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Abstract. We consider a principal-expert problem in which a principal
contracts one or more experts to acquire and report decision-relevant
information. The principal never finds out what information is available
to which expert, at what costs that information is available, or what
costs the experts actually end up paying. This makes it challenging for
the principal to compensate the experts in a way that incentivizes ac-
quisition of relevant information without overpaying. We determine the
payment scheme that minimizes the principal’s worst-case regret relative
to the first-best solution. In particular, we show that under two differ-
ent assumptions about the experts’ available information, the optimal
payment scheme is a set of linear contracts.

1 Introduction

A company has to choose one of a number of different projects, where a project
might be to develop a particular product. While the company’s personnel is
suited to successfully execute any of these projects, the company lacks expertise
in market research to decide which of the projects will yield the highest expected
profit. To make an informed choice, the company (henceforth, the principal)
would like to contract faculty members from a nearby business school to give
advice on which project to pursue and to make a prediction about the outcome
of that project.

While the business school’s faculty members (henceforth, the experts) have
relevant expertise, they need to invest some effort into conducting one relevant
research project or another before they can give useful advice. The so-called
first-best solution is to acquire the information that maximizes expected profit
net of the costs of that information. The principal would have to reimburse the
experts for those costs, but could keep the rest of the project’s profits. However,
in general, the principal is unaware of what information can be acquired at what
costs and cannot verify the experts’ effort or report. The principal can use a
payment scheme or contract that compensates the experts based on both their
final collective report and the outcome of pursuing the recommended project
(but not on what would have happened if another project had been chosen).
What contract should the principal use?
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One way to arrive at a solution would be for the principal to assign some
prior probability distribution over configurations of available evidence and select
the contract that maximizes expected profit net of payment to the experts [2, 8,
19, 25]. However, determining such a prior is often impractical. For many priors,
it may also be computationally infeasible to identify the optimal contract. We
therefore ask what contract ensures the minimum worst-case regret relative to
the first-best solution.

Outline. After describing our setup and goals in more detail (Sections 2 and
3), we show (in Sections 4 and 5) how linear contracts – which simply pay each
expert some fixed fraction of the company’s profits – ensure regret bounds. In
Section 6, we go on to show that the optimal regret bound is achieved only by
a particular linear contract: the one that pays each of the n experts 1/(n + 1)
of the profit obtained. This ensures a regret bound of v(E∗)n/(n + 1), where
v(E∗) is the expected profit (prior to subtracting costs) of the first-best solution.
Under stronger assumptions, the approach of this paper can be used to derive
different linear contracts to achieve better optimal bounds. In Section 7, we give
an example of this. Section 8 puts our work in the context of the literature.

2 Setup

Principal and experts. We consider a principal (“she”) who has to choose one
of a finite set of projects or actions A, each of which probabilistically gives rise
to outcomes from some finite set Ω. The principal would like to maximize the
expected value of some utility function u : Ω → R. To figure out which action
is best, she may interact (in ways specified below) with n experts. An important
special case is n = 1. This case has received the most attention in the literature.
Many of the assumptions that we will make later (e.g., about how the experts
coordinate) are very weak or even vacuous in the case of n = 1, while for n ≥ 2
they are realistic in some but not all applications.

Each expert i = 1, ..., n can choose to observe the value of a random variable
in some set of random variables Hi. We will refer to these variables as evidence
variables. We also require that these sets of values are finite. To observe Ei ∈ Hi,
expert i must pay a cost (or effort) of ci(Ei), where ci : Hi → R≥0 is some cost
function. We assume that each Hi contains the constant (trivial) random vari-
able E0 and that ci(E

0) = 0 for all i. That is, each expert has the option to
acquire no information and expend no cost. The experts, on the other hand,
all know what evidence variables the other experts have access to and at what
costs. They also have a common prior P which, for any vector of random vari-
ables E ∈ H :=×n

i=1
Hi and any vector e of values of E, assigns a probability

P (e) := P (E = e), as well as for any outcome ω ∈ Ω and action a ∈ A, the
probability P (ω | a, e) of obtaining outcome ω after taking action a if E = e
was observed. For simplicity, we also assume that every observation of E = e
is consistent, i.e., that for all E ∈ H and e in the Cartesian product of the sets
of values of E1, ..., En, we have P (e) > 0. Some common-knowledge assump-
tions such as these are necessary to determine the experts’ strategies within



