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Abstract

We study the problem of learning influence adoption in net-
works. In this problem, a communicable entity (such as an
infectious disease, a computer virus, or a social media meme)
propagates through a network, and the goal is to learn the
state of each individual node by sampling only a small num-
ber of nodes and observing/testing their states. We study this
problem in heterogeneous networks, in which each individ-
ual node has a set of distinct features that determine how it is
affected by the propagating entity. We give an efficient algo-
rithm with nearly optimal sample complexity for two variants
of this learning problem, corresponding to symptomatic and
asymptomatic spread. In each case, the optimal sample com-
plexity naturally generalizes both the complexity of learning
how nodes are affected in isolation, and the complexity of
learning influence adoption in a homogeneous network.

1 Introduction
The spread of contagious entities such as biological infec-
tions, social media memes, or computer viruses in a popu-
lation via network propagation is a central object of study
in the field of network science. Consider, for example, the
spread of an infectious disease. Quite often, a new disease
originates by genetic mutation, and begins to propagate by
first infecting a group of people in close contact with the
original source of the disease. After the initial infections,
the disease continues to propagate as carriers of the disease
interact with others: each carrier exposes colleagues, family,
and friends to the disease, who may contract the disease and
become spreaders themselves.

While there is substantive research on how to control
(or maximize, say in viral advertising) such spread (Kempe,
Kleinberg, and Tardos 2003; Chen, Wang, and Yang 2009;
Tang, Xiao, and Shi 2014), and to infer network parame-
ters from it (Liben-Nowell and Kleinberg 2007; Chierichetti,
Liben-nowell, and Kleinberg 2011; Du et al. 2012), much
less is known about learning the state of individuals in the
network based on the propagation process. In the latter prob-
lem, we observe the outcome of the propagation process for
a sample of individuals in the network, and use these obser-
vations to train a learning algorithm that can then infer the
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outcome for an individual that we have not observed. For ex-
ample, suppose a university is trying to identify individuals
affected by an infectious disease in its student population.
Due to limited resources, it might be infeasible to test every
student, at least not frequently; instead, it can test a sample
of students and use additional information such as shared
dorm residency, class registration, etc., to identify the stu-
dents who are at risk of contracting the disease. We call this
the influence adoption phenomenon in a network, and seek
to study its learnability.

Recently, Conitzer, Panigrahi, and Zhang (2020) intro-
duced this problem and studied it in the homogeneous
model, where any individual who comes in contact with an
infected individual gets infected as well. The state of an
individual is then determined by the initial set of infected
individuals and the propagation network itself (which may
be random). In practice, however, individuals differ in their
characteristics, and have varying levels of susceptibility to a
spreading contagion. For instance, some diseases infect only
people of particular age groups, some computer viruses in-
fect only computers with specific system configurations, and
some memes are meaningful only to people in particular pro-
fessions. In many cases, if an individual is not infected, she
is not a spreader either.

Indeed, this heterogeneity significantly changes the learn-
ing task at hand. For instance, if a disease only infects adults,
and the community we care about consists exclusively of
children, then we only need to learn the fact that children
are unaffected, rather than the status of any particular indi-
vidual. Or, if a disease were to infect people of a particular
blood group, the learning task becomes more challenging
since the spread of the disease is now controlled by two sets
of information – the initial set of infected individuals and
the individual features of members of the population – in ad-
dition to the propagation network itself (which may again be
random). This leads to the following fundamental question:

What is the impact of heterogeneity among individuals
on the learnability of influence adoption in a network?

1.1 Our Contributions
Modeling heterogeneity. We model the community of in-
terest as a network of heterogeneous nodes representing in-
dividuals and edges representing connections between them.



Figure 1: An example computer network, where the two computers on the left were exposed to, and therefore have been
inspected for a new virus. Suppose the virus targets an unknown set of weaknesses, and suppose the presence of any one of
these weaknesses allows the computer to be infected. Since the top left computer, with a weak OS and a weak password, is
infected, the weaknesses targeted must include a weak OS, a weak password, or both (meaning that either would suffice for
infection). On the other hand, the bottom left computer is not infected, which means the virus does not target a weak OS. So
given the prior knowledge and the inspection results, we know for sure that the virus targets a weak password. Given this,
we can infer the complete adoption pattern in the network — the top middle computer does not have a weak password, and
therefore is invulnerable to the virus. The same is true for the bottom right computer. The bottom middle one, on the other hand,
is vulnerable and in contact with the virus at the same time, so it must be infected. The top right computer is vulnerable, but the
virus cannot reach it, since neither of its neighbors is infected. So the top right computer is not infected either.

Each node has a set of features belonging to a common fea-
ture space X ; these features determine whether the node is
susceptible to the propagating entity. In addition to the fea-
tures of individual nodes, the overall infection pattern also
depends on the nodes that are originally exposed to the prop-
agating entity: we call these nodes generators.

For example, if a computer virus is propagating through a
network, then features that determine susceptibility of indi-
vidual computers include the nature of the OS, the strength
of passwords, etc. While for a new virus, we may not know
exactly what vulnerabilities it targets, we do know that there
is an underlying mapping from the space of relevant fea-
tures to the susceptibility of a computer to this virus. In fact,
this yields a hypothesis class of possible sets of vulnerable
feature combinations that a virus may target, and makes it
possible to reason about the entire infection pattern of the
virus by inspecting only some computers. Similarly, we de-
note the set of all patterns of generators, i.e., the computers
infected externally, as a hypothesis classHg . (See Fig. 1 for
a detailed instantiation of this example.)

We also distinguish between two common modes in
which a communicable entity can spread in a network. The
first, which we call symptomatic spread, refers to the set-
ting where a node transmits the entity to a neighbor only if
it received the entity and is susceptible to it (in the context
of epidemiology, this roughly corresponds to an SI process
spreading on a graph on which some nodes are resistant/re-
moved). This model corresponds to the analysis in the cap-
tion of Figure 1. In the second model, which we call asymp-
tomatic spread, a node can transmit the entity to a neighbor
as long as it received the entity itself, irrespective of whether
it is susceptible (which roughly corresponds to an SI process
where some nodes are asymptomatic). In this model, for the
example in Figure 1, we would conclude that the top right
node is also infected (i.e., shows symptoms), as it would be

exposed and also must be susceptible. (This would corre-
spond to the case where the virus spreads through all com-
puters on the network but is only able to affect — say, en-
crypt the hard drive of — some of them. In our language,
only the computers with encrypted hard drives would be ‘in-
fected.’) We denote the corresponding hypothesis class for
susceptibility of individual nodesHs.
Optimal sample complexity bounds. Our main results in
this paper are asymptotically tight bounds for the sample
complexity (i.e., the number of random nodes that need
to be inspected) of learning influence adoption in hetero-
geneous networks, for both the symptomatic spread and
asymptomatic spread models.

In particular, we show the following bounds. In these
bounds, ρ is the maximum width of the network, n is the
number of nodes in it, and dg and ds are the VC dimen-
sions of the generator and susceptibility hypothesis classes
respectively (we will formally define the sample complexity
and the width later).
• the sample complexity of learning in the symptomatic

spread model is O(ds log n+ min(ρ, dg log n)).
• the sample complexity of learning in the asymptomatic

spread model is O(ds + min(ρ, dg log n)).
To gain some intuition about these bounds, let us first

compare them to the homogeneous setting studied by
Conitzer, Panigrahi, and Zhang (2020). In that model, all
nodes are susceptible, so that ds = 0, and any subset of them
can be generators, so that dg = n. Thus, the above bounds
reduce to the width of the network ρ, which is exactly the re-
sult in Conitzer, Panigrahi, and Zhang (2020). Next, suppose
every individual in a network is externally infected, so that
dg = 0. Then, the complexity of learning the state of each
individual reduces to that of learning in the hypothesis class
Hs, which demonstrates that the sample complexity bounds
must depend on ds. Finally, suppose the network is an empty



graph, so that ρ = n, and everybody is susceptible, so that
ds = 0. In this case, an individual is infected if and only if
that individual is externally exposed, which shows that the
dependence on dg is also necessary.

While the discussion above establishes that the sample
complexity bounds must depend on ds, dg , and ρ, we show
further in later sections that the specific bounds given above
are also asymptotically tight. For this purpose, we construct
a set of “hard” instances of the problem, in which effective
learning using fewer samples than these bounds can be ruled
out from an information-theoretic perspective.
Random propagation. The propagation of communicable
entities, such as the spread of disease between an infected
and a healthy person who comes in contact, is often inher-
ently a random event. In some cases, we may know who
has come into contact with whom, but we generally still
do not know for certain if there was transmission – though
we may have a better idea of the probability thereof. In
other cases, who came into contact with whom itself might
only be known through a Bayesian process: it might not be
known if two people came in contact with one another, but
the probability of doing so can be inferred from their ac-
tivities. We abstract from both these cases by considering
a random propagation network, and give a generic reduc-
tion from sample complexity bounds for learning in deter-
ministic environments to learning in random environments.
Using this reduction and our sample complexity bounds for
deterministic propagation, we obtain similar bounds for sta-
ble random networks. The stability condition assumes that
the target error rate and failure probability of the learner are
above the resolution of the random network, a condition that
is necessary even for homogeneous networks (see (Conitzer,
Panigrahi, and Zhang 2020)).

