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Abstract

We study a dynamic social choice problem in which an alternative is chosen at each
round according to the reported valuations of a set of agents. In the interests of obtaining
a solution that is both efficient and fair, we aim to maximize the long-term Nash welfare,
which is the product of all agents’ utilities. We present and analyze two greedy algorithms
for this problem, including the classic Proportional Fair (PF) algorithm. We analyze sev-
eral versions of the algorithms and how they relate, and provide an axiomatization of PF.
Finally, we evaluate the algorithms on data gathered from a computer systems application.

1 Introduction
Fairness is a topic of rapidly increasing interest in social choice. On the one hand, there has
been much recent interest in the fair allocation of resources—cake cutting [24] as well as
other models [14, 23]. On the other hand, in voting, fairness considerations have received
attention in selecting a committee, in the form of a focus on the voters being represented in
the committee [9, 18, 5, 3].

A classical approach to obtaining a fair outcome in a context where agents have utility
functions is to maximize the Nash welfare [19], which is the product of the agents’ utilities.
One attractive feature of using the maximum Nash welfare (MNW) solution is scale invari-
ance: if an agent doubles all her utilities (or, equivalently, changes the units in which she
expresses her utilities), this does not change which outcomes maximize the objective (the
solution is not however stable under additive transformations, where an agent simply adds
some constant value to all her reported utilities).

In life, it is often difficult to make a completely fair decision in a single-shot context; of-
ten, every option will leave some agents unhappy. Fortunately, we can often address this over
time—we will go to my most preferred restaurant today, and to yours next week. Achieving
fairness over time is the topic of our paper. Ours is certainly not the first work to consider
fairness or social choice in dynamic settings [21, 17, 2].

When we make multiple decisions over time, we could simply maximize the Nash welfare
in each round separately. But it is easy to see that this can lead to dominated outcomes. For
example, suppose there are two agents, and we can choose an alternative that gives one a
reward of 3, and the other a reward of 0; or vice versa; or an alternative that gives each of
them 1. Within a round, the last alternative maximizes Nash welfare; but if this scenario is
repeated every round, then it would be better to alternate between the first two alternatives, so
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that each agent obtains 1.5 per round on average. Of course, initially, say in the first round,
we may not realize we will have these options every round, and so we may choose the last
alternative; but if we do have these options every round, we should eventually catch on to this
pattern and start alternating. Ideally, we would maximize the long-term Nash welfare, that is,
the product of the long-run utilities (which are the sums of each agent’s rewards), rather than,
for example, the sum of the products within the rounds.

In this work, we do not focus primarily on strategic concerns. Of course it is fairly
common to ignore strategic concerns in the social choice literature, but we do think this is an
important topic for future work. On the other hand, there are also important contexts where
strategic concerns do not come into play. For example, instead of considering a setting where
there are multiple agents that have different utility functions, we can consider a setting where
there are multiple objectives that each alternative contributes towards. For example, consider
faculty hiring. Suppose the three objectives that we want our faculty hires to contribute to are
research, teaching, and service; moreover, suppose that at the time of hiring we can predict
well how much each candidate would contribute to each of these objectives, if hired. Then,
it stands to reason that, one year, we may hire a top researcher that we do not expect to
contribute much to the other objectives. But we would be loath to make such a decision every
year; having hired a few top researchers who are not good at teaching or service, pressure
will mount to address these needs. This fits well into our framework, if we simply treat each
of the three objectives as an agent that is “happy” with an alternative to the extent to which it
addresses the corresponding objective.

The rest of the paper is organized as follows. In Section 2 we introduce notation and pre-
liminaries. In Section 3 we present two simple greedy algorithms for choosing alternatives,
and provide intuitive interpretations of them, including an axiomatic justification for one of
them. After presenting the algorithms, we evaluate them on data from a computer systems
application in Section 4.

Justification for Nash welfare: The Nash welfare is frequently used as an objective in
the fair division literature as it strikes a balance between maximizing efficiency and fairness
[10, 12, 25]. Caragiannis et al. [2016] have recently shown the MNW solution to satisfy
envy freeness up to one good, as well as approximating the maximin share guarantee. How-
ever, work in fair division focuses primarily on the allocation of private goods, where each
alternative gives utility to exactly one agent. This is not the case in our setting, where each
alternative can be valued positively by many agents. Conitzer et al. [2017] explicitly con-
sider fairness axioms in the public good setting, including proportionality, which states that
each agent should derive at least a 1

n fraction of the utility she could obtain by choosing the
outcome at each round. It turns out that a proportional solution may not exist in our setting,
but the MNW solution always satisfies a weaker criterion: For each agent i, there exists a
round such that if i is given control of that round, then i achieves their utility guaranteed by
proportionality.

We can also appeal to Nash’s original axiomatization of the MNW solution [19] as the
only solution that satisfies scale-freeness, Pareto optimality, independence of irrelevant alter-
natives, and symmetry, which are all natural in our setting (although without an explicit focus
on fairness).

Related work: Parkes and Procaccia [2013] examine a similar problem by modeling
agents’ evolving preferences with Markov Decision Processes, with a reward function de-
fined over states and actions (alternatives). However, their goal is to maximize the sum of
(discounted) rewards and they do not explicitly consider fairness as an objective. Kash et
al. [2014] examine a model of dynamic fair division where agents arrive at different times
and must be allocated resources; however, they do not allow for the preferences of agents
to change over time as we do. Aleksandrov et al. [2015] consider an online fair division
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problem in a setting where items appear one at a time, and agents declare yes/no preferences
over that item. In our setting, each round has many alternatives and agents express more
general utilities. Our work is related to the literature on dynamic mechanism design (Parkes
et al. [2010] provide an overview), except that we do not consider monetary transfers. Guo
et al. [2009] consider a setting similar to ours, also without money, except that they are not
explicitly interested in fairness, only welfare, and focus on incentive compatibility.