Incentivizing Information Acquisition with Worst-Case Guarantees 3

standard game-theoretic paradigms. Of course, as is usually the case in such
models, the common-knowledge assumptions – in particular, exact knowledge of
one another’s cost of acquisition – are only approximately realistic in practice.
Alternatively, one might imagine that they have probabilistic beliefs about each
other’s costs or perhaps that they can communicate about each other’s cost.
However, this adds an additional layer of complications in expert coordination,
which is beyond the scope of the present paper.

The principal knows little about the experts. In particular, she does not know
what the Hi or ci are, nor does she know the probability distribution P which
specifies the probabilities P (e) and P (ω | a, e).

We require that u is normalized s.t. maxa∈A E [u(O) | a] = 0, where O is
the random variable distributed according to the (prior) probability distribution
P (· | a) that arises from conditioning only on null evidence E0.

Contracts for information elicitation. The principal wants the experts
to acquire and honestly report useful information. Since acquiring information
is costly, the principal has to set some kind of incentive. If she could observe
expended costs, then this problem would be easy: simply reimburse costs and pay
some small bonus that is positive affine in the utility obtained by the principal
net of the overall reimbursements for the experts’ acquisition costs. However, we
assume that effort is unobservable to the principal. We furthermore assume that
the information obtained is unverifiable.

We will consider a simple class of mechanisms in which the experts only
submit (potentially dishonest) reports ê on what information they obtained. The
principal then takes the best action given ê, i.e., takes aê := arg maxa∈A E[u(O) |
ê, a], where ties are broken arbitrarily and O is the random variable distributed
according to P (· | ê, a). Of course, to determine aê based on ê, one has to know
(at least partially) P (· | ·, ê), which so far we have assumed the principal not
to know. For example, we could imagine that the experts convene to summarize
their evidence into a report that the principal can interpret.

Some authors have allowed the principal to randomize between projects –
giving the most probability to the best ones – to have some chance of testing
the predictions made for suboptimal actions [27, 28, 7]. Of course, randomization
comes at the cost of sometimes taking suboptimal actions. Indeed, our negative
results (see Section 6 and Theorem 5) can be extended to show that to minimize
worst-case regret, the principal must always select the best action given the
report.

Finally, each expert i is rewarded only based on the probability distribution
resulting from the overall report and the observed outcome, i.e., based on si(P (· |
ê, aê), ω), where si is some scoring rule or contract. Again, we have to imagine
that the principal somehow learns about P (· | ê, aê), e.g., by having the experts
provide that distribution. Note that the payoff depends only on the prediction
about the recommended action aê. Other predictions are not tested and it is
therefore futile to ask for predictions about them, as pointed out by Othman
and Sandholm [22, Theorems 1 and 4] and Chen et al. [7, Theorem 4.1]. It is
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easy to show that the results of this paper generalize to a setting in which the
principal’s scoring rule can depend on all of P (· | ê, ·).

More importantly, we assume that the principal scores only according to the
aggregated expert report. That is, we assume that the principal does not know
the experts’ information structure and therefore cannot determine the relative
value of individual experts’ contributions. Similarly, we assume that the principal
does not ask the experts for the cost of their information. In principle, in the
case of multiple experts (i.e., n ≥ 2), different kinds of mechanisms could also
be considered. In particular, the principal could ask the experts to report on the
value and cost of each other’s information. However, this will often be unrealistic.
For instance, consider the members of a team in a firm. The members of the team
may have a good understanding of each other’s abilities and contributions as well
as of how costly these contributions are to the different members, but the firm
will generally not ask the team members to report on these things and instead
determine salaries based on relatively little information. (Note that none of these
considerations are relevant to the single-expert case.)

