mutandis for noncodesignation constraints.

8.10.1 Weak Transitivity

First, let us observe that <* always obeys a property that is like transitivity,
but “weaker.” We now elaborate. Suppose & <* V. Then (Definition 6.9),
there exists some permutation V* = (V, %) of V such that U < V* (see
Definition 6.8 for the definition of <). So, we have

“1Other permutations are possible, only a couple are shown.
42Gee Sections 8.7.4, and A.1 for more on computational calibration complexity.
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U, a) < (V,57). (24)
Now, suppose (V, %) <* W. Then there exists a permutation W* = (W, v*)
such that
V,57) < W, 7). (25)
From (24) and (25), and the definition of < (Definitions 5.5, 6.9) we have
(U, o) < (W,77), (26)
and therefore 4 <* W. This property we call weak transitivity.

8.10.2 Strong Transitivity for Simple Sensor Systems

Simple sensor systems (Definition 8.29) obey strong transitivity, so long as
all permutations are chosen to obey their codesignation constraints. Suppose
U,V,and W are all simple. If <* is transitive: then, if i/ <*V and ¥V <* W,
then & <* W. In other words:

Suppose U <* V and ¥V <* W. Then there exist permutations V* =
(V,3%) of V and W* = (W, ) of W such that

(U, ) <(V,57) (24)

and

(V, ) < (W,77). (27)

(Compare (27) with (25)). Then if <* is transitive, then there exists
another permutation W+ = (W,~T) of W, such that

(U, 0) < (W,77). (28)

Strong transitivity is a much stricter condition than weak transitivity.
It requires that we be able to “compose” the immersions 5*, 3, and ~* to
somehow construct the immersion 4. This may not, in general, be possible.
However, it is possible for simple sensor systems, in which only equality codes-
ignation constraints are employed to specify the system (Definition 8.29).
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In order for strong transitivity to hold, we must make sure that both the
permutations § and #* for V and V* respect the codesignation constraints
for V’s semantics. This is because we cannot expect any permutation of W
to simulate U if either 3 or §* are faulty configurations of V. We call an
immersion 3* of V walid if #* respects the codesignation constraints for V.
This corresponds to restricting 3* to the valid regions of sensor configuration
space C'?) as in Sections 8.9.2 and 9.2. We call a permutation V* = (V, 3*) of
V walid if its immersion 3* is valid. In this case we also say that the sensor
system V* is valid.

Lemma 8.35 The relation <* (Definition 6.9) is transitive for valid simple
sensor systems (Definition 8.29).

Proof: Assume there exist valid permutations «, 3, #*, and ¥* so that (24)
and (27) hold as above. We construct an immersion 7% so that (28) holds.
The picture we have is as follows:

V

5| [

C
"

v =

(29)

’Y*T
W

Consider fig. 9. Certain vertices (for example vy and u;) are colocated.
Codesignation implies colocation, but the converse is not necessarily true. In
constructing a new immersion we must simulate all colocations, because that
way we will be sure to reproduce all codesignation constraints accurately in
the new immersion. Because (only) colocation affects sensor semantics for
simple sensor systems (Definition 8.29), this suffices to ensure that the new
immersion preserves the sensor semantics. In short, colocation is evidence
for codesignation.

We want to construct 4+ as follows (see fig. 9):

vt W — C
w; o B(vy) i Bly) = 7 (wi).
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Figure 9: The situated sensor systems U = (U,a), V = (V,3), V* = (V,3*), W* =
(W,~*), and Wt = (W,~1) for lemma 8.35. The vertices of &, V, and W are U =
{ug,u1,...},V={vo,v1,...} and W = {wg, wy,...}, (resp). Not all vertices are shown.
vH(w2) = B*(vo) = a(u1) and y*(ws) = §*(v1) = a(uo). B(v1) = v"(ws) and B(vo) =

7" (wa).

The general form of the set of colocations that 4% must simulate, is
Y (W)N p(V). This construction is general, and can be expressed as follows.
Let

fo vy (W)npv)) — C
w; = BBy (wi))-

The map [ is almost the map we want. When the image of f is a one-
point set { z }, we define vy (w;) = z. If 371 (v*(w;)) C V is not a singleton
(see fig. 10), then we have a choice in the construction of v*. In this case
we know that v*(w;) € f(w;). Since f(w;) is finite, we can enumerate all
possible candidates for 41; one of them will be the correct one. [

We note that our proof is not constructive: we only prove there exists
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Figure 10: The case where 8~1(y*(w;)) is not a singleton (in this case, it is { vo,v1 } C
V). In this example, B(vo) = B(v1) = v*(w3). Now, we note that vy and v; colocate under
3 but not under 8*. However, this difference cannot be semantic (i.e., it cannot affect the
sensor function), since we assume that both permutations are chosen to be valid w.r.t. the
codesignation constraints for V. In other words, (vg, v1) is not a codesignation constraint
for V in this example.

a permutation W*. However, we can give a procedure for enumerating the
finite number of candidates for the permutation y*. It is possible to check
which is the correct one, by applying the results of the next section (Sec-
tion 8.10.4).

We do not believe that the relation <* holds for arbitrary algebraically
codesignated sensors. This is because the algebraic constraints may be in-
compatible. It would be of interest to find a restricted class that is larger
than equality codesignation, for which transitivity holds.
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8.10.3 A Hierarchy of Reductions

We now use our study of <*’s transitivity to understand the reduction <; (Def-
inition 6.10).*® Now, even when <* is transitive, it appears that <; is not. To
see this, suppose that A <4 B and B <; (. Then it appears that to reduce
A to B we require one “extra wire” (namely, COMM(A)), and that to reduce
B to C we could require (another) extra wire COMM(B), and therefore, in
the worst case, to reduce A to C' we could require two extra wires. That is,
it could be that A cannot reduce to C' with fewer than two extra wires. We
have yet to find a non-artificial example of this lower bound but it appears
to indicate that < is not transitive (even for simple sensor systems).

Let us summarize. The reduction <; (Definition 6.10) is a “1-wire” reduc-
tion. It does not appear to be transitive. The reduction <* (Definition 6.9) is
a “O-wire” reduction. It is transitive for simple sensor systems (lemma 8.35).
We could analogously define a 2-wire, or more generally, any k-wire reduction
<k by modifying Equation (4) in Definition 6.10 to

S <*Q + k- comm(b), (4")

k times

where k- cOMM(b) denotes comm(b) + - - - + comMmm(b).
Since (<*) = (<y), this suggests a hierarchy of reductions, indexed by k.

In general, we have the following:

Definition 8.36 We say a relation = is transitive when = = y and y = z
always implies © > z. To distinguish this from graded transitivity (below),
we call this elementary transitivity when necessary.**

We say a map F : N — 2X%X with F(i) = (=), is a graded relation on
X x X, when each =; is a relation on X x X. We also write F as { =; },.N-

We say that F has graded transitivity (or is graded transitive) if the
Jollowing property holds: For every x,y,z € X, if x >; y and y =; z, then
T it 2.

Clearly, the k-wire reductions { <; },_py form a graded relation.

431 would like to thank Ronitt Rubinfeld for contributing key insights to this discussion
of k-wire reductions.
*4Elementary transitivity is the sense used in lemma 8.35.
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Corollary 8.37 (a) The 0-wire reduction <o (called <* in Definition 6.9)
is elementary transitive for simple sensor systems.
(b) The k-wire reductions { <; }, N are graded transitive (Definition 8.36)

for simple sensor systems.

Proof: (a) is definitional from lemma 8.35. To see (b), we use lemma 8.35, and
recall Definition 6.10, and that the + operator is associative and commutative
(claim 8.23). To complete the argument, we also need a technical lemma,
given by the “distributive” property*® of prop. C.61. [

We call the k-wire reductions { <; },_ny a hierarchy of reductions. We say
such a hierarchy (i.e., any graded relation on X?) collapses if it is isomorphic
to an elementary relation (i.e., to a single subset of X?).

Corollary 8.38 The hierarchy of k-wire reductions (k > 0) on simple sensor
systems collapses if <y is elementary transitive (on simple sensor systems).

Proof: Suppose X <; Z (k > 1). To collapse the hierarchy, it suffices to
show that X <; Z. (This follows from lemma 8.35, by observing that the +
operator is commutative and associative, and by the “distributive” property
of prop. C.61).

Now, construct k sensor systems, Y; = Z*+i-COMM(bx ), where logk(bx) =
mb(X) (for 1 =4,..., k). Hence each of the ¢ “extra wires” in ¥; has band-
width logk(bx) (see Sections 5.4.1, 8.7.3 and Definition 6.7; to see that this
yields sufficient bandwidth, see Definition 6.8(3)). So, there exist k simple
sensor systems Y7, Ya, ..., ¥ with 1,2,... &k more wires than Z (resp.), such
that X <o Vi <4 Vi1 <o -2 <0 Y1 <4 7. Recall that (<F) = (<o), and
observe that (<o) C (<4). If <5 and <* are transitive, then X <; 7. 0

For monotonic sensor systems, we can simply take bx to be the output
of X (see Section 5.4.1). Cor. 8.38 is stated for simple sensor systems, but
it holds for the more general algebraic systems (in which case each Y; is
algebraic but not necesssarily simple).

45Gee appendix A 4.
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8.10.4 A Partial Order on Simple Sensor Systems
In this section, all sensor systems are assumed to be simple.

Definition 8.39 We write U <., V if there exisls some integer k such thal
U<pV.

As a reduction, <., corresponds to adding an arbitrary amount of global,
point-to-point communication. It is easy to see that <., is elementary tran-
sitive for simple sensor systems.

In a multi-agent sensor system, it makes sense to allow the “size” (i.e.,
number of components) of the system to grow, and to consider reductions
parameterized by that size. For example, given a sensor system U, we can
use the notation ¢ - U to denote “¢ copies” of . Now, even if for another
sensor system V we have i <; V, it is unlikely that we will have ¢ - <y ¢-V,
for all = € N. However, it is easy to see the following

Claim 8.40 [fU <, V, then foranyi,5 e N, i - U < 7-V. U

The family {¢ - U },c5y is just one example of such a system; we could
imagine other examples where the number of components, number of agents,
or number of sensors varies with ¢. Our emphasis has changed slightly from
the preceding. Before, we asked, what k£ € N suffices such that ¢ <, V?
Now, we ask to find that k as a function of the size of U and V.

Now, we might deem it unfair to add arbitrary communication to the
system. Let us instead consider adding only a polynomial amount of com-
munication. In Definition 8.41, ¢/ and V are data and ¢ is a fixed polynomial.
n is the size of U and V (eg., take n to be the total number of components).
q(n) (a function of n), is the amount of communication sufficient to reduce

U to V.

