
Handling Churn in a DHT

Sean Rhea, Dennis Geels,
Timothy Roscoe, and John Kubiatowicz

UC Berkeley and Intel Research Berkeley

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

What’s a DHT?

• Distributed Hash Table
– Peer-to-peer algorithm to offering put/get interface
– Associative map for peer-to-peer applications

• More generally, provide lookup functionality
– Map application-provided hash values to nodes
– (Just as local hash tables map hashes to memory locs.)
– Put/get then constructed above lookup

• Many proposed applications
– File sharing, end-system multicast, aggregation trees

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

How DHTs Work

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

put(k1,v1) get(k1)

k1

v1

k1,v1

How do we
ensure the put

and the get
find the same

machine?

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Step 1: Partition Key Space

• Each node in DHT will store some k,v pairs
• Given a key space K, e.g. [0, 2160):

– Choose an identifier for each node, idi ∈ K,
uniformly at random

– A pair k,v is stored at the node whose identifier
is closest to k

0 2160

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Step 2: Build Overlay Network

• Each node has two sets of neighbors
• Immediate neighbors in the key space

– Important for correctness
• Long-hop neighbors

– Allow puts/gets in O(log n) hops

0 2160

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Step 3: Route Puts/Gets Thru Overlay

• Route greedily, always making progress

0 2160

k

get(k)

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

How Does Lookup Work?

0…

10…

110…

111…

Lookup ID

Source

Response

• Assign IDs to nodes
– Map hash values to node

with closest ID

• Leaf set is successors
and predecessors
– All that’s needed for

correctness

• Routing table matches
successively longer
prefixes
– Allows efficient lookups

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

How Bad is Churn in Real Systems?

50% < 2.4 minutesKazaaGDS03
50% < 60 minutesOvernetBSV03
50% < 1 minuteFastTrackSW02
31% < 10 minutesGnutella, NapsterCLL02
50% < 60 minutesGnutella, NapsterSGG02

Session TimeSystems ObservedAuthors

time
arrive depart arrive depart

Session
Time

Lifetime

An hour is an incredibly short MTTF!

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Can DHTs Handle Churn?
A Simple Test

• Start 1,000 DHT processes on a 80-CPU cluster
– Real DHT code, emulated wide-area network
– Models cross traffic and packet loss

• Churn nodes at some rate
• Every 10 seconds, each machine asks:

“Which machine is responsible for key k?”
– Use several machines per key to check consistency
– Log results, process them after test

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Test Results
• In Tapestry (the OceanStore DHT), overlay partitions

– Leads to very high level of inconsistencies
– Worked great in simulations, but not on more realistic network

• And the problem isn’t limited to Tapestry:

FreePastry MIT Chord

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

The Bamboo DHT
• Forget about comparing Chord-Pastry-Tapestry

– Too many differing factors
– Hard to isolate effects of any one feature

• Instead, implement a new DHT called Bamboo
– Same overlay structure as Pastry
– Implements many of the features of other DHTs
– Allows testing of individual features independently

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

How Bamboo Handles Churn
(Overview)

1. Chooses neighbors for network proximity
– Minimizes routing latency in non-failure case

2. Routes around suspected failures quickly
– Abnormal latencies indicate failure or congestion
– Route around them before we can tell difference

3. Recovers failed neighbors periodically
– Keeps network load independent of churn rate
– Prevents overlay-induced positive feedback cycles

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Routing Around Failures

• Under churn, neighbors may have failed
• To detect failures, acknowledge each hop

0 2160

k

ACK
ACK

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Routing Around Failures

• If we don’t receive an ACK, resend through
different neighbor

0 2160

k

Timeout!

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Computing Good Timeouts
• Must compute timeouts carefully

– If too long, increase put/get latency
– If too short, get message explosion

0 2160

k

Timeout!

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Computing Good Timeouts
• Chord errs on the side of caution

– Very stable, but gives long lookup latencies

0 2160

k

Timeout!