The principal’s and experts’ goals. We assume that the principal ac-
counts for her payments to the experts quasilinearly, so that her overall utility
after payments is given by u(ω)−

∑n
i=1 si(P (· | ê, aê), ω).

As for the experts, a configuration of available evidence H with prior P
and costs (ci)i=1,...,n, and a (multi-expert) scoring rule s induce an n-player
game played by the experts. Each player’s strategy σi consists of two parts,
one determining which evidence he obtains and one determining how observed
evidence is mapped onto reports. Throughout this paper, we use E ∈ H to denote
the strategy profile in which each player i obtains and honestly reports Ei. A
strategy profile σ gives rise to an expected payoff EUi

s(σ) for expert (or player)
i and an expected utility net of payments EUs(σ) for the principal.

Since the experts play a strategic game, we use Nash equilibrium to describe
their behavior. We say that σ is a Nash equilibrium iff for each i and each
alternative strategy σ′i for i, we have EUi

s(σ) ≥ EUi
s(σ−i, σ

′
i). In general, the

game resulting from a configuration and scoring rule will have many equilibria.
For n ≥ 2, it is futile to ask for regret bounds that hold for all Nash equilibria.
For example, imagine that the value for the principal of E being obtained is high
if E = E∗ and low otherwise. Imagine further that c(E∗i ) is small but positive
for all i. Then in the first-best solution, E∗ is acquired. But, if there are multiple
experts, everyone obtaining E0 (no information) is also a Nash equilibrium with
(arbitrarily close to) maximum regret. Throughout the rest of this paper, we
therefore ask: what is the regret in the Nash equilibrium that is best for the
principal? (Cf. the notion of price of stability [1, 24, Section 1.3], as opposed to
the price of anarchy [23, 18].) Our negative results, of course, are made stronger
by the fact that they say that no Nash equilibrium can exceed a certain bound.
Our positive results, on the other hand, are mostly about a particular kind of
Nash equilibria (see Lemma 1) which arise from maximizing the experts’ profit.

In what follows, we do not require our scoring rules to be proper, i.e., we do
not require that they incentivize the experts to report honestly. However, our
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results will show that the optimal contract is indeed proper. We do require that
our scoring rules satisfy an individual rationality constraint. In particular, we
require that each expert i receives an expected payoff of at least 0 in the strategy
profile E0 = (E0, ..., E0) where everyone honestly reports the null information,
i.e., we require that for all i, EUi

s(E
0) ≥ 0. Note that this is a fairly weak notion

of individual rationality. For instance, it does not say that the expected payoff
for the expert is nonnegative if others truthfully report non-null information.
This makes our negative results stronger. The linear contracts of our positive
results will in fact satisfy stronger versions of individual rationality. For instance,
they do ensure nonnegative ex-ante expected scores whenever all experts submit
information honestly.

3 Competitive analysis

In this paper, we analyze scoring rules in the style of competitive analysis, a
technique for analyzing algorithms that combines two ideas. The first is worst-
case analysis. To avoid dependence on some prior probability distribution over,
in our case, configurations of costs and available evidence, we consider how a
scoring rule performs in the worst case. The second idea of competitive analysis
is to consider worst-case expected utility relative to some benchmark for the
problem. Similar approaches have been used in the literature on principal-expert
and -agent problems before [16, 6, 4, 5].

As is common in principal-agent problems, we use the first-best solution as
a benchmark, i.e., the utility (net of information acquisition costs) that the
principal could obtain if she had full control over the experts and knew everything
about the information structure that the experts know. Formally, let v(E) :=
EE [EO [u(O) | aE,E]] be the expected utility obtained from acquiring E and
then taking the best action according to it. Also, let c(E) :=

∑n
i=1 ci(Ei) be the

overall cost of acquiring E. Then the expected utility net of costs of the first-best
solution is EUOPT := maxE∈H v(E)− c(E). We will use E∗ to denote a first-best
solution itself, i.e., a maximizer of v(E)− c(E).