2 Preliminaries
Consider a set of n agents and let A = {a1, . . . , am} be a set of m possible alternatives.1

At every round t = 1, . . . , T , every agent i reports her valuation vti(aj) ∈ N for every
alternative aj .2 Thus the input at every round is a matrix V t = (vti(aj))ij . Let vt(aj)
denote the j-th column of matrix V t, the vector of valuations for alternative aj . For every
round t, a Dynamic Social Choice Function (DSCF) chooses a set of alternatives Ct, from
which a single alternative ct is chosen arbitrarily. Importantly, the problem is online, so we
may only use information up to time t in order to choose Ct.

We define a vector of accrued rewards at round t, ut, where the accrued reward of agent
i at round t is the sum of i’s valuations for the chosen alternatives up to and including round
t, ut(i) =

∑t
t′=1 v

t′

i (ct′). We will often be interested in an agent’s accrued reward before the
start of round t, ut−1(i). For convenience, we will refer to the set of agents with ut−1(i) = 0
by I0 when the round, t, is clear. The average utility of the agents over the first t rounds is
uavg
t = 1

tut.
A DSCF is anonymous if applying permutation σ to the agents, for all t, does not change

the set of chosen alternatives Ct, for any t. A DSCF is neutral if applying permutation σ to
the alternatives, for all t, results in choosing alternatives σ(Ct) for all t. For the rest of this
paper we only consider anonymous, neutral DSCFs.

The Nash welfare (NW) of valuation vector u, NW (u), is defined to be the product of
the agents’ utilities, NW (u) =

∏n
i=1 u(i). We also define NW+(u) =

∏
i:u(i) 6=0 u(i) to

be the product of all positive entries of u. Our aim is to maximize the NW of the average
utility across all T rounds, NW (uavg

T ). Note that while our setting allows for discounting,
we do not need to explicitly address it since the input matrices can be pre-multiplied by the
necessary factor before being passed as input to the DSCF.

The benchmark algorithm is the optimal algorithm for the offline problem, where an
instance is given by the set {V t}t∈{1,...,T}, and can be solved by a mixed integer convex
program. We denote the optimal Nash welfare by OPT.

Our algorithms and analysis use a formal infinitesimal quantity ε. Numbers involving ε
take the form

∑i=∞
i=−∞ aiε

i.3 For two such numbers a =
∑i=∞
i=−∞ aiε

i and b =
∑i=∞
i=−∞ biε

i,
let i′ be the smallest index for which ai 6= bi, if it exists. Then a > b if and only if ai′ > bi′ .
That is, we compare numbers lexicographically by the lowest powers of ε. Two numbers are
equal if all coefficients are equal.

1For simplicity of presentation, we define the set of alternatives to be static. However, all of our algorithms and
results hold if the set, and even the number, of alternatives changes from round to round.

2Restricting valuations to be non-negative integers is necessary for some of our results in Section 3. This is still
sufficient for agents to express their preferences to arbitrary levels of precision.

3While our framework allows for unbounded powers of ε, in this paper we utilize only powers of ε between ε−1

and εn.
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Figure 1: Illustration of the difference between GREEDY and PF for an instance with two agents. The
horizontal axis represents agent 1’s reward, and the vertical axis represents agent 2’s reward. Fig-
ure 1(a) shows a general instance. GREEDY chooses the alternative that maximizes area R1+R2+R3,
while PF chooses the alternative that maximizes R1 + R3 = vt2(aj)ut−1(1) + vt1(aj)ut−1(2) =

ut−1(1)ut−1(2)
[

vt
1(aj)

ut−1(1)
+

vt
2(aj)

ut−1(2)

]
. Figures 1(b) and 1(c) illustrate the choice of alternative a1 and

a2 in Example 1, respectively.

3 Greedy Algorithms

3.1 Algorithm Definitions
In this section we present two greedy algorithms. We note that, although these algorithms
are designed to give an approximate solution to that which maximizes Nash welfare, much
of this section is devoted to showing that they satisfy desirable properties as algorithms in
their own right. Such an approach is not new in computational social choice – for other
papers that treat approximation algorithms as distinct voting rules see, for example, [6, 7, 13].
The first algorithm, GREEDY, simply chooses ct to maximize NW (uavg

t ), the Nash welfare
at the end of the round. The second algorithm is a linearized version of greedy known as
PROPORTIONALFAIR (PF) in the networking community [26, 16], which maximizes the sum
of percentage increases in accrued reward at each round. Equivalently, it works by assigning
each agent a weightwi (denote the vector of weights by w) equal to the inverse of her accrued
reward at the start of each round and chooses Ct = argmaxaj∈Aw · vt(aj), the alternatives
that maximize the weighted sum of valuations. Note that wi is proportional to the product of
the other agents’ accrued rewards.

Example 1. Let n = m = 2 and suppose that ut−1(1) = 1, ut−1(2) = 3, and V t = ( 2 3
3 1 ).

That is, agent 1 has valuation 2 for alternative a1 and valuation 3 for alternative a2. Agent
2 has valuation 3 for alternative a1 and valuation 1 for alternative a2. Choosing a1 results
in Nash welfare of (1 + 2) · (3 + 3) = 18, while choosing a2 results in Nash welfare of
(1 + 3) · (3 + 1) = 16. Thus GREEDY chooses a1.

Under PF, each agent is given weight inversely proportional to their own accrued utility.
That is, agent 1 has weight 1 and agent 2 has weight 1

3 . Now, taking the weighted sum of
valuations yields (1 · 2) + ( 13 · 3) = 3 for alternative a1, and (1 · 3) + ( 13 · 1) = 10

3 for
alternative a2. Thus PF chooses a2.

A graphical illustration of the difference between the two algorithms is given in Figure 1.
Unfortunately, both algorithms encounter problems while there exist agents with zero

accrued reward. For GREEDY, it can (and, unless some alternative is valued positively by all
agents, will) be the case that NW (uavg

t ) = 0 for all choices of ct, even when one alternative

4



is weakly preferred to all other alternatives by all agents. For PF, it is impossible to set a
weight wi = 1

ut−1(i)
for an agent with ut−1(i) = 0.