1.2 Further Related Work
Influence propagation. The phenomenon of influence prop-
agation in a network was first studied by Kempe, Klein-
berg, and Tardos (2003). Various models of influence prop-
agation have been investigated (Gruhl et al. 2004; Chen,
Wang, and Wang 2010; Chen et al. 2011; Myers, Zhu, and
Leskovec 2012). Several aspects of influence propagation
have been extensively studied, among which a topic particu-
larly related to our work is learning from influence propaga-
tion, i.e., learning structures/parameters of networks. There,
the goal is to learn parameters of the network in which
the propagation happens given outcomes of the propaga-
tion procedure. As such, it can be regarded as an inverse
problem of the one we study. Some representative results
on the topic include (Liben-Nowell and Kleinberg 2007;
Goyal, Bonchi, and Lakshmanan 2010; Chierichetti, Liben-
nowell, and Kleinberg 2011; Gomez Rodriguez, Balduzzi,
and Schölkopf 2011; Saito et al. 2011; Du et al. 2012;
Guille and Hacid 2012; Abrahao et al. 2013; Cheng et al.
2014; Daneshmand et al. 2014; Du et al. 2014; Narasimhan,
Parkes, and Singer 2015; He et al. 2016; Kalimeris et al.
2018). A related and more recent line of work is on rep-
resentation learning for influence propagation (Bourigault,
Lamprier, and Gallinari 2016; Li et al. 2017; Wang et al.
2017). Being an inverse problem, our results are not directly

comparable to all the above.
Epidemic estimation. There is a massive body of research
on epidemic estimation, where the main focus is on macro-
scopic prediction tasks, e.g., whether a meme will go vi-
ral, or the number of infections over time (Myers, Zhu, and
Leskovec 2012; Weng, Menczer, and Ahn 2013). In contrast,
our results aim to recover the infection status of every single
node, as opposed to aggregate statistics.
Learning theory. Valiant (1984) introduced the probably
approximately correct (PAC) framework for passive learn-
ing. The Vapnik-Chervonenkis (VC) theory (see (Vapnik
2013)) nicely characterizes the learnability of different con-
cepts via the VC dimension, following which various mea-
sures of complexity have been considered (Alon et al. 1997;
Bartlett and Mendelson 2002; Pollard 2012; Daniely et al.
2015), and tighter generalization bounds have also been de-
veloped (Talagrand 1994; Hanneke 2016). While these gen-
eral results are powerful, as discussed in later sections, they
cannot be directly applied to the specific problem we study.

2 Preliminaries
2.1 Useful Tools from Learning Theory
Definition 1 (VC Dimension). A set S is shattered by a fam-
ily of sets F , if for any T ⊆ S, there exists U ∈ F , such that
S∩U = T . The VC dimension of a hypothesis classH over
a space X , denoted d(H), is the cardinality of the largest set
S ⊆ X shattered byH.

The sample complexity of PAC learning is given by the
following theorem:
Theorem 2 (VC Theorem (the realizable case)). Fix X and
H. Consider any distribution D over X , f ∈ H, δ > 0, and
ε > 0. Now, given m = O((d(H) log(1/ε) + log(1/δ))/ε)
i.i.d. samples fromD, the following holds with probability at
least 1− δ: any hypothesis h ∈ H that is consistent with all
the m samples (i.e., h(xi) = yi for all i ∈ [m]) satisfies

Pr
x∼D

[h(x) 6= f(x)] ≤ ε.

Moreover, this bound is tight in the sense that any algorithm
achieving this guarantee requires Ω((d(H) + log(1/δ))/ε)
samples.

2.2 Learning Influence Propagation in Networks
Definition 3 (Implicit Hypothesis Class). Given a directed
network G = (V,E), the implicit hypothesis class associ-
ated with G,H(G), is defined to be the family of all subsets
S of V , where for any two vertices u, v ∈ V , if u ∈ S and u
can reach v in G (i.e., u→G v), then v ∈ S.

In words, the implicit hypothesis class is the family of all
sets that are closed under reachability in G.
Definition 4 (Width of Directed Networks). The width ρ(G)
of a directed network G = (V,E) is the size of the max-
imum set S ⊆ V of vertices, such that for any u, v ∈ S
where u 6= v, there is no u to v path in G, i.e., u 6→G v.
Lemma 5 (VC Dimension of Implicit Hypothesis Class
(Conitzer, Panigrahi, and Zhang 2020)). Given a directed
networkG, the VC dimension of the implicit hypothesis class
H(G) associated with G is d(H(G)) = ρ(G).



3 Learning under Symptomatic Spread
The propagation model. In a directed networkG = (V,E),
each node u ∈ V has features x(u) ∈ X given by a fea-
ture mapping x : V → X . Given a generator concept fg :
X → {0, 1} and a susceptibility concept fs : X → {0, 1},
the final adoption pattern fa : V → {0, 1} induced by fg
and fs is given by: fa(v) = 1 iff there exists u ∈ V , such
that fg(x(u)) = 1, and u can reach v in the sub-network
G(x, fs) induced by V (x, fs) = {w ∈ V | fs(x(w)) = 1},
i.e., u →G(x,fs) v. In the rest of the paper, we will abuse
notation and let fg(u) = fg(x(u)), fs(u) = fs(x(u)), etc.

In words, a node u is initially in contact with the influence
iff it is assigned label fg(u) = 1 by the generator concept
fg . Moreover, if a node u has label fs(u) = 1, then it is fully
susceptible to the influence, meaning that if in contact with
the contagious entity, u will adopt and subsequently spread
the influence. Otherwise (i.e., when fs(u) = 0), u is fully
immune to the influence, meaning u does not interact with
the contagious entity in any way.

Given the propagation model, we are ready to define the
learning problem. Roughly speaking, the learning problem
asks to design an algorithm, which given access to a num-
ber of labeled sample nodes (where the label is whether the
node has adopted the influence), predicts the label of a ran-
dom node correctly with probability at least 1−ε. Moreover,
the algorithm is allowed to fail with probability δ, in which
case it does not need to satisfy any requirements. Below we
define the problem formally.
The learning problem. Fix a network G, a feature map-
ping x, a generator hypothesis class Hg and a susceptibility
hypothesis class Hs. The learning problem asks to design
an algorithm, which for any generator concept fg ∈ Hg ,
susceptibility concept fs ∈ Hs, distribution D over V ,
ε > 0 and δ > 0, with m = m(ε, δ) labeled (i.e., adop-
tion vs no adoption) samples from D, outputs a hypothesis
h : V → {0, 1} satisfying: with probability at least 1 − δ
(over the samples and the algorithm’s internal randomness),
Prv∼D[h(v) 6= fa(v)] ≤ ε, where fa is the adoption pattern
induced by fg and fs.

In the above definition, we assume that the algorithm has
full access to the generator and susceptibility hypothesis
classes. However, being families of subsets of the feature
space X , these hypothesis classes can be quite large or even
infinite, and in fact, they may not even admit a succinct rep-
resentation. To this end, throughout the paper, we assume
oracle access toHg andHs for empirical risk minimization.
More specifically, we assume the following can be done in
polynomial time: for H ∈ {Hg,Hs}, given k labeled data
points {(xi, yi)}i∈[k], one can find a concept h inH that best
fits the labels, i.e., h ∈ argminh′∈H

∑
i∈[k] |h′(xi)− yi|.

In homogeneous networks, as shown by Conitzer, Pani-
grahi, and Zhang (2020), the key parameter which controls
the sample complexity of learning influence adoption is the
width. However, in heterogeneous networks, the width by it-
self is no longer an effective measure of the complexity of
the network. For example, the notion of the width does not
capture the phenomenon that some members of the network
may not be susceptible to the influence, making the network

less well-connected than it appears to be. To this end, we in-
stead use the maximum width, a generalization of the width
to heterogeneous networks, to measure the complexity of a
network.
Definition 6 (Maximum Width of Directed Networks). For
a network G, a feature mapping x, and susceptibility hy-
pothesis class Hs, the maximum width is defined to be
ρ(G, x,Hs) = maxfs∈Hs

ρ(G(x, fs)).
We remark that the maximum width ρ(G, x,Hs) can be

either larger or smaller than ρ(G). For example, suppose
we know there is precisely one insusceptible node (but not
which one). Then, when G has no edges, ρ(G, x,Hs) =
ρ(G)− 1, and when G is a chain, ρ(G, x,Hs) = ρ(G) + 1.