There are two ways in which the performance of an algorithm is commonly
compared against the benchmark: competitive ratios and regret. Unfortunately,
we cannot derive any nontrivial competitive ratio. Consider the case where there
is just one expert and only one available piece of evidence E with v(E) = 1.
Then to be competitive (i.e., to get positive utility at all), if the cost of E is
c(E) = 1 − ε, the principal has to reward the expert with almost 1. To be
reasonably competitive at c(E) = ε, on the other hand, she cannot give away
anything close to 1. Because the rewards cannot depend on the cost function
(which the principal does not know), obtaining a non-trivial competitive ratio is
generally impossible, even in the single-expert case. That said, we will give two
competitive-ratio-like results (Proposition 2 and Theorem 3) in which EUOPT is
replaced with a weaker benchmark.

Our primary focus will be on regret, which is the difference between the
first-best solution’s utility (net of costs) and the utility (net of payments to the
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experts) achieved by using the scoring rule. So, for any strategy profile σ we
define the regret for that strategy profile as REGRETs(σ) := EUOPT−EUs(σ).
We will also use REGRETs to denote the lowest regret achieved in any Nash
equilibrium σ for s, i.e., REGRETs = minσ∈NE(s) REGRETs(σ). Roughly, the
regret is what is sometimes called the agency cost in the literature on principal-
agent and -expert problems, or the price of stability in mechanism design [1, 24,
Section 1.3].

4 Linear contracts

In this paper, we study and justify the use of a particular type of scoring rule:
linear contracts. For any α ∈ (0, 1]

n
with

∑n
i=1 αi ≤ 1, define the linear scoring

rule qα as scoring according to qαj (P̂ , ω) = αju(ω) for all outcomes ω and

reported probability distributions over outcomes P̂ . That is, each expert receives
a fixed fraction of the total payoff generated. Requiring αi > 0 for all i is done
for simplicity. All the positive results about linear scoring rules can easily be
generalized to linear contracts in which αi = 0 for some i.

Before proceeding with our detailed analysis of linear contracts, it is worth
pointing out some immediately obvious and appealing properties. Most impor-
tantly, by rewarding according to a positive affine transformation of the princi-
pal’s utility, they align the experts’ interests with the principal’s. In contrast, if
one were to, say, reward one expert in proportion to exp(u(ω)), then that ex-
pert would sometimes want the principal to take a risky (high variance) rather
than a safe action, even if the risky action has lower expected utility. When us-
ing linear scoring rules, the only misalignment between experts and principal is
that the experts only receive a fraction of the utility obtained and therefore do
not value information as highly as the principal would in the first-best solution.
Many other desirable properties have been pointed out in the literature; see the
discussion of related work in Section 8.

From the definition of linear contracts, it is immediately clear that, while they
reward the choice of a good action, beyond that they do not reward accurate
probabilistic forecasts about the outcome. Because the principal may addition-
ally like to know what to expect for the chosen action, this is an undesirable
aspect of linear scoring rules. Note, however, that Oesterheld and Conitzer [21,
Section 2.5.1] show that linear scoring rules are the only ones which incentivize
honest reporting of the best action without incentivizing the expert to sometimes
prefer acquiring decision-irrelevant over decision-relevant evidence variables.

A more substantial issue with linear contracts is that (in some configurations
of available evidence) they violate ex-interim individual rationality constraints.
After acquiring some piece of evidence Ei, an expert i may come to believe
that the expected utility of the principal is negative. Expert i may then wish to
withdraw from the mechanism. Also, because utilities can end up being negative,
linear contracts cannot be used if the experts are protected by limited liability.
However, these concerns do not apply in cases where the principal always has
an option to walk away with utility 0, regardless of the evidence.
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5 General regret and ratio bounds for linear scoring rules

In this section, we give positive results about what regret (and competitive
ratio-like) bounds linear scoring rules achieve. Because linear contracts do not
score experts on their reported beliefs, all of these results carry over to generic
principal-agent problems. We start with a lemma on which the subsequent results
of this section are based.

Lemma 1. Let qα be a linear contract. Then for all configurations of available
evidence, any

Ê ∈ arg max
E∈H

v(E)−
n∑
i=1

1

αi
ci(Ei) (1)

is a Nash equilibrium of the game induced by qα.

