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Abstract
In a landmark paper in the mechanism design literature, Cre-
mer and McLean (1985) (CM for short) show that when a
bidder’s valuation is correlated with an external signal, a mo-
nopolistic seller is able to extract the full social surplus as
revenue. In the original paper and subsequent literature, the
focus has been on ex-post incentive compatible (or IC) mech-
anisms, where truth telling is an ex-post Nash equilibrium.
In this paper, we explore the implications of Bayesian ver-
sus ex-post IC in a correlated valuation setting. We gener-
alize the full extraction result to settings that do not satisfy
the assumptions of CM. In particular, we give necessary and
sufficient conditions for full extraction that strictly relax the
original conditions given in CM. These more general con-
ditions characterize the situations under which requiring ex-
post IC leads to a decrease in expected revenue relative to
Bayesian IC. We also demonstrate that the expected revenue
from the optimal ex-post IC mechanism guarantees at most a
(|Θ| + 1)/4 approximation to that of a Bayesian IC mecha-
nism, where |Θ| is the number of bidder types. Finally, using
techniques from automated mechanism design, we show that,
for randomly generated distributions, the average expected
revenue achieved by Bayesian IC mechanisms is significantly
larger than that for ex-post IC mechanisms.

Introduction
Mechanism design has emerged as a key tool in multi-agent
systems for the allocation of tasks and resources to self-
interested agents. Though much of the focus of the mech-
anism design literature has been on independent bidder val-
uations, many situations, such as the mineral rights model
(Wilson 1969), are naturally characterized by assuming cor-
related bidder valuations, so starting with Milgrom and We-
ber (1982) there has been an increasing body of work on
optimal mechanisms in correlated valuation settings. This
line of research has led to important, and often quite surpris-
ing, insights into many fundamental aspects of mechanism
design, the most prominent of which is due to Cremer and
McLean (1985). In their landmark paper, they demonstrate
that given even small amounts of correlation between bid-
ders’ valuations, a monopolistic seller is able to extract the
full social surplus as revenue even though the bidders pos-
sess private information. This result has become a central
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focus for the subsequent correlated valuation literature due
to its departure from standard results in independent valua-
tion settings. Since the initial Cremer and McLean (1985)
paper, much of the subsequent literature has focused on the
criticality of the assumptions that lead to full revenue ex-
traction, but one assumption has traditionally been viewed
as innocuous: ex-post incentive compatibility (IC for short).

Due to the revelation principle (for a discussion see Kr-
ishna (2009)), mechanism design has restricted its attention
to incentive compatible mechanisms, i.e. mechanisms where
telling the truth about one’s type is the optimal strategy for
any given agent. However, the specific form of incentive
compatibility is dependent on the game theoretic solution
concept employed, with the two we will focus on being
ex-post IC, corresponding to ex-post Nash equilibrium, and
Bayesian IC, corresponding to Bayesian Nash equilibrium,
with Bayesian IC being the more permissive. Cremer and
McLean (1985) show that under their correlation assumption
and ex-interim individual rationality (IR), ex-post IC is suffi-
cient for full revenue extraction, negating the need to exam-
ine Bayesian IC separately. While, in follow up work (Cre-
mer and McLean 1988), they are able to relax slightly their
initial correlation assumption if they only require Bayesian
IC, the literature (McAfee and Reny 1992; Dobzinski, Fu,
and Kleinberg 2011; Roughgarden and Talgam-Cohen 2013;
Fu et al. 2014) has continued to focus on ex-post IC, due to
its sufficiency.

Cremer and McLean (1985; 1988) require extremely pre-
cise knowledge by the seller of a very expressive distribution
over bidders’ beliefs, and when a more realistic assumption
is made over the knowledge of the seller, the Cremer and
McLean mechanism achieves revenue far from full surplus
(Albert, Conitzer, and Lopomo 2015). Therefore, practical
mechanism design must account for more limited forms of
correlation and less expressive prior distributions. If so, the
Cremer and McLean (1985) result is no longer a guarantee
for the sufficiency of ex-post IC.

