
1

Multicast and Scribe
Jeff Chase

Duke University
(Thanks to Adolfo Rodriguez and Ben Zhao)

Multicast Trees
The basic idea

ServerServerG

G

G

G

G

G

G

G

G

G

Multiple unicasts Single multicast

Rodriguez

Applications that need
multicast

• One way, single sender: “one-to-many”
– TV – streaming apps (NCAA games)
– Non-interactive learning
– Database update
– Information dissemination

• Two way, interactive, multiple sender: “many-to-many”
– Teleconference
– Interactive learning

Rodriguez

Multicast Routing
• Naïve approach: flooding (controlled broadcast)
• Better: form a spanning tree with the sender at the

root, spanning all the members of a multicast group.

Rodriguez

Multicast Trees
e.g. a teleconference

Sender/Speaker
Multicast Group (S1,G)S1

Class
D

S1

R

Rodriguez

Multicast Trees
Multiple source trees

Sender/Speaker
Multicast Group (S2,G)

S2

Class
D

S2

R

Rodriguez

2

Multicast Forwarding is
Sender-specific

R

G S1
S2

2,3
1,3

1
2

Group
Address

Src
Address

Src
Interface

Dst
Interface

S2 G

S1 G 1 2
3

2 1

3
Rodriguez

Distance-vector Multicast
RPB: Reverse-Path Broadcast

• Uses existing unicast shortest path routing table.
• If packet arrived through interface that is the

shortest path to the packet’s SA, then forward
packet to all interfaces.

• Else drop packet.

Rodriguez

Distance-vector Multicast
RPB: Reverse-Path Broadcast

Sender/Speaker
Multicast Group (S1,G)S1

LAN

S1 1

Address Port
Unicast

DV Routing
Table

1

2
3

Shortest Path to
Source

Q: Is it shortest path
from source?

Rodriguez

Distance-vector Multicast
RPB: Reverse-Path Broadcast

Sender/Speaker
Multicast Group (S1,G)S1

LAN

Designated Parent
Router:

One parent router
picked per LAN (one
“closest” to source).

Rodriguez

Distance-vector Multicast
RPM: Reverse-Path Multicast

• RPM = RPB + Prune
• RPB used when a source starts to send to a new group

address.
• Routers that are not interested in a group send prune

messages up the tree towards source.
• Prunes sent implicitly by not indicating interest in a

group.
• DVMRP works this way.

Rodriguez

IP Multicast: Trees and
Addressing

• All members of the group share the same “Class
D” Group Address.

• An end-station “joins” a multicast group by
(periodically) telling its nearest router that it
wishes to join (uses IGMP – Internet Group
Management Protocol).
– An end station may join multiple groups.

• Routers maintain “soft state” indicating which
end-stations have subscribed to which groups.

• IGMP itself does not deal with the multicast
routing problem.
– DVMRP, PIM

Rodriguez

3

Link State Multicast
• MOSPF (Multicast OSPF)
• Use IGMP to determine LAN members
• Flood topology/group changes
• Each router gets complete topology, group

membership
– Compute shortest path spanning tree
– Recompute tree every time topology changes
– Add/delete links if membership changes

• Scalability concerns similar to OSPF
– Overhead of flooding

Rodriguez

Protocol Independent
Multicast

• PIM-DM (Dense Mode) uses RPM.
• PIM-SM (Sparse Mode) designed to be more

efficient that DVMRP.
– Routers explicitly join multicast tree by sending

unicast Join and Prune messages.
– Routers join a multicast tree via a RP (rendezvous

point) for each group.
– Several RPs per domain (picked in a complex way).
– Provides either:

• Shared tree for all senders (default).
• Source-specific tree.

Rodriguez

Multicast: Issues
• How to make multicast reliable?
• What service model, e.g., delivery ordering?

– Much work in group communication (CATOCS)
• How to implement flow control?
• How to support/provide different rates for different

end users?
• How to secure a multicast conversation?
• What does end-to-end mean here?
• Will IP multicast become widespread?

The End-to-end Challenge
• Keep the network simple & robust
• Rely upon end-to-end adaptation
• Layer reliability on top of IP multicast…or not
• Unlike TCP, RM has to cope with

– Scale
– Heterogeneity among receivers

• Been trying for a decade
– This is a HARD problem

Rodriguez/S. Deering

Application-Layer Multicast
• IP multicast is not enough.

