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Abstract

We introduce a new class of mechanisms, robust mecha-
nisms, that is an intermediary between ex-post mechanisms
and Bayesian mechanisms. This new class of mechanisms
allows the mechanism designer to incorporate imprecise esti-
mates of the distribution over bidder valuations in a way that
provides strong guarantees that the mechanism will perform
at least as well as ex-post mechanisms, while in many cases
performing better. We further extend this class to mecha-
nisms that are with high probability incentive compatible and
individually rational, e-robust mechanisms. Using techniques
from automated mechanism design and robust optimization,
we provide an algorithm polynomial in the number of bidder
types to design robust and e-robust mechanisms. We show
experimentally that this new class of mechanisms can signif-
icantly outperform traditional mechanism design techniques
when the mechanism designer has an estimate of the distribu-
tion and the bidder’s valuation is correlated with an externally
verifiable signal.

Introduction

Auctions are one of the fundamental tools of the modern
economy for allocating resources. They are used to allo-
cate online ad space, offshore oil drilling rights, famous
artwork, small and medium lift capacity to planetary or-
bit, government supply contracts, FCC spectrum licenses,
and almost limitless numbers of other things, large and
small. Further, the sizes of these markets are economically
enormous. In 2014, $10 billion dollars of ad revenue was
generated through automated auctions (Interactive Adver-
tising Bureau (IAB) 2015). In 2012, just four government
agencies—the Army, the Department of Homeland Security,
the Department of the Interior, and the Department of Vet-
eran Affairs—purchased $800+ million of commercial items
through auctions (Government Accountability Office 2013).
In 2014, NASA awarded contracts to Boeing and Space-X
worth $4.2 billion and $2.6 billion respectively through an
implicit auction process (NASA 2014). In an ongoing auc-
tion, the FCC is expected to allocate between $60 and $80
billion worth of broadcast spectrum. Given the economic
magnitudes involved, it is crucial that these auctions are im-
plemented optimally, for even small deviations from opti-
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mality can lead to millions of dollars worth of lost revenue,
inefficiencies in resource allocation, and overspending.

It has long been understood that revenue optimal auction
mechanisms are prior-dependent (also known as Bayesian)
mechanisms (Myerson 1981; Cremer and McLean 1985;
1988; Lopomo 2001), i.e., mechanisms that assume some
knowledge of the kinds of bidders that are likely to partic-
ipate. For a seller trying to maximize revenue by selling
a single item to independent bidders, she' needs to set a
reserve price below which she will not sell the item (My-
erson 1981), and this reserve price is dependent on her
belief about the bidders she is likely to face. However,
much of the focus of the algorithmic mechanism design
community has been on the approximate optimality of sim-
ple mechanisms (Bulow and Klemperer 1996; Hartline and
Roughgarden 2009; Roughgarden and Talgam-Cohen 2013;
Morgenstern and Roughgarden 2015), that is, mechanisms
that are either prior-independent or weakly prior-dependent
(this distinction will be made clear later on). This focus
is due to two factors. First, prior-dependent mechanisms
can be very brittle to mis-specified priors (Lopomo 2001;
Albert, Conitzer, and Lopomo 2015). That is to say, if a
prior-dependent mechanism is constructed using an incor-
rect prior it can perform much worse than simple mecha-
nisms (Hartline and Roughgarden 2009). Second, compe-
tition can be an effective substitute for knowledge of the
distribution (Bulow and Klemperer 1996), so instead of im-
plementing prior-dependent mechanisms, practitioners gen-
erally implement prior-independent mechanisms under the
assumption that there are many bidders, or that it will some-
how be possible to acquire new bidders

Unfortunately, in many auctions there is no feasible way
to acquire more bidders. When NASA is awarding contracts
to private space companies, they cannot generate more com-
panies with the expertise to provide lift capacity, nor can
Google find more bidders who are interested in advertising
on search results for obscure brand-related keywords. Thin
auctions are an actively recognized concern for many organi-
zations that use auction mechanisms. A Government Office
of Accountability report from 2013 (Government Account-
ability Office 2013) examining the use of reverse auctions by

'In this paper, we will use “he” to denote bidders and “she” to
denote mechanism designers/sellers.



four governmental organizations, found that of the 19,688
reverse auctions the organizations conducted in 2012 with
a total worth of $800+ million, over one-third had only a
single bidder. Further, the organizations discussed in the re-
port each voiced concern over the lack of competition as a
significant hindrance to the effective application of auctions.