In this paper, we assume ex-interim IR and explore the
case of a single bidder whose valuation is correlated with
an external signal that both the seller and bidder observe ex-
post. This allows us to examine bidder beliefs over the value
of the external signal with arbitrary expressiveness, and in so
doing, we characterize necessary and sufficient conditions
for full surplus extraction in both Bayesian and ex-post IC



settings that are a significant relaxation from those of Cre-
mer and McLean (1988). We achieve this by considering the
relationship between the valuation function and the infor-
mation structure. By contrast, Cremer and McLean (1988)
characterize the conditions for full revenue extraction solely
in terms of the information structure of the problem.

In characterizing our more general conditions, we prove
that full revenue extraction is possible for a much larger set
of instances under Bayesian IC than ex-post IC. Further, we
prove that the expected revenue due an optimal mechanism
under ex-post IC achieves at most a (|Θ| + 1)/4 approxi-
mation to the optimal Bayesian IC mechanism, where |Θ| is
the number of bidder types. We also use simulation results
for randomly generated instances of distributions over bid-
der types and external signals and thereby demonstrate that
Bayesian IC mechanisms generate significantly more rev-
enue than ex-post IC mechanisms. Therefore, our results
suggest that for general problems of correlated valuation, it
is important to consider Bayesian IC mechanisms.

Our results contribute to recent work on correlated val-
uations in algorithmic mechanism design (Fu et al. 2014;
Roughgarden and Talgam-Cohen 2013; Dobzinski, Fu, and
Kleinberg 2011) as well as older work (Lopomo 2001;
McAfee and Reny 1992; Milgrom and Weber 1982). By
characterizing conditions for full surplus extraction for less
expressive distributions we contribute to the literature on
learning valuation distributions in mechanism design con-
texts (Elkind 2007; Blum, Mansour, and Morgenstern 2015;
Morgenstern and Roughgarden 2015). We also use methods
from automated mechanism design (Conitzer and Sandholm
2002; 2004), and more specifically the use thereof to build
intuition for classical results in mechanism design (Likhode-
dov and Sandholm 2005; Guo and Conitzer 2010). Further,
Theorem 3 is reminiscent of the characterization of proper
scoring rules (Gneiting and Raftery 2007) and mechanism
design as convex analysis (Frongillo and Kash 2014).

Notation and Review of Cremer and McLean
While Cremer and McLean (1988) provides conditions un-
der which a single monopolistic seller selling a single good
to some number of buyers n is able to extract full revenue,
we restrict our attention to the case of a single monopolis-
tic seller and a single bidder whose valuation is correlated
with an external signal, as in Albert, Conitzer, and Lopomo
(2015). While our conditions for full surplus extraction can
be trivially extended to multiple bidders by considering each
in isolation, for the ease and clarity of exposition, we will
constrain ourselves to the case of a single bidder. This al-
lows us to focus on the effect of limited correlation, or sit-
uations under which the external signal has a smaller state
space than the bidder types. This smaller state space for the
external signal could be due to the external signal having
fewer potential values than the bidder’s type, or it could be a
consequence of representing many external signals by a re-
duced set in order to increase the precision of an estimated
distribution over the external signals. Additionally, there
are many situations under which a single bidder’s valuation
would be correlated with an external signal, such as a single
bidder bidding for unusual keywords for search ads with the

external signal being the observed ex-post click through rate
for that keyword.

The bidder is risk neutral, and his valuation is drawn from
a discrete set of types denoted by V = {v1, v2, . . . , v|V |} ⊂
[0, v] where vi < vi+1 for all i. The bidder’s type is de-
noted by θ ∈ Θ = {1, 2, . . . , |Θ|} and may include in-
formation in addition to his valuation. The bidder’s valu-
ation is given by v(θ). We assume without loss of gen-
erality that Θ is ordered in increasing valuations so that
v(1) ≤ v(2) ≤ . . . ≤ v(|Θ|). The discrete external sig-
nal is denoted by ω ∈ Ω = {1, 2, . . . , |Ω|}. Let ∆(Ω) be the
set of all probability measures over Ω. The bidder’s type,
θ, and the external signal, ω, are drawn from the discrete
joint distribution π(θ, ω) which we will refer to as the prior.
π(•|θ) ∈ ∆(Ω) is the distribution of the external signal con-
ditional on the bidder type, which we will refer to as the bid-
der’s belief over the external signal. Note that ∆(Ω) ⊂ R|Ω|.
We will use bold type to indicate an element f ∈ R|Ω|, with
f(i) denoting the ith element of the vector f .