Definition 8.41 Let U and V be sensor systems. We write U <,V if there
exists some fized polynomial function g(n) of the size n of U and V, such that
U <y V for all sizes n.

So, the assertion “U <, V7 is a statement about a family of sensor
systems. It says that U/ reduces to V by permuting V and adding an amount
of communication that is polynomial in the size of &4 and V. In particular,
note that if &/ <, V, then for any 7,7 € N, - U <, 5 -V. However, we can
say something stronger:
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Lemma 8.42 (Completeness of Polynomial Communication) & <, V if,
and only of, U <, V.

Proof: “If” is trivial; we show the “only if” direction. If &/ and V have at most
n vertices, then global point-to-point communication can be implemented by
adding O(n?) new datapaths. Hence it is always true that U <p(,2) V. Any
additional communication would be superfluous and would not add power to
the system. [

It follows that <, is elementary transitive on simple sensor systems.
Therefore it is a partial order on simple sensor systems.
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9

Computational Properties

In this section, we give a computational model of simulation (Defini-
tion 4.4), and discuss an algorithm for deciding the relations <* and <;. This
section relies heavily on the results of the previous section (5.4.1). Readers
unfamiliar with algebraic decision procedures may wish to consult the review
in appendix 12.1, where we review some basic facts about semi-algebraic sets.
This section also yields benefits in terms of clarity. For example, pointed im-
mersions are a somewhat awkward way to specify codesignation constraints;
the machinery of this section enables us to dispense with them in an elegant
matter.

9.1 Algebraic Sensor Systems

The algorithms in this section (8.10.4) are algebraic and use the theory of real
closed fields. In the first order theory of real closed fields, we can quantify
over real variables, but not over functions. This might seem to imply that we
cannot quantify over immersions of sensor systems, since these immersions
are functions. However, since our immersions have a finite domain, each
immersion function can be represented as a point in a configuration space
C?. Therefore we can quantify over them in our algebraic theory. We now
proceed to use this fact.

Definition 9.43 We say a function is semi-algebraic when its graph is semi-
algebraic.
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Consider a situated sensor system (U, ¢), and for the moment assume
that ¢ is a valid immersion that is semi-algebraic (s.a.) and total. Let us
define the size d of U to be the number of vertices in ¢. Now,

Definition 9.44 A simulation function Q for U is a map Qy : C* — R,
where R is a ring. We call the value Qy(¢) € R of Qu on a sensor configu-
ration ¢ to be the sensor value or output value at ¢.

Simulation functions compute the value of the sensor given a configura-
tion of the sensor. The idea is that we can apply a simulation function to
determine what value the sensor will return—what the sensor will compute
in configuration ¢. Definition 9.44 also formalizes our notion of a “specifi-
cation” for a sensor system, alluded to in the context of design (Section 1.1,
application 3). See Section 8.1 and appendix A.2 for more on simulation
functions.

Example 9.45 Recall the “lighthouse” sensor system H (fig. 6). A simu-
lation function Qg for H computes the value of 8. We imagine Qg works
by simulating the (orientation) sensor (see Section 4.2.1). Other, equiva-
lent simulations are also possible (“equivalent” means they compute the same
value for ). For example: let (x,h) € R* x S be the configuration of the
ship R. Let (L,0y) € R* x S be the configuration of the “lighthouse.” Then
0 = 6y +tan~'(x— L). We note thal this simulation funclion is not algebraic
(because arctangent is not algebraic). See example 9.49, below.

Now, if the configuration space C' is algebraic, then so is the function
space C'?. Hence, every immersion ¢ of U with algebraic coordinates can be
represented as an algebraic point in C'?. So ¢ is algebraic exactly when it
can be represented as such an algebraic point.

Now, let T be a predicate on C'? in the theory of real closed fields. Then
T(¢) is either true or false, and we can decide it by applying T to ¢.

Next, suppose we now permit ¢ to be partial. We call a partial func-
tion ¢ semi-algebraic when its restriction qb|¢_1c to its domain ¢~1C' is semi-
algebraic. If ¢ is semi-algebraic, then the set of its extensions ex ¢ C C? is
also semi-algebraic. We then observe that the expression denoting “for all

extensions (resp., there exists an extension) ¢ of ¢, T(¢) holds” namely
Opeexg: T(g)
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is also semi-algebraic (¢ € {V,3}). To quantify over all extensions ¢ of ¢,
we simply quantify over the configurations of the vertices outside the domain
of ¢. By Section 8.9.2 we can also “guess” permutations of ¢g—that is, it
is possible to existentially quantify over permutations and hence to decide

sentences of the form?®

36" € X(¢) : T(¢7)

which means, “there exists a permutation ¢* of ¢, such that for any extension

¢* of ¢*, T(¢*) holds.” That is:

36" € (), V& € ex gt s T(F). (30)

To guess a permutation of ¢ we existentially quantify over the configurations
of vertices inside the domain of ¢.

Example 9.46 Let C' be an algebraic configuration space. Let V' be a set of
three vertices, V.= {vy,v9,v3}. Now, we can encode any algebraic func-
tion ¢ : V. — C semi-algebraically, eq., by a set of three ordered pairs
{(v1, 1), (v, 22), (v3, 23) }, where ¥(v;) = z;, (1 =1,2,3). Let us call such a

s.a. representation of 1 by the name o(zq, 22, 23):

0(21722723):{¢:V_)C |¢(vi)zzi7 (Z:17273)}

Now, consider a partial immersion ¢ : V — C with domain {v; }, such
that ¢(vy) = G, where G is algebraic. We can encode ¢ as

dzoT3z5 0 o(G, 29, 23).

We can also encode the extensions and permutations of ¢ semi-algebraically.
Specifically, we can encode any permutation ¢* of ¢ by a single point z1 (the
image of vi); we can encode any extension ¢* of ¢* by a pair (zg,23) (the
images of vy and vs, respectively).

Thus, we can rewrite (30) as

dz1 V2o Vzg 0 T(o(z1, 22, 23)). (31)

46We call the existential quantification “guessing,” since deciding a predicate in the
existential theory of the reals is like guessing a witness to make the predicate true.
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If C has dimension r

variables.

then the formula (31) is a Tarski sentence in 3r,

c’

We summarize:

Proposition 9.47 If ¢ : V — C is a semi-algebraic partial function, then
the set ex¢ (¢’s extensions) and the set X(¢p) (¢’s permutations) are also
semi-algebraic. U

To guess a valid permutation, (Definition 8.10.2) we restrict the config-
urations to lie within the (algebraic) codesignation constraints, as described
in Sections 8.9.2 and 9.2. (We are simply using algebraic decision proce-
dures to make these choices effective). Any s.a. codesignation constraints for
an algebraically codesignated sensor system can be represented by a s.a. set
D C R". The structure of the region D, especially in relation to the region
ex ¢*, is discussed in Sections 8.9.2 and 9.2. We must restrict our choice of
permutation to D. To guess a valid permutation, we modify (30) to be:

6" € X(¢), Vé* € D Nexd*: T(¢%). (32)

Definition 9.48 We call a sensor system U algebraic if it is algebraically
codesignated (Definition 8.29), has an algebraic configuration space C, and
a semi-algebraic algebraic simulation function Oy (def 9.44).

Example 9.49 Recall example 9.45, above. The simulation function Qg in
ex. 9.45 is not algebraic. However, we can define a (semi-)algebraic simu-
lation function that encodes the same information, and is adequate, in the
sense that we can use it to compare the sensor H'’s function to another ori-
entation sensor. The algebraic simulation function we give now is adequate
to decide the relation <*.

To construct an algebraic version of Qp, we use a simple trick from cal-
culus (also used in kinematics; see, for example [DKM]). Let ¢ be a con-
figuration of sensor system H (fig. 6). Define Qy(¢p) = (tang,q), where
0 =Qu(d) (see ex. 9.45), and q € 4 denotes which quadrant R is in relative
to L. QY encodes the same information as Qy, but il is semi-algebraic.

We will not prove Oy is algebraic but here is a brief argument. Substitute

u=tan 2. Then we have sinf = (1 —u®)/(1 4 u?) and cos = 2u/(1 + u?),

2
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and our simulation function is a rational function. By clearing denominators
we oblain an algebraic function. See [DKM] for details. Essentially the graph
of Yy is a s.a. set in correspondence with graph of the non-algebraic map Q.
The correspondence is given by 0 +— wu.

9.2 Computing the Reductions <* and <;

Now, suppose we have two algebraic sensor systems U and V. We wish to
decide whether 4 <* V. If U = (U,a) and V = (V,3), then we wish to

decide whether there exists a permutation 3* such that

(U, a) < (V,57).

(Here in Section 9.2 the relation < is used as in Definition 6.8). That is,
we wish to decide the following (assume that a and 3 are partial):

<35* € $(8),Va € exa, VB € exﬂ*) Q@) = W(F). (33)

Equation (33) does not incorporate the codesignation constraints. Since
U and V are algebraically codesignated, their codesignation constraints may
and D, (a) in C%. So (33)

be represented as semi-algebraic sets D,,, D,

becomes:

(35* € (2(B)ND,),Va € (exanD,), Vi ¢ (exﬂ*ﬂDW(a))) L Qula) = O (F).
(34)

Note that V’s codesignation constraints depend on a: that is, the s.a. set
D, (@) is a s.a. function of &. This technicality is necessary to allow for
sufficient generality in specifying codesignation, and is explained further in
appendix A.3.

Using Grigoryev’s algorithm (thm. A.54) we can decide (34) in the fol-
lowing time. (We use (43) to compute the time bound). Let n, be the size of
the simulation functions €, and Qy. Let r_ be the dimension of C'. Let n,
be the size of the s.a. predicates for the codesignation constraints D, D,
and D,,,. In (34), the outer existential quantifier binds some number k < d
vertices of V that are in the domain of ¢. The inner universal quantifer binds
the remaining d — k vertices of V. The middle universal quantifier binds up to
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d vertices of U. Hence, we see there are at most r = 2r_d variables, and there
are a = 2 alternations. Let us treat the maximum degree 6 as a constant.
The predicate has size m = 2(n, +n,). Therefore we can decide (34) in time

()0 = (ng +n, )00 (35)

Definition 9.50 Consider an algebraic sensor system U, with d vertices.
Recall we call d the size of U. We call the size n, of a sensor simulalion
Junction €y the simulation complexity. We call the size n,, of the codesigna-
tion constraints for U the codesignation complexity. We call Y small if n
and n,, are only polynomially large in d, i.e., (n, +n,) = d°W),

Now, let us assume that it is possible to compute dominance in calibration
complexity (see Definition 6.8) in a time that much faster than (35) (see
appendix A.l for how). Then we see the following

Lemma 9.51 There is an algorithm for deciding the relation <* (Defini-
tion 6.9) for algebraic sensor systems. It runs in time polynomial in the
stmulation and codesignation complexity (n, +n,), and sub-doubly exponen-
tial in the size of the sensor systems. That is, if the system has size d the

time complexity is:

(ng +n,)"0"", (36)

where r. is the dimension of the configuration space for a single component.

a

Corollary 9.52 For small*” sensor systems (Definilion 9.50) of size d, there

is an algorithm to decide the relation <* in lime

D™ (37)
H

4TRecall all small systems are algebraic.
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Corollary 9.53 For algebraic sensor systems, the relation <y (Definition 6.10)
can be decided in the same time bounds as in lemma 9.51 and cor. 9.52.