Based on Lemma 1 we now give a bound on the regret of using any linear
scoring rule. Let αmin := mini αi.

Theorem 1. For all configurations of available evidence, the Nash equilibria Ê
of Lemma 1 satisfy

REGRETqα(Ê) ≤ max

(
n∑
i=1

αi, 1− αmin

)
v(E∗). (2)

In particular, setting αj = 1/(n + 1) for all j achieves a regret bound of

REGRETqα(Ê) ≤ nv(E∗)/(n+ 1).

The regret bound REGRETqα(Ê) ≤ nv(E∗)/(n+1) is the best bound that a
linear contract can achieve without any assumptions about the configuration of
available evidence. One might have hoped for a better bound, at least for larger
n. Also, it requires the principal to give each expert a share of the proceeds
equal to her own, which means that unless a large fraction of the experts pay
an amount close to v(E∗)/(n+ 1), regret is generally high. However, we will see
(in Section 6) that the regret bound is tight not only for linear scoring rules
but that no scoring rule can achieve a better bound. We will also consider two
ways of making assumptions about the configuration of available evidence to
achieve better bounds. One is based on a competitive-ratio-type bound from the
literature and is discussed in the rest of this section. The other targets regret
and will be the subject of Section 7.

Theorem 1 gives a regret bound for a specific equilibrium. It is natural to
ask whether this equilibrium is a plausible one. If it was a bad equilibrium
for the experts, we might not expect that equilibrium to be played. The first
thing to note is that in the case of n = 1, there is only one Nash equilibrium,
anyway, and in this Nash equilibrium the single expert maximizes his expected
profit. For the multi-expert case, notice first that the equilibrium of Lemma 1
explicitly maximizes a term that is closely tied to the experts’ expected utility.
A more formal point is the following.
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Proposition 1. Let qα be a linear contract and Ẽ be a Nash equilibrium of the
game induced by qα. If Ẽ is not strongly Pareto-dominated (for the experts) by
E∗, then Ẽ satisfies the regret bound of Ineq. 2.

Intuitively, this means that if some equilibrium does not satisfy Ineq. 2,
then the expert dislikes this equilibrium in the sense of it being strictly Pareto
dominated by E∗. Unfortunately, E∗ itself may not be a Nash equilibrium. In
fact, it may be that all Nash equilibria of the game induced by qα are strictly
Pareto-dominated by E∗.

Lemma 1 also gives us the following result, which is a generalization to the
multi-expert case of a result shown by Chassang [6, Theorem 1.i] and Carroll [4,
Section 2.3].

Proposition 2. For all configurations of available evidence, the Nash equilibria
Ê of Lemma 1 for the linear scoring rule qα satisfy

EUqα(Ê) ≥

(
1−

n∑
i=1

αi

)
max
E

(
v(E)−

n∑
i=1

1

αi
ci(Ei)

)
. (3)

Proposition 2 is essentially a competitive-ratio-type result, except that the
benchmark is lower than the first-best solution. Chassang [6, Theorem 1.ii] shows
how in a single-expert version of this result, the principal can optimize α if she
knows a bound on the cost-to-value ratio of information. If information is known
to be cheap, then α can be small. Chassang’s proof only operates on the n = 1
special case of Ineq. 3. A similar line of reasoning applies to our multi-expert
setting. Such a result is useful for practical purposes. It also shows how the
existing results can be used to give better bounds and recommendations that
are to some extent tailored to specific settings. Unfortunately, it seems that if
the cost-to-value bounds vary between experts, no succinct expression for the
optimal contracts can be given.

6 Unique optimality of linear scoring rules

Having proven bounds on the regret of linear contracts, the natural next question
is: can we do any better by using a different scoring rule? In particular, can we
do better by eliciting predictions of what outcome will materialize, in addition to
recommendations of what action to take? It is easy to come up with examples of
particular prior probability distributions over configurations of available evidence
under which the answer is yes. But it turns out that in the worst case and
without further assumptions, we cannot get any better regret bounds; moreover,
linear contracts are in fact the only ones that achieve the optimal regret bound
in general. This is true even if the principal knows the pre-cost expected utility
v(E∗) of the information acquired in the first-best solution.