A (direct revelation) mechanism is defined by, given the
bidder’s type and the observed external signal, the proba-
bility that the seller allocates the item to the bidder and a
transfer from the bidder to the seller. We will denote the
probability of allocation by q(θ, ω), which must be between
zero and one, and the transfer by m(θ, ω). Note that the
transfer m(θ, ω) can be either positive or negative with a
positive amount indicating a transfer from the bidder to the
seller and a negative amount a transfer from the seller to the
bidder.
Definition 1 (Bidder’s Utility). Given true type θ ∈ Θ, re-
ported type θ̂ ∈ Θ, and external signal ω ∈ Ω, the bidder’s
utility under mechanism (q,m) is:

U(θ, θ̂, ω) = v(θ)q(θ̂, ω)−m(θ̂, ω) (1)

The bidder’s expected utility is given by:

U(θ, θ̂) =
∑
ω

(v(θ)q(θ̂, ω)−m(θ̂, ω))π(ω|θ) (2)

Since the bidder has a private valuation, the seller must
induce the bidder to reveal his private information. He does
this by ensuring that the bidder always finds it optimal, or
incentive compatible, to truthfully reveal his private infor-
mation.
Definition 2 (Ex-Post Incentive Compatibility). A mecha-
nism (q,m) is ex-post incentive compatible (IC) if:

∀θ, θ̂ ∈ Θ, ω ∈ Ω : U(θ, θ, ω) ≥ U(θ, θ̂, ω) (3)

Definition 3 (Bayesian Incentive Compatibility). A mecha-
nism (q,m) is Bayesian incentive compatible (IC) if:

∀θ, θ̂ ∈ Θ : U(θ, θ) ≥ U(θ, θ̂) (4)

Note that ex-post IC is more strict than Bayesian IC in
the sense that every ex-post IC mechanism is also Bayesian
IC. In addition to IC, the bidder will not participate in the
mechanism if he expects to be made worse off by partici-
pating. Therefore, we require that in expectation, the bidder
will receive nonnegative utility.



Definition 4 (Ex-Interim Individual Rationality). A mecha-
nism (q,m) is ex-interim individually rational (IR) if:

∀θ ∈ Θ : U(θ, θ) ≥ 0 (5)

It is important to note that ex-interim IR is an essential
assumption for the Cremer and McLean (1985) full surplus
extraction result. Ex-interim IR only ensures that the bid-
der has non-negative utility in expectation, but it allows for
negative utility under certain realizations of the external sig-
nal. Lopomo (2001) shows that if this condition is replaced
with one that guarantees non-negative utility under all real-
izations of the external signal, full surplus extraction is no
longer possible in the general case.

Further, ex-interim IC has been criticized as not be-
ing a robust assumption, as in being very sensitive to the
specification of the prior (Roughgarden and Talgam-Cohen
2013). However, given its central importance to the Cremer
and McLean (1985) result, it is widely used in the litera-
ture (Dobzinski, Fu, and Kleinberg 2011; Fu et al. 2014;
Albert, Conitzer, and Lopomo 2015).

The common argument against the use of Bayesian IC
(Roughgarden and Talgam-Cohen 2013) is that it generates
mechanisms that are sensitive to the specification of the
prior. However, given the use of ex-interim IR, the addi-
tional sensitivity imparted by Bayesian IC is unlikely to be
a first order effect.
Definition 5 (Optimal Mechanisms). A mechanism (q,m)
is an optimal ex-post mechanism if under the constraint of
ex-interim individual rationality and ex-post incentive com-
patibility it maximizes the following:∑

θ,ω

m(θ, ω)π(θ, ω) (6)

A mechanism that maximizes the above under the con-
straint of ex-interim individual rationality and Bayesian in-
centive compatibility is an optimal Bayesian mechanism.
Definition 6 (Full Social Surplus Extraction as Revenue).
We say that a mechanism extracts the full social surplus as
revenue in expectation if there exists a (Bayesian or ex-post)
mechanism such that:∑