Proof: Consider deciding S <* () + coMM(b), as in Definition 6.10. Recall
the definition of compatibility for partial immersions (Section 8.4). We first
observe that permutation (the * operation) and combination (the + opera-
tion) “commute” for compatible partial immersions. This is formalized as
the “distributive” property*® shown in prop. C.61. We have already shown
how to guess a permutation @* of ). Our arguments above for guessing
extensions and permutations can be generalized mutatis mutandis to com-
pute the combination (Definition 8.22) of two algebraic sensor systems. Since
COMM (b) is a constant-sized sensor system (2 vertices, one edge) with only a
constant number of codesignation constraints (at most 2), we may guess how
to combine it with a permutation Q* of () within the same time bounds given
in lemma 9.51 and cor. 9.52. To complete the proof we require a technical
argument (given in appendix A.2) on how to simulate a permuted sensor
system. [

48Gee appendix A 4.
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10

Unsituated Permutation

In Section 8.10.4 we examined a special case, where 4 and V are par-
tially situated (that is, the domains of ¢ and ¢ are non-empty). We now
give a powerful generalization in which the sensor systems can be unsitu-
ated. Using the ideas in Sections 8.9.2 and 8.10.4, we can give an “abstract”
version of permutation that is applicable to partially immersed sensor sys-
tems with codesignation constraints. Each set of codesignation constraints
defines a different arrangement in the space of all immersions. Each cell in
the arrangement, in turn, corresponds to a region in C?.

Permutation corresponds to selecting a different family of immersions,
while respecting the codesignation constraints. Since this corresponds to
choosing a different region of C'?%, the picture of abstract permutation is really
not that different from the computational model of situated permutations
discussed in Section 8.10.4. Suppose a simple sensor system U has d vertices,
two of which are v and v. When there is a codesignation constraint for u
and v, we write that the relation u ~ v must hold. This relation induces
a quotient structure on C'%, and the corresponding quotient map = : C?¢ —
C?/(u ~ v) “identifies” the two vertices u and v. Similarly, we can model a
non-codesignation constraint as a “diagonal” A C C'? that must be avoided.
Abstract permutation of & can be viewed as follows. Let D,, = (C4—A)/(u ~
v). D, is the quotient of (C?— A) under 7 . For a partial immersion 1/* to be
chosen compatibly with the codesignation constraints, we view permutation
as a bijective self-map of the disjoint equivalence classes

{m(exy™ —A) }¢*ez(¢). (38)
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Thus, in general, the group structure for the permutation must respect the
quotient structure for codesignation; correspondingly, we call such permuta-
tions valid. Below, we define the “diagonal” A, precisely.

Now, an unsituated sensor system U could be modeled using a partial im-
mersion ¥y with an empty domain. In this case ex ¢y = C'? and Equation (38)
specializes to the single equivalence class { D, }. In this “singular” case, we
can take several different approaches to defining unsituated permutation. (i)
We may define that ¥§ = 1. Although consistent with situated permuta-
tion, (i) is not very useful. We choose a different definition. For unsituated
permutation, we redefine ¥(tg) and ex g in the special case where ¢y has
an empty domain. (ii) When U is simple, we may define X(tg) to be the set
of colocations of vertices of . That is, let (z1,...,24) be a point in C¢, and
define the 75 diagonal A;; = {(21,...,24) | z; = z; }. Define permutation
as a bijective self-map of the cells in the arrangement generated by all (g)
such diagonals { A;; };j=1...a. So, ¥(tp) is an arrangement in C'® of com-
plexity O(d*<), ex 1y € L(1bg) is a cell in the arrangement, and ¥} € ex
is a witness point in that cell. Hence ) is a representative of the equiva-
lence class ex§. As in situated permutation, unsituated permutation can
be viewed as a self-map of the cells { ex 1] } or (equivalently) as a self-map of
the witnesses {15 }. Perhaps the cleanest way to model our main examples
is to treat all the sensor systems as initially unsituated, yet respecting all
the (non)codesignation constraints. This may be done by (1) “algebraically”
specifying all the codesignation constraints, (2) letting the domain of each
immersion be empty, (3) using (ii) above, choose unsituated permutations
that respect the codesignation constraints. The methods of Section 8.10.4
can be extended to guess unsituated permutations. In our examples, each
guess (i.e., each unsituated permutation) corresponds to a choice of which
vertices to colocate.”® All our computational results (including our bounds)
in Section 8.10.4 can be shown to hold for unsituated permutation by a simple
extension of the arguments above.

**The codesignation relation u ~ v, the quotient map 7, the non-codesignation relation
A, and definition (i) of unsituated permutation, can all be extended to algebraic sensor
systems using the methods of Section 8.10.4.
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10.1 Example of Unsituated Permutation

Unsituated permutation is quite powerful. Consider deciding Equation (34)
(in this example, we only consider vertex permutation of simple sensor sys-
tems). In particular, we want to see that (33) makes sense for unsituated
permutation, when we replace 3 by g, a by ag, etc., to obtain:

<3ﬁ5 € (2(Bo)ND,,),Vag € (exagnD,,), V535 € (exﬂngW(a—o))) : Qui@g) = Q(5).
(34)

With situated permutation (34), we are restricted to first choosing the
partial immersion «, and thereby fixing a number of vertices of S. Next, we
can permute U to be “near” these vertices (this corresponds to the choice of
(*). This process gets the colocations right, but at the cost of generality;
we would know that for any “topologically equivalent” choice of «, we can
choose a permutation 3* such that (34) holds. For simple sensor systems,
“topologically equivalent” means, “with the same vertex colocations.”

Unsituated permutation (34’) allows us to do precisely what we want. In
place of a partial immersion o for S, we begin with a witness point ag € C'%.
ap represents an equivalence class ex ag of immersions, all of which colocate
the same vertices as ag. So, ag says which vertices should be colocated, but
not where. Now, given ag, the outer existential quantifier in (34’) chooses an
unsituated permutation 35 of U. [} represents an equivalence class ex 3 of
immersions of U, all of which colocate the same vertices of U as 35 does. The
other, disjoint equivalence classes, are also subsets of C'?; each equivalence
class colocates different vertices of U, and the set of all such classes is X(f)
(= 2(55)). Choice of 35 selects which vertices of U to colocate. The codes-
ignation constraint Dg(-) then enforces that, when measuring the outputs of
S and U, we install them in the same “place.” More specifically: aq (given
as data) determines which vertices of S to colocate; choice of 35 determines
which vertices of U are colocated; construction of Dg(-) determines which
vertices of U and S are colocated. Most specifically, given the configuration
g of S, Ds in turn defines a region Dg(@p) in the configuration space C?
of U. This region constraints the necessary coplacements 3; of U relative to

(S, a0).
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a)

(do-forever
(let ((7 (measure-torque)))

B (cond ((zero? 7) (push %))
J ((negative? 1) (move +&))
) < ((positive? 7) (move —&)))))
b) . .
Figure 12: Protocol P1 (for a two-fingered

Flgure 11: (a) the “two-finger” pushing task vs. (b) the two gripper).

robot pushing task. The goal is to push the block B in a straight

line.

11

Application and Experiments

[This section will be expanded and revised.]

We now describe an application of the theory in this book, presented
in [DJR]. This work is still preliminary, but we describe it here to give some
feeling for the potential of our theory. The paper [DJR] relies heavily on the
results and methods introduced here. [DJR] quantify a new resource: (f)
How much information is encoded or provided by the task mechanics? The
theme of exploiting task mechanics is important in previous work.’® One
could define “exploiting task mechanics” for robot manipulation as: taking
advantage of the mechanical and physical laws that govern how objects move

30For example, see the discussion of [Mas, EM, Erd91] in part I.
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and change. Currently, in our framework the mechanics are embedded in the
geometry of the system. In [DJR], we developed information invariants that
explicitly trade-off (f) with resources (a)-(e) from the abstract, in the style
of the preceding. Developing such invariants is quite challenging. We close
with an example. This example opens up a host of new issues; see [DJR] for
details.

Fig. 11a depicts a two-finger planar pushing task. The goal is to push
the box B in a straight line (pure translation). The two fingers f; and f;
are rigidly connected; for example, they could be the fingers of a parallel-jaw
gripper. One complication involves the micro-mechanical variations in the
slip of the box on the table. This phenomenon is very hard to model, and
hence it is difficult to predict the results of a one-fingered push; we will only
obtain a straight line trajectory when the center of friction (COF) lies on the
line of pushing. However, with a two fingered push, the box will translate
in a straight line so long as the COF lies between the fingers. The nice
thing about this strategy is that the COF can move some and the fingers
can keep pushing, since we only need ensure the COF lies in some region
C (see fig. 11a), instead of on a line. Second, if the COF moves outside C,
then the fingers can move sideways to capture it again. For example, [DJR]
implemented following control loop on our PUMA: Sense the reaction torque
7 about the point 0 in fig. 11a. If 7 = 0, push forward in direction §. If T <0
move the fingers in &; else move the fingers in —z. See fig. 12.