Now we are ready to state our main result for the symp-
tomatic spread model. The following theorem gives a sam-
ple complexity upper bound for the learning problem with
deterministic networks — we will generalize this to random
networks in Section 5.
Theorem 7. In the symptomatic spread model, for any
G = (V,E), x, Hg , and Hs, let Ha be the class of all
possible adoption patterns induced by generator concepts
in Hg and susceptibility concepts in Hs. Let n = |V |,
ρ = ρ(G, x,Hs), dg = d(Hg) and ds = d(Hs). Then we
have

d(Ha) = O(ds log n+ min(ρ, dg log n)).

As a result, there is an algorithm that learns the adoption
pattern with any error rate ε > 0 and failure probability
δ > 0 using

O

(
(ds log n+ min(ρ, dg log n)) · log ε−1 + log δ−1

ε

)
samples. Moreover, the algorithm runs in polynomial time
when ds is a constant.

The proof of the theorem, as well as all other proofs,
are deferred to the appendices. Here we provide some intu-
ition for the essence of the theorem: the upper bound on the
VC dimension of the adoption hypothesis class Ha. Since
each member of Ha is generated by a member of Hg and
a member of Hs, if we can show that the numbers of “ef-
fectively different” members in Hg and Hs (i.e., members
which can induce different adoption patterns) are both rea-
sonably small, then the cardinality of Ha, upper bounded
by the product of the two numbers, must be small too. This
would imply an upper bound on the VC dimension, since
in order to shatter a set of size d, Ha must have at least 2d

members. Given the above observations, a weaker version
of the bound can be derived immediately from the Sauer-
Shelah lemma, stated below.
Lemma 8 (Sauer-Shelah Lemma (rephrased)). Let F be a
family of sets with VC dimension d(F) = d. Then for any
set S with cardinality |S| = n, |F∩S | ≤ (2en/d)

d, where
F∩S = {T ∩ S | T ∈ F}.

Applying the above lemma toHg andHs restricted to the
nodes V , we have that |H∩Vg | ≤ (2en/dg)

dg and |H∩Vs | ≤
(2en/ds)

ds . So |Ha| ≤ |H∩Vg |·|H∩Vs | = O(ndg+ds), which
implies d(Ha) = O(log |Ha|) = O((dg + ds) log n).



In order to obtain the full bound in Theorem 7, we also
need to show that d(Ha) = O(ds log n + ρ), which re-
quires more effort. To prove this bound, we consider the sus-
ceptibility hypothesis class Hs, and the implicit hypothesis
class associated with the sub-network induced by suscep-
tible nodes, i.e., H(G(x, fs)), for each fs ∈ Hs. Then, a
similar counting argument to the one above gives d(Ha) =
O((ds+ρ) log n). However, it turns out one can do better via
a refined argument, formalized in the following key lemma.
Lemma 9. For any integer k > 0 and k families of
sets F1, . . . ,Fk, if for any i ∈ [k], d(Fi) ≤ d, then

d
(⋃

i∈[k] Fi
)

= O(d+ log k).

Applying the lemma to H(G(x, fs)) for all “effectively
different” fs ∈ Hs then gives d(Ha) = O(ds log n + ρ),
thereby finishing the proof of Theorem 7. One may suspect
that with a further improved analysis, one can actually re-
move the log n factor from all terms in the upper bound.
Next we show that this logarithmic dependency on n is un-
avoidable — and in fact, all terms in our upper bound are
tight up to constant factors — even when restricted to undi-
rected networks. See Appendix A for proof sketches.
Theorem 10. In the symptomatic spread model, there ex-
ist families of hard instances of the learning problem in
the symptomatic spread model, on which achieving con-
stant target error rate ε and failure probability δ requires
(1) Ω(ds log n) samples, when dg and ρ are constant, (2)
Ω(dg log n) samples, when ds is constant, or (3) Ω(ρ) sam-
ples, when ds is constant. In other words, all terms in The-
orem 7 are necessary. Moreover, all hard instances only in-
volve undirected networks.

Finally, we show that when the learning algorithm cannot
access the feature mapping, no nontrivial sample complexity
bound is possible.
Theorem 11. In the symptomatic spread model, when the
feature mapping x is unknown (but the features of labeled
sample nodes and nodes to make predictions for are known),
there is a family of instances where dg , ds, and ρ are all con-
stant, but the number of samples required to achieve con-
stant error rate ε and failure probability δ is Ω(n).

4 Learning under Asymptomatic Spread
The propagation model. In a directed networkG = (V,E),
each node v ∈ V has features x(v) ∈ X given by a feature
mapping x : V → X . Given a generator concept fg : X →
{0, 1} and a susceptibility concept fs : X → {0, 1}, the
final adoption pattern fa : V → {0, 1} induced by fg and
fs is given by: fa(v) = 1 iff there exists u ∈ V such that
fg(x(u)) = 1 and u can reach v in G, and fs(x(v)) = 1.
Again, we will abuse notation and let fg(u) = fg(x(u)),
fs(u) = fs(x(u)), etc.

The asymptomatic spread model is similar to the symp-
tomatic spread model discussed in Section 3, except that
here, a node that is not susceptible cannot adopt, but can
still spread, the influence. Given the propagation model, we
can define the learning problem in a similar way.
The learning problem. Fix a network G, a feature map-
ping x, a generator hypothesis class Hg and a susceptibility

hypothesis class Hs. The learning problem asks to design
an algorithm, which for any generator concept fg ∈ Hg ,
susceptibility concept fs ∈ Hs, distribution D over V ,
ε > 0 and δ > 0, with m = m(ε, δ) labeled (i.e., adop-
tion vs no adoption) samples from D, outputs a hypothesis
h : V → {0, 1} satisfying: with probability at least 1 − δ
(over the samples and the algorithm’s internal randomness),
Prv∼D[h(v) 6= fa(v)] ≤ ε, where fa is the adoption pattern
induced by fg and fs.

The following theorem establishes our sample complexity
upper bound for the asymptomatic spread model. The proof
techniques are similar to those used to establish Theorem 7.
Theorem 12. In the asymptomatic spread model, for any
G = (V,E), x, Hg , and Hs, let Ha be the class of all
possible adoption patterns induced by generator concepts
in Hg and susceptibility concepts in Hs. Let n = |V |,
ρ = ρ(G), dg = d(Hg) and ds = d(Hs). Then we have
d(Ha) = O(ds + min(ρ, dg log n)). As a result, there is an
algorithm that learns the adoption pattern with any error
rate ε > 0 and failure probability δ > 0 using

O

(
(ds + min(ρ, dg log n)) · log ε−1 + log δ−1

ε

)
samples. Moreover, the algorithm runs in polynomial time
when dg and ds are constant.

The following theorem shows that all terms in our sample
complexity upper bound are necessary. The hard instances
are similar to those in the symptomatic spread model.
Theorem 13. In the symptomatic spread model, there ex-
ist families of hard instances of the learning problem in the
asymptomatic spread model, on which achieving constant
target error rate ε and failure probability δ requires (1)
Ω(ds) samples, when dg and ρ are constant, (2) Ω(dg log n)
samples, when ds is constant, or (3) Ω(ρ) samples, when ds
is constant. In other words, all terms in Theorem 12 are nec-
essary. All hard instances only involve undirected networks.

We remark that the above bound has weaker dependency
on n than the one in Theorems 7 and 10. This suggests that
with the same amount of prior knowledge, it is easier to learn
under asymptomatic than under symptomatic spread.

5 Random Networks
In this section, we discuss how our sample complexity
bounds can be generalized to random networks. We first
present a general reduction for PAC learning with random
hypothesis classes, and then show how the reduction can be
applied to the problem of learning influence adoption, which
yields sample complexity bounds in random networks.
The random hypothesis class model. Let S be the set of
possible states of the world. Each s ∈ S corresponds to
a random concept fs,r over a feature space X , given by a
random mapping r ∼ R (in other words, fs,r = r(s) is a
random subset of X ). Moreover, r also maps S to a random
hypothesis classHr = {fs,r | s ∈ S}.
Learning with random hypothesis classes. Fix a state
space S, a feature space X , and a distribution R over map-
pings from S to 2X . The learning problem asks to design an



algorithm, which for any state s ∈ S, distribution D over
X , ε > 0 and δ > 0, when r ∼ R is an unobservable ran-
dom mapping drawn from R, with m = m(ε, δ) labeled
samples from D (i.e., {(xi, yi)}i∈[m] where yi = fs,r(xi)
for each i), outputs a hypothesis h : X → {0, 1} sat-
isfying: with probability at least 1 − δ (over the random-
ness in r, the labeled samples, and the learning algorithm),
Prx∼D[h(x) 6= fs,r(x)] ≤ ε. We say such an algorithm
(ε, δ)-learns the random hypothesis classHr.

Below we generalize the notion of stable networks by
Conitzer, Panigrahi, and Zhang (2020) to PAC learning with
random hypothesis classes, and show that stability enables
efficient learning in the more general problem that we study.