θ,ω

π(θ, ω)m(θ, ω) =
∑
θ,ω

π(θ, ω)v(θ). (7)

Cremer and McLean (1985) are able to extract full social
surplus by combining a VCG mechanism with a lottery over
the outcome of the external signal. However, in order to en-
sure that they can construct the lottery in a way that is incen-
tive compatible and individually rational, they must make
the following assumption concerning bidder beliefs over the
external signal.
Assumption 1. For all θ ∈ Θ, let Γ be the following matrix
whose rows are indexed by the |Ω| elements of Ω, and whose
columns are indexed by the |Θ| elements of Θ:

Γ =

 π(1|1) · · · π(|Ω||1)
...

. . .
...

π(1||Θ|) · · · π(|Ω|||Θ|)

 (8)

Γ has rank |Θ|.

Theorem 1 (Cremer and McLean (1985)). Under Assump-
tion 1, there exists an ex-post IC mechanism that extracts the
full social surplus as revenue in expectation.

A proof of Theorem 1 can be found in Cremer and
McLean (1985) or Krishna (2009).

One of the implications of Assumption 1 is that |Ω| ≥ |Θ|.
While this assumption may seem reasonable, particularly
if the external signal is another bidder’s valuation as in a
multi-bidder setting, this requires very precise knowledge of
the bidder’s beliefs. As was shown by Albert, Conitzer and
Lopomo (2015), even slight uncertainties over the bidder’s
beliefs can cause the optimal mechanism to perform equiva-
lently to simple mechanisms, such as take it or leave it offers.
Given the necessity of a precise estimation of the conditional
distribution, it may be necessary to combine multiple values
for the external signal into a single value in order to create a
more precisely estimated, but less expressive, prior distribu-
tion.

Finally, we will make use of the notion of a subgradient.

Definition 7. Given some function G : R|Ω| → R a subgra-
dient to G at f ∈ R|Ω| is a linear function d : R|Ω| → R
such that d(0) = 0 and for all g ∈ R|Ω|,

G(g) ≥ G(f) + d(g − f). (9)

Necessary and Sufficient Conditions for Full
Surplus Extraction as Revenue

In this section, we characterize necessary and sufficient con-
ditions for full social surplus extraction as revenue given ar-
bitrary correlation structures. Our results guarantee full sur-
plus extraction even when |Ω| < |Θ| or a subset of the con-
ditional beliefs are a linear combination of others, both of
which violate Assumption 1. We are able to extend Cremer
and McLean (1985)’s result by considering the interaction
between the prior π and the valuation function. We will use
the following lemma.

Lemma 1. A mechanism (q,m) extracts full surplus if and
only if q(θ, ω) = 1 and U(θ, θ) = 0 for all θ ∈ Θ, ω ∈ Ω.

The proof of Lemma 1 is straightforward.

Theorem 2 (Full Surplus Extraction with Ex-Post IC). For
a given (π, V,Ω), full surplus extraction is possible for
an ex-post incentive compatible mechanism if and only if
there exists a linear function G : R|Ω| → R such that
G(π(•|θ)) = −v(θ).

Proof. First, assume that there exists an ex-post incentive
compatible mechanism (q, ω) such that full surplus extrac-
tion is achieved in expectation. Then, by Definition 2 and
Lemma 1:

∀θ, θ̂ ∈ Θ, ω ∈ Ω : v(θ)−m(θ, ω) = v(θ)−m(θ̂, ω).

Therefore,

∀θ, θ̂ ∈ Θ, ω ∈ Ω : m(θ, ω) = m(θ̂, ω) = m∗(ω).