From the mechanics perspective it might appear we are done. However,
it is difficult to overstate how critically the control loop (fig. 12) relies on
global communication and control. Now, consider the analogous pushing
task in fig. 11b. Each finger is replaced by an autonomous mobile robot with
only local communication, configured as described in Section 2.1 of part .
Each robot has a ring of one-bit contact (“bump”) sensors. In addition, by
examining the servo-loop in [RD], it is clear that we can compute a measure
of applied force by observing the applied power, the position and velocity of
the robot, and the contact sensors.
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Pushing Reorientation
Task Task
Now, we ask, how can the system in fig. 11b ap- global coordination
. X P1 R1 and control
proximate the pushing strategy (fig. 12), above? We Tocal TR communication,
observe the following. Each robot can compute its ap- P2 R2 Fl\’/?lgtl\i/?]gsymhrony’
plied force and contact mode, and communicate these uniform (SPMD),
data to the other. The robots together must perform 3 R3 asynChlr,Ol?tO“S’
. N . N . no explici
a control strategy (move in ¢, move in £z, etc). Since communication

the robots are not rigidly linked, there are five qual-

itati i : . A Figure 13: s
itative choices on how to implement a move in +z. g ummary

Our experiments suggest these strategies are aided by gi)ptzrii:lf?;iq l[lelela%?on
the ability to sense the box’s surface normal, and to

compliantly align to it. The IR-Modem mechanism described in part I allows
the communication of the following information: each robot’s identity, orien-
tation, and speed. In addition here are several kinds of information a robot
might transmit for the pushing task: whether it is in contact with the box,
the contact “bearing” (where the contact is on the bumper ring), the power
being applied to the motors, and the local surface normal of the box. Next,
a robot could communicate the message “Do this strategy: ...” or else “I
am about to do this strategy: ...” Finally, the robots may have to transmit
communication primitives like “Wait” and “Acknowledged.”

While it is possible to specify and indeed implement sufficient communi-
cation to perform this task robustly, it is difficult to convince oneself that
some particular communication scheme is optimal, or indeed, even necessary.

In [DJR], we analyze information invariants for manipulation tasks using
the formalism presented here. For example, it is clear the surface normal
computation requires some internal state, and the compliant align can be
viewed as consuming external state or as temporary calibration. Communi-
cation appears fundamental to performing the task in fig. 11b. So we ask:
what communication is necessary between the robots to accomplish the (2-
robot) pushing task? How many messages and what information is required?
In [DJR] we use the methods introduced here to compare and contrast push-
ing protocols, and to answer these questions. First, we precisely describe
two manipulation tasks for cooperating mobile robots that can push large,
heavy objects. One task is shown in fig. 11b, the other in fig. 14. More
specifically, we ask: Can all explicit local and global communication between
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the agents be removed from a family of pushing protocols for these tasks?°
[DJR] answer in the affirmative—a surprising result—by using the general
methods introduced here for analyzing information invariants.

11.1 [DJR] Use Circuits and Reductions to Analyze
Information Invariants

In [DJR], we develop and analyze synchronous and asynchronous manipula-
tion protocols for a small team of cooperating mobile robots than can push
large boxes. The boxes are typically several robot diameters wide, and 1-2
times the mass of a single robot, although the robots have also pushed couches
that are heavier (perhaps 2-4 times the mass, and 8 x 3 robot diameters in
size). We build on the ground-breaking work of [Mason, EM] and others
on planar sensorless manipulation. Our work differs from previous work on
pushing in several ways. First, the robots and boxes are on a similar dynamic
and spatial scale. Second, a single robot is not always strong enough to move
the box by itself (specifically, its “strength” depends on the effective lever
arm). Third, we do not assume the robots are globally coordinated and con-
trolled. (More precisely, we first develop protocols based on the assumption
that local communication is possible, and then we subsequently remove that
communication via a series of source-to-source transformations on the pro-
tocols). Fourth, our protocols assume neither that the robot has a geometric
model of the box, nor that the first moment of the friction distribution (the
COF) is known. Instead, the robot combines sensorimotor experiments and
manipulation strategies to infer the necessary information (the experiments
have the flavor of [JR]). Finally, the pushing literature generally regards the
“pushers” as moving kinematic constraints. In our case, because (i) there are
at least two robot pushers and (ii) the robots are less massive than the box,
the robots are really “force-appliers” in a system with significant friction.
Of course, our protocols rely on a number of assumptions in order to
work. We use the theory of information invariants developed here, to reveal
these assumptions and expose the information structure of the task. We be-
lieve our theory has implications for the parallelization of manipulation tasks
on spatially distributed teams of cooperating robots. To develop a parallel
manipulation strategy, first we start with a perfectly synchronous protocol

51This question was first posed as an open problem in a 1992 draft of this book.
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with global coordination and control. Next, in distributing it among coop-
erating, spatially separated agents, we relax it to an MPMD?®? protocol with
local communication and partial synchrony. Finally, we remove all explicit
communication. The final protocols are asynchronous, and essentially “uni-
form,” or SPMD?%%—the same program runs on each robot. Ultimately, the
robots must be viewed as communicating implicitly through the task dynam-
ics, and this implicit communication confers a certain degree of synchrony
on our protocols. Because it is both difficult and important to analyze the
information content of this implicit communication and synchronization, we
believe that using our theory of information invariants is justified.

The manipulation protocols in [DJR] are first modeled as circuits, us-
ing the formalism developed in Section 5.4.1. Source-to-source transforma-
tions on these protocols are then represented as circuit transformations. The
circuit transformations are modeled using the reductions described in this
book. For the task in fig. 11b, [DJR] consider three pushing protocols P1,
P2, and P3, and their interreducibility under <;. In particular, we trans-
form an MPMD pushing protocol P2 with explicit IR communication to
an asynchronous SPMD protocol P3 with no explicit communication. This
transformation is then analyzed as an instance of reducing the latter to the
former, using <;. There are several things we have learned. We can deter-
mine a lot about the information structure of a task by (i) parallelizing it
and (ii) attempting to replace explicit communication with communication
“through the world” (through the task dynamics). Communication “through
the world” takes place when a robot changes the environment and that change
can be sensed by another robot. For example, protocol P2 uses explicit com-
munication and protocol P3 makes use of an encoding in the task mechanics
of the same information. Our approach of quantifying the information com-
plexity in the task mechanics involves viewing the world dynamics as a set
of mechanically implemented “registers” and “data paths”. This permits
certain kinds of de facto communication between spatially separated robots.

[DJR] also consider three protocols R1, R2, and R3, for a reorientation
task (see fig. 14). A transformational approach to developing these proto-
cols 1s viewed as a series of reductions. The final protocol R3 has several
advantages over the initial protocols R1 and R2. Using protocol R3, two
robots (instead of three) suffice to rotate the box. The protocol is “uniform”

S2SPMD (MPMD) = Single (Multiple) Program, Multiple Data.
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(SPMD) in that the same program (including the same termination predi-
cate) runs on both robots. More interesting, in R3 it is no longer necessary
for the robots to have an a priori geometric model of the box—whereas such
a model is required for R1 and R2.

In terms of program development, synchrony, and communication, we
have a correspondence between these protocols, shown in fig. 13. We be-
lieve that a methodology for developing coordinated manipulation protocols
is emerging, based on the tools described here. This methodology helps
transform an offline, synchronous manipulation strategy (eg., P1 or R1) with
global coordination and control, into an online, asynchronous, distributed
strategy (P3 or R3) for the same task:

Developing Parallel Manipulation Protocols [DJR]

1. Start with a sensorless [EM] or near-sensorless [JR, Rus] manipulation
protocol requiring global coordination of several “agents” (eg., parallel-
jaw fingers, or fingers of a dextrous hand).

2. Distribute the protocol over spatially separated agents. Synchronize
and coordinate control using explicit local communication.

3. Define virtual sensors® for the quantities step (2) measures.

4. Implement each virtual sensor using concrete sensors on mechanical
observables.

5. Transform the communication between two agents L and R into shared
data structures.

6. Implement the shared data structures as “mechanical registers.”

Our circuits model the protocols in the steps above. Our reductions model
the transformations between steps. By the results of Section 8.10.4, these
reductions can be effectively computed. Therefore, in principle, the trans-
formations in [DJR] could be synthesized automatically. We believe that
our methods are useful for developing parallel manipulation protocols. We

33We use the term in the sense of [DJ]; others, particularly Henderson have used similar
concepts. See Section 4.2.1 for examples of virtual and concrete sensors.
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28 L

(a) The box motion D) The robot motions

Figure 14: The task is to rotate the box by a
specified angular amount. Here we illustrate the
box being rotated by three cooperating
autonomous agents. (a) The motion of the box
viewed in world coordinates. (b) The relative
motion of the pushing robots, viewed in a system of
coordinates fixed on the box. The arrows illustrate
the direction of the applied forces. From [DJR].

have implemented and tested our asynchronous, distributed, SPMD manipu-
lation protocols using ToMMmy and LiLy, and found them robust and efficient.

See [DJR] for a full discussion.
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Conclusions

In this book we suggested a theory of information invariance that includes
sensors and computation. Our results generalize the work of [BK]; first, we
consider fairly detailed yet abstract models of physical autonomous mobile
robots; second, we consider generalizations and variations on compasses and
orientation sensors; third, we develop a generalized and stratified theory of
the “power” of such sensori-computational devices. As such, perhaps our
work could be called On the generalized power of generalized compasses.

We think that information invariants can serve as a framework in which
to measure the capabilities of robot systems, to quantify their power, and to
reduce their fragility with respect to assumptions that are engineered into
the control system or the environment. We believe that the equivalences that
can be derived between communication, internal state, external state, com-
putation, and sensors, can prove valuable in determining what information
is required to solve a task, and how to direct a robot’s actions to acquire
that information to solve it. Our work proposes a beachhead on informa-
tion invariance from which, we hope, such goals may be obtained. There are
several things we have learned. First, we were surprised by how important
time and communication become in invariant analysis. Much insight can be
gained by asking How can this sensor be simulated by a simpler system with a
clock (resp. communicalion)? Time-based sensors are ubiquitous in modern
aircraft navigation systems (compare Section 4.2.1). In “DMEs” (distance
measuring equipment) a ground station and the plane talk to each other, and
measure differences in timing pulses to estimate their distance apart. GPS,
which was approved in July, 1993 for use in airplanes, also operates on timing
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principles.

Robot builders make claims about robot performance and resource con-
sumption. In general, it is hard to verify these claims and compare the
systems. One reason is calibration: pre-calibration can add a great deal of
information to the system. In order to quantify the “use” of external state,
we suggested a theory of calibration complexity. Our theory represents a sys-
tematic attempt to make such comparisons based on geometric and physical
reasoning. Finally, we try to operationalize our analysis by making it compu-
tational; we give effective (albeit theoretical) procedures for computing our
comparisons. Our algorithms are exact and combinatorially precise.