Theorem 2. Let 0 < H < maxω∈Ω u(ω) and let s be a scoring rule. Then if for
all configurations with v(E∗) = H, REGRETs ≤ nH/(n + 1), then it must be
that for all j = 1, ...,m, sj(P̂ , ω) = u(ω)/(n+ 1), whenever ω ∈ supp(P̂ ). There
is no scoring rule s s.t. for all configurations, REGRETs < nH/(n+ 1).
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We briefly give a sketch of the proof, which consists of two parts. In the
first part, we identify “critical cases” for any s, i.e., a small set of classes of
configurations on which the bound is tight and which together determine sj
to be the hypothesized linear scoring rule. One critical case is that in which
v(E∗) = H and E∗ is in fact free to acquire. To keep regret low in this case, the
principal has to make sure that she does not give away too much. Overall, she
can only give away nH/(n+ 1) in expectation. The other critical case is that in
which v(E∗) = H and in E∗ exactly one expert j acquires information at a price
of H/(n+ 1)− ε. To achieve low regret in these cases, the principal must make
sure that whenever an expectation of H is achieved, any expert j receives an
expected payoff of at least H/(n + 1) (or, gets at least H/(n + 1) more than it
gets for reporting the prior). The critical cases together imply that if information
E∗ with value v(E∗) = H is acquired, each expert receives an expected payoff
of H/(n+ 1) (and that if the prior is reported, each expert receives an expected
payoff of 0). The second part of the proof shows that this (across all possible
E∗ with v(E∗) = H) implies that sj is as claimed in the theorem. Roughly, in
this part we show that the scoring rule must be linear, using the fact that the
expected payoff is constant across different distributions with the same mean.

The different aspects of this result depend on the details of our setup to
different extents. The result that worst-case regret is nH/(n+ 1) generalizes far
beyond our setting. In particular, even if the principal knows the experts’ infor-
mation structure, there will still be cases with regret nH/(n+ 1) if the principal
cannot obtain reliable information about the different experts’ costs of acquisi-
tion. The uniqueness of linear scoring rules in minimizing worst-case regret, on
the other hand, does hinge on our assumption that the principal does not know
the information structure. With knowledge of the specific information structure,
the principal can use very different contracts. As a straightforward example, if
it is known that one expert cannot obtain sufficiently useful information, the
scoring rule need not pay that expert at all.

A result analogous to Theorem 2 holds true for the competitive ratio-based
bound and can be proven with very similar ideas.

Theorem 3. Let α ∈ (0, 1)n with
∑n
j=1 αj < 1 and s be a scoring rule. Then

if for all configurations there is Nash equilibrium Ê

EUs(Ê) ≥

(
1−

n∑
i=1

αi

)
max
E

(
v(E)−

n∑
i=1

1

αi
ci(Ei)

)
, (4)

then it must be the case that for all j = 1, ...,m, sj(P̂ , ω) = αiu(ω), whenever

ω ∈ supp(P̂ ). There is no scoring rule s s.t. Ineq. 4 is always strict.

7 Restrictions on the configurations of available evidence

In this section we consider a setting in which the principal is assumed to have
a particular type of knowledge about the configuration of available evidence
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(similar to Chassang’s [6, Theorem 1.ii] result, mentioned at the end of Section
5). With this we would like to show that (as one would expect) under stronger
assumptions, substantially better bounds can be derived. Perhaps more impor-
tantly, it shows that the strategy in the proof of Theorem 2 of using critical
cases to derive linear contracts and their optimality generalizes to settings with
additional assumptions.

Arguably, much of the reason why our general bound is not better than it is
is that we do not know who has access to decision-relevant information. While
we use the term “experts”, we allow for configurations in which almost all of
the “experts” cannot acquire decision-relevant information at a reasonable cost.
Indeed, these cases drive the proof of Theorem 2. In many real-world settings, the
principal is able to select a set of experts who all can acquire relevant information.
We will model this by introducing the assumption that all experts have access
to the same set of evidence variables – though note that of this set each expert
can still only obtain one element.