Set, for f ∈ R|Ω|, G(f) =
∑
ω∈Ωm

∗(ω)f(ω). Then, for
a, b ∈ R and f , g ∈ R|Ω|,

G(af + bg) =
∑
ω∈Ω

m∗(ω)(af(ω) + bg(ω))

= a
∑
ω∈Ω

m∗(ω)f(ω) + b
∑
ω∈Ω

m∗(ω)g(ω)

= aG(f) + bG(g)

Further, G(π(•|θ)) =
∑
ω∈Ωm(θ, ω)f(ω) = −v(θ) by ex-

interim IR and Lemma 1.
Alternatively, suppose that there does exist a linear func-

tion G : R|Ω| → R such that G(π(•|θ)) = −v(θ). De-
note by π∗i ∈ ∆(Ω) the probability distribution such that
π∗i (ω = i) = 1 and π∗i (ω 6= i) = 0. For all θ ∈ Θ and
ω ∈ Ω, set q(θ, ω) = 1 and m(θ, ω) = G(π∗ω). Then,∑

ω∈Ω

m(θ, ω)π(ω|θ) =
∑
ω∈Ω

G(π∗ω)π(ω|θ))

= G

(∑
ω∈Ω

π∗ωπ(ω|θ)

)
= G(π(•|θ)) = −v(θ).

Therefore, ex-interim IR is binding, and given that for all
θ, θ̂ ∈ Θ, m(θ, ω) = m(θ̂, ω) = m∗(ω) = G(π∗i ), ex-post
IC is satisfied.

Intuitively, Theorem 2 states that ex-post IC combined
with ex-interim IR allow for the mechanism designer to in-
corporate a single lottery over the external signal into the
ex-post mechanism. This lottery is such that the payoff for
ω = i is the linear function G evaluated at π∗i (defined as
in the above proof). Full surplus extraction is only possible,
then, when one lottery, or linear function, can intersect every
valuation. By contrast, the additional power of a Bayesian
mechanism is that the mechanism designer can incorporate
many lotteries.

Theorem 3 (Full Surplus Extraction with Bayesian IC). For
a given (π, V,Ω), full surplus extraction is possible for
a Bayesian incentive compatible mechanism if and only if
there exists a convex function G : R|Ω| → R such that
G(π(•|θ)) = −v(θ).

Proof. Assume that there exists a Bayesian incentive com-
patibility mechanism (q,m) such that the full surplus is
extracted in expectation. Suppose in addition that there
does not exist a convex function G : R|Ω| → R such
that G(π(•|θ)) = −v(θ). This implies, by the defini-
tion of convexity, that for every function G∗ : R|Ω| → R
such that G∗(π(•|θ)) = −v(θ) there must exist θ∗ ∈ Θ
such that for θ ∈ Θ\{θ∗}, there exists αθ ≥ 0 where∑
θ∈Θ\{θ∗} αθ = 1, π(ω|θ∗) =

∑
θ∈Θ\{θ∗} αθπ(ω|θ), and∑

θ∈Θ\{θ∗} αθ(−v(θ)) =
∑
θ∈Θ\{θ∗} αθG

∗(π(•|θ)) <

G∗(
∑
θ∈Θ\{θ∗} αθπ(ω|θ)) = G∗(π(•|θ∗)) = −v(θ∗).

Note that for all θ ∈ Θ, U(θ, θ) = 0 by Lemma 1. Then∑
θ∈Θ\{θ∗}

αθU(θ, θ∗)

=
∑

θ∈Θ\{θ∗}

αθ(
∑
ω

(v(θ)−m(θ∗, ω))π(ω|θ)

> v(θ∗)−
∑
ω

m(θ∗, ω)
∑

θ∈Θ\{θ∗}

αθπ(ω|θ)

= v(θ∗)−
∑
ω

m(θ∗, ω)π(ω|θ∗)

= v(θ∗)− v(θ∗) = 0

Then, there exists θ′ ∈ Θ\{θ∗} such that U(θ′, θ∗) > 0 =
U(θ′, θ′), in contradiction of Bayesian IC. Therefore, there
must exist a convex function G : R|Ω| → R such that
G(π(•|θ)) = −v(θ).

Now, assume that there does exist a convex function
G : R|Ω| → R such that G(π(•|θ)) = −v(θ). Let dθ be
a subgradient to G at π(•|θ). This exists everywhere by the
convexity of G. Denote by π∗i ∈ ∆(Ω) the probability dis-
tribution such that π∗i (ω = i) = 1 and π∗i (ω 6= i) = 0.
Then, for all θ ∈ Θ and ω ∈ Ω set q(θ, ω) = 1, and the
transfers such that

m(θ, ω) = −(G(π(•|θ)) + dθ(π
∗
ω − π(•|θ))).