As a general framework for addressing this issue, we endow each agent i ∈ I0 with some
arbitrary, infinitesimal reward at the start of each round. This is a natural way to allow the
algorithms to give high priority to agents with zero accrued reward while avoiding mathemat-
ical inconsistencies, and it allows us to efficiently choose an alternative ct if we are happy
with selecting any member of the choice set Ct.

However, once we endow rewards (even infinitesimal ones), we immediately lose scale-
freeness, one of the appealing properties of using Nash welfare. Further, if we want to choose
a member of the choice set Ct uniformly at random, there is no obvious distribution over
endowed rewards that allows us to do this – choosing endowed rewards uniformly at random
from some interval will not, in general, result in drawing uniformly from Ct. So, while the
technique of randomly endowing infinitesimal reward is a general and intuitive way for the
algorithms to handle all situations, we also want an algorithm to compute the entire choice
set Ct.

In the following, for both GREEDY and PF, we first present the algorithm to select a single
alternative via nondeterministically endowing infinitesimal reward, followed by an algorithm
to compute the entire choice set Ct.

Algorithm 1 GREEDY (select one alternative)

1: Input ut−1

2: for i = 1, . . . , n do
3: Randomly choose 0 < xi ≤ 1
4: end for
5: Return ct ∈ argmaxaj∈A

∏n
i=1 max{ut−1(i) + vti(aj), xiε}

The alternatives chosen by Algorithm 1 are exactly the alternatives that result in a max-
imal number of agents with positive accrued reward and, subject to holding fixed the set of
agents with positive accrued reward, maximizes the product of these agents’ rewards.

Algorithm 2 GREEDY (select all alternatives)

1: Input ut−1

2: Ct ← argmaxaj∈A |{i : ut−1(i) + vti(aj) > 0}|
3: for j ∈ Ct do
4: if ∃j′ such that
5: {i : ut−1(i) + vti(aj) > 0} = {i : ut−1(i) + vti(aj′) > 0} and NW+(ut−1 +

vt(aj)) < NW+(ut−1 + vt(aj′)) then
6: Ct ← Ct\{aj}
7: end if
8: end for
9: Return Ct

The version of PF for selecting a single alternative is presented as Algorithm 3.
To determine the complete choice set Ct, we solve a linear program for each alternative

that explicitly determines whether there is some infinitesimal endowment that results in the
alternative being chosen by PF.

A notable difference in the algorithms is that unlike GREEDY, PF may leave some agents
with zero accrued utility even when it was possible to give positive utility to all agents.
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Algorithm 3 PROPORTIONALFAIR (select one alternative)

1: Input ut−1

2: for i ∈ I0 do
3: Randomly choose 0 < xi ≤ 1
4: Randomly choose yi ∈ R
5: end for

6: wi ←

{
xi

1
ε + yi, if ut−1(i) = 0
1

ut−1(i)
, if ut−1(i) > 0

7: Return ct ∈ argmaxaj∈Aw · vt(aj)

Algorithm 4 PROPORTIONALFAIR (select all alternatives)

1: Input ut−1
2: Ct ← ∅
3: for j = 1, . . . ,m do
4: if the following linear program is unbounded

Maximize L

subject to w′ · vt(aj) ≥ w′ · vt(aj′) ∀j′

w′i =
1

ut−1(i)
∀i such that ut−1(i) > 0

w′i ≥ L ∀i such that ut−1(i) = 0

then
5: Ct ← Ct ∪ {aj}
6: end if
7: end for
8: Return Ct

Example 2. Let n = 2, m = 3, and t = 1. Suppose that V1 = ( 3 0 1
0 3 1 ). Because t = 1,

ut−1(1) = ut−1(2) = 0.
GREEDY chooses a3 since it is the only alternative that provides non-zero reward to both

agents. However, PF assigns the agents weights w1, w2 and chooses argmaxj∈{1,2,3}w ·
vt(aj). Since it must be the case that either 3w1 > w1 + w2 or that 3w2 > w1 + w2, it is
not possible for a3 to be chosen by PF.

For each algorithm, we prove equivalence of the two versions in the sense that the set
generated by the ‘select all’ version consists exactly of the alternatives that the ‘select one’
version generates for some nondetermistic choices.

Theorem 1. The set of alternatives Ct chosen by Algorithm 2 at round t is exactly the set of
alternatives that can be chosen at round t by Algorithm 1.

The proof uses the fact that the product on Line 5 of Algorithm 1 is maximized when the
number of ε terms appearing in the product is minimized.

Proof. We begin by showing that every alternative that can be selected by Algorithm 1 is
also selected by Algorithm 2. Let ct be an alternative chosen by Algorithm 1 for some
choices of {xi} and let p = |{i : ut−1(i) + vti(ct) > 0}|. Therefore, the lowest power of
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ε with non-zero coefficient in the product on Line 5 of Algorithm 1 is εn−p. If some other
alternative aj has |{i : ut−1(i) + vti(aj) > 0}| > p then the corresponding product has
non-zero coefficient on a lower power of ε, contradicting optimality of ct. That is, ct ∈
argmaxaj∈A |{i : ut−1(i) + vti(aj) > 0}|.

Next, let aj′ be an alternative with {i : ut−1(i)+vti(ct) > 0} = {i : ut−1(i)+vti(aj′) >
0}. The product on Line 5 of Algorithm 1 is

NW+(ut−1 + vt(ct))ε
n−p

∏
i:ut−1(i)+vti(ct)=0

xi

for ct and

NW+(ut−1 + vt(aj′))εn−p
∏

i:ut−1(i)+vti(aj′ )=0

xi

=NW+(ut−1 + vt(aj′))εn−p
∏

i:ut−1(i)+vti(ct)=0

xi

for alternative aj′ . Since ct is chosen by Algorithm 1, it must be the case that NW+(ut−1+
vt(ct)) ≥ NW+(ut−1 + vt(aj′)). Therefore, ct is chosen by Algorithm 2.