Our reduction <; (Definition 6.10) attempts to quantify when we can “ef-
ficiently” build one sensor out of another (that is, build one sensor using the
components of another). Hence, we write A <; B when we can build A out of
B without “adding too much stuff.” The last is analogous to “without adding
much information complexity.” Our measure of information complexity is
relativized both to the information complexity of the sensori-computational
components of B, and to the bandwidth of A. This relativization circumvents
some tricky problems in measuring sensor complexity (see Appendix A.4). In
this sense, our “components” are analogous to oracles in the theory of com-
putation. Hence, we write A <; B if we can build a sensor that simulates A,
using the components of B, plus “a little rewiring.” A and B are modeled as
circuits, with wires (datapaths) connecting their internal components. How-
ever, our sensori-computational systems differ from computation-theoretic
(CT) “circuits,” in that their spatial configuration—i.e., the spatial location
of each component—is as important as their connectivity.

Permutation models the permissible ways to reallocate and reuse re-
sources in building another sensor. Codesignation constraints further restrict
the range of admissible permutations. Quiput communication formalizes our
notion of “a little bit of rewiring.” Like CT reductions, A <; B defines an
“efficient” transformation on sensors that takes B to A. However, we give a
generic algorithm for synthesizing our reductions (whereas no such algorithm
can exist for CT?*). Whether such reductions are widely useful or whether
there exist better reductions (eg., our “k-wire” reductions in Section 8.10.3)
is open; however in our laboratory we are using <; to design manipulation

4 For example: no algorithm exists to decide the existence of a linear-space (or log-space,
polynomial time, Turing-computable, etc.) reduction between two CT problems.
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protocols [DJR] for multiple mobile robots. We also give a “hierarchy” of
reductions, ordered on power, so that the strength of our transformations
can be quantified. See Appendix A.4 for a discussion of “universal reduc-
tion” as per Section 1.1. See Appendices A.4 and C.3 for more on relativized
information complexity.

Our work raises a number of questions. For example, can robots “exter-
nalize,” or record state in the world? The answer depends not only on the
environment, but also upon the dynamics. A juggling robot probably cannot.
On a conveyor belt, it may be possible (suppose “bad” parts are reoriented
so that they may be removed later). However, it is certainly possible during
quasi-static manipulation by a single agent. In moving towards multi-agent
tasks and at least partially dynamic tasks, we are attempting to investigate
this question in both an experimental and theoretical setting. We discuss
these issues further in [DJR].

By analogy with CT reductions, we may define an equivalence relation
=,, such that A =, B when A <; B and B <; A. We may also ask, does a
given class of sensori-computational systems contain “complete” circuits, to
which any member of the class may be reduced? Note that the relation =,
holds between any two complete circuits.

Weaker forms of sensori-computational equivalence are possible. If we
define the state of a sensor system U to be a pair (z,b) where z is the con-
figuration of the system and b is the output value at z, we can examine the
equilibrium behavior of U as it evolves in state space. Recall the Defini-
tion 4.4; let us call this strong simulation. By analogy, let us say that a
system U weakly simulates another system V when & and V have identical,
forward-attracting compact limit sets in state space.”® If we replace strong
simulation (2 in Definition 4.4) with weak simulation, all of our structural
results go through mutatis mutandis. The computational results also go
through, if we can compute limit sets and their properties (a difficult prob-
lem in general). Failing this, if we can derive the properties of limit sets “by
hand” then in principle, reductions using weak simulation instead of strong
simulation (£¢) can also be calculated by hand.

Finally, can we record “programs” in the world in the same way we may
externalize state? Is there a “universal” manipulation circuit which can read
these programs and perform the correct strategy to accomplish a task? Such

551 am grateful to Dan Koditschek, who has suggested this formalism in his papers.
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a mechanism might lead to a robot which could infer the correct manipulation
action by performing sensori-motor experiments.

12.1 Future Research

This book represents a first stab at several difficult problems, and there are
a number of issues that our formalism does not currently consider. We now
acknowledge some of these issues here.

Our theory allows us to compare members of a certain class of sensor
systems, and, moreover, to transform one system into another. However,
it does not permit one to judge which system is “simpler” or “better” or
“cheaper.” In particular, for a given measurement problem, it does not per-
mit a “simplest” sensor system to be identified. There are several reasons
for this. The first is that there are inherent limitations on comparing abso-
lute sensor complexity—and these problems represent structural barriers to
obtaining good notions of “better” or “simpler.” The theory is designed, in
part, to get around some of these limitations. We discuss these problems—
which are quite deep—in appendix A.4 at some length. Second, such com-
parisons would require an explicit performance measure. We discussed such
measures as speed (or execution time) in Section 2.1.2. In appendix F.1, we
argue that such performance measures allow us to apply kinodynamic analysis
tools [DX3, Xa]. There is no doubt that external performance measures such
as “simpler” and “better” and “cheaper” could be used with our framework—
but we don’t know what exactly these measures are. It appears that efficient
algorithms for exploiting these measures will have to take advantage of their
structure.

Instead of investigating performance measures, we have argued that it is
very hard to even measure or compare the “power”of sensorimotor systems.
To address this problem, we developed our reductions. To make our stance
clear, consider as an analogy the theory of computation (CT). CT does not
tell us which algorithms are more “simple,” but it does tell us which are
more powerful (i.e., which can compute more). In our theory, as in CT,
we can define transformations or reductions that we consider “fair,” and
then discuss equivalence of systems up to these transformations. Now, in
CT, given performance measures (eg, asymptotic complexity) we can also
compare the performance of algorithms—although there are many different
measures to choose from. But in CT, “faster” does not necessarily mean
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“simpler” in any sense. QOur reductions are analogous to CT reductions.
Execution time or speed is analogous to computational complexity. Finally,
as in C'T, notions of “simplicity” are orthogonal to notions of either reduction
or performance.

However, the notion of performance measures opens up a host of prac-
% (lertainly some simple scheme of looking up the “cost” of
components in a table could be used in conjunction with our system. An

tical issues.

instrumentation engineer, confronted by a problem where one measurement
strategy is ineffective, may choose to measure some other property to solve
the problem rather than reconfigure the sensori-computational components of
the system (for example, measuring the temperature rather than the pressure
of a fixed volume of gas). This approach is not envisaged by our theorems,
although the power of two given strategies could be compared. Furthermore,
distinct measurement strategies have costs other than those considered here
— for example, the cost of transducers, the effect on the measurement noise
of measuring one observable and inferring another from its value, noise prop-
erties of transducers and common mode effects (for example, in positioning
strain gauges). These issues should be considered in future work.

There is much to be done. Our model of reduction is very operational
and others should be attempted. In addition to measuring the information
complexity of communication, it may be valuable to quantify the distance
messages must be sent. Similarly, it may make sense to measure the “size”
of a resource permutation, or how far resources are moved. All these ideas
remain to be explored. Finally, we have approached this problem by inves-
tigating information invariance, that is, the kind of information-preserving
equivalences that can be derived among systems containing the resources (a)-
(e) (Section 2.2.2). An alternative would be to look at information variance,
that is, it would be valuable to have a truly uniform measure of information
that would apply across heterogenous resource categories.

In the appendices we present a number of important extensions, and
attempt to address some of the issues raised in this section (12.1).

56] would like to thank several anonymous referees for suggesting these issues and the
wording to describe them.
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A

Algebraic Decision Procedures

The algorithms in section 8.10.4 are algebraic and use the theory of real
closed fields;?” for an introduction to algebraic decision procedures see, for
example the classic paper of [BKR], or discussions in books such as [DKM,
ch 1-4; CLS]. In Section 8.10.4, we reduce our computational problem to
deciding the truth of a Tarski formula [Tar]; the algebraic algorithms can
then decide such a sentence. Tarski’s language is also called the language of
semi-algebraic (s.a.) sets. Such sets are real semi-algebraic varieties defined
by polynomial equalities and inequalities, where the polynomial coefficients
are algebraic numbers. A Tarski formula is a logical sentence that quantifies
existentially or universally over each of the real variables. A typical Tarski
formula might be:

(Vmﬂyﬂz‘v’w)
zy? — 16w < 0
v (39)
%$w2 +27+ 78w < 0
A

24—}—5w3—|—4m2y2—y—|—7$ = 0.

57 Also called “Tarski’s Language” or the “first-order language of algebra and geometry.”
One common mathematical term is “the first order theory of real closed fields.”
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More generally, we can think of a Tarski sentence as

<<>1$1 Qazg - -- Ormr)

52(‘r17"'7$7’) RQ 0 (40)

Sm(®1,...,2,) Ry 0,

where each {; is a quantifier, each R; is a real relation, and Cy,...,C,, are
logical connectives. A quantifier {; is either V or 3, and it quantifies over a
real variable x;. A real relation is a relation among real values, and is one
of <, >, or =. A logical connective is one of V or A.*® Each sq,...,s,, is a
polynomial in R[z1,...,z,], and so (40) is a sentence in r variables. We call
the set Y C R" defined by (39) or (40) a semi-algebraic set, and, conversely,
aset Y C R is called semi-algebraic if it can be written in a form like (40).
The set Y is called algebraic if the only real relation we require is equality
(=). The boolean characteristic function T(-) of a semi-algebraic set such as

Y is defined as

T(z1,...,2,) <=
s1(z1,...,2,) R1 0
Cy
So(®1,...,2,) Ra 0
C, (41)
Cn

Sm(®1, ..., 20) Ry 0.

T(-) is called a semi-algebraic predicate. Hence, (40) can be written

<<>1:E1 $oxg - err) s T(xq, ..., 2,).

58G0 < and > can be built out of these.
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Let ® be a s.a. predicate. Let x denote (z1,...,2,), and for a quantifier
O, let Ox denote (Qxq,...,0x,). If Ty is a s.a. predicate for the s.a. set Y,

we will abbreviate the sentence dx : <']Ty (x) A CI)(X)) as follows:

IxeY: &(x). (42)
Given this convention (42), a little manipulation shows that as a consequence,

the formula Vx : <']Ty(x) = CI)(X)) is therefore equivalent to

VxeY: o(x).

Let 6 be the a total degree bound for the polynomials s, ..., s, in (40).
We call the number of polynomials m the size of the Tarski sentence (40)
and of the s.a. predicate T(-) in (41). Observe however, that to calculate a
bound O(érm) on the number of terms in (40), we would employ the degree
bound é and the number of variables r as well.