Then

U(θ, θ) =
∑
ω

(v(θ)−m(θ, ω))π(ω|θ)

= v(θ) +
∑
ω

(G(π(•|θ)) + dθ(π
∗
ω − π(•|θ)))π(ω|θ)

= v(θ) +G(π(•|θ)) + dθ

(∑
ω

π∗ωπ(ω|θ)− π(•|θ)

)
= v(θ)− v(θ) + d(0) = 0.

Therefore, ex-interim IR binds for all θ ∈ Θ. Also, for all
θ, θ̂ ∈ Θ

U(θ, θ̂) =
∑
ω

(v(θ)−m(θ̂, ω))π(ω|θ)

= v(θ) +
∑
ω

(G(π(•|θ̂)) + dθ(π
∗
ω − π(•|θ̂)))π(ω|θ)

= v(θ) +G(π(•|θ̂)) + dθ(
∑
ω

π∗ωπ(ω|θ)− π(•|θ̂))

= −G(π(•|θ)) +G(π(•|θ̂)) + dθ(π(•|θ)− π(•|θ̂))
≤ 0 = U(θ, θ)

Therefore, by Lemma 1, the mechanism extracts full sur-
plus.

Theorem 3 is able to relax the necessity of a linear func-
tion G by using multiple lotteries. Each lottery corresponds
to a linear function, just as in Theorem 2, but the linear func-
tion is a subgradient of a convex function. The convexity of
the function ensures that each bidder finds it IC to only par-
ticipate in the lottery that corresponds to his type. Figure 1
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Figure 1: The optimal ex-post mechanism always allo-
cates the item to all three types and sets for all θ ∈ Θ,
m(θ, 1) = m(θ, 2) = 1, a lottery with a constant payoff,
giving revenue of 1. The optimal Bayesian mechanism ex-
tracts full revenue by always allocating the item and setting
m(1, 2) = m(2, 2) = 1, m(1, 1) = m(2, 1) = 3 (the same
lottery for θ = 1 and θ = 2), m(3, 1) = 3, and m(3, 2) = 1,
generating revenue of 1.2.

depicts this graphically for |Θ| = 3 and |Ω| = 2. Note that
this result is reminiscent of proper scoring rules (Gneiting
and Raftery 2007; Frongillo and Kash 2014).

Corollary 2. Assumption 1 implies that there exists a linear
function G : R|Ω| → R such that G(π(•|θ)) = −v(θ).

Proof. Let Γ be defined as in Assumption 1, and let v ∈
R|Θ| be such that v(θ) = v(θ). Then by the assumption of
full rank, there exists c ∈ R|Ω| such that Γc = −v.

Define G : R|Ω| → R such that for f ∈ R|Ω|, G(f) =∑
ω∈Ω c(ω)f(ω). Then, G is linear and G(π(•|θ)) =

−v(θ).

Theorem 4. The expected revenue generated by an optimal
ex-post mechanism guarantees at most a (|Θ| + 1)/4 ap-
proximation to the expected revenue generated by an opti-
mal Bayesian mechanism

Proof. Let Θ = {1, 2, ..., |Θ|} and v(θ) = 2θ for θ ∈ Θ. Let
π(θ) =

∑
ω π(θ, ω) = 1/2θ except forπ(|Θ|) = 1/2|Θ|−1.

|Ω| = 2, and π(1|θ) = (2k(θ−1)−1)/(2k(|Θ|−1)−1), where
k > 1. Then, if G(f) = −2((2k(|Θ|−1) − 1)f(1) + 1)−1/k,
G(π(•|θ)) = −v(θ). Note that G′′(f) > 0 for k > 1, so G
is convex.

Since G is convex, the Bayesian IC mechanism extracts
full surplus, and full surplus is |Θ| + 1. Also, there does
not exist a linear function H such that H(π(•|θ)) = −v(θ),
so the optimal ex-post IC mechanism will not extract full
surplus.