In this paper, we develop a new class of mechanisms, ro-
bust mechanisms, that allow for some degree of uncertainty
in the distribution over the bidders types while still perform-
ing better than weakly prior-dependent mechanisms such as
ex-post mechanisms. We provide an algorithm for comput-
ing an optimal robust mechanism in polynomial time in the
number of bidder types by combining techniques from the
automated mechanism design literature (Conitzer and Sand-
holm 2002; 2004; Guo and Conitzer 2010; Sandholm and
Likhodedov 2015) and the literature on robust optimiza-
tion (Bertsimas and Sim 2004; Bergemann and Morris 2005;
Aghassi and Bertsimas 2006). This mechanism design algo-
rithm is primarily targeted at applications with few bidders,
or thin markets, due to exponential scaling in the number
of bidders. However, thin markets are likely to benefit the
most from these techniques (Bulow and Klemperer 1996;
Hartline and Roughgarden 2009), so we do not consider
this a significant negative. We then introduce the notion
of e-robust mechanisms, or mechanisms that guarantee with
high probability that the standard constraints of incentive
compatibility and individual rationality hold but allow for a
non-zero chance of violation. Finally, we show experimen-
tally that e-robust mechanisms can significantly outperform
other mechanism design procedures when the mechanism
designer estimates the distribution over a bidder’s type and
a correlated external signal.

Preliminaries

We consider a single monopolistic seller auctioning one ob-
ject, which the seller values at zero, to a single bidder whose
valuation is correlated with an external signal. The spe-
cial case of a single bidder and an externally verifiable sig-
nal captures many of the important aspects of this problem
while increasing ease of exposition relative to the case of
many bidders, and this setting has been used in the literature
on correlated mechanism design (McAfee and Reny 1992;
Albert, Conitzer, and Lopomo 2015; 2016) for this purpose.
The external signal can, but does not necessarily, represent
other bidders’ bids.

The bidder has a type € drawn from a finite set of discrete
types © = {1,...,|0|}. Further, the bidder has a valuation
function v : ©® — R that maps types to valuations for
the object. Assume, without loss of generality, that for all
0,0" € ©,if 0 > 0’ then v(0) > v(0"). The discrete external
signal is denoted by w € Q = {1,2,...,|Q|}. Throughout
the paper, we will denote vectors as bold symbols.

There is a probability distribution, 7r, over the types of
the bidder and external signal where the probability of type
and signal (6, w) is 7(6,w). The probability distribution can
be represented in many possible ways, but we will represent
it as a matrix. Specifically, the distribution is a matrix of
dimension |©| x |2| whose elements are all positive and sum
to one. Note that in contrast to much of the literature on

mechanism design, we do not require that the bidder type be
distributed independently of the external signal.

The distribution over the external signal w given 6 will
be denoted by the || dimensional vector m(-|f). We
will, in many cases, be primarily interested in the condi-
tional distribution over the external signal given the bidder’s
type, 7(-|#), so we will represent the full distribution as a
marginal distribution over ©, 7y, and a set of conditional
distributions over , 7w (-|-) = {=w(:|]1), 7(:|2), ..., w(-||O]) }.
Therefore, if the true distribution is 7, we will alternatively
represent it as {7y, 7(:|-)}.

A (direct) revelation mechanism is defined by, given the
bidder type and external signal (6, w), 1) a probability that
the seller allocates the item to the bidder and 2) a monetary
transfer from the bidder to the seller. We will denote the
probability of allocating the item to the bidder as p(d,w),
which is a value between zero and one, and the transfer from
the bidder to the seller as (0, w), where a positive value de-
notes a payment to the seller and a negative value a payment
from the seller to the bidder. We will denote a mechanism
as (p, x).