To complete the proof, we show that every alternative selected by Algorithm 2 can also
be selected by Algorithm 1. To that end, let ct ∈ Ct. We exhibit a specific choice of {xi}
which results in ct being selected by Algorithm 1. Let K be some integer greater than the
largest entry in V t and let

xi =

{
1

2(K+1)n , if ut−1(i) + vti(ct) > 0

1 if ut−1(i) + vti(ct) = 0.

Then the product on Line 5 of Algorithm 1 that results from ct being selected is

NW+(ut−1 + vt(ct))ε
n−p,

where p = |{i : ut−1(i) + vti(ct) > 0}|. Now consider some alternative aj 6= ct. If
{i : ut−1(i) + vti(ct)) > 0} = {i : ut−1(i) + vti(aj) > 0} and NW+(ut−1 + vt(ct)) ≥
NW+(ut−1 + vt(aj)) then the leading term in the product on Line 5 of Algorithm 1 that
results from aj being selected is

NW+(ut−1 + vt(aj))ε
n−p ≤ NW+(ut−1 + vt(ct))ε

n−p.

Similarly, an alternative aj with |{i : ut−1(i) + vti(aj) > 0}| < |{i : ut−1(i) + vti(ct) > 0}|
has coefficient 0 for the εn−p term (and larger terms) in the corresponding product on Line 5.
In both cases, this product is greater for ct than for aj .

The final case is when |{i : ut−1(i) + vti(ct) > 0}| = |{i : ut−1(i) + vti(aj) > 0}|
but the two sets are not equal. In this case, the dominant term in the product on Line 5 of
Algorithm 1 that results from aj being selected is at most

NW+(ut−1 + vt(aj))
1

2(K + 1)n
εn−p

by the choice of {xi} and noting that at least one agent with ut−1(i) + vti(ct) > 0 has
ut−1(i)+v

t
i(aj) = 0. But, since the maximum reward any agent derives from any alternative

is K,

NW+(ut−1 + vt(aj)) ≤ (K + 1)pNW+(ut−1 + vt(ct))

≤ (K + 1)nNW+(ut−1 + vt(ct)).
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Therefore,

NW+(ut−1 + vt(aj))
1

2(K + 1)n
≤ (K + 1)nNW+(ut−1 + vt(ct))

1

2(K + 1)n

< NW+(ut−1 + vt(ct)),

so the product from Line 5 of Algorithm 1 is larger for ct than for aj . Hence the particular
choice of {xi} results in ct being chosen by Algorithm 1.

Theorem 2. The set of alternatives Ct chosen by Algorithm 4 at round t is exactly the set of
alternatives that can be chosen at round t by Algorithm 3.

Proof. We begin by showing that every alternative that can be selected by Algorithm 3 is also
selected by Algorithm 4. Let ct be an alternative chosen by Algorithm 3 for some choices of
{xi}i∈I0 and {yi}i∈I0 . For all i 6∈ I0, setw′i =

1
ut−1(i)

, and for all i ∈ I0, setw′i =
xi

δ +yi for
any δ > 0. As δ → 0, the variables w′i grow arbitrarily large. Therefore, to show feasibility
of the variables {w′i} we need to show that the first set of constraints in the LP in Algorithm 4
hold for sufficiently small δ.

Fix an alternative aj . From Line 7 of Algorithm 3, we know that w ·vt(ct) ≥ w ·vt(aj).
The dominant coefficient in this expression is that of ε−1. Comparing these coefficients gives
us ∑

i∈I0

xiv
t
i(ct) ≥

∑
i∈I0

xiv
t
i(aj). (1)

If Inequality 1 is strict, then we know that
∑
i∈I0

xi

δ v
t
i(ct) >

∑
i∈I0

xi

δ v
t
i(aj) for any δ > 0,

and we can make the gap arbitrarily large by setting δ sufficiently small. In particular, we can
force the gap to be large enough that the following inequality holds for any fixed values of
{yi}i∈I0 and {ut−1(i)}i 6∈I0 :∑
i∈I0

(xi
δ

+ yi

)
vti(ct) +

∑
i6∈I0

1

ut−1(i)
vti(ct) >

∑
i∈I0

(xi
δ

+ yi

)
vti(aj) +

∑
i 6∈I0

1

ut−1(i)
vti(aj),

which is precisely the first constraint in the linear program from Algorithm 4.
If Inequality 1 holds with equality, then we turn attention to the coefficient of ε0 in the

dot product from Line 7 of Algorithm 3. This tells us that∑
i∈I0

yiv
t
i(ct) +

∑
i6∈I0

1

ut−1(i)
vti(ct) ≥

∑
i∈I0

yiv
t
i(aj) +

∑
i6∈I0

1

ut−1(i)
vti(aj). (2)

Dividing Inequality 1 by δ and adding Inequality 2 gives
∑n
i=1 w

′
iv
t
i(ct) ≥

∑n
i=1 w

′
iv
t
i(aj),

satisfying the first constraint of the LP, so the weights {w′i} are feasible. These weights allow
us to set L to arbitrarily large values as δ → 0, so the LP is unbounded and Algorithm 4
selects ct.