Now, it is remarkable that one can decide such sentences in complete
generality: although Tarski’s original algorithm [Tar] was non-elementary,>
this bound has been improved by a chain of researchers since then. For
example, [BKR] showed how to decide the first order theory of real closed
fields with a purely algebraic algorithm in time 227" and space 2007 In
Section 8.10.4, we use this result:

Theorem A.54 (Grigoryev [Gri]) Sentences in the theory of real closed
fields can be decided in time doubly-exponential only in the number of quan-
tifier alternations. More specifically, the truth of a Tarski sentence for m
polynomials of degree < 6 in r variables, where a < r is the number of quan-
tifier alternations in the prenex form of the formula, can be decided in time

4a—2

(mé)°t) (43)

Proof: See [Gri]. U

59Tarski developed this algorithm around 1920, but it was not published until later.
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A.1 Application: Computational Calibration Com-
plexity

Recall the discussion in Section 8.7.4. We wish to develop an algorithm for
deciding the relation <* between sensor systems. Comparing the calibration
complexity (Definitions 5.5, 6.8) of two sensor systems seems easier than the
issues of immersion and simulation, because the calibration complexity does
not change with the immersion, so long as the immersion respects the codesig-
nation constraints. The essential idea behind computing calibration complex-
ity 1s to measure the complexity of the codesignation constraints that specify
a sensor system. One measure, of course, is the number of codesignation
constraints, but other measures, such as the degree and the quantification,
are also important. Using the algebraic methods from Section 12.1, we can
develop tools to measure the complexity of algebraic relations such as those
encountered in algebraically codesignated sensor systems (Definition 8.29).

Now, to decide the relation <*, we must be able to decide dominance
in calibration complexity (see Definition 5.5). We propose to measure cali-
bration and installation complexity by the complexity of the codesignation
constraints. In general, one may measure the complexity of the codesigna-
tion constraints by comparing the complexity of the semi-algebraic varieties
that the algebraic codesignations specify. One way to do this is to count the
number, degree, quantification, and dimension of the semi-algebraic codes-
ignation constraints. This gives numbers for m, ¢, a, and r for an algebraic
complexity measure such as (43), for example. Equation (43) can then be
used as a measure of the sensor’s calibration complexity. These bounds can
then be compared (using big-Oh (O(-)) notation) to determine which sensor
dominates in terms of calibration complexity. The comparison can done in
essentially the same time it takes to read the input, and the time required is
very small compared to (35), the time for the algebraic simulation.

Some of the complexity in our theory results from a decision to pro-
ceed through an abstract definition of a sensor system, independent of the
underlying configuration space, and then to map that system into a partic-
ular space. One may ask whether this approach, though it mirrors much
of modern geometry, is essential to the results obtained. We believe that it
would be possible to start with an a priori configuration space (see Equa-
tion (38)), instead of constructing it as a quotient of set differences. This
would eliminate some of the technical baggage required (codesignation, non-
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codesignation and so forth). However, it appears that this approach would
leave unanswered the question of measuring the complexity of the underlying
configuration space—and hence it would not yield a computational theory of
calibration complexity.

A.2 Application: Simulation Functions

Recall the discussion of simulation functions for components, edges, and sen-
sor systems on page 58, Section 5.4.1. We now discuss simulation functions
and their encodings. It is important that simulation functions work on per-
muted sensor systems. Here is how this might be accomplished.

A.2.1 Vertex versus Graph Permutations

We now consider two orthogonal kinds of permutation. In both models,
the vertex and edge labels ¢(v) and {(e) never change. The first model is
called vertex permutation, and is given in Definition 8.18. In this model,
the vertices can move, and they drag the components and wires with them.
That is, the vertices move (under permutation), and as they move, the edges
follow. Vertex permutation suffices for all reductions in this book, and the
machinery in Sections 8.1 and 8.10.4 suffices to compute the reductions <*
and <j.

We can also consider an alternate model, called edge permutation, where
the edge connectivity changes. An edge permutation can be modeled as
follows. Consider a graph with vertices V' and edges F. Start with any
bijection o : V? — V2. We call ¢ an edge permutalion, since it induces the
restriction map o), : £ — o(F) on the edge set E. An edge permutation
says nothing about the immersion of a graph.

We can also compose the models. We define a graph permutation to be a
vertex permutation followed by an edge permutation. In a graph permuta-
tion, the vertices and the edges move independently. That is, vertices may
move, but in addition, the edge connectivity may change. To illustrate the
different models, consider a sensor system U with three vertices { vy, vq,v3 }
with labels ¢(v;) = B; (1 = 1,2,3). U has one edge e = (vq,v2) of bandwidth
k that connects By to By. So, the B; are the components of the system, and
e is a datapath. A vertex permutation U* of Y would move the vertices (and
therefore the components) spatially, but in ¢*, e would still connect v; and
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vg, (and therefore, By and By). An edge permutation o of U would change
the edge connectivity. So, for example, an edge permutation o (i) could be
a graph with one edge o(e) = (v2,v3), connecting vy to vs (and hence Bj
to Bs). But in o(U) no edge would connect vy and vy. Finally, consider a
graph permutation U* of U. Suppose U* = o(U*), that is, U* is the vertex
permutation U* followed by the edge permutation o above. &/* has the same
edge connectivity as o(U). However, in U*, the vertices are immersed as in
ur.

To summarize: let (U, ¢) be a situated sensor system. A graph permu-
tation of U is given by U* = (U, ¢*) where ¢* = (¢*,0), ¢* is a vertex
permutation, and ¢ is an edge permutation.

So, vertex permutation preserves the graph topology whereas edge per-
mutation can move the edges around. Edge permutation permits arbitrary
rewiring (using existing edges). It cannot add new edges, nor can it change
their bandwidth. Although vertex permutation suffices for all the exam-
ples in this book, graph permutation is useful (and required) in [DJR].
Graph permutation is also required for some of the applications discussed
in Section 1.1 (particularly (3) design and (4) universal reduction—see Ap-
pendix A.4). Here, we will content ourselves with answering two questions:
(i) if we permit graph permutation, does it change our complexity bounds?
and (ii) does graph permutation give us a more powerful reduction?

We first turn to question (i). Fortunately, we can extend our computa-
tional results to graph permutation without difficulty. To do this, we model
a graph permutation of a sensor system U as a vertex permutation of U,
followed by an edge permutation of . Using this scheme, we can com-
pute all our reductions (<*, <y, etc.) within the same time bounds given
in lemma 9.51 and cor. 9.52, permitting graph permutation in place of ver-
tex permutation throughout. Our other lemmas also go through mutatis
mutandzs.

We now elaborate. An adjacency matriz for a sensor system with d ver-
tices 1s a d X d binary matrix. An adjacency matriz with bandwidth has
non-negative integer entries. An entry of b in row v, column u specifies a
(directed) edge of bandwidth logk(b) between®® vertices v and u. Given an
edge permutation o, we can construct a new adjacency matrix, and the edge

60This representation is not hard to extend to components with multiple inputs and
outputs, using an rd x sd matrix.

121



simulation functions (such as €. in Section 8.1) can be constructed from the
adjacency matrix. Now, we may view the edges (data paths) in our sensor
system as part of its configuration. Hence, in different configurations, the
system may have different “wiring diagrams” (different edges). We now con-
sider this such “configurations” and the resulting “configuration space.” In
particular, we wish to demonstrate their algebraicity.

Consider a sensor system U with d vertices V', and O(d*) edges E. When
we permit graph permutation, a configuration of this system can be specified
by a pair (¢,0), were ¢ : V — (' is an immersion (Definition 8.16) of ¢/, and
o 1s an edge permutation. As we have discussed, ¢ lives in the configuration
space C?. What about ¢? o is a member of the permutation group on d?
elements. o can be modeled as a d* x d? binary matrix called a permutation
matriz. Every permutation matrix has a single 1 in each row and column,
the other entries being zero. Let Z, denote the field Z/2. Then, the space
of permutation matrices is ©(Zy, d?), the Orthogonal group of d* x d* binary
matrices. Each element is an orthogonal matrix, with determinant +1.

Every “rewiring” of U using only existing edges is encoded by a permu-
tation o € 0O(Zy,d*). So, to model vertex permutation plus rewiring, we
extend our usual sensor configuration space from C?¢ to C? x 0(Z,,d?). Tt
is not hard to extend this model to add one extra wire (output communi-
cation), or several extra wires (for k-wire reductions (Section 8.10.3)). The
space O(Zy, d*) is algebraic, and the computation of edge simulation functions
from adjacency matrices is s.a.

Now, how expensive it is to compute the reductions <* and <; using graph
permutation? Perhaps surprisingly, even with this extended configuration
space (which has dimension d* + r_d instead of r_,d), we still obtain the same

complexity bounds given in lemma 9.51 and cor. 9.52 (so long as r and s are
o(1)
constants). This is because® (see Equations (35-37)) p(d*+r.d) is still

n(red)”.

We now address question (ii): does graph permutation give us a more
powerful reduction? In answer we show the following:

Lemma A.55 (The Clone Lemma) Graph permutation can be simulated

61 Another way to see this is as follows: even if we try each of the (d?)! edge permutations,
this additional (d?)! factor is absorbed by the O(1) in the second exponent.
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using vertex permutation, preceded by a linear time and linear space trans-
formation of the sensor system.

Proof: Given a sensor system U we “clone” all its vertices, and attach the
edges to the clones. The cloned system simulates the original when each ver-
tex is colocated with its clone. Components remain associated with original
vertices. We can move an edge independently of the components it originally
connected, by moving its vertices (which are clones). Any graph permutation
of U can be simulated by a vertex permutation of the cloned system.

More specifically: Given a graph G = (V, E) with labelling function ¢,
we construct a new graph G' = (V'  E') with labelling function ¢'. Let the
cloning function cl : V < V be an injective map from V into a universe of
vertices®? V, such that cl(V)NV = 0. Welift cl to V? and then restrict it to £
to obtain cl: E — cl(V)? as follows: If e = (u,v), then cl(e) = (cl(u), cl(v)).
Edge labels are defined as follows: ¢'(cl(e)) = {(e).

Finally we define V' =V Ucl(V) and E' = cl(F). We define the labelling
function ¢ on V' as follows. ¢'(v) = {(v) when v € V. Otherwise, ¢'(v)
returns the “identity” component, which can be simulated as the identity
function.%?

Suppose U has d = |V| vertices and |F| edges. This transformation adds
only d vertices and can be computed in time and space O(d + |F]). U

Let us denote by cl(U) the linear-space clone transformation of U de-
scribed in lemma A.55. Now consider any k-wire reduction <j (Section 8.10.3).
We see that:

Corollary A.56 Let k € N. Suppose thatl for two sensor systems U and V,
we have V <, U (using graph permutation). Then V <j cl(U) (using only
vertex permutation). [

62Gee Appendix C.1.

63The proof can be strengthened as follows. Recall that two components can commu-
nicate without an (explicit) connection when they are spatially colocated. Therefore the
proof goes through even if cloned vertices have no associated components, that is, £'(v) =
for v ¢ V. This version has the appeal of changing the encoding without adding additional
physical resources.