Definition 1 (Bidder’s Utility). Given a realization of the
external signal w, reported type 0' € O, and true type 0 €
©, the bidder’s utility under mechanism (p, x) is:

U0,0,w) =v0)p(0,w) —x(0,w)

Due to the well-known revelation principle (e.g., Gibbons
(1992)), the seller can restrict her attention to incentive com-
patible mechanisms, i.e., mechanisms where it is always op-
timal for the bidder to truthfully report his valuation. How-
ever, incentive compatibility can be specified in multiple
ways. For the sake of presentation, we will restrict our focus
to two of the most common, ex-post incentive compatibil-
ity and Bayesian incentive compatibility. Ex-post incentive
compatible mechanisms guarantee that for any realization
of the external signal, the bidder always finds it optimal to
report his value truthfully. In contrast, Bayesian incentive
compatible mechanisms only guarantee that, given the be-
liefs of the bidder over the external signal, the bidder will
have the highest expected utility if he reports truthfully: af-
ter seeing the realization of the external signal, he may regret
his report.

Definition 2 (Ex-Post Incentive Compatibility). A mecha-
nism (p, x) is ex-post incentive compatible (IC) if:

V0,0 € ©,w e Q:U0,0,w) > U(0,0,w)

Definition 3 (Bayesian Incentive Compatibility). A mecha-
nism (p, x) is Bayesian incentive compatible (IC) if:

V0,0’ € ©,>  w(wl)U(6,0,w) > > w(wlh)U(6,6',w)

weN weN

Bayesian incentive compatibility is a statement about the
beliefs of the bidder over the external signal, 7 (w|¢). Specif-
ically, it allows the seller to determine payments by lottery.
The lottery that bidder ¢ faces can be dependent on his val-
uation, but the lottery itself is over the external signal (see
Albert, Conitzer, and Lopomo (2016) for a full discussion).



Bayesian incentive compatibility is a strict relaxation of ex-
post in the sense that any mechanism that is ex-post incentive
compatible is also Bayesian incentive compatible.

In addition to incentive compatibility, we are interested in
mechanisms that are individually rational, i.e., it is rational
for a bidder to participate in the mechanism. We will define
ex-post individual rationality (a bidder is never worse off
by participating in the mechanism) and ex-interim individ-
ual rationality (the bidder has non-negative expected utility
for participating in the mechanism). Again, ex-interim indi-
vidual rationality is a strict relaxation of ex-post.

Definition 4 (Ex-Post Individual Rationality). A mechanism
(p, ) is ex-post individually rational (IR) if:

Ve O,weN:UMB,0,w)>0

Definition 5 (Ex-Interim Individual Rationality). A mecha-
nism (p, x) is ex-interim individually rational (IR) if:

Vo€ O: ) mwl)UH,0,w) >0

weN

We will refer to mechanisms that satisfy ex-post individ-
ual rationality and incentive compatibility as ex-post mecha-
nisms and mechanisms that satisfy Bayesian incentive com-
patibility and ex-interim individual rationality as Bayesian
mechanisms. Bayesian mechanisms are what we have been
referring to as prior-dependent mechanisms, while ex-post is
weakly prior-dependent, i.e., only the objective function de-
pends on the distribution, not the constraints over incentive
compatibility and individual rationality.

To illustrate the importance of prior-dependent mecha-
nisms, it is necessary to review a few important results in
the literature on revenue maximization with correlated valu-
ation distributions when the distribution is perfectly known.

Definition 6 (Cremer-McLean Condition). The distribution
over types T, is said to satisfy the Cremer-McLean condition
if the set of beliefs associated with the bidder, {w(-10) : 6 €
O}, are linearly independent.

Theorem 1 (Cremer and McLean (1985)). If the Cremer-
McLean condition is satisfied by the distribution , then
there exists an ex-interim IR and ex-post IC mechanism that
extracts the full social surplus as revenue.

This result due to Cremer and McLean (1985) states that
under the apparently reasonable Cremer-McLean condition,
i.e., a condition that holds with probability one for a ran-
dom distribution, the mechanism designer can generate as
much revenue in expectation as if she knew the bidder’s val-
vation. This is a remarkable result and it can be relaxed
further, for both ex-post and Bayesian IC, by the results in
Albert, Conitzer, and Lopomo (2016).

Theorem 2 (Albert, Conitzer, and Lopomo (2016)). A
Bayesian IC and ex-interim IR mechanism can extract full
social surplus as revenue if and only if there exists a con-
vex function G : Rl — R such that for all § € O,
G(n(10)) = —v(0).