Definition 14 ((ε0, δ0)-Stability). Fix a state space S, a fea-
ture space X , and a distribution R over mappings from S
to 2X . Let r and r′ be two independent sample mappings
drawn from R. We say (S,X ,R) is (ε0, δ0)-stable with re-
spect to a distribution D over X , if for any s ∈ S , the
following is true: with probability at least 1 − δ0 over r,
Prr′∼R,x∼D[fr,s(x) 6= fr′,s(x)] ≤ ε0.

Theorem 15. Fix a state space S, a feature space X , and
a distribution R over mappings from S to 2X . Suppose
(S,X ,R) is (ε0, δ0)-stable with respect to some distribu-
tion D over X . Then there is an algorithm that, for any
ε > C1 · ε0 and δ > C2 · δ0, (ε, δ)-learns the random hy-
pothesis classHr using

m = O

(
d log(1/ε) + log(1/δ)

ε

)
samples, where d = Er[d(Hr)] is the expected VC dimen-
sion of the random hypothesis classHr.

We note that the stability condition is necessary, since
Conitzer, Panigrahi, and Zhang (2020) show (in Proposi-
tion 4.1) that it is statistically hard to learn anything non-
trivial even in their simpler model without any assumptions
on the stability of the network. Intuitively, this is because
the learning procedure can be viewed as inferring the seed
set given the outcome of the propagation, and if the out-
come and the seed set are not correlated well enough, then
information-theoretically there is no hope for inference.

Below we formally define the problem of learning influ-
ence adoption in random networks, and apply Theorem 15
to obtain sample complexity bounds. We start with the case
of symptomatic spread; the case of asymptomatic spread is
defined similarly.

Let G be a distribution over directed networks defined
over vertices V (also known as a random live-edge graph
in the context of influence propagation). Each node v has
features x(v) given by a feature mapping x. Given a gen-
erator concept fg and a susceptibility concept fs, the final
random adoption pattern fa induced by fg and fs is given
by the following procedure: first draw a random network
G ∼ G. Then, fa(v) = 1 iff there exists u ∈ V such
that fg(x(u)) = 1, and u can reach v in the sub-network
G(x, fs) induced by V (x, fs) = {w ∈ V | fs(x(w)) = 1},
i.e., u →G(x,fs) v. That is, fa is the induced adoption pat-
tern by fg and fs in a random network G ∼ G.

Observe that the random network G induces a random
mapping rG from Hg × Hv to 2X , where rG(fg, fs) is the
adoption pattern induced by fg and fs in G. We say this is
the implicit mapping induced by the distribution G, and let
R(G) denote the distribution of this mapping. Moreover, let
HG = rG(Hg × Hs) be the class of possible adoption pat-
terns induced byHg andHs in G.

Fix a distribution over networks G, a feature mapping x,
a generator hypothesis classHg and a susceptibility hypoth-
esis class Hs. The learning problem asks to design an algo-
rithm, which for any generator concept fg ∈ Hg , suscepti-
bility concept fs ∈ Hs, distribution D over V , ε > 0 and
δ > 0, with m = m(ε, δ) labeled samples from D, outputs
a hypothesis h : V → {0, 1} satisfying: with probability
at least 1 − δ, Prv∼D[h(v) 6= fa(v)] ≤ ε, where fa is the
random adoption pattern induced by fg and fs in an unob-
servable random network G ∼ G.
Corollary 16. In the symptomatic spread model with ran-
dom networks, fix G, X , Hg , Hs, and x. Suppose for a dis-
tribution D over X , (Hg × Hs,X ,R(G)) is (ε0, δ0)-stable
with respect to D. Then the random hypothesis class HG is
(ε, δ)-learnable for any ε > C1 · ε0, δ > C2 · δ0 using

O

(
(ds log n+ min (ρ, dg log n)) · log ε−1 + log δ−1

ε

)
samples, where ρ = EG∼G [ρ(G, x,Hs)].
Corollary 17. In the asymptomatic spread model with ran-
dom networks, fix G, X , Hg , Hs, and x. Suppose for a dis-
tribution D over X , (Hg × Hs,X ,R(G)) is (ε0, δ0)-stable
with respect to D. Then the random hypothesis class HG is
(ε, δ)-learnable for any ε > C1 · ε0, δ > C2 · δ0 using

O

(
(ds + min (ρ, dg log n)) · log ε−1 + log δ−1

ε

)
samples, where ρ = EG∼G [ρ(G)].

6 Experimental Evaluation
In this section, we instantiate our algorithms in a concrete
setup with random networks. Arguably the simplest class of
random networks is Erdős-Rényi random graphs. However,
such networks are infeasible for illustrating the efficacy of
our approach: since all nodes are symmetric, these networks
(before realizing) carry almost no structural information that
can be utilized in learning. In order to make the learning
problem as nontrivial as possible, we instead consider the
following setup. Fixing the number of nodes n, each edge
(u, v) realizes independently with probability puv . These
probabilities satisfy: for any u, v ∈ [n], puv = 1/|u − v|
if |u − v| ≤ C, and 0 otherwise. Intuitively, this models
the case where all nodes are located on a line, and nodes
closer to each other interact more frequently. This is a one-
dimensional instance of the small-world model by Kleinberg
(2000), except that we truncate the probabilities at distance
C to make the learning problem harder. In our experiments,
we choose C = 30. For the generator and susceptibility hy-
pothesis classes, we consider the setting discussed in our in-
troductory example (Figure 1): there are k potential weak-
nesses, and each susceptibility hypothesis (corresponding to
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Figure 2: Error rates of our algorithm and the feature-oblivious baseline (Conitzer, Panigrahi, and Zhang 2020) on instances
with different parameters. Each point is the average of 40 independent runs, and each run takes less than a minute on a laptop.

a virus) is induced by a subset of the k weaknesses, cor-
responding to those the virus targets. Recall that a node is
susceptible as long as it has some weakness that the virus
targets. For simplicity, we assume the generator hypothesis
class is singletons of nodes, meaning that exactly one (un-
known) computer has been initially exposed to the virus. In
our experiments, we choose the ground truth generator node
uniformly at random, and the ground truth susceptibility hy-
pothesis by adding each weakness to the set targeted inde-
pendently with probability 3/k (so in expectation the virus
targets 3 weaknesses). Then we generate the set of weak-
nesses of each node by adding each weakness with proba-
bility 0.2. All these numbers are chosen specifically to make
the instance rich and the learning problem nontrivial.

Our results are shown in Figure 2. First note that the hy-
pothesis classes we choose satisfy d(Hg) = 1 and d(Hs) =
k. So applying Corollary 16, up to the resolution ε0, givenm
labeled samples, the error rate of our learner is O((log n +
k)/m). This roughly aligns with our experimental observa-
tions: as m grows, the error rate drops roughly as the bound
indicates, and tends to plateau as it approaches the stability
parameter ε0 of the network, which appears to be quite small
in this setup. For all 4 values of n the curves are very simi-
lar, which corresponds to the logarithmic dependence on n.
The dependence on k is more significant, as suggested by
the theoretical results. For comparison, we also include the
error rates of the feature-oblivious baseline algorithm given
in (Conitzer, Panigrahi, and Zhang 2020), which ignores the
sets of weaknesses and simply assume all nodes are suscepti-
ble (there are two curves because the networks are generated
differently for different values of k). As the figure shows, the

baseline algorithm fails to exploit the heterogeneity of the
network, and suffers significantly higher error rates.

7 Conclusion
In this paper, we studied the problem of influence adoption
in the context of heterogeneous networks. There are sev-
eral interesting follow-up directions from this study. First,
there are situations, particularly in the context of infectious
diseases, where the state of being infected or healthy is
transient. In this case, can the state of individual nodes be
learned over time, by periodically sampling nodes for their
current state? It is also important to study the practical im-
plications of this learning problem, since it has immediate
applications to fields like epidemiology. For instance, do the
sample complexity bounds shown in this paper lead to prac-
tical algorithms that can be used in field studies? Finally,
while we assumed that the nodes we inspect are a random
sample from an underlying distribution (in the spirit of PAC
learning), a different direction is to consider an active learn-
ing approach in which the algorithm can choose the nodes it
wants to inspect. It is plausible that this additional selectiv-
ity can help reduce the size of the training set significantly
in some situations. In fact, in, for example, epidemiologi-
cal applications, we often see a combination of the two ap-
proaches: inspect a random sample but also inspect some se-
lected nodes, such as those that are at high risk of contract-
ing the disease because they neighbor infected nodes from
the random sample. Such hybrid models of practical signifi-
cance constitute an interesting direction for future research.
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A Proof Sketches of the Lower Bounds

Here we briefly describe the hard instances for each of the lower bounds. We start from the less complex Ω(ρ) bound. Consider
n unconnected nodes, each with a distinct feature combination. Suppose all nodes are susceptible (soHs is a singleton with VC
dimension ds = 0), and the set of generators is a uniformly random subset of all nodes. Here, a node adopts the influence (i.e.,
has label 1) iff it is a generator, and whether a node adopts the influence is independent of everything else. It is easy to show
that learning anything nontrivial requires Ω(n) = Ω(ρ) samples.