123



Class Edge Permutation

In practice, we wish to impose some restrictions on edge and graph permuta-
tion. For example, suppose we have a sensor system ¢ containing two cooper-
ating and communicating mobile robots L and R. The sensori-computational
systems for L. and R are modeled as circuits. The datapaths in the system,
in addition to bandwidth, have a type, of the form SOURCE—DESTINATION,
where both SOURCE and DESTINATION € { L, R }. When permuting the edges
of U to obtain U*, it makes sense to permute only edges of the same type.
More generally, we may segregate the edge types into two classes, internal
edges . — 1 and R — R, and external edges . — R and L — R. In constructing
U*, we may use an internal edge (of sufficient bandwidth) to connect any
two components where SOURCE=DESTINATION. External edges (of sufficient
bandwidth) can be used when SOURCE#DESTINATION. Hence, in class edge
permutation, we permute edges within a class. Class edge permutation leaves
unchanged the complexity bounds and the lemmas of Section A.2.1.

In this example, maintaining exactly two physical locations can be done
using simple codesignation constraints. More generally, we take SOURCE,
DESTINATION € (.

A.3 Application: Parametric Codesignation Constraints

Recall Equation (34), in which we formulated the sensor reduction problem
as a s.a. decision procedure. We now discuss some technical details of this
equation, using the notation and hypotheses of Section 9.2.

In order to allow for sufficient generality, we must permit V’s codesig-
nation constraints to depend on U’s configuration &. That is, the s.a. set
D, (@) is a s.a. function of @. Recall that (U, &) denotes the sensor system
U installed at configuration . Now, given that sensor system U is at config-
uration @, we are interested in whether or not sensor system V can simulate
(U, &), but only when V’s configuration 3* satisfies some constraint D, (&)
that depends on a. That is we are interested in the question:

“Does (V, 3*) simulate (U, @), given that B lies in D, (a)?"%4

For example, consider the reduction in proposition 6.12. Here & specifies
(among other things) the ship’s configuration (x, k) in the radial sensor .

64Tn particular, we do not care what happens when g* ¢ D, (a).
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We think of (x,h) as one “coordinate” of a. The parametric codesignation
constraint Dy (a) is used to ensure that the corresponding ship in the light-
house sensor H is also placed at (x, k). The question “Can H simulate F£?”
only makes sense given that (i) H and F are both installed at G and (ii)
the ships in H and FE are in the same configuration. Static codesignation
constraints (that are invariant with &) ensure (i), whereas parametric codesig-
nation constraints (that vary with &) ensure (ii). This could be implemented
as follows: Let 7 (resp. 7, ) be the projection of E’s (resp. H’s) configura-
tion that returns the ship’s configuration. So, in particular, 7 (a) = (x,h).
These projections are clearly semi-algebraic functions. Then (this aspect of)
the parametric codesignation constraint Dy could be implemented as

8 € Diy(a) = (,,.(9) =7,.(a)). (44)

The fact that we have an equality constraint (=) in (44) reflects the fact
that F and H are simple sensor systems (Definition 8.29). In general (for
arbitrary algebraic sensors systems), Dy could specify a more complicated
s.a. relation between & and f3.

Formally, parametric codesignation constraints as Dy (44) and D,,, (see
Equation (34)) can be modeled as parametric s.a. sets (see [Can]):

Definition A.57 (Canny) A parametrically-defined semi-algebraic set D(«)
is defined as follows. D(«) is a s.a. sel which is a function of some arqument
a. Hence there is an implicitly defined s.a. predicate Tp(z,a) which is true
iff z€ D(a). Now, let Y be a s.a. set with predicate Ty. So, when we write
D(a) C Y we mean ¥z Tp(z,a) = Ty(z), which gives us a s.a. predicate
Op(a) which is true of those values of a such that D(a) C Y.

A.4 Application: Universal Reductions

We can now use the tools from Appendix A.2— A.3 to develop an algorithm
for “universal reduction” (application 4 of Section 1.1). Universal reduction
requires graph permutation (see Appendix A.2.1).

Let & and V be sensor systems. Suppose we are given a specification for
U, and a “bag of parts” for V. The spec, as usual, is encoded as a simulation
function € as described in Section 8.1. We are also given a simulation
function Qy for V. The bag of parts consists of boxes and wires. Each box is
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a sensori-computational component (“block box”) that computes a function
of (a) its spatial location or pose and (b) its inputs. The “wires” have different
bandwidths, and they can hook the boxes together. Recall we are given a
simulation function €2, for each component {(v) and a simulation function
Q. for each edge e (indeed, this is how the global simulation functions €
and Qy are encoded; see Section 8.1). Then, our algorithms (above) decide,
can we immerse the components of V so as to satisfy the spec of U7 The
algorithms also give the immersion (that is, how the boxes should be placed
in the world, and how they should be wired together). Hence, we can ask,
can the spec of U be implemented using the bag of parts V?

Now, suppose that in addition to the spec for U, we are given an encoding
of U as a bag of parts, and an immersion to implement that spec. Suppose
further that &4 <; V. Since this reduction is relativized both to & and to V,
it measures the “power” of the components of U relative to the components
in V. By universally quantifying over the configuration of U, we can ask,
“can the components of V always do the job of the components of U477

More specifically: Let o be a configuration of the sensori-computational
systemU. Let U* = (U, a*) be a graph permutation of (U, ) (Appendix A.2.1).
Let ¥*(«) denote the set of all graph permutations of «, so, if U has d ver-
tices, then Y*(a) = Y(a) x 0(Zy,d?*). Thus a* € ¥*(a), and o encodes the
spatial immersion of U as well as its wiring connectivity. By Section 8.9.2
and Appendix A.2.1, ¥*(a) is s.a.

Similarly, let 3 be a configuration of V. Hence, we can decide the Tarski
sentence

(Va* € ¥(a), 35 € D, (") N 54(5)) : (45)
(L{, Oé*) §1 (V7 //3*)7

where D, (-) is a parametric s.a. codesignation constraint (Appendix A.3).
When Equation (45) holds, we say that U universally reduces to V, (or that
there is a universal reduction from U to V). Hence, is possible to compute uni-
versal reductions algebraically. With the notation and hypotheses as above
throughout Appendix 12.1, the time complexity of deciding (45) is given by
Equation (43), which becomes

(800" = (n, 40, )OO, (46)
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Equation (46) is still (n, + nD)(“d)O(l). Hence we have that

Corollary A.58 Universal reductions (Equation (45)) can be computed in
the same time bounds given in Fquations (35-37). U
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B

Relativized Information
Complexity

Let us specialize definition 6.10 to monotonic sensor systems:

Definition 6.10 (Monotonic) Consider two monotonic sensor systems S
and (), and let b be the output of sensor S. We say S is efficiently reducible

to Q) if
S <* @ + comMm(b). (4)

In this case we write S <q Q).

For the sensors we have considered, their complexity could essentially
be characterized using the size logk(b) of the output b. We now generalize
this definition slightly. Our motivation is as follows. There are sensor sys-
tems whose complexity cannot be well-characterized by the number of bits

.95 For example: consider a “grandmother” sensor. Such a sen-

of outpu
sor looks at a visual field and outputs one bit, returning #t if the visual
field contains a grandmother and #f if it doesn’t. Now, one view of the
sensor interpretation problem is that of information reduction and identi-
fication (compare [DJ], which discusses hierarchies of sensor information).
However consider a somewhat different perspective, that views sensors as
model matchers. So, imagine a computational process that calculates the

probability P(G/V') of G (grandmother) given V (the visual field) — i.e.,

%This discussion devolves to a suggestion of Sundar Narasimhan [Nar], for which we
are very grateful.
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the probability that G is in the data (the visual field itself). The sensor in
the former case is something specific only to detecting grandmothers, while
the latter prefers to see a grandmother as the model that best explains the
current data. The latter is a process that computes over model classes. For
example, this sensor might output TIGER (when given a fuzzy picture that
is best explained as a tiger).%

In short, one may view a sensor system as storing prior distributions.
These distributions bias it toward a fixed set of model classes. In principle,
the stored distributions may be viewed either as calibration or internal state.
To quantify the absolute information complexity of a sensor system, we need
to measure the information complexity of model classes stored in the prior
distribution of the sensor. This could be very difficult.

Instead, we propose to measure a quantity called the mazimum bandwidth
of a sensor system. Intuitively, this quantity is the maximum over all internal
and external edge bandwidths (data-paths). That is:

Definition 6.7 (Part One) We define the internal (resp. external) band-

width of a sensor system S to be the greatest bandwidth of any internal
(resp. external) edge in S. The output size of S is given by Definition 5.6.
We define the maximum bandwidth mb(S) to be the greater of the internal
bandwidth, external bandwidth, and the output size of S.

The maximum bandwidth is an upper bound on the relative intrinsic out-
put complexity (relativized to the information complexity of the components
(Sections 5.4.1 and 11.1)). We explore this notion briefly below.

Maximum bandwidth is a measure of internal information complexity.
The bandwidth is a measure of information complexity only relative to the
sensori-computational components of the system. For example, imagine that
we had a sensor system with a single component that outputs one bit when
it recognizes a complicated model (say, a grandmother). The only data path
in the system has bandwidth one bit, because the single component in the
system is very powerful. So, even though the maximum bandwidth is small,
the absolute information complexity may be large.

56Now one may ask why prefer one model over another and there can be many answers.
[Nar] advocates Minimum Description Length, or MDL. This theory attempts to minimize
L(M) + L(D/M) where L(M) is the length of model and L(D/M) is the length of the

data given that the model is minimal.
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So, some sensors are black boxes. We call a sensor system a black boz if it
is encoded as a single component. The only measure of bandwidth we have
for a black box is its output size. For example, Erdmann’s radial sensor F
(Section 4.1) is essentially a black box plus output communication.

More generally, we call a sensor system monotonic if its internal and
external bandwidths are bounded above by its output size. So, black box
sensors are trivially monotonic. All the sensor systems in this book are
monotonic. But some of the systems in our forthcoming work [DJR] are
not.

In light of this discussion, we now give a generalized definition of the
reduction <y, using relativized information complexity.

First, let S be a monotonic sensor system with output & as in Defini-
tion 6.10. In this case, we define cOMM(.S) to be coMM(b).