We now show the other direction, that every alternative selected by Algorithm 4 can also
be selected by Algorithm 3. Let ct ∈ Ct. That is, the optimal value for the LP in Algorithm 4
is unbounded. Then it is the case that there exist vectors p and q 6= 0 for the values of the
variables in the LP such that p + kq is feasible for all k > 0 and q has positive objective
value (this is a known fact about linear programs with unbounded value; see, e.g., [20],
Theorem 4.7). We use these to exhibit values of {xi}i∈I0 and {yi}i∈I0 so that ct is chosen
by Algorithm 3.
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Set yi = pi and xi = qi for all i ∈ I0. Let aj ∈ A. By the first set of constraints from the
LP,∑
i∈I0

(pi+kqi)v
t
i(ct)+

∑
i 6∈I0

1

ut−1(i)
vti(ct) ≥

∑
i∈I0

(pi+kqi)v
t
i(aj)+

∑
i 6∈I0

1

ut−1(i)
vti(aj) (3)

for all k > 0. In particular, this implies that it can not be the case that
∑
i∈I0 qiv

t
i(ct) <∑

i∈I0 qiv
t
i(aj), or else Inequality 3 would be violated for large enough values of k. There

are two possiblities.
First, suppose that

∑
i∈I0 qiv

t
i(ct) >

∑
i∈I0 qiv

t
i(aj). Then, by our choice of xi = qi

for all i ∈ I0, we have that
∑
i∈I0 xiv

t
i(ct) >

∑
i∈I0 xiv

t
i(aj). But, as discussed earlier,∑

i∈I0 xiv
t
i(aj) is exactly the dominant term in Line 7 of Algorithm 3. Therefore, this dot

product is maximized by ct, so ct is chosen by Algorithm 3.
Finally, suppose that

∑
i∈I0 qiv

t
i(ct) =

∑
i∈I0 qiv

t
i(aj). So the dominant term in Line 7

of Algorithm 3 is equal for ct and aj . By Inequality 3, it must be the case that

∑
i∈I0

piv
t
i(ct) +

∑
i 6∈I0

vti(ct)

ut−1(i)
≥
∑
i∈I0

piv
t
i(aj) +

∑
i 6∈I0

vti(aj)

ut−1(i)
.

By the choice of yi = pi for all i ∈ I0, the above inequality holds when we substitute yi for
every instance of pi. After making that substitution, we are left with exactly the expression
for the coefficient of ε0 in Line 7 of Algorithm 3. Since the coefficient is at least as large for
ct as for aj , and the ε−1 coefficients are equal (and there are no further non-zero terms), ct
may be chosen by Algorithm 3.

3.2 Axiomatization of PROPORTIONALFAIR

Now that we have given a precise definition of the PF mechanism and justified it, in this
section we provide an axiomatization of the PF mechanism.

A DSCF is scale-free if it is not affected by a uniform (multiplicative) scaling of some
agent’s valuations. This property is desirable because it means we do not require any sort
of agreement or synchronization as to the units of measurement used by the agents in their
reporting.

Definition 1. Let k > 0. Say that a DSCF satisfies scale-free-ness (SF) if Ct is unchanged
(for the same choice of tiebreaking in earlier rounds) if we replace vti(aj) by k · vti(aj) for
all aj ∈ A for every t = 1, . . . , T .

Lemma 1. PF satisfies SF.

Proof. Let c ∈ Ct and suppose that agent i scales all her valuations by k > 0. We show
by induction that PF still chooses c at round t. Consider a round t such that the chosen
alternative is unchanged in all previous rounds.

Suppose that ut−1(i) = 0. So for any L there exists vector of weights w′ such that
w′i ≥ L and alternative c maximizes the weighted sum of valuations. After i scales her
valuations by a factor of k, we can simply scale w′i by a factor of 1

k (this will still allow
unbounded values of w′i). Therefore, the value w′ · vt(aj) is unchanged for every alternative
aj . Thus, alternative c still maximizes this expression.

Now suppose that ut−1(i) > 0. Then i’s weight w′i in the scaled instance is a factor of k
smaller than in the un-scaled instance, but vti(aj) is a factor of k larger than in the un-scaled
instance for all alternatives aj . Thus, for any setting of weights {w′i′}i′ 6=i in the un-scaled
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instance, the value w′ · vt(aj) is unchanged in the scaled instance. Thus, the existence of a
feasible set of weights such that c is chosen in the unscaled instance implies that c is chosen
in the scaled instance also, for the same choice of weights.

Finally we need to rule out the possibility that some new alternative, aj 6∈ Ct, is chosen
at round t in the scaled instance. But if this were the case, then we can just scale the scaled
instance by 1

k and return to the original instance where, by the above proof, aj ∈ Ct.

A DSCF is separable into single-minded agents if the chosen alternative at a round is
unchanged by replacing an agent by several new agents with the same accrued reward, each
of which has unit positive valuation for only one alternative. The axiom reflects that we can
interpret utilities cardinally rather than just ordinally.

Definition 2. Say that a DSCF is separable into single-minded agents (SSMA) if, when all
agents have the same accrued utility ut−1(i) = u > 0, Ct is unchanged if we replace each
agent with several new agents (denoted generically by x) according to the following scheme:
For every vti(aj) ∈ V t, create vti(aj) agents each with ut−1(x) = u, vtx(aj) = 1, and
vtx(aj′) = 0 for all j′ 6= j.

Lemma 2. PF satisfies SSMA.

Proof. Consider round t with valuation matrix V t. PF chooses all alternatives that maximize
the expression

n∑
i=1

1

u
vti(aj). (4)

Now consider the instance expanded as defined by Definition 2. For every alternative aj ,
there are exactly

∑n
i=1 v

t
i(aj) agents that have valuation 1 for aj being chosen, while all

other agents have valuation 0. Since each new agent has accrued utility u, PF chooses all
alternatives which maximize Equation 4.

The plurality axiom says that if all agent valuation vectors are unit vectors, and we have
no reason to distinguish between agents, then the alternatives favored by the most agents
should be chosen.

Definition 3. Say that a DSCF satisfies plurality (P) if, when all agents have unit valuation
for only a single alternative, and all agents have the same (non-zero) accrued utility, then Ct
consists of the alternatives with non-zero valuation from the most agents.

Plurality says nothing about the case when some agent has ut−1(i) = 0. The idea of the
axiom (in combination with SF) is that we should choose the alternative which provides the
greatest utility, relative to what agents already have. However, if agents have zero accrued
reward then it is not possible to make accurate comparisons as to the relative benefit each
agent receives.

Observation 1. PF satisfies plurality.