Now we proceed to the more complex constructions. First consider the Ω(ds log n) bound. The plan is to prove an Ω(log n)
bound for the case of ds = 1, and then lift the construction to give Ω(ds log n) by making ds parallel copies of the construction.
The construction is illustrated in Figure 3. Suppose we care about k nodes (we will see below that our construction requires that
n > k). Ideally, we would like to let all these nodes be susceptible, fix a single node (say node 1) as a generator, and partition all
nodes into 2 disjoint cliques (so ρ = 2). Each node is in one of the two cliques independently and uniformly at random. Then, a
node adopts the influence (i.e., has label 1) iff it is in the same clique as node 1, which happens with probability 1/2 independent
of everything else. This would give a lower bound of Ω(k). However, this idea implemented in the straightforward way requires
edges to be heterogeneous too. In particular, we want only edges within the same clique to exist, which is impossible under the
symptomatic spread model.

Figure 3: Example construction for the Ω(ds log n) bound using extended edges when k = 3. There are 23 = 8 groups of
edges, one for each partition (S, S̄). The left graph is the complete network, where node 1 (the dark node) is the only generator.
Depending on S, the complete network may realize into different sub-networks, out of which we show 3 examples on the
right (corresponding to S = {1, 2}, S = {2, 3}, and S = {1, 2, 3}). The dark nodes are those with label 1 (because they are
connected to node 1).

In order to circumvent the above issue, we simulate heterogeneous edges by placing a dummy node, whose label we do not
care about, in the middle of every edge. We call such a gadget an extended edge. Then effectively, an extended edge exists
iff the corresponding dummy node is susceptible. Moreover, we create 2k groups of extended edges, one for each partition of
the k nodes into two cliques. Within each group, all extended edges share the same feature combination unique to this group.
Then we can make precisely one group of extended edges exist, by making the corresponding feature combination susceptible
(a susceptibility hypothesis class allowing precisely this has VC dimension ds = 1). The number of extended edges (and hence
dummy nodes) in the above implementation is at most 2k · k2, so the total number of nodes is n = O(2O(k)), which gives a
lower bound of Ω(k) = Ω(logn).

Finally, consider the Ω(dg log n) bound. Again, we show an Ω(log n) bound for the dg = 1 case, and then lift to Ω(dg log n)
by making dg parallel copies. The construction is illustrated in Figure 4. The idea is to create 2k cliques, where k is the number
of feature combinations that matter. All nodes are susceptible (so ds = 0), and among the k feature combinations, exactly one
is a generator feature combination (a generator hypothesis class allowing exactly this has VC dimension dg = 1). Suppose the
r-th feature combination is the generator feature combination, and the cliques are numbered from 0 to 2k − 1. We would like
each clique i to have label 1 (i.e., to contain a generator) iff the r-th digit in the binary representation of i is 1. Then, choosing
r uniformly at random gives a lower bound of Ω(k). In order to implement this, for each j ∈ [k], we add a node with feature
combination xj in the i-th clique iff the j-th digit of i is 1. We also add a node to clique 0 with a dummy feature combination
x0, which is never a generator feature combination, since otherwise clique 0 would be empty. The number of nodes in this
construction is at most n ≤ 2k · k, which implies a lower bound of Ω(k) = Ω(log n).



Figure 4: Example construction for the Ω(dg log n) bound: the k = 2 case with 22 = 4 cliques. The left graph illustrates the
complete network in the construction. When x1 is the generator feature combination, the construction realizes into the top right
network, where the dark cliques are those with label 1. Similarly, when x2 is the generator feature combination, the construction
realizes into the bottom right network. These are the only two possible realizations for the construction.

B Omitted Proofs from Section 3
Proof of Lemma 9. Suppose F =

⋃
i∈[k] Fi shatters a set A where |A| = D. We only need to show that D = O(d+ log k). By

the Sauer-Shelah lemma (Lemma 8), F∩Ai = {S ∩A | S ∈ Fi} (that is, Fi projected to A) has cardinality at most

|Fi| ≤ (2e|A|/d)d = (2eD/d)d,

and F|A =
⋃
i∈[k] Fi|A has cardinality at most

|F∩A| ≤
∑
i∈[k]

|F∩Ai | ≤
∑
i∈[k]

(2eD/d)d = k(2eD/d)d.

Since A is shattered by F , we have
2D = 2|A| = |F∩A| ≤ k(2eD/d)d,

which immediately gives
D = O(d log((log k)/d) + log k).

Moreover, when d = Ω(log k), the above bound becomes O(d) = O(d + log k). Otherwise (i.e., when d = o(log k)), let
t = (log k)/d = ω(1). The above bound then becomes O(d log t + dt) = O(dt) = O(log k) = O(d + log k). So putting the
two cases together, we conclude that D = O(d+ log k), which implies d(F) = O(d+ log k).

Proof of Lemma 9. Suppose F =
⋃
i∈[k] Fi shatters a set A where |A| = D. We only need to show that D = O(d+ log k). By

the Sauer-Shelah lemma (Lemma 8), F∩Ai = {S ∩A | S ∈ Fi} (that is, Fi projected to A) has cardinality at most

|Fi| ≤ (2e|A|/d)d = (2eD/d)d,

and F|A =
⋃
i∈[k] Fi|A has cardinality at most

|F∩A| ≤
∑
i∈[k]

|F∩Ai | ≤
∑
i∈[k]

(2eD/d)d = k(2eD/d)d.

Since A is shattered by F , we have
2D = 2|A| = |F∩A| ≤ k(2eD/d)d,

which immediately gives
D = O(d log((log k)/d) + log k).

Moreover, when d = Ω(log k), the above bound becomes O(d) = O(d + log k). Otherwise (i.e., when d = o(log k)), let
t = (log k)/d = ω(1). The above bound then becomes O(d log t + dt) = O(dt) = O(log k) = O(d + log k). So putting the
two cases together, we conclude that D = O(d+ log k), which implies d(F) = O(d+ log k).



Proof of Theorem 7. We first prove the upper bound on the VC dimenion of Ha, the class of all possible adoption patterns.
First we show the easy part, i.e.,

d(Ha) = O((ds + dg) log n).

Suppose d(Ha) = D, and moreover, for some set A ⊆ V of size |A| = D,Ha shatters A. In other words, |H∩Aa | = 2|A| = 2D.
We only need to show D = O((ds + dg) log n), which requires upper bounding |H∩Aa |. Since every fa ∈ Ha is induced by a
pair (fg, fs) where fg ∈ Hg and fs ∈ Hs, we have

|H∩Aa | ≤ |H∩Ag | · |H∩As |.
By the Sauer-Shelah lemma (Lemma 8),

|H∩Ag | ≤
(

2eD

dg

)dg
and |H∩As | ≤

(
2eD

ds

)ds
,

which implies

|H∩Aa | ≤ |H∩Ag | · |H∩As | ≤
(

2eD

dg

)dg (2eD

ds

)ds
≤ (2eD)dg+ds .

Since A ⊆ V , we have |A| ≤ n, and therefore
|H∩Aa | ≤ (2en)dg+ds ,

which gives
D ≤ log |H∩Aa | = O((dg + ds) log n).

Now we prove the harder part of the upper bound for the VC dimension, i.e.,

d(Ha) = O(ρ+ ds log n).

The key step of the proof is to apply Lemma 9 toHa. Observe that

Ha ⊆
⋃

fs∈Hs

H(G(x, fs)) =
⋃

f ′s∈H∩Vs

H(G(x, f ′s)).

And the above is true even if there is no structure in the generator class Hg (and therefore all subsets of V might be the set of
generators). By the Sauer-Shelah lemma (Lemma 8),

|H∩Vs | ≤
(

2e|V |
ds

)ds
=

(
2en

ds

)ds
.

Moreover, by Lemma 5, for each f ′s ∈ H∩Vs ,

d(H(G(x, f ′s))) = ρ(G(x, f ′s)) ≤ ρ(G, x,Hs) = ρ.

Now we can apply Lemma 9 toHa, with parameters

k = |H∩Vs | ≤
(

2en

ds

)ds
and d = ρ,

which gives
d(Ha) = O(d+ log k) = O(ρ+ ds log n).

This finishes the proof of the upper bound on d(Ha).
Now we show the existence of a learning algorithm with target error rate ε and failure probability δ using the desired number

of samples

m = O

(
(ds log n+ min(ρ, dg log n)) · log(1/ε) + log(1/δ)

ε

)
.