More generally, for (possibly) non-monotonic sensors, we will let cOMM(.5')
be coMM (2*) where k is the relative intrinsic output complerity of S. Mea-
suring this (k) in general is difficult, but we will treat the maxzimum band-
width (Definition 6.7) of S as an upper bound on k. Finally, we generalize
Definition 6.10 to non-monotonic sensor systems as follows:

Definition 6.10 (Generalized) Consider two sensor systems S and Q). We
say S is efficiently reducible to Q) if

S < Q + comm(9). (47)
In this case we write S <q Q).
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C

Distributive Properties

In this appendix, we prove some technical properties about the permu-
tation of partial immersions. These properties are algebraic, and we call
them the “distributive properties.” First, we consider “pure” permutation
and combination (i.e., without output vertices, as in Definition 8.24). Then,
in C.1-C.2 we generalize to include permutation and combination of output
vertices. Recall the definition of compatibility for partial immersions (Sec-
tion 8.4).

Definition C.59 Let ¢ and ) be compatible partial immersions. We say the
permutations ¢* and ¥* are compatible permutations of ¢ and ¥, if ¢* and
V* are also compatible.

We would like to show that for immersions, combination and permutation
commute. That is: for two compatible partial immersions ¢ and v, if ¢* and
* are compatible permutations, then

¢+ = (¢ + )7

In answer, we can now show the following:

Claim C.60 Consider two compatible partial immersions ¢ and ¢, together
with two compatible permutations ¢* and *. Then

1. 6"+ 0 € S+ ).
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2. Let v* € X(¢ + ). Then there exists ¢* € X(¢), ¥* € X(v), such thal
7* — ¢* _I_ /;Z)*.

Proof: (2). First, let v* be a permutation of ¢ 4+ ¢b. Let ¢* = 7|*¢_1C and
P> = 7|*¢—lc' Then ¢* is a permutation of ¢ and ¥* is a permutation of ¥,
and ¢* + * = ~*.

(1). Conversely, suppose ¢* and ¢* are compatible permutations of ¢ and
1. Then we observe that since the domains of ¢ and ¢* (resp., ¢ and ©*) are
identical, therefore the domains of ¢* + ¥* and ¢ + 1 are identical. Hence,
¢* 4+ ¢* is a permutation of ¢ + . [

Next, we ask, for sensor systems, do combination and permutation com-
mute? That is: for two sensor systems § and ¥, is it true that

S +U = (S+U)
whenever + is defined (see Definition 8.24)?

In answer, we show the following:

Proposition C.61 Consider two sensor systems S and U as above. Assume
their immersions are compatible, so that S + U is defined. Then,

1. Let §* and U* be compatible permutations of S and U. Then S* + U*
is a permutation of S + U.

2. Let (S +U)* be a permutation of S +U. Then there exist compatible
permutations S* and U* of S and U (resp.) such that S* + U* =
(S+U)-.

Proof:Let S = (S,¢), U = (U, ), S* = (S, ¢*) and U* = (U, "), and apply
claim C.60. 0

C.1 Combination of Output Vertices

Recall the definition of combination in Section 8.5. There, we considered two
sensor systems & and U. Both have output vertices, say, v, and u, resp.
When we combine the two sensor systems § and U to form & + U, we must
specify the unique output vertex of the new, combined sensor system. We
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now show how to choose output vertices in a consistent manner so that the
combination operation + remains associative and commutative.

First, we view each sensor system as a pointed graph—a graph with one
distinguished vertex called the output vertez.5” We define + on two pointed
graphs in such a manner as to produce a new pointed graph. For example let
(G1,uq) be a pointed graph with output vertex u;. Let (Gg,uz) be another
pointed graph. Then

(Gr,ur) + (Go,uz) = (G 4 G, uy + ug),

where (i1 + (G5 denotes combination (Definition 8.24). The output vertex
uy + ug is defined as follows: Let V be the universe of all possible vertices.
So, for any graph G; with vertices and edges (V;, F;), we have V; C V. We
insist that V have a total-order . Define u; + us = m>in(u1, Us).

It is easy to see that under this definition, the operation + on pointed
graphs is both associative and commutative.

C.2 Output Permutation

Recall Definition 8.18. There, we also permited a permutation to change
which vertex has the “output device” label. This kind of permutation is
not required for the monotonic sensor systems (Appendix A.4) considered in
this book, but it is needed for the general theory, and it is used explicitly
in [DJR]. We formalize this notion here.

We define an operation called output permutation on pointed graphs (Ap-
pendix C.1). The effect of this operation is to choose a new distinguished
vertex. For example, for a graph & with distinguished point u,, we could
choose a new distinguished vertex u;. We represent this operation by

(G u,) — (Gyuy).

We call (G, uy) an output permutation of (G, u,).

Now, following Appendix A.2.1, let us call our existing notion of permu-
tation (Definition 8.18) by the name verter permutation (to distinguish it
from outpul permutation). It is possible to compose output permutations
and vertex permutations. We adopt

6"We must be careful not to confuse a pointed graph with a pointed sensor system

(Definition 8.20).
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Convention C.62 We use the term permutation to include both oulput per-
mutations and vertex permutations. Similarly, we will use the operator™ for
any permutation.

This convention is necessary to make combination and permutation com-
mute in general.

C.3 Discussion

In this appendix (A.4-A.4), we have made sure that combination (the +

operation) and permutation (the * operation) commute. So, for example, for

any sensor system S, have ensured that S*+coMM(-) = <S—|—COMM(-)> ,i.e.,
we can do the permutation and combination in any order. Second we have
ensured that the combination operation + is commutative and associative.
Third, in Definition 6.8, for the reduction <; (see generalized Definition 6.10)
we have given the single edge e in COMM(-) enough bandwidth so that it still
works when we switch it (e) around using permutation. Hence, the sensor
system (@ + coMM(S))* in Equation (47) may be implemented as the sensor
system () permuted in an arbitrary way, plus one extra data path whose
bandwidth is that of the largest flow in S.
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D

On Alternate Geometric
Models of Information
Invariants

We have presented a geometric model of information invariants. I am
grateful to John Canny and Jim Jennings for suggesting that I provide an
“abstract” example of information invariants, using the language and con-
cepts developed in [DJ]. The resulting model is somewhat different in flavor
from that of section 5.4.1.

Here is a alternate geometric model for an example of information in-
variance. Let U be an arrangement of perceptual equivalence classes, as
in [DJ; 5.1]. A simple control strategy may be modeled as a subgraph of the
RR-graph [DJ3] on U. Now consider the lattice of perceptual equivalence
classes formed by fixing the task environment and varying the sensing map,
as in [DJ; 5.2]. Let & and V be two arrangements of perceptual equivalence
classes in the lattice. Then there is an information invariant for &/ and V
when they have a common coarsening ® W, together with a control strategy
on W. Note that by construction, this control strategy agrees on the overlap
of U and V.

This example is simple; it remains to develop and exploit this geometric
model for other kinds of information invariants.

68 A coarsening of Y and V is a partition W such that both ¢ and V are finer than W.
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E

A Non-Geometric Formulation
of Information Invariants

There are several places where we have exploited the geometric structure
of robotics problems in constructing our framework. First, our sensors are
geometrical (in that they measure geometric quantities). Second, the con-
figuration of a sensor is geometrical, in that each component is physically
placed and oriented in physical space.

It is of some interest to derive an “abstract” version of our framework in
which geometry plays no role.®® Such a framework would be something like
a “logical” framework.

It is not hard to formulate our approach in a geometry-free manner. First
one would say that the “value” or the “output” of a sensor is simply a value in
some set. Next, one would replace the configuration space C' of a component
by any set of the form

C ={z|z is a location. }. (48)

(' can be taken to have no structure whatsoever. All the definitions, construc-
tions, and proofs of section 5.4.1 then go through mutatis mutandis: there
is no geometry anywhere. In particular, our (formerly geometric) codesig-
nation constraints now reduce to Chapman’s (propositional) codesignation
constraints [Cha).

59T am grateful to Stan Rosenschein for encouraging me to develop this generalization.
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It is now worth asking, what are the implications for section 8.10.47 1t is
easy to extend the definition of a simulation function ), for a sensor system
U: one obtains a set map y : C¢ — R where C' is as in (48), and R is an
arbitrary set. At this point we lose the algebraic properties we exploited to
derive the algorithms of section 8.10.4. Hence our algorithms do not obtain
when we remove the geometric structure. In particular, we lose our main
computational result, lemma 9.52. It seems plausible, however, that other
deductive mechanisms might be used, instead, to obtain similar results in
the abstract (non-geometric) case.

137



F

Provable Information
Invariants with Performance
Measures

F.1 Kinodynamics and Trade-Offs

It is possible to develop provable information invariants in the special case
where we have performance measures. Consider once again the information
invariants discussed above in Section 2.1. That these invariants Equation (1)
are related to kinodynamics [CDRX,DX1,DX2] should come as no surprise,
since the execution time for a control strategy is taken as “cost”. In [Xa], Pat
Xavier introduced a new algorithmic mechanism for measuring kinodynamic
trade-offs (see [DX3] for a brief description). These techniques were used
to quantify the trade-offs between planning complexity, executor complexity,
and “safety” (clearance). Essentially, Xavier considers how closely (e,.) one
can approximate an optimal-time trajectory and how much “safety” e_.—in
the sense of headway—1is required to execute the approximate solution with
an uncertain control system. Xavier obtained “equicomplexity” curves in
the €,.-€¢, plane. These curves may be interpreted as follows. For a fixed
“complexity” r (which may be equivalently viewed as (i) the running time
of the planner, (ii) the space requirements of the planner, or (iii) the dis-
cretization density of the phase space for the dynamical system representing
the robot), Xavier’s planner obtains a kinodynamic solution which satisfies
a one-parameter family of approximations of the form
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¢r = fr(es); (49)

where f, is a function conditioned on complexity r. Hence (49) represents
an information invariant as well, and, if we view the “following distance” d
as being similar to the clearance parameter €, such kinodynamic methods
appear attractive. We believe that these methods could be used to prove
information invariants like (1); while they require specific assumptions about
the dynamics and geometry, they are quite general in principle. Pursuing
such theorems is a fruitful line of future research.

Kinodynamic trade-offs are one source of information invariants, and one
may even find provable, rigorous characterizations for information questions
therein (eg., [DX3, Xa]). However, there is something a bit disatisfying about
this line of attack. First, it makes controls, not sensing, the senior partner,
much in the same way that in the [LMT] theory (see [Donl]), recognizabil-
ity is a second-class citizen compared with reachability. In [LMT], this is a
consequence of a bias towards sensorless manipulation [EM]; in kinodynam-
ics, it 1s a consequence of model-based control. Second, kinodynamics relies
on a measure of cost (in this case, time), and hence the results emphasize
performance, not competence.
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