Consistent Sets of Distributions

While Theorems 1 and 2 make relatively weak assumptions
about the distributions in order to guarantee full revenue ex-
traction, they do require that the mechanism designer knows
the distribution exactly. If instead of precise knowledge
of the distribution of bidder types and external signals the
mechanism designer has an imprecise estimate of the distri-
bution, the prior-dependent mechanism can fail to be both
incentive compatible and individually rational. This failure
can be a significant problem for two reasons. First, if the
mechanism is not individually rational bidders will not par-
ticipate in the mechanism. If the market is thin, the loss
of even a single bidder can lead to significant decreases in
expected revenue, even relative to simple mechanisms (Bu-
low and Klemperer 1996). Second, if the mechanism is not
incentive compatible, the bidder may optimally choose to
mis-report his true valuation, leading both to biases in fu-
ture estimates of the distribution and difficulty in reasoning
about the performance of the mechanism, since it is unclear
a-priori how the bidder will report.

It is in this sense that Bayesian incentive compatible and
ex-interim individually rational mechanisms are, in gen-
eral, strongly prior-dependent. The mechanism depends not
only on the seller’s estimate of the distribution, but also the
bidder’s belief over the distribution. The consequences of
these being mis-aligned is not just slightly lower expected
revenue, as would be the case for weakly prior-dependent
mechanisms such as a second price auction with reserve; it
is a failure of the mechanism to maintain fundamental char-
acteristics (Hartline 2014; Albert, Conitzer, and Lopomo
2015). Therefore, unless the seller has perfect knowledge of
the bidder’s beliefs, standard mechanism design techniques
will leave only the option of using sub-optimal, weakly
prior-dependent mechanisms.

A more realistic assumption is that the distribution is not
perfectly known, but instead estimated. The seller estimates
the distribution 7t as 7. Assume that this estimation is im-
perfect, and that there exists a set of distributions that are
consistent with the estimated distribution.

Definition 7 (Set of Consistent Distributions). Let P(A) be
the set of probability distributions over a set A. Then the
space of all probability distributions over © x ) can be rep-
resented as the Cartesian product P(©) x []ycq P(£2). A
subset P(ft) = P({7g,7(-|")}) € P(O) X [[pco P(2)
is a consistent set of distributions for the estimated distri-
bution {79, #(:|-)} if the true distribution, {mg,(:|-)}, is
guaranteed to be in P(ft).

With a consistent set of distributions, we can relax the
notion of ex-interim IR and Bayesian IC by requiring that
the mechanism be IR and IC for all distributions in the con-
sistent set. However, since the distribution 7 is also pri-
vate information, by the revelation principle, the mechanism
designer can also elicit the true distribution from the bid-
der and condition the mechanism on the reported distribu-
tion. Therefore, we modify the definitions of the mecha-
nism, (p, x), such that they depend not only on the reported
type and external signal, but also the reported distribution
7’. We similarly modify the definition of bidder utility.



Definition 8 (Robust Individual Rationality). A mechanism
is robust individually rational for estimated bidder distri-
bution 7 and consistent set of distributions P(7) if for all
6 € © and ™ € P(7),

> w(wl)U (O, 7,0,m,w) >0
weN

Definition 9 (Robust Incentive Compatibility). A mecha-
nism is robust incentive compatible for estimated bidder dis-

tribution & and consistent set of distributions P (&) if for all
0,0 € © and &, 7’ € P(x),

Z m(w])U (0,7, 0,m,w) >

weN

> w(wl)UO, 7,0 7 w)

weN

Note that we can restrict our attention to settings where
the bidder only reports 7w’ € P(7) by setting the allocation
probability p to zero if the bidder reports 7w’ & P (7).

Robust Mechanisms

Existing mechanism design techniques are inadequate to op-
timize revenue over these situations. Specifically, Bayesian
mechanisms can have very unintuitive formulations consist-
ing of multiple lotteries over the value of the external signal
making it unlikely that a standard class of simple intuitive
mechanisms will be able to implement revenue efficient ro-
bust mechanisms. Therefore, we will combine techniques
from automated mechanism design and robust convex opti-
mization to automate the design of robust mechanisms.