By the VC theorem (Theorem 2), with m samples, any algorithm that finds an adoption hypothesis ha ∈ Ha that is consistent
with the samples satisfies the above condition. Therefore, a simple (but inefficient) algorithm is to enumerate a generator
hypothesis h′g ∈ H∩Vg and a susceptibility hypothesis h′s ∈ H∩Vs , and check whether the induced adoption hypothesis by h′g
and h′s is consistent with the m samples. Such enumeration, implemented in the straightforward way, could take Ω(22n) time.
To design a more efficient algorithm, we instead take the following steps: first we generate H∩Vs in time O(|H∩Vs |) = O(nds)
by exploiting the ERM oracle to Hs. Then, for each h′s ∈ H∩Vs , we check whether there exists an hg ∈ Hg such that the
adoption hypothesis induced by h′s and hg is consistent with the m samples. This can be done using one call to the ERM oracle
forHg (when dg log n ≤ ρ), or one call to the ERM algorithm for the implicit hypothesis class associated with G(x, h′s) (when
dg log n > ρ). The overall algorithm runs in time O(nds · poly(n)), which is polynomial in all other relevant parameters when
ds is constant.

To efficiently generateH∩Vs , we apply the following lemma.



Lemma 18. For any hypothesis class H and set S where |S| = s, H∩S can be explicitly listed using O(s · |H∩S |) calls to the
ERM oracle forH, with O(s · |H∩S |) additional operations.

Proof. Without loss of generality suppose S = [s]. Consider the following binary tree of depth s + 1, constructed from H∩S
(i.e., the prefix tree ofH∩S):
• Each node in the tree corresponds bijectively to a prefix of a set in H∩S . That is, each node is associated with a unique

member of the following set
{(i, T ∩ [i]) | T ∈ H∩S , i ∈ {0, 1, . . . , s}}.

Below we will use the associated pair to refer to a node in the tree.
• The root of the tree is (0, ∅). The parent of any node (i, T ) where i > 0 is (i− 1, T ∩ [i− 1]).
Observe that the leaves of the above tree correspond bijectively to members of H∩S , and the size of the tree is O(s · |H∩S |).
So, listing members ofH∩S only requires efficiently traversing the above tree.

In order to do that, observe that a pair (i, T ) is a node of the tree, iff there exists h ∈ H, such that for all j ∈ [i], h(j) =
I[j ∈ T ]. So, to check whether (i, T ) is a node of the tree, we only need to call the ERM oracle to H on {(j, I[j ∈ T ])}j∈[i].
Then, (i, T ) is a node of the tree iff the empirical risk minimizer returned by the oracle is perfectly consistent with the input
data points. Now to traverse the tree, we simply start from the root (0, ∅), and check if the two potential children of the root are
in fact members of the tree. Then we recursively traverse the subtree rooted at each child of the root. This can be done using
O(s · |H∩S |) ERM calls and O(s · |H∩S |) additional operations.

Recall that the learning algorithm takes as input m labeled samples {(xi, yi)}i∈[m], and outputs a hypothesis h that approxi-
mates the actual adoption pattern fa. Given Lemma 18, the overall algorithm works in the following way.
1. Apply Lemma 18 to generateH∩Vs in time O(n · |H∩Vs |) = O(nds+1).
2. For each h′s ∈ H∩Vs , perform the following steps.

(a) Let G′ ← G(x, h′s), and S ← {u ∈ V | ∃i ∈ [m] : yi = 1 and xi →G′ u}. That is, G′ is the sub-network induced by
all susceptible nodes according to h′s, and S is the set of vertices reachable in G′ from some sample node xi with label
yi = 1.

(b) If there exists i ∈ [m], such that xi ∈ S and yi = 0, then abandone the current h′s and continue with the next
susceptibility hypothesis inH∩Vs .

(c) Let P ← {u ∈ S | ∀v ∈ S, v 6= u : v 6→G′ u}, N ← {u ∈ V | ∃i ∈ [m] : u →G′ xi, yi = 0}. That is, P is the set
of vertices in S not reachable from any other vertices in S, and N is the set of vertices that can reach some sample xi
with label yi = 0.

(d) Call the ERM oracle to Hg with data points {(u, 1) | u ∈ P} ∪ {(u, 0) | u ∈ N}, and let hg be the output hypothesis.
If hg is consistent with all input data points, then output the adoption pattern ha induced by hg and h′s and terminate
the algorithm. Otherwise, abandon the current h′s and continue with the next susceptibility hypothesis inH∩Vs .

It is easy to check the above algorithm in fact runs in time O(nds · poly(n)), and outputs a hypothesis adoption pattern ha
consistent with all labeled samples.

Proof of Theorem 10. We first prove the Ω(ds log n) bound. We start with a family of instances where ds = 1, dg = 0, and
ρ = 2, and to achieve constant ε and δ one needs Ω(log n) samples. The vertices are divided into two categories: “real” ones
and “dummy” ones. Let R = [k] for some parameter k be the real vertices — these are the vertices whose labels we care about.
The idea is to subdivide R into two random connected components, and each real node is independently in each of the two
components with probability 1/2. In one of the two components, every real node has label 1, and in the other, every node has
label 0. So, effectively the label of a real node (except for node 1 — see below) is an unbiased coin independent of the labels of
all other real vertices.

In order to implement the above idea, we create 2k groups of edges and dummy vertices, one for each subset of R. Suppose
the two components we want to create is C and R \ C. Let DC and EC be the dummy vertices and edges corresponding to
(C,R \C). For each (unordered) pair of vertices u and v in the same component (i.e., {u, v} ⊆ C or {u, v} ⊆ R \C), we add
the following dummy vertices and edges:
• a dummy node dCu,v ∈ DC , and
• two undirected edges (u, dCu,v) ∈ EC and (v, dCu,v) ∈ EC .
Then V = R ∪

⋃
C⊆RDC , and E =

⋃
C⊆REC . Note that for each C ⊆ R, |DC | ≤ k2, so we have

n = |V | ≤ k + 2k · k2,
and as a result, k = Ω(log n).

Observe that among the dummy vertices, if those in DC are susceptible and all other dummy vertices are not, then in the
induced sub-network R is divided exactly into two components, C and R \ C. To implement this, let X = {x0, x1} ∪ {xC |
C ⊆ R}. Moreover,
• real node 1 ∈ R has features x1 and all other vertices in R have feature x0, and
• all dummy vertices in DC have features xC .



The generator hypothesis class consists of a single concept fg , where fg(x1) = 1 and fg(x) = 0 for any x ∈ X \ {x1}. Clearly
dg = d(Hg) = 0. The susceptibility hypothesis class has 2k members Hs = {fCs | C ⊆ R}. For any C ⊆ R, fCs assigns 1 to
x0, x1, and xC ,and 0 to all other feature combinations. One can check that ds = d(Hs) = 1.

Now consider the learning problem. Let the population distribution D be uniform over R. Observe that the adoption pattern
fCa induced by fg and fCs satisfies: for any u ∈ R, fCa (u) = 1 iff 1 ∈ C and u ∈ C, or 1 /∈ C and u /∈ C. Suppose the actual
susceptibility concept is uniformly at random from Hs. That is, fs = fCs for a uniformly random subset C of R. Then except
for node 1, any u ∈ R is independently in the same component as 1 with probability 1/2, and so fa(u) = 1 with probability
1/2. So, for the learning algorithm, if u ∈ R is not among the labeled samples, then the algorithm has absolutely no knowledge
about fa(u), and has to make mistakes with probability 1/2. Now in order to achieve target error rate 1/4, the algorithm has to
observe about 1/2 of the real vertices, and the number of samples required is Ω(k) = Ω(logn). This leads to an Ω(log n) lower
bound when dg = 0 and ds = 1. Now to generalize the above argument for large ds, one can simply make independent copies
of the above hard instance, where ds is the number of such copies. Then, essentially the same argument gives a lower bound of
Ω(ds log n).

We now prove the Ω(dg log n) bound. Again, we start with a family of instances where dg = 1 and ds = 0, and to achieve
constant ε and δ one needs Ω(log n) samples. Let the feature space be X = {0, . . . , k}. Consider an undirected network
consisting of 2k cliques (numbered 0 through 2k−1) and n ≤ k ·2k vertices. The susceptibility hypothesis classHs consists of
a single concept fs, which assigns 1 to any feature combination x ∈ X , i.e., ∀x ∈ X , fs(x) = 1. Clearly ds = d(Hs) = 0. The
generator hypothesis class Hg consists of k concepts {f1g , . . . , fkg }. For each i ∈ [k], f ig assigns 1 to the feature combination
i ∈ X , and 0 to all other feature combinations. One can check that dg = d(Hg) = 1.

We now describe the vertices V and edges E. For each feature combination i ∈ X , and each j ∈ {0, . . . , 2k−1}, we create a
node with feature combination i in clique j iff the i-th digit in the binary representation of j is 1. We also create a node in clique
0 with feature combination 0 ∈ X , simply to make clique 0 nonempty (note that f ig(0) = 0 for all i ∈ [k]). Since every feature
combination corresponds to at most 2k vertices, the total number of vertices is n ≤ k · 2k. Then E is the set of all intra-clique
edges.