Note that for an ex-post IC mechanism, given ω, it can
be shown by direct application of ex-post IC that for all θ ∈

Θ, q(θ + 1, ω) ≥ q(θ, ω). Further, for all θ ∈ Θ, ω ∈ Ω
such that q(θ, ω) = 1, m(θ, ω) = m(ω), again by direct
application of ex-post IC. Finally, for any optimal ex-post
IC mechanism, q(|Θ|, ω) = 1 for all ω ∈ Ω.

Let (q∗,m∗) be an optimal ex-post IC mechanism. Sup-
pose that for ω = 2, there exists a θ′ ∈ Θ such that
q∗(θ′, 2) < 1 and q∗(θ′ + 1, 2) = 1. Also, by ex-post IC
and the assumed optimatiliy, v(θ′ + 1) −m∗(2) = v(θ′ +
1)q∗(θ′, 2)−m∗(θ′, 2), because if not q∗(θ, 2) andm∗(θ′, 2)
could be increased, increasing expected revenue and violat-
ing the optimality of the mechanism. Therefore, m∗(2) =
v(θ′+1)(1−q∗(θ′, 2))+m∗(θ′, 2) Define a new mechanism
(q′,m′) such that q′(θ′, 2) = 1, m′(θ′, 2) = m∗(θ′, 2) +
v(θ′)(1 − q∗(θ′, 2)), m′(2) = m′(θ′, 2), and for all other
(θ, ω), q′(θ, ω) = q∗(θ, ω) and m′(θ, ω) = m∗(θ, ω).
Therefore, m′(θ′, 2) −m∗(θ, 2) = v(θ′)(1 − q(θ′, 2)) and
m′(2) −m∗(2) = (v(θ′) − v(θ′ + 1))(1 − q(θ′, 2)). Note
that (q′,m′) is ex-post IC and ex-interim IR.

Then, the difference in expected revenue between mecha-
nism (q′,m′) and (q∗,m∗) is

∑
θ,ω

π(θ, ω)m′(θ, ω)−
∑
θ,ω

π(θ, ω)m∗(θ, ω)

=

|Θ|∑
θ=θ′+1

1

2θ
π(2|θ)(m′(2)−m∗(2))

+
1

2θ′
π(2|θ′)(m′(θ′, 2)−m∗(θ′, 2))

=−
|Θ|∑

θ=θ′+1

1

2θ
π(2|θ)2θ

′
(1− q∗(θ′, 2))

+
1

2θ′
π(2|θ′)2θ

′
(1− q∗(θ′, 2)) > 0

Therefore, (q∗,m∗) is not optimal, which is a contradic-
tion. This implies that for an optimal ex-post IC mechanism
(q∗,m∗) for all θ ∈ Θ, q∗(θ, 2) = 1, and by ex-interim
IR applied at θ = 1, m∗(2) = 2. Also, since for all θ′ ∈
Θ\{|Θ|}, π(|Θ|, 1)v(|Θ|) = 2 >

∑|Θ|−1
θ=1 π(θ, 1)v(θ′), ex-

post IR must bind for θ = |Θ|, which implies m∗(|Θ|, 1) =
2|Θ|. Further, it is trivial to verify that for all θ ∈ Θ,
q∗(θ, 1) = 1 and m∗(θ, 1) = m∗(|Θ|, 1) is ex-post IC and
ex-interim IR. Therefore, the mechanism (q,m) where for
all θ ∈ Θ and ω ∈ Ω, q(θ, ω) = 1, m(1) = 2|Θ|, and
m(2) = 2 is an optimal ex-post IC mechanism.

For sufficiently large k, it is easy to verify that∑
θ∈Θ\{|Θ|}(1/2

θ(2|Θ|π(1|θ) + 2π(2|θ))) < 2. Choose
k such that this is true. Then, the expected revenue due to an
optimal ex-post IC mechanism is given by:
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Figure 2: Relative performance of Bayesian vs Ex-Post IC
mechanisms for randomly generated distributions. |Θ| =
30, ρ = .1, and we vary |Ω| from {1, ..., 30}. Each point is
the average of 100 randomly generated distributions. 95%
confidence intervals shown.