The final axiom says that, if we restrict attention to only agents with zero accrued reward,
alternatives which are dominated by a mixture of other alternatives should not be played. In
the case that two alternatives are equivalent with respect to agents with ut−1(i) = 0, we
should only choose an alternative if it would still be chosen in the absence of the agents with
ut−1(i) = 0. The definition is inspired by mixed strategy dominance in game theory and,
intuitively, formalizes that we should prioritize agents with zero utility above all others.

We first define the notion of 0-dominance.
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Definition 4. Let z1, . . . , zm be nonnegative coefficients with
∑
j′ zj′ = 1. We say that

an alternative aj is strictly 0-dominated by the mixture of alternatives
∑
j′ zj′aj′ at round

t if
∑
j′ zj′v

t
i(aj′) ≥ vti(aj) for all agents i with ut−1(i) = 0, with at least one of these

inequalities being strict. If all inequalities hold with equality, then we say that aj is weakly
0-dominated by the mixture

∑
j′ zj′aj′ .

We say that aj is (strictly, weakly) 0-dominated if there exists some mixture of alternatives
that (strictly, weakly) 0-dominates it.

Definition 5. A DSCF f satisfies No 0-Dominated Alternatives (NZDA) if it never chooses
a strictly 0-dominated alternative, and chooses a weakly 0-dominated alternative aj only if
aj would be chosen by f under a scenario where V t was modified to include (1) only the
agents with ut−1(i) > 0, and (2) only the (mixtures of) alternatives that weakly 0-dominate
aj (including aj itself).

Lemma 3. PF satisfies NZDA.

Proof. Let aj be a strictly 0-dominated alternative. Note that the dominant coefficient in
Line 7 of Algorithm 3 is that of ε−1, which is determined by the values of {xi}i∈I0 . There-
fore, an alternative is chosen by PF only if it maximizes

∑
i∈I0 xiv

t
i(aj). So, to show that aj

is not selected by PF, it suffices to show that there does not exist any allowed choice of {xi}
for which ∑

i∈I0

xiv
t
i(aj) ≥

∑
i∈I0

xiv
t
i(aj′)

for all other alternatives aj′ .
Fix {xi}i∈I0 , and consider drawing an alternative aj′ from the distribution defined by the

weights z1, . . . , zm. By the dominance condition and the fact that all xi are positive,∑
i∈I0

xiv
t
i(aj) <

∑
i∈I0

xiv
t
i(aj′)

in expectation. Thus there must exist a particular j′ for which the above inequality holds, so
aj is not chosen by PF.

Fix a choice of {xi, yi}i∈I0 and let aj be a weakly 0-dominated alternative – suppose that
it is weakly 0-dominated by alternative aj′ (which may be a mixture of several alternatives).
Since vti(aj′) = vti(aj) for all agents i ∈ I0,∑

i∈I0

(
xi
ε
+ yi)v

t
i(aj) =

∑
i∈I0

(
xi
ε
+ yi)v

t
i(aj′).

Suppose that aj is chosen by PF. Then, by the definition of PF,∑
i∈I0

(
xi
ε
+ yi)v

t
i(aj) +

∑
i 6∈I0

1

ut−1(i)
vti(aj) ≥

∑
i∈I0

(
xi
ε
+ yi)v

t
i(aj′) +

∑
i 6∈I0

1

ut−1(i)
vti(aj′),

which requires that ∑
i 6∈I0

1

ut−1(i)
vti(aj) ≥

∑
i 6∈I0

1

ut−1(i)
vti(aj′). (5)

Equation 5 exactly says that PF would still choose aj if only alternatives that weakly 0-
dominated aj were included in V t, and in the absence of all agents with ut−1(i) = 0, which
completes the proof.
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We now show that any mechanism that achieves SF, SSMA, P, and NZDA simultaneously
must agree with PF. We note that of the four axioms, GREEDY satisfies only SF and P. Despite
GREEDY being (arguably) simpler than PF, we do not know a good axiomatization for it.

Theorem 3. Let f be a DSCF that satisfies SF, SSMA, P, and NZDA. Suppose that f chooses
alternative ct at round t. Then PF must also choose ct at round t (for the same history up to
that point).

Proof. We have already shown that PF satisfies SF, SSMA, P, and NZDA.
It remains to show that f ’s choice of alternative can also be chosen by PF.
First suppose that all agents have ut−1(i) > 0. Without loss of generality, let ut−1(i) = u

for all agents i. We may assume this because, by SF, f and PF would choose the same
alternatives at round t even if the valuation vectors of some agent(s) were multiplied by
a constant across all rounds. Multiplying each agent i’s valuations by

∏
i′ 6=i ut−1(i

′), we
obtain an instance in which all agents have the same accrued utility,

∏
i ut−1(i).

By SSMA, we can replace the agent i with
∑m
j=1 v

t
i(aj) agents, such that vti(aj) of them

have unit valuation for alternative aj (and 0 valuation for all other alternatives), all with ac-
crued reward u. Then, by plurality, f chooses ct ∈ argmaxaj∈V t

∑n
i=1 v

t
i(aj). Note that PF

assigns equal weight wi to each agent since ut−1(i) = ut−1(i
′) for all i, i′. Thus PF chooses

precisely the alternatives which maximize
∑n
i=1 v

t
i(aj), which includes any alternative cho-

sen by f .
The more intricate case is when there exists at least one agent with ut−1(i) = 0. Since

f satisfies NZDA, we know that f never chooses a strictly 0-dominated alternative and only
chooses a weakly 0-dominated alternative if f would still choose that alternative when V t

is modified according to Definition 5. To complete the proof, we show that PF selects all
alternatives that can possibly be chosen by f . Specifically, we show that PF can choose all
alternatives that are not (strictly or weakly) 0-dominated, as well as any weakly 0-dominated
alternative aj∗ that is chosen by PF for the modified V t. That is, when all alternatives are
removed other than aj∗ and (mixtures of) alternatives that weakly 0-dominate it, and all
agents with ut−1(i) = 0 are removed. This is sufficient since we have shown that PF chooses
every alternative chosen by f when all agents have ut−1(i) > 0 (which is the case when all
agents with ut−1(i) = 0 are removed).