Now consider the learning problem. Let V ′ ⊆ V be any set containing exactly one node from each of the k cliques, and the
population distribution D be uniform over V ′. Suppose the ground truth generator concept fg is chosen uniformly at random
from Hg , so fg = frg where r is a uniformly random integer from [k]. When we draw a labeled sample (x, y), the label is
y = fa(x) = 1 iff the r-th digit in the number of the clique containing x is 1. Observe that the posterior distribution of r
after observing some labeled samples is always uniform over a subset of [k]. We argue that in order to achieve error probability
less than 1/4, one has to be completely sure about r. In fact, even if we know r is (wlog) either 1 or 2, each with probability
1/2, we still make mistakes with probability 1/4. This is because for a random node drawn from D, with probability 1/2,
exactly one of the first two digits in the number of the clique containing the node is 1. When this happens, we have absolutely
no knowledge about the label of the node, and therefore we make mistakes with probability 1/2. This gives an overall error
probability of 1/4. Now it is easy to show that in order to learn the precise value of r with constant (say 9/10) probability, one
needs Ω(k) = Ω(logn) samples. This leads to an Ω(log n) lower bound when dg = 1 and ds = 0. Now to generalize the above
argument for large dg , again one can simply make independent copies of the above hard instance, where dg is the number of
such copies. Then, essentially the same argument gives a lower bound of Ω(dg log n).

Finally we prove the Ω(ρ) bound. The family of hard instances here is considerably simpler compared to those for the
previous two bounds. Let X = V = [n] and E = ∅, and as a result, ρ = n. Each node i ∈ V has a distinct feature
combination x(i) = i. Let fs be the only member of Hs, which assigns 1 to every feature combination (i.e., all vertices are
always susceptible). LetHg be the set of all possible mappings from X to {0, 1} (i.e., any node can be a generator).

Now consider the learning problem. Let D be uniform over V . Suppose the actual generator concept fg is chosen uniformly
at random fromHg . In other words, the induced adoption pattern fa assigns label 1 to each node independently with probability
1/2. It is easy to show that the algorithm has to observe Ω(n) = Ω(ρ) samples in order to achieve a constant error rate. This
gives the Ω(ρ) lower bound.

Proof of Theorem 11. The idea is to construct a graph consisting of two parallel chains that are randomly swapped in each
layer. In one of the chains, all vertices have label 1, and in the other, all vertices have label 0. Because of the random swaps, it
is impossible for the learning algorithm to tell which chain a node is in. As a result, before observing the label of one of the two
vertices in the same layer, the learning algorithm has no knowledge about the label of a node.

Let the feature space be X = {x1, x2, x3}. The generator hypothesis class Hg consists of a single concept fg , where
fg(x1) = 1 and fg(x2) = fg(x3) = 0. The susceptibility hypothesis class Hs also has a single member fs, where fs(x1) =
fs(x2) = 1 and fs(x3) = 0. In other words, a node with features x1 is both a generator and susceptible, a node with features
x2 is a generator but not susceptible, and a node with features x3 is neither a generator nor susceptible. The vertices are divided
into “real” ones and “dummy” ones. Let R = {0, 1, . . . , 2k} for some parameter k be the real vertices — these are the ones
whose labels we care about. We say node 0 is in layer 0, and for each i ∈ [k], vertices 2i− 1 and 2i are in layer i. The feature
mapping assigns x1 to node 0, and x2 to all other vertices in R. The idea is to make node 0 a generator, and create a random
edge from 0 either to 1 or 2 with equal probability. Then between layer i and i+1, we either (with probability 1/2) create edges



from 2i − 1 to 2i + 1 and from 2i to 2i + 2 (i.e., we do not swap the two chains), or (with probability 1/2) create edges from
2i − 1 to 2i + 2 and from 2i to 2i + 1 (i.e., we swap the two chains). So as a result, in layer i, either 2i − 1 or 2i has label 1,
and this is independent of all other labels of vertices in R.

To implement the above idea, let
D0 = {d00, d01}

be the dummy vertices associated with layer 0, and

E0 = {(0, d00), (0, d10), (d00, 1), (d01, 1)}

be the edges associated with layer 0. For each i ∈ [k − 1], let

Di = {di00, di01, di10, di11}

be the dummy vertices associated with layer i, and

Ei = {(2i− 1, di00), (2i− 1, di01), (2i, di10), (2i, di11), (di00, 2i+ 1), (di01, 2i+ 2), (di10, 2i+ 1), (di11, 2i+ 2)},

be the edges associated with layer i. Then, in layer 0, the feature mapping assigns x(d00) = x2 and x(d01) = x3 with probability
1/2, and x(d01) = x2 and x(d00) = x3 with probability 1/2. Similarly, in layer i ∈ [k − 1], with probability 1/2, x(di00) =
x(di11) = x2 and x(di10) = x(di01) = x3, and with probability 1/2, x(di01) = x(di10) = x2 and x(di00) = x(di11) = x3. This
implements precisely the above idea. Also note that the total number of vertices is

n = |V | = |R|+ |D0|+
∑

i∈[k−1]

|Di| = 2k + 1 + 2 + 4(k − 1) = 6k − 1.

Now consider the learning problem. Let D be uniform over [2k] ⊆ R. Observe that for any i ∈ [k], in order to say anything
about fa(2i − 1) or fa(2i), the algorithm needs to observe at least one labeled sample from the same layer. As a result, to
achieve error rate 1/4 and failure probability 1/4, the number of samples needed is Ω(k) = Ω(n). This gives the desired lower
bound.

C Omitted Proofs from Section 4
Proof of Theorem 12. We first show that d(Ha) = O(ds + dg log n). The plan is to apply Lemma 9 to Ha. For each fg ∈ Hg ,
let Vfg be the set of all vertices in V that is reachable from some node u where fg(u) = 1. That is,

Vfg = {v ∈ V | ∃u ∈ V : fg(u) = 1, u→G v}.

Suppose fg and fs induce fa. Observe that for any u ∈ V , fa(u) = 1 iff u ∈ Vfg and fs(u) = 1. LetHa,fg be the family of all
adoption patterns induced by fg ∈ Hg and all concepts inHs, i.e.,

Ha,fg = {fs ∩ Vfg | fs ∈ Hs}.

By the construction ofHfga , one can check that

d(Ha,fg ) ≤ d(Hs) = ds.

Observe that
Ha =

⋃
fg∈Hg

Ha,fg =
⋃

f ′g∈H∩Vg

Ha,f ′g .

Then applying Lemmas 8 and 9, we have

d(Ha) = O(ds + log |H∩Vg |) = O(ds + dg log n).

Now we show that d(Ha) = O(ds + ρ). Again we apply Lemma 9. Suppose d(Ha) = D, and Ha shatters S ⊆ V where
|S| = D, so d(H∩Sa ) = D. Recall that H(G) is the implicit hypothesis class associated with G, and ρ = d(H(G)). Observe
that regardless ofHg ,

H∩Sa ⊆ {f ∩ f ′s | f ∈ H(G), f ′s ∈ H∩Ss } =
⋃

f ′s∈H∩Ss

{f ∩ S ∩ f ′s | f ∈ H(G)}.

Now by Lemmas 8 and 9,

D = d(H∩Sa ) = O(d(H(G)) + log |H∩Ss |) = O(ρ+ ds log(D/ds)).

This immediately gives
D = O(ρ+ ds log(1 + ρ/ds)).



In fact, this bound can be further simplified: when ρ = O(ds), the above bound becomesO(ds) = O(ρ+ds). When ρ = ω(ds),
let k = ρ/ds, and we have

D = O(ds · (k + log(1 + k))) = O(ds · k) = O(ρ) = O(ρ+ ds).

So in either case, we can conclude that
d(Ha) = D = O(ρ+ ds).

Now consider algorithms for learning Ha. We give below a simple algorithm that runs in time O(ndg+dspoly(n)) which
achieves target error rate ε and failure probability δ using

m = O

(
(ds + min(ρ, dg log n)) · log(1/ε) + log(1/δ)

ε

)
samples. In light of Theorem 2, we only need to find a hypothesis ha ∈ Ha that is consistent with all m labeled samples. Recall
that

Ha =
⋃

f ′g∈H∩Vg

{fs ∩ Vf ′g | fs ∈ Hs} =
⋃

f ′g∈H∩Vg

{f ′s ∩ Vf ′g | f
′
s ∈ H∩Vs }.

So, given Lemma 18, we can enumerate h′g ∈ H∩Vg in time O(ndg ) and h′s ∈ H∩Vs in time O(nds). We then output the
hypothesis ha induced by h′g and h′s if ha is consistent with the labeled samples.