– Inter-domain multicast routing not widely deployed.
– Topology-aware, but not reliable.
– No success in deploying Reliable Internet Multicast

• Interest in overlay multicast began with Hui
Zhang@CMU, and a few others, in late 1990s.
– Conference telecasts, etc.
– Now dozens of papers

• Several deployed systems and broadcast/multicast
services offered by CDNs.

• Single-source, multi-source, meshes, speed
differences, reliability, resource management, etc.

• How to structure the overlay?

Scribe
• Scribe is a scalable application-level multicast

infrastructure built on top of Pastry
• Provides topic based publish-subscribe service.

– Provides best-effort delivery of multicast
messages

– Fully decentralized
– Supports large number of groups
– Supports groups with a wide range of size
– High rate of membership turnover (churn?)

4

API’s for Scribe
Pastry’s API
• Pastry exports

– Route(msg, key)
– Send(msg, IPAddr)

• Application’s build on Pastry
must exports
– Deliver(msg, key)
– Forward(msg, key, nextid)

Scribe’s API
• Create(credentials, topicId)
• Subscribe(credentials,

topicId, evtHandler)
• Unsubscribe(credentials,

topicId)
• Publish(credentials, topicId,

event)

Rodriguez

Scribe API
• create (credentials, group-id)

– create a group with the group-id
• join (credentials, group-id, message-handler)

– join a group with group-id.
– Published messages for the group are passed to the

message handler
• leave (credentials, group-id)

– leave a group with group-id
• multicast (credentials, group-id, message)

– publish the message within the group with group-id
credentials are used throughout for access control.

Rodriguez

The Pastry API
• Operations exported by Pastry

– nodeId = pastryInit(Credentials,Application)
– route(msg,key)

• Operations exported by the application working above
Pastry
– deliver(msg,key)
– forward(msg,key,nextId)
– newLeafs(leafSet)

Rodriguez

Scribe on Pastry
• Use Pastry to manage topic/group creation,

subscription, and to build a per-topic multicast tree
used to disseminate the events published in the topic.

• topicId = hash(topic name + creator name). Hash
function should be collision resistant. E.g., SHA-1

• Each topic will have a rendezvous point, which is a
node with nodeid closest to the topicId.
– Replicate across the leaf set

• Multicast tree is rooted at the rendezvous point.
– Union of all Pastry/DHT paths from group

members to the rendezvous point.
– Do DHT/Pastry proximity heuristics result in an

efficient multicast tree?

Pastry
• Routes based on ‘digits’
• Similar to Chord, CAN, and Tapestry
• Each hop takes you one digit closer to your

destination
• Improves on locality by finding the ‘closest’ node to

you with the same prefix
• Number of nodes from which decreases exponentially

as you get closers to the destination

Pastry: Properties
• NodeId randomly assigned from

{0, .., 2128-1}
• b, |L| are configuration parameters

Under normal conditions:
1. A pastry node can route to the numerically closest

node to a given key in less than log2b N steps
2. Despite concurrent node failures, delivery is

guaranteed unless more than |L|/2 nodes with
adjacent NodeIds fail simultaneously

3. Each node join triggers O(log2b N) messages

Rodriguez

5

Pastry Node State
Set of nodes with |L|/2
smaller and |L|/2 larger
numerically closest NodeIds

|M| “physically” closest
nodes

Prefix-based routing
entries

Rodriguez

Pastry: Routing Table
• NodeIds are in base 2b

• Several rows – one for each prefix of local NodeId
(Log2b N populated on average)

• 2b – 1 columns – one for each possible digit in the
NodeId representation

b defines the tradeoff:
(Log2b N) x (2b – 1) entries Vs. Log2b N routing hops

Rodriguez

Pastry Proximity
• Application provides the “distance” function
• Invariant: “All routing table entries refer to a node

that is near the present node, according to the
proximity metric, among all live nodes with an
appropriate prefix”

• Invariant maintained on self-organization

Rodriguez

Messaging Distance

b=4; |L|=16; |M|=32; 200,000 lookups; Random end points

Rodriguez

Quality of Routing Tables

b=4; |L|=16; |M|=32; 5000 New Nodes

Rodriguez

Scribe Node
A Scribe node

– May create a group
– May join a group
– May be the root of a multicast tree
– May act as a multicast source