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Calculating Good Timeouts
• Use TCP-style timers

– Keep past history of latencies
– Use this to compute timeouts

for new requests
• Works fine for recursive

lookups
– Only talk to neighbors, so

history small, current

RecursiveIterative

• In iterative lookups, source
directs entire lookup
– Must potentially have good

timeout for any node

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Computing Good Timeouts

• Keep past history of latencies
– Exponentially weighted mean, variance

• Use to compute timeouts for new requests
– timeout = mean + 4 × variance

• When a timeout occurs
– Mark node “possibly down”: don’t use for now
– Re-route through alternate neighbor

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Timeout Estimation Performance

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Recovering From Failures

• Can’t route around failures forever
– Will eventually run out of neighbors

• Must also find new nodes as they join
– Especially important if they’re our immediate

predecessors or successors:

0 2160

responsibility

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Recovering From Failures

• Can’t route around failures forever
– Will eventually run out of neighbors

• Must also find new nodes as they join
– Especially important if they’re our immediate

predecessors or successors:

0 2160

old responsibility

new responsibility

new node

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Recovering From Failures
• Obvious algorithm: reactive recovery

– When a node stops sending acknowledgements,
notify other neighbors of potential replacements

– Similar techniques for arrival of new nodes

B0 2160C DAA

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Recovering From Failures
• Obvious algorithm: reactive recovery

– When a node stops sending acknowledgements,
notify other neighbors of potential replacements

– Similar techniques for arrival of new nodes

B0 2160C DAA

B failed, use D B failed, use A

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

The Problem with Reactive Recovery
• What if B is alive, but network is congested?

– C still perceives a failure due to dropped ACKs
– C starts recovery, further congesting network
– More ACKs likely to be dropped
– Creates a positive feedback cycle

B0 2160C DAA

B failed, use D B failed, use A

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

The Problem with Reactive Recovery
• What if B is alive, but network is congested?
• This was the problem with Pastry

– Combined with poor congestion control, causes
network to partition under heavy churn

B0 2160C DAA

B failed, use D B failed, use A

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Periodic Recovery
• Every period, each node sends its neighbor

list to each of its neighbors

B0 2160C DAA

my neighbors are A, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Periodic Recovery
• Every period, each node sends its neighbor

list to each of its neighbors

B0 2160C DAA

my neighbors are A, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Periodic Recovery
• Every period, each node sends its neighbor

list to each of its neighbors
– Breaks feedback loop

B0 2160C DAA

my neighbors are A, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Periodic Recovery
• Every period, each node sends its neighbor

list to each of its neighbors
– Breaks feedback loop
– Converges in logarithmic number of periods

B0 2160C DAA

my neighbors are A, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Periodic Recovery Performance
• Reactive recovery expensive under churn
• Excess bandwidth use leads to long latencies

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Virtual Coordinates
• Machine learning algorithm to estimate latencies

– Distance between coords. proportional to latency
– Called Vivaldi; used by MIT Chord implementation

• Compare with TCP-style under recursive routing
– Insight into cost of iterative routing due to timeouts

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Proximity Neighbor Selection (PNS)
• For each neighbor, may be many candidates

– Choosing closest with right prefix called PNS
– One of the most researched areas in DHTs
– Can we achieve good PNS under churn?

• Remember:
– leaf set for correctness
– routing table for efficiency?

• Insight: extend this philosophy
– Any routing table gives O(log N) lookup hops
– Treat PNS as an optimization only
– Find close neighbors by simple random sampling

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

PNS Results
(very abbreviated--see paper for more)

• Random sampling
almost as good as
everything else
– 24% latency

improvement free
– 42% improvement for

40% more b.w.
– Compare to 68%-84%

improvement by using
good timeouts

• Other algorithms more
complicated, not much
better

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Conclusions/Recommendations
• Avoid positive feedback cycles in recovery

– Beware of “false suspicions of failure”
– Recover periodically rather than reactively

• Route around potential failures early
– Don’t wait to conclude definite failure
– TCP-style timeouts quickest for recursive routing
– Virtual-coordinate-based timeouts not prohibitive

• PNS can be cheap and effective
– Only need simple random sampling

For code and more information:
bamboo-dht.org