Assumption 1 H1 = H2 = ... = Hn.

Furthermore, we assume that there is some known bound on how much acquisi-
tion costs differ.

Assumption 2 There is some known Λ ∈ (0, 1] such that for any two ex-
perts i, j and non-trivial evidence variables Ei, Ej we have cj(Ej) > 0 and
Λ ≤ ci(Ei)/cj(Ej).

If Λ = 1, then all experts pay the exact same price for all pieces of information. If
Λ is small, then some experts may be able to acquire information much cheaper
than others. Note that Assumption 2 not only restricts how costs differ between
experts but also between different evidence variables (both across experts and
for a single expert).

We add another assumption:

Assumption 3 For all vectors of information E ∈ H and any expert i, we have
v(E−i) ∈ {0, v(E)}.

Roughly, this means that any set of evidence variables is either fully complemen-
tary (in which case v(E−i) = 0 for all i that acquire non-trivial information) or
has some redundant piece of information (in which case v(E−i) = v(E) for some
i). There are some settings in which such an assumption is (at least approxi-
mately) natural. For instance, we may imagine that the principal and experts
are morally or legally obliged to pay due diligence and cannot pursue projects
unless they are fully researched. In the context of this paper, another reason we
consider this assumption is that it allows for an equilibrium analysis that is more
powerful than that of Lemma 1.

As before (Sections 5 and 6), we first provide the positive result. That is,
we show that a particular linear scoring rule achieves a particular regret bound.
We then show (Theorem 5) that this scoring rule is optimal and the only one
that achieves the given regret bound. It turns out that in this case the optimal
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scoring rule is much harder to guess. We hope that the proof sketch of Theorem
5 makes clear where its parameters come from.

Theorem 4. Let n ∈ N be the number of experts. Given Assumptions 1 to 3,
define

BΛ,n := 1− 1

1 +
∑n
i=1

1
1+(i−1)Λ

. (5)

and for j = 1, ..., n

αj =
1

(1 + (j − 1)Λ)
(

1 +
∑n
i=1

1
1+(i−1)Λ

) . (6)

Then, REGRETqα ≤ BΛ,nv(E∗).

We now prove that the scoring rule of Theorem 4 is the only one that achieves
its regret bound. Our strategy is the same as the strategy behind the proof of
Theorem 2 and the omitted proof of Theorem 3. Very roughly, the idea is as
follows. For any given linear contract qα, we guess the cases where the regret is
highest. The first such case is – as in the proof of Theorem 2 – the one in which
information is free to the experts and regret is entirely a result of the principal
having to give away some fraction of her profits that she can keep in the first-best
solution. Second, there is a critical case for each k = 1, ..., n, in which k pieces of
information are needed and the expert i with the k-th highest αi cannot quite
afford a relevant piece of information. One can then find the given bound and
parameters of the linear contract by minimizing worst-case regret across these
cases. Using these cases, one can prove as in the proof of Theorem 2 that to
obtain the bound, one has to use this linear rule.

Theorem 5. Let 0 < H < maxω∈Ω u(ω), and s be a scoring rule. Then, if
for all configurations with v(E∗) = H that satisfy Assumptions 1 to 3, we have
REGRETs ≤ BΛ,nH, then – up to permutation of the experts – for all j =

1, ...,m: sj(P̂ , ω) = αju(ω) whenever ω ∈ supp(P̂ ), where the αj are as defined in
Eq. 6. There is no scoring rule s s.t. REGRETs < BΛ,nH for all configurations.

If Λ = 0, then BΛ,n = n/(n + 1) and αj = 1/(n + 1) for j = 1, ..., n. That
is, as the restriction on the cost ratios becomes vacuous, the optimal bound and
scoring rule approach the optimal general bound and scoring rule of Theorems
1 and 2. If Λ = 1 (i.e., all costs are the same), then BΛ,n = hn/(hn + 1) and
αj = 1/((hn + 1)j), where hn =

∑n
i=1 1/i is the n-th harmonic number.