B. Zhao

6

Scribe messages
• Scribe messages

– CREATE
• create a group

– JOIN
• join a group

– LEAVE
• leave a group

– MULTICAST
• publish a message to the group

B. Zhao

Scribe Group
• A Scribe group

– Has a unique group-id
– Has a multicast tree associated with it for

dissemination of messages
– Has a rendezvous point which is the root of the

multicast tree
– May have multiple sources of multicast messages

B. Zhao

Scribe Multicast Tree
• Scribe creates a per-group multicast tree rooted at the

rendezvous point for message dissemination
• Nodes in a multicast tree can be

– Forwarders
• Non-members that forward messages
• Maintain a children table for a group which contains

IP address and corresponding node-id of children
– Members

• They act as forwarders and are also members of the
group

B. Zhao

Create Group
• Create Group

– Scribe node sends a CREATE message with the
group-id as the key

– Pastry delivers the message to the node with node-
id numerically closest to group-id, using deliver
method

– This node becomes the rendezvous point
– deliver method checks and stores credentials and

also updates the list of groups

B. Zhao

GroupID
• Is the hash of the group’s textual name concatenated

with its creator’s name
• Making creator the Rendez-Vous point

– Pastry nodeID be the hash of the textual name of
the node and a groupID can be the concatenation
of the nodeID of the creator and the hash of the
textual name of the group

• They claim this improves performance with good
choice of creator

B. Zhao

Join Group
• Join Group

– Scribe node sends a JOIN message with the group-id as
the key

– Pastry routes this message to the rendezvous point using
forward method

• If an intermediate node is already a
forwarder

– adds the node as a child
• If an intermediate node is not a forwarder

– creates a child table for the group, and adds the
node

– sends a JOIN towards the rendezvous point.
• terminates the JOIN message from the child

B. Zhao

7

Join group

1100 1101

0100

1001 0111

new node

new noderoot

B. Zhao

Leave Group
• Leave Group

– Scribe node records locally that it left the group
– If the node has no children in its table, it sends a

LEAVE message to its parent
• The message travels recursively up the

multicast tree
• The message stops at a node which has children

after removing the departing node

B. Zhao

(1) forward(msg, key, nextID)
(2) switch msg.type is
(3) JOIN: if !(msg.group in groups)
(4) group = groups U msg.group
(5) route(msg,msg.group)
(6) groups[msg.group].children U msg.source
(7) nextId = null // Stop routing original message

(1) deliver(msg, key)
(2) switch msg.type is
(3) CREATE: groups = groups U msg.group
(4) JOIN: groups[msg.group].children U msg.source
(5) MULTICAST: ∀ node in groups[msg.group].children
(6) send(msg, node)
(7) if memberOf(msg.group)
(8) invokeMsgHandler(msg.group, msg)
(9) LEAVE: groups[msg.group].children -= msg.source
(10) if (|groups[msg.group].children| = 0)
(11) send(msg.groups[msg.group].parent

B. Zhao

Multicast Message
• Multicast a message to the group

– Scribe node sends MULTICAST message to the rendezvous
point

– A node caches the IP address of the rendezvous point so that
it does not need Pastry for subsequent messages

– Single multicast tree for each group
– Access control for a message is performed at the rendezvous

point

B. Zhao

Multicast message

sender

01111001

11011100

0100

root
member

member

B. Zhao

Multicast Tree Repair I
• Broken link detection and repair

– Non-leaf nodes send heartbeat message to children
– Multicast messages serve as implicit heartbeat
– If child does not receive heartbeat message

• assumes that the parent has failed
• finds a new route by sending a JOIN message to

the group-id, thus finding a new parent and
repairing the multicast tree

B. Zhao

8

Multicast Tree Repair

01111001

0100

11011100

root

1111

B. Zhao

Reliablity
• Non-leaf nodes in the tree sends HeartBeat (HB) msgs to its

children.
• If a node fails to receive HB msgs, it routes a (SUBSCRIBE,

topicId) msg and attach to a new parent.
• Avoid root failure by replicating the topicId across k closest

nodes to the root node in the nodeid space.
• Children table entries are discarded unless refresh msgs

received from children periodically.
• Scribe provides best-effort service, events may be out of

order. Reliable services can be built on top of Scribe.