∑
θ,ω

π(θ, ω)m(θ, ω)

=
∑

θ∈Θ\{|Θ|}

1

2θ

(
2|Θ|π(1|θ) + 2π(2|θ)

)
+ (1/2|Θ|−1)2|Θ| < 4.

Therefore, the optimal Bayesian IC mechanism has rev-
enue of |Θ| + 1 and the optimal ex-post IC mechanism has
revenue less than 4.

Simulation Results
To explore the relative importance of Bayesian versus ex-
post IC for revenue efficiency, we generate random distri-
butions and solve for the optimal mechanism using auto-
mated mechanism design techniques (Conitzer and Sand-
holm 2002; Albert, Conitzer, and Lopomo 2015) under both
instances of Bayesian and ex-post IC. We construct each dis-
tribution by generating 1500 samples, where a sample con-
sists of two independent draws from the uniform distribution
over [0, 1] corresponding to a realization of θ and ω. Denote
sample i by xi = (θi, ωi). We pick a target correlation ρ,
and construct the 2 × 2 correlation matrix C. Then, we de-
compose the correlation matrix using the Cholesky decom-
position to calculate L such that C = LLT . Finally, we
transform our independent values for θ and ω into correlated
values by constructing the final sample as x′i = xiL

T . This
guarantees that corr(x′(1),x′(2)) = ρ within the sample.

We then construct a discrete probability distribution from
the 1500 samples by calculating equally spaced buckets
along [0, 1]2, where the number of buckets along each di-
mension is equal to the number of bidder types and number
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Figure 3: Relative performance of Bayesian vs Ex-post IC
mechanisms for randomly generated distributions. |Θ| =
30, |Ω| = 5, and we vary ρ from [0, 1] with a step size of
1/30. Each point is the average of 100 randomly generated
distributions. 95% confidence intervals shown.

of external signals. Then we count how many samples fall
in each bucket and normalize. The valuations corresponding
to each sample is the upper limit of the bucket that contains
the sample. Note that due to the way that we correlate the
two independent variables, there are some samples where
ωi > 1. In that case, we count them in the highest bucket.

This procedure allows us to generate correlated joint dis-
tributions randomly with each distribution unique, as well
as allowing us to independently vary both the number of ex-
ternal signals and the degree of correlation. Note that with
probability 1, if the number of external signals |Ω| is equal
to the number of valuations |Θ|, then Assumption 1 will be
satisfied and full social surplus extraction will be possible as
in Cremer and McLean (1985). This guarantees that as we
increase the number of external signals, we should converge
to full social surplus extraction. However, as can be seen
in Figure 2, the optimal Bayesian mechanism converges to
full extraction with much fewer external signals than the op-
timal ex-post mechanism, becoming indistinguishable from
full surplus extraction with |Ω| = 10, while the optimal ex-
post IC mechanism generates significantly less revenue until
the number of external states equals the number of bidder
types.

In Figure 3, we vary the degree of correlation, while hold-
ing the number of external states constant. We observe that
as the correlation between the bidder’s type and the external
signal approaches 1, both the optimal Bayesian and ex-post
mechanisms get very close to full revenue extraction. How-
ever, the optimal Bayesian mechanism generates statistically
significant higher revenue than the optimal ex-post mecha-
nism for all correlation values.



Conclusion
Due to the sufficiency of ex-post IC for full surplus extrac-
tion in Cremer and McLean (1985), it is widely used in opti-
mal mechanism design with correlated valuations. However,
it is crucial to understand the effect of our mechanism de-
sign choices when the assumptions of Cremer and McLean
(1985) fail, which they are likely to do in practice. We gen-
eralize their result to settings of more limited correlation,
proving conditions for full surplus extraction, and in the pro-
cess we demonstrate both theoretically and empirically that
Bayesian IC is important for maximizing revenue under our
less restrictive assumptions. Our empirical results suggest
that Bayesian IC is likely to be particularly important for
settings where the external signal state space is small (either
intrinisically or due to distribution estimation concerns) or
when correlation is low. Given our results, we believe that
any attempt to implement an optimal mechanism by learn-
ing the beliefs of bidders over external signals would likely
benefit from focusing on Bayesian IC mechanisms.
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