Proof of Theorem 13. For the Ω(dg log n) and Ω(ρ) bounds, the family of hard instances for the same bounds in the proof of
Theorem 10 work in exactly the same way (except that here fs is the only member of Hs, where fs(u) = 1 for all u ∈ V ) We
therefore refrain from reiterating the same arguments. Below we prove the Ω(ds) bound. Let X = V = [n], E = ∅, and fg
be the only member of Hg where fg(i) = 1 for all i ∈ [n]. Moreover, let Hs be an arbitrary hypothesis class over X where
d(Hs) = ds. Then for any u ∈ V , fa(u) = 1 iff fs(u) = 1, and the learning problem is equilavent to learning the susceptibility
hypothesis classHs. By Theorem 2, it requires Ω(ds) samples to achieve constant ε and δ in the above learning task.

D Omitted Proofs from Section 5
Proof of Theorem 15. Given m labeled samples {(xi, yi)}i∈[m], the algorithm works in the following way.
1. Draw θ = 100

ε log(1/δ) iid sample hypothesis classes {Hk}k∈[θ], whereHk = Hrk for rk ∼ R.
2. For each k ∈ [θ], compute an empirical risk minimizer hk inHk with respect to the labeled samples {(xi, yi)}.
3. Output the following pointwise majority hypothesis h: for each x ∈ X , h(x) = 1 iff∑

k∈[θ]

hk(x) ≥ θ

2
.

The proof relies on the following key lemma about the multiplicative relative error of empirical risk minimizers.

Lemma 19 ((Conitzer, Panigrahi, and Zhang 2020)). Fix a feature space X and a hypothesis classH over X . Fix any distribu-
tion D over X , f : X → {0, 1}, δ′ > 0 and ε′ > 0. Moreover, suppose there is a hypothesis h∗ ∈ H such that Prx∼D[h∗(x) 6=
f(x)] ≤ ε′/2. Now, consider any empirical risk minimizer h ∈ H for at least m′ = O((d(H) log(1/ε′) + log(1/δ′))/ε′)
samples {(xi, yi)}i∈[m′], i.e.,

h ∈ argmin
h′∈H

∑
i∈[m′]

I[h′(xi) 6= yi],

where yi = f(xi) for each i ∈ [m′]. Then, with probability at least 1 − δ′, h has error rate at most ε′, i.e., Prx∼D[h(x) 6=
f(x)] ≤ ε′ with respect to f .

We first try to apply Lemma 19 to the sample hypothesis classes {Hk}. Suppose s∗ ∈ S is the ground truth state of the
world, and r∗ is the realized random mapping. s∗ and r∗ together induce the ground truth concept fs∗,r∗ . Recall that (S,X ,R)
is (ε0, δ0)-stable with respect to D. So with probability at least 1− δ0, for all k ∈ [θ],

Pr
rk∼R,x∼D

[fs∗,r∗(x) 6= fs∗,rk(x)] ≤ ε0.

We condition on the above event from now on. Whenever the above does not hold (which happens with probability at most δ0),
we consider the algorithm to have failed.

For each k ∈ [θ], let ek be the difference between fs∗,r∗ and fs∗,rk , i.e.,

ek = Pr
x∼D

[fs∗,r∗(x) 6= fs∗,rk(x)].



Observe that {ek}k∈[θ] are iid random variables in [0, 1], whose expectation does not exceed ε0. We now apply Lemma 19 with
different parameters (particularly, different ε′ = εk) for each Hk, to bound the error rate of hk with respect to the ground truth
fs∗,r∗ . For any k ∈ [θ], apply Lemma 19 with m′ = m, δ′ = δ/3θ and

ε′ = εk = max

(
2ek,

ε

8
·
(

1 +
d(Hk)

Er∼R[d(Hr)]

))
.

Note that the condition of Lemma 19 is satisfied. In particular, there is a hypothesis fs∗,rk consistent withHk that has error rate
ek ≤ εk/2. Then,

m′

= O

(
d(Hk) log(1/ε′) + log(1/δ′)

ε′

)
≤ O

(
((8 + o(1))(d(Hk) log(1/ε) + log(1/δ))

ε(1 + d(Hk)/Er∼R[d(Hr)])

)
≤ O

(
(8 + o(1))(Er∼R[d(Hr)] log(1/ε) + log(1/δ))

ε

)
≤m,

where the last inequality holds when the constant in the choice of m is large enough. So, by Lemma 19, we get the following:
with probability at least 1− δ′, hk satisfies

Pr
x∼D

[fs∗,r∗(x) 6= hk(x)] ≤ εk.

Taking a union bound over k ∈ [θ], this inequality holds simultaneously for all hk with probability at least

1− θ · δ′ ≥ 1− δ/3.

Again, we condition on the above event from now on, and consider the algorithm to have failed otherwise (which happens with
probability at most δ/3).

Observe that the expected error rate of {hk}k is already low (i.e., on the order of ε). To be specific, note that {rk}k, and
therefore {Hk}k, are still iid even if we contidion on the algorithm has not failed so far, which depends only on the randomness
in the labeled sample nodes. As a result, for any k ∈ [θ], we have:

Erk [εk]

= Erk
[
max

(
2ek,

ε

8

(
1 +

d(Hk)

Er∼R[d(Hr)]

))]
≤ Erk

[
2ek +

ε

8

(
1 +

d(Hk)

Er∼R[d(Hr)]

)]
≤ 2Erk [ek] +

ε

8
+ ε · Erk [d(Hk)]

8Er∼R[d(Hr)]

≤ 2ε0 +
ε

4
.

Since ε ≥ C1 · ε0, the above is upper bounded by ε/3 whenever C1 ≥ 24. But, each hk may still have error rate larger than ε
with probability larger than δ. Here, we apply majority voting to boost the probability of success.

First, we bound the average error rate of {hk}k using concentration inequalities, and show that with high probability (i.e.,
at least 1 − δ/3), it is at most ε/2. Observe that {εk}k are iid variables in [0, 1].1 For small enough δ, by the multiplicative

1The above choice of εk itself may exceed 1. However, since εk is an upper bound of a probability, one can always truncate εk at 1, which
does not increase the mean. We omit this in the proof for the sake of brevity.



Chernoff bound,

Pr

1

θ

∑
k∈[θ]

εk ≥
ε

2


= Pr

1

θ

∑
k∈[θ]

εk ≥
(

1 +
1

2

)
· ε

3


≤ exp

(
− (1/2)2 · (θε/3)

2 + 1/2

)
= exp

(
10 log(δ)

3

)
≤ δ

3
.

We remark that the actual mean of εk may be smaller than ε/3, but that only makes the probability smaller. So with probability
at least 1− δ

3 ,
1

θ

∑
k∈[θ]

εk ≤
ε

2
.

The following lemma then guarantees that the majority vote amplifies the average error rate of the empirical risk minimizers at
most by a factor of 2.

Lemma 20 ((Conitzer, Panigrahi, and Zhang 2020)). Fix a feature space X , a distribution D over X , and f ⊆ X . Suppose
there are θ subsets of X , {hk}k∈[θ], satisfying

1

θ

∑
k∈[θ]

Pr
x∼D

[f(x) 6= hk(x)] ≤ ε′,

for some ε′ > 0. Then the pointwise majority vote h of {hk}k∈[θ], defined such that for any x ∈ X ,

h(x) = I

∑
k∈[θ]

hk(x) ≥ θ

2

 ,
satisfies

Pr
x∼D

[h(x) 6= f(x)] ≤ 2ε′.

We apply Lemma 20 to {hk}k∈[θ], with ε′ = ε/2. The condition is satisfied, since the error rate of hk is upper bounded by
εk, and the average of these {εk}k is at most ε/2. As a result, the majority vote h, which is the final output of the learning
algorithm, has error rate at most ε. As for the failure probability, recall that the algorithm may fail in 3 cases: (1) the realized
mapping r∗ is an outlier, so no property can be guaranteed by the (ε0, δ0)-stability of (S,X ,R), which happens with probability
at most δ0, (2) one of the calls to the ERM oracles fails, which happens with probability at most δ/3 over the labeled sample
nodes, and (3) the upper bound on the average error rate of {hk}k exceeds ε/2, which happens with probability at most δ/3
over the sampled hypothesis classes {Hk}k. So, taking a union bound over these three cases, we infer that the total probability
of failure does not exceed δ ≥ 3δ0 for any C2 ≥ 3. This concludes the proof of the theorem.

Proof of Corollary 16. We apply Theorem 15 with S = Hg×Hv , andR = R(G), which directly gives (ε, δ)-learnability with

m = O

(
EG∼G [d(HG)] · log(1/ε) + log(1/δ)

ε

)
samples. Now by Theorem 7,

m = O

(
EG∼G [dv log n+ min(ρ(G), dg log n)] · log(1/ε) + log(1/δ)

ε

)
= O

(
(dv log n+ min (EG∼G [ρ(G)], dg log n)) · log(1/ε) + log(1/δ)

ε

)
,

as desired.