B. Zhao

Multicast Tree Repair II
• Rendezvous point failure

– The state associated with a rendezvous point is
replicated across k closest nodes

– When the root fails, the children detect the
failure and send a JOIN message which gets
routed to a new node-id numerically closest to
the group-id

• Fault detection and recovery is local and
accomplished by sending minimal messages

B. Zhao

Stronger Reliability
• Scribe provides reliable, ordered delivery only if

there are no faults in the multicast tree
• Scribe provides a mechanism to implement stronger

reliability
– Applications built on top of Scribe should provide

implementation of certain upcall methods to
implement stronger reliability…

B. Zhao

Reliability API
• forwardHandler(msg)

– invoked by Scribe before the node forwards a multicast
message to its children

• joinHandler(JOINmsg)
– invoked by Scribe after a new child has been added to one

of the node's children tables
• faultHandler(JOINmsg)

– invoked by Scribe when a node suspects that its parent is
faulty

The messages can be modified or buffered in these handlers to implement
reliability

B. Zhao

Example, Reliable delivery
• forwardHandler

– Root assigns a sequence number to each message, such that
messages are buffered by root and nodes in multicast tree

• faultHandler
– Adds the last sequence number, n, delivered by the node to

the JOIN message
• joinHandler

– Retransmits buffered messages with sequence numbers
above n to new child

Messages must be buffered for an amount of time that exceeds the
maximal time to repair the multicast tree after a TCP connection
breaks.

B. Zhao

9

Scribe Results

• Experiments
– Compare the delay, node and link load with IP multicast
– Scalability test with large number of small groups

• Setup
– Network topology with 5050 routers GaTech random

graph generator using transit-stub model
– Number of scribe nodes: 100,000
– Number of groups: 1500
– Group Size: minimum 11 maximum 100,000

B. Zhao

Methodological Issues
• Simulation via their own packet-level simulator
• Only considers propagation delay
• Does not take into account queuing delay or packet

losses!
• 100,000 nodes!
• Created 1,500 with very varied group sizes

Rodriguez

Delay Penalty
• Delay Penalty

– Measured the distribution of delays to deliver a message to each
member of a group using both Scribe and IP multicast

– Measure Ratio of Average Delay (RAD)
• 50% groups 1.68
• max: 2

– Measure Ratio of Maximum Delay (RMD)
• 50% of groups: 1.69
• Max: 4.26

• The message delivery delay is more in Scribe compared to IP Multicast
– Only in 2.2% of groups it is lower

B. Zhao

Delay Penalty

Cumulative distribution delay penalty relative to IP multicast per group
(standard deviation was 62 for RAD and 21 for RMD)

Node Stress

• Node Stress
– Measure the number of groups with non-empty children

tables for each node
– Measure the number of entries in the children table in

each node
The mean number of non-empty children tables per node
is only 2.4 although there are 1500 groups, median is 2

• Results indicate Scribe does a good job of partitioning and
distributing the load. This is one of the factors that ensures
scalability.

Node Stress I

Number of children pre Scribe node
(average standard deviation was 58)

10

Node Stress II

Number of table entries per Scribe node
(average standard deviation was 3.2)

Link Stress
• Link Stress

– Measure the number of packets that are sent over each link
when a message is multicast to each of the 1500 groups

Measured mean number of messages per link
• Scribe : 2.4
• IP Multicast : 0.7

Maximum link stress
• Scribe: 4031
• IP multicast: 950

Scribe Link stress = 4 x IP Multicast Stress

Link Stress

Link stress for multicasting a message to each of 1,500 groups
(average standard deviation was 1.4 for Scribe and 1.9 for IP multicast)

Bottleneck Remover

• All nodes may not have equal capacity in terms of
computational power and bandwidth

• Under high load conditions, the lower capacity nodes become
bottlenecks

• Solution: Offload children to other nodes
– Choose the group that uses the most resources
– Choose a child of this group that is farthest away
– Ask the child to join its sibling which is closest in terms

of delay
• This gives an improved performance
• Increases link stress for joining

Bottleneck Remover

Number of children table entries per Scribe node with the bottleneck remover
(average standard deviation was 57)

Scalability Test
• Scalability test with many small groups

– 30000 groups with 11 members
– 50000 groups with 11 members

• Scribe Multicast Trees are not efficient for small groups because it
creates trees with long paths with no branching

• Scribe Collapse algorithm
– Collapses paths by removing nodes

• not members of the group
• only have one entry in the group’s children table

– Reduce average link stress from 6.1 to 3.3, average number of
children per node from 21.2 to 8.5