Note that even though – for all the principal knows – the experts are all iden-
tical, the minimum-regret contract varies the numbers of shares in the project
given to different experts. Theorem 5 therefore provides another (and quite differ-
ent) demonstration of a point made by Winter [26], who shows that the optimal
reward structure for a principal-(multi-)agent problem sometimes has to treat
identical agents differently. To understand why in our setting optimal rewards
are asymmetric despite symmetry between agents, consider only the cases where
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Λ = 1, i.e., where all experts pay exactly the same price for all pieces of in-
formation. Consider the question of how many experts we should give enough
shares to overcome some given acquisition cost of c. If that number is k, then our
worst-case regret at cost c from no information being acquired is H−(k+1)c and
occurs in the case where k + 1 pieces of information (all at cost c) are needed.
Since this number decreases with k, giving k experts sufficiently many shares to
outweigh a cost of a sufficiently large c at some point becomes non-critical for
minimizing regret. Given regret considerations in other cases (in particular the
one where all information is essentially free), the minimum-regret value of k will
therefore be smaller than n but bigger than 0 for many values of c.

8 Related work

The most closely related strand of literature is that on principal-expert (and more
generally principal-agent) problems. Our results merely concern one of many
possible variants of and approaches to such problems. For example, much of the
literature on principal-expert problems differs from the present work in that they
do not let the expert submit (or reveal by selection of a contract from a contract
menu) any information apart from a recommendation. We are not the first to
approach the problem from a worst-case perspective [16, 6, 4, 5]; but many others
have derived very different kinds of results without the worst-case assumption,
for instance by considering specific (types of) distributions or other restrictions
[19, 25, 8, 2, 12, 27, 14]. Also, many papers have richer problem representations
and specialized foci on issues that do not arise in the present framework. For
instance, most authors take into account that the expert is protected by limited
liability. With a few exceptions [2, 13], existing work only considers settings with
a single expert. While, as we have noted, some of our results can be seen as
generalizations of corresponding single-expert results (one of which – Proposition
2 – was already given in the literature for the single-expert case), Section 7
discusses issues that are very specific to the multi-expert case. To our knowledge,
our main optimality arguments (the proofs of Theorems 2, 3 and 5) and most
of our results are also unique. At the same time, our results support other work
which has aimed to discuss and explain the use of linear contracts [16, 25, 10, 4,
6, 5, 11, 21, Section 2.5.1].

In mechanism design, a few authors have worked to characterize scoring rules
that incentivize experts to honestly report existing (or free) decision-relevant
information [22, 7, 21]. The setups of these papers do not give any objective
that allows one to identify particular scoring rules as optimal; they allow for
rewards of tiny scale (say, giving the experts a trillionth of the principal’s profit).
The introduction of information acquisition costs into the model forces the use
of nontrivial rewards, and allows us to ask meaningful questions about what
scoring rule is optimal. Overcoming acquisition costs is one way to introduce a
target for optimization among scoring rules that gives a reason to give larger-
scale scores. The same can be achieved by introducing conflicts of interest that
arise if the expert has (contrary to the setup of this paper) an intrinsic interest
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in the principal’s decision. The expert may have an incentive to misreport (or
not report anything if information is verifiable) to make the principal take the
expert’s (rather than the principal’s) favorite option [15, 9, 3, 20]; cf. the literature
on Bayesian persuasion [17].

9 Conclusion

We have shown how competitive analysis can be used to derive the optimality of
particular linear contracts in principal-expert problems. We demonstrated that
when adding specific assumptions about the structure and cost of available infor-
mation, the analysis can also provide optimal scoring rules for specific settings.
The optimal scoring rules in all of these settings give away a substantial fraction
of the principal’s profit. The present work therefore motivates the use of more
complicated mechanisms when dealing with multiple experts. For instance, the
principal may look to save money by asking the experts to reveal each other’s
costs of acquisition. Can similar arguments as in this paper then still be used to
justify the use of linear scoring rules? Further, it is worth asking what the cost
of the worst-case simplification is: how much better can we do if the principal
formulates a prior over configurations of available evidence and optimizes the
expected utility over the set of contracts [2, 8, 19, 25]?
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