An alternative aj∗ is either (a) strictly 0-dominated, or (b) weakly 0-dominated and not
chosen by PF when V t is modified according to Definition 5, if and only if the optimal value
of the following LP is negative for arbitrarily large values of H . We omit the index of the
round t from the agents’ valuations for clarity.

Minimize H
∑
i∈I0

∑
aj∈A

(vi(aj∗)− vi(aj))zj +
∑
i 6∈I0

∑
aj∈A

1

ut−1(i)
(vi(aj∗)− vi(aj))zj (6)

subject to
∑
aj∈A

vi(aj)zj ≥ vi(aj∗) ∀i ∈ I0∑
aj∈A

zj = 1

zj ≥ 0 ∀j

If aj∗ is strictly dominated then the first term of the objective can be made negative (and
therefore the whole objective can be made negative when H is large enough). If aj∗ is only
weakly dominated, then the first term can be set to 0, and the second term to be negative
when there exists a mixture of alternatives that is chosen by PF (ahead of aj∗ ) according
to the modified V t. Conversely, if the optimal value of the objective is negative then either
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Table 1: Spark Applications

Category Applications
Statistics Correlation

Classification DecisionTree, GradientBoostedTrees,
SVM, LinearRegression, NaiveBayesian

Pattern Mining FP Growth
Clustering KMeans
Collaborative Filtering ALS

Graph Processing Pagerank, ConnectedComponents,
TriangleCounting

there exist values for {zj} such that the first term is negative (which, combined with the first
set of constraints, says that aj∗ is strictly 0-dominated), or there exist values for {zj} such
that the first term is zero and the second term is negative. If the second term is negative then
the weighted sum of valuations for the mixed alternative defined by {zj} is higher than the
weighted sum of valuations for aj∗ , for the weights defined by PF when restricted to agents
i 6∈ I0. This proves correctness of the LP.

We want to show that PF can choose any alternative for which the the optimal value of
LP (6) is nonnegative. Let aj∗ be such an alternative. We show that aj∗ can be chosen by PF
by considering the dual, which has variables wi for all i ∈ I0 (one for each constraint) and r
(corresponding to the constraint on the sum of the zj):

Maximize
∑
i∈I0

vi(aj∗)wi − r

subject to
∑
i∈I0

vi(aj)wi − r ≤ H
∑
i∈I0

(vi(aj∗)− vi(aj))

+
∑
i 6∈I0

vi(aj∗)− vi(aj)
ut−1(i)

∀j ∈ {1, . . . ,m}

wi ≥ 0 ∀i ∈ I0

Let r =
∑
i∈I0 vi(aj∗)wi − r denote the objective. The first set of constraints can now be

rewritten as

r +
∑
i∈I0

(wi +H)vi(aj) +
∑
i 6∈I0

1

ut−1(i)
vi(aj) ≤

∑
i∈I0

(wi +H)vi(aj∗) +
∑
i 6∈I0

1

ut−1(i)
vi(aj∗).

Since aj∗ is not 0-dominated, the optimal value of LP (6) is at least zero for any arbitrarily
large value ofH . By strong duality, the optimal value of the dual is therefore also at least zero
for arbitrarily large values of H . Thus, if we set w′i = wi+H for all i ∈ I0 and w′i =

1
ut−1(i)

for all i ∈ I0, we have an unbounded and feasible set of weights for the linear program to
choose aj∗ in the definition of Algorithm 4. Therefore, aj∗ can be chosen by PF.

4 Simulations
We ran the algorithms on data gathered from a power boost allocation problem. In this
problem, n computer applications are each allocated a base level of power, and compete
for m < n additional (indivisible) units of extra power (power boosts) at each of T rounds
(each application gets at most one boost per round). We obtain our instance from Apache
Spark [27] benchmarks.

Table 1 lists the twelve Spark applications in our instance, each of which is defined by
a fixed number of tasks. We profile tasks’ completion time. We take the number of tasks
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Figure 2: Nash Social Welfare achieved by the algorithms, normalized against OPT (which has perfor-
mance 1).

completed in a round by an application as that application’s utility. Thus, for each application
a, we estimate the base and boosted power utility (ubase

a,t and uboost
a,t ) in each round.

In our instance, there are two power boosts to be allocated. So at each round there are
(
12
2

)
alternatives, one for each pair of applications. For an alternative j corresponding to power
boosts for applications a and b, we have that vta(j) = uboost

a,t , vtb(j) = uboost
b,t , and vtc(j) = ubase

c,t

for all other applications c 6= a, b. We have 497 rounds in the instance we tested.
We evaluate the performance of GREEDY and PF against the optimal offline solution, and

also against an algorithm designed for online stochastic convex programming4 [1] - a class
of problems that includes the one we study. To our knowledge this algorithm is the state of
the art for such problems in terms of theoretical guarantees. We refer to this algorithm as
STOCHASTIC. The algorithm works by maximizing a weighted sum of valuations at each
round, where the weights are updated at each round using online convex optimization tech-
niques. The theoretical guarantees for STOCHASTIC are in expectation over instances where
the order of the input matrices is randomly permuted. In the instance we test, however, the
utilities are highly correlated over time. Applications that would benefit from a power boost
in some round t are more likely to also benefit from a power boost in round t + 1, because
application phases may span multiple rounds. Due to this and other technical reasons, the
theoretical guarantees do not apply here. The performance of the three algorithms is shown
in Figure 2.

We see that STOCHASTIC performs relatively poorly, while GREEDY and PF each achieve
about 80% of the performance of OPT. This motivates us to examine the difference in per-
formance between GREEDY and PF for smaller values of T , as the difference between these
two algorithms is most pronounced while a single decision has a relatively large effect.