Further, while it is theoretically possible to allow bidders
to report both their valuations and their beliefs, and design
optimal mechanisms given this joint report, standard auto-
mated mechanism design techniques require finitely spec-
ified input, and we are explicitly interested in infinite sets
of distributions. We will simplify the mechanism design
process by only considering mechanisms for which the pay-
ments, &, and probabilities of allocations, p, depend only on
the reported bidder types and the realization of the external
signal. While this is not without loss of generality, it will be
sufficient to significantly outperform ex-post mechanisms in
our experiments.

Definition 10 (Optimal Robust Mechanism). An optimal ro-
bust mechanism given an estimated distribution 7 and a
consistent set of distributions P(#) is a mechanism that is
an optimal solution to the following program:

(0 0
rg?g(;;ﬂ( ,w)a(6, w)
subject to

> 7 (@lO)U(,0,w) >0
weN

Z 7' (w]|)U(9,0,w) > Z 7' (w]|0)U (6,6 ,w)

weN weN
YV 0,0 €0, € P(#)
0<pB,w)<1l V 6€O,wecq

vV 0e0,n’ € P(#)

Note that the linear program in Definition (10) still con-
tains an infinite number of constraints over a, potentially,
non-convex set, and therefore is in general computationally
intractable. However, the following assumption allows com-
putational tractability.

Assumption 1. The set P(#) is such that for all € O,
P(#(:|0)) is a convex n-polyhedron where n is polynomial
in the number of bidder types.

Assumption 1 includes very reasonable cases such as
the case where for all § € © and w € Q, 7'(w|f) €
[7(w]0),7(w|6)]. Further, any set that does not satisfy As-
sumption 1 can be contained in a set that does. Therefore,
we can always make the assumption hold by using a larger
consistent set.

Theorem 3. For a given (p,x) and P(#) that satisfy As-
sumption 1, there exists a polynomial time algorithm that
determines whether there exists a 7' (-|0) € P(#(-|6)) such
that robust individual rationality or robust incentive com-
patibility is violated.

Proof. For each 6 € O, solve the following linear program

i, S @ION0(O0(e:6) 2 )

(D

subject to
7' (-0) € P(#(:|0))

Note that in the program (1), (p, x) are no longer variables
but coefficients. If (1) has an objective value of less than
0, then the robust IR constraint with distribution 7’ is vio-
lated. If the objective value is at least 0, there is no robust
IR constraint violated for 6.

There are |O| linear programs that must be solved, each
with a polynomial number of variables and constraints, due
to Assumption 1. Therefore, violated robust IR constraints
can be generated in polynomial time.

Similarly for robust incentive compatibility, the following
program, for all 6,6’ € ©, finds violated constraints:

min 3 (@l6) (0(0)p(e.0) — x(w.)
— W(O)p(w,8) — 2(w,6)))

subject to
7'(:0) € P(#(:|0))
O

Corollary 4. If P(#) satisfies Assumption 1, the optimal
robust mechanism can be computed in time polynomial in
the number of types of the bidder and external signal.

Proof. By Theorem 3, we can determine whether or not a
robust IR or robust IC constraint is violated in polynomial
time, and add the constraint to the linear program. There are
2|©]|9| variables in the linear program in Definition 10, and
there are 2|0||€2| non-IC and IR constraints.

Therefore, by the ellipsoid method, the optimal robust
mechanism can be computed in polynomial time (Kozlov,
Tarasov, and Khachiyan 1980). O



Note that Corollary 4 states that the optimal robust mech-
anism is polynomial in the number of bidder types, not the
number of bidders. The current formulation is exponential in
the number of bidders. However, as stated in the introduc-
tion, the advantage of prior-dependent mechanisms is pri-
marily for thin auctions, so we do not view this as a signifi-
cant weakness of this approach.

Since for ex-post mechanisms, incentive compatibility
and individual rationality are independent of the distribution,
it would be expected that when we have no useful informa-
tion about the distribution, the optimal robust mechanism
should be equivalent to the optimal ex-post mechanism. The
following proposition shows that this is indeed the case.

Proposition 5. If for all € ©, and w € Q, P(&) is such
that the distribution 7' (w'|0) = 1 if ' = w and 0 otherwise
is in P(#), then an optimal robust mechanism is an optimal
ex-post mechanism for the distribution 7.