To generate smaller instances, we sample starting rounds from the full set of 497 rounds.
For each value of T in Figure 3, we randomly generate a starting round t ∈ [1, 497− T ] and
consider the T rounds starting at t, for 100 random choices of t. Our measure of performance
is NW (uavg

T ), allowing for fair comparisons between different values of T .
We note that PF consistently performs slightly worse than GREEDY, which is consistent

with the performance on the full instance. The difference is most pronounced on small values
of T , since this is where the two algorithms differ the most. Performance increases with T ,
as we would expect, since more rounds allow the algorithms to choose more flexibly once
all applications have positive accrued reward. However, the increase is not monotonic. One

4Of course, there are other online scheduling algorithms but they do not pursue Nash welfare as an objective.
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Figure 3: Nash Social Welfare achieved by GREEDY and PF as a function of the number of rounds.

explanation for this is because we throw away any choice of starting round t for which it
is impossible to achieve NW (uavg

T ) > 0 (it might be the case that for all T rounds, some
application cannot receive positive utility). Since smaller values of T result in more choices
of t being disqualified, there is a sense in which we are selecting for ‘easier’ instances for
smaller values of T .

5 Conclusion
Election designers and social choice researchers often do not consider the fact that many
elections do not occur in isolation, but rather are repeated over time. In this work, we have
provided a framework to allow for the design and analysis of dynamic election protocols,
and repeated decision making rules generally. We have presented two candidate online al-
gorithms for solving these dynamic problems. Our simulations show that both algorithms
perform well, but do not determine that either is clearly a better choice than the other. While
GREEDY achieves slightly higher performance, PROPORTIONALFAIR has the advantage of
being justified by the axiomatization given in this paper.

Our work leaves a lot of scope for future research. One direction would be to design
a more precise model of voter preferences, possibly modeling changing preferences by an
MDP [4, 21]. We have also not considered modeling discounting of the agents’ utilities.
Finally, there are many interesting questions regarding strategic behavior by the agents. In
the most general setting, there appears to be no hope for a fair, strategy-proof rule due to the
free-rider problem: agents are incentivized to under-report their utility for an alternative that
gets chosen, and are thus indistinguishable from an agent that is genuinely unhappy with the
chosen alternative. However, it may be possible to regain some (limited) strategy-proofness
in a more restricted setting. For instance, what if we place restrictions on the utilities that can
be reported, or restrict our attention to private goods?
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[8] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah, and Junxing
Wang. The unreasonable fairness of maximum Nash welfare. In Proceedings of the 17th ACM
conference on Electronic Commerce, pages 305–322, 2016.

[9] John R Chamberlin and Paul N Courant. Representative deliberations and representative decisions:
Proportional representation and the Borda rule. American Political Science Review, 77(03):718–733,
1983.

[10] Richard Cole and Vasilis Gkatzelis. Approximating the Nash social welfare with indivisible items.
In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages
371–380. ACM, 2015.

[11] Vincent Conitzer, Rupert Freeman, and Nisarg Shah. Fair public decision making. In Proceedings
of the 18th ACM Conference on Electronic Commerce, pages 629-646, 2017. Forthcoming.

[12] Andreas Darmann and Joachim Schauer. Maximizing Nash product social welfare in allocating
indivisible goods. European Journal of Operational Research, 247(2):548–559, 2015.

[13] Edith Elkind, Piotr Faliszewski, Piotr Skowron, and Arkadii Slinko. Properties of multiwinner
voting rules. In Proceedings of the Thirteenth International Conference on Autonomous Agents and
Multiagent Systems, pages 53–60, 2014.

[14] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica.
Dominant resource fairness: Fair allocation of multiple resource types. Proceedings of the 8th
USENIX conference on Networked systems design and implementation, pages 24–24, 2011.

[15] Mingyu Guo, Vincent Conitzer, and Daniel M. Reeves. Competitive repeated allocation without
payments. In Proceedings of the Fifth Workshop on Internet and Network Economics (WINE), pages
244–255, Rome, Italy, 2009.

17



[16] A. Jalali, R. Padovani, and R. Pankaj. Data throughput of CDMA-HDR a high efficiency-high data
rate personal communication wireless system. In Proceedings of the IEEE Vehicular Technology
Conference, pages 1854–1858. IEEE, 2000.

[17] Ian Kash, Ariel D Procaccia, and Nisarg Shah. No agent left behind: Dynamic fair division of
multiple resources. Journal of Artificial Intelligence Research, pages 579–603, 2014.

[18] Burt L Monroe. Fully proportional representation. American Political Science Review,
89(04):925–940, 1995.

[19] John Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950.

[20] George L Nemhauser and Laurence A Wolsey. Integer and combinatorial optimization. inter-
science series in discrete mathematics and optimization. ed: John Wiley & Sons, 1988.

[21] David C Parkes and Ariel D Procaccia. Dynamic social choice with evolving preferences. In
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, pages 767–773, 2013.

[22] David C Parkes, Ruggiero Cavallo, Florin Constantin, and Satinder Singh. Dynamic incentive
mechanisms. AI Magazine, 31(4):79–94, 2010.

[23] David C Parkes, Ariel D Procaccia, and Nisarg Shah. Beyond dominant resource fairness: Exten-
sions, limitations, and indivisibilities. In ACM Conference on Electronic Commerce, pages 808–825.
ACM, 2012.

[24] Ariel D Procaccia. Cake cutting: not just child’s play. Communications of the ACM, 56(7):78–87,
2013.

[25] Sara Ramezani and Ulle Endriss. Nash social welfare in multiagent resource allocation. In Agent-
Mediated Electronic Commerce. Designing Trading Strategies and Mechanisms for Electronic Mar-
kets, pages 117–131. Springer, 2010.

[26] Pramod Viswanath, David NC Tse, and Rajiv Laroia. Opportunistic beamforming using dumb
antennas. IEEE Transactions on Information Theory, 48(6):1277–1294, 2002.

[27] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. Spark:
Cluster computing with working sets. In Proceedings of the 2nd USENIX Conference on Hot Topics
in Cloud Computing, volume 10, page 10, 2010.

18