Proof. 1If for all 8 € © and w € (), the distribution such
that 7/ (w’|0) = 1 if w’ = w and 0 otherwise is in P(#), the
robust IR constraints contain the following set of constraints

v(0)p(d,w) —z(0,w) >0 V weQ,0ec0
which implies ex-post IR. Conversely, ex-post IR implies
robust IR.

By an identical argument, the robust IC constraints imply
the ex-post IC constraints, and vice-versa. O

e-Robust Mechanisms

While, so far we have been assuming that there is a well
defined set, P(#), such that the mechanism designer can
guarantee that the true distribution, 7, is in the set, this is
unlikely to be a realistic assumption in practice. It is far
more reasonable that the mechanism designer would have a
set such that the true distribution is in the set with some high
probability. If this is the case, we can still design mecha-
nisms that are likely to outperform weakly prior dependent
mechanisms, such as ex-post mechanisms, by relaxing the
requirement that the mechanism be always incentive com-
patible and always individually rational. We will define the
set of e-consistent distributions as follows.

Definition 11 (Set of e-Consistent Distributions). A subset
Pu(wr) = Pel{o, 7(1)}) C P(O) x [Iyeo P(Q) is an
e-consistent set of distributions for the estimated distribu-
tion {7g, 7 (-|)} if the true distribution, {7y, (-|-)}, is in
P () with probability 1 — .

Now we can define the notion of e-robust individual ra-
tionality and incentive compatibility. These definitions are
analogous to Definitions 8 and 9.

Definition 12 (e-Robust Individual Rationality). A mecha-
nism is e-robust individually rational for estimated bidder

distribution 7 and e-consistent set of distributions P.(%) if
forall 8 € © and ™ € P(7),

> w(wlO)U (O, 7,0,m,w) >0
we
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Figure 1: The performance of the ex-post, e-robust, and
Bayesian mechanisms using the estimated distribution. All
revenue is scaled by the full social surplus, denoted as 1.
Note that the Number of Samples is in log scale. The param-
eters used were as follows: Correlation = .5, ¢ = .05. Each
experiment was repeated 200 times, and the 95% confidence
interval is included for the e-robust and ex-post mechanisms.
The Bayesian mechanism confidence interval is off the plot.

Definition 13 (e-Robust Incentive Compatibility). A mech-
anism is e-robust incentive compatible for estimated bidder
distribution 7 and e-consistent set of distributions P (%) if
forall 0,0 € © and 7w, ' € P.(%),

> w(wl)U O, 7,0, w) >

weN

Z 7(w|UG, 7,0, 7' w)
weN
Similarly to Definition 10, we can define the optimal e-
robust mechanism. Again, for tractability of mechanism de-
sign, and to obtain more practical mechanisms, we will re-
strict attention to mechanisms that only depend on the re-
ported bidder type and the external signal.

Definition 14 (Optimal e-Robust Mechanism). An optimal
e-robust mechanism given an estimated distribution 7 and
an e-consistent set of distributions P(7) is a mechanism
that is an optimal solution to the following program:

max Zfr(@, w)z(f,w)

z(0,w),p(0,w)

0,w

subject to
> 7 (wl)U,0,w) >0 V0 €O, € Pe(#)
weN
> A (wlO)U(0,0,w) > Y 7 (wlO)U (0.0, w)
weN weN

V 0,0 € ©,1 € P(%)
0<pH,w)<1 V #eB,we

Proposition 6. If P.(7) satisfies Assumption 1, the optimal
e-robust mechanism can be computed in time polynomial in
the number of bidder types and external signals.
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Figure 2: The performance of the robust and ex-post mechanisms using the estimated distribution. All revenue is scaled by the
full social surplus, which is denoted as 1. Shown are the 95% confidence intervals for the robust mechanism. For any variable
not explicitly shown the following values were used: Correlation = .5, € = .05

Experimental Results

Throughout the experiments, we have a single bidder with
type 6 € {1,2,...,10} and valuation v(#) = 6. The external
signal is w € {1,2,...,10}. We model the true distribution
as a categorical distribution with 10 x 10 elements, with each
element corresponding to a tuple (6, w).

There are not, to our knowledge, standard distributions to
test correlated mechanism design procedures available, so
we use a discretized bi-variate normal distribution. Specif-
ically, we discretize the area under the bi-variate standard
normal distribution between [—1.96,1.96] in both dimen-
sions as a 10 x 10 grid and normalize. We chose the bi-
variate normal distribution for its broad relevance to many
empirically observed distributions and the ability to easily
vary the correlation. Note that the bi-variate normal distri-
bution always satisfies the Cremer-McLean condition if the
correlation is positive.

To estimate the distribution, we sample from the true dis-
tribution and use Bayesian updating with a maximally unin-
formative Dirichlet prior (o« = [1, ..., 1]) to arrive at a Dirich-
let posterior over the distribution of bidder types and exter-
nal signals. We then calculate empirical confidence intervals
by sampling from the Dirichlet posterior and observing the
€/(2%10 % 10) and (1 — €/(2 * 10 % 10)) quantiles for each
element of the conditional distributions 7 (w|#) and use the
quantiles as the e-consistent set. Note that we do not simply
use the €/2 and (1 — €/2) quantiles due to jointly estimating
confidence intervals for 100 variables; the expression for the
quantiles above is based on applying a union bound.

For our experiments, we solve for the optimal ex-post,
e-robust, and Bayesian mechanisms given our estimated dis-
tribution 7t and our e-consistent set. Given that both the opti-
mal e-robust and Bayesian mechanisms can fail to be incen-
tive compatible and/or individually rational due to the differ-
ence between the estimated and true distribution, we com-
pute the optimal action for the bidder: either report truth-
fully, strategically misreport, or do not participate. We then
calculate the revenue accordingly.

In Figure 1, we show the performance of the optimal ex-
post, robust, and Bayesian mechanisms using our estimated
distribution as we increase the number of samples. We re-
port confidence intervals for both the ex-post mechanisms
and the robust mechanisms; however for the Bayesian mech-
anisms, the confidence intervals were off the chart. Fig-
ure 1 demonstrates how badly the Bayesian mechanism per-
forms when the distribution is not exactly known. Even af-
ter 10, 000 samples from the true distribution, the Bayesian
mechanism fails to outperform the ex-post mechanism. By
contrast, the optimal e-robust mechanism generates revenue
indistinguishable from the ex-post mechanism for low num-
bers of samples, while significantly outperforming the ex-
post mechanism starting at about 10, 000 samples.

In Figures 2a and 2b, we vary correlation and e with in-
creasing numbers of samples. As the bidder type and ex-
ternal signal are more highly correlated, the e-robust mech-
anism requires fewer samples to perform well, Figure 2a.
Also, we see that the e-robust mechanism is not very sensi-
tive to the choice of €, Figure 2b, a fact that we attribute to
being overly cautious in requiring all elements of the distri-
bution to be in the bounded intervals.

In Figure 2c, we bin some of the external signals together
in order to explore the trade-off between estimating a lower
dimensional distribution and constructing a mechanism over
the full information. Specifically, for the Signals = 2 case
we putall of w = {1,...,5} into one bin and w = {86, ..., 10}
to a second bin. Note the true signal still has 10 values, we
are just binning the observed signal. We find that for a low
number of samples, we do much better by binning the ex-
ternal signal, but, while difficult to see on the plot, at higher
numbers of samples, it is better to use the full distribution.

Note that we consider the results here to be lower bounds
on the performance of optimal e-robust mechanisms. We
assume a completely uninformative prior, increasing the re-
quired sample size. Further, we have used a naive distribu-
tion estimation procedure, so there is likely significant room
to improve upon the estimation.



Conclusion

We have presented a new paradigm in mechanism design
that formally addresses the problem of uncertainty about
the bidder distribution. We do this by introducing a new
notion of individual rationality and incentive compatibility
that spans a spectrum between ex-post and Bayesian notions
and demonstrate that this class of mechanisms can be op-
timized over efficiently. We further relax these notions to
allow for some probability of mechanisms failing to be IR
or IC. While much work needs to be done in exploring the
performance of these mechanisms, experimental results sug-
gest that they may generate significantly higher revenue than
either ex-post or Bayesian mechanisms when the underlying
correlated distribution is estimated.
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