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Abstract

In multiagent systems, often agents need to be as-
signed to different roles. Multiple aspects should
be taken into account for this, such as agents’ skills
and constraints posed by existing assignments. In
this paper, we focus on another aspect: when the
agents are self-interested, careful role assignment
is necessary to make cooperative behavior an equi-
librium of the repeated game. We formalize this
problem and provide an easy-to-check necessary
and sufficient condition for a given role assignment
to induce cooperation. However, we show that
finding whether such a role assignment exists is in
general NP-hard. Nevertheless, we give two algo-
rithms for solving the problem. The first is based on
a mixed-integer linear program formulation. The
second is based on a dynamic program, and runs in
pseudopolynomial time if the number of agents is
constant. Minor modifications of these algorithms
also allow for determination of the minimal sub-
sidy necessary to induce cooperation. In our exper-
iments, the IP performs much, much faster.

1 Introduction

Role assignment is an important problem in the design of
multiagent systems. When multiple agents come together
to execute a plan, there is generally a natural set of roles to
which the agents need to be assigned. There are, of course,
many aspects to take into account in such role assignment.
It may be impossible to assign certain combinations of roles
to the same agent, for example due to resource constraints.
Some agents may be more skilled at a given role than others.

In this paper, we assume agents are interchangeable and in-
stead consider another aspect: if the agents are self-interested,
then the assignment of roles has certain game-theoretic ram-
ifications. A careful assignment of roles might induce co-
operation whereas a careless assignment may result in incen-
tives for an agent to defect. Specifically, we consider a setting
where there are multiple minigames in which agents need to
be assigned roles. These games are then infinitely repeated,
and roles cannot be reassigned later on.! It is well known,

'Our model disallows reassigning agents because in many con-
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via the folk theorem, that sometimes cooperation can be sus-
tained in infinitely repeated games due to the threat of future
punishment. Nevertheless, some infinitely repeated games,
in and of themselves, do not offer sufficient opportunity to
punish certain players for misbehaving. If so, cooperation
may still be attained by the threat of punishing the defect-
ing agent in another (mini)game. But for this to be effective,
the defecting agent needs to be assigned the right role in the
other minigame. This paper studies this game-theoretic role-
assignment problem.

Our work contrasts with much work in game theory in
which the model zooms in on a single setting without con-
sidering its broader strategic context. In such models, firms
make production and investment decisions based on competi-
tion in a single market; teammates decide on how much effort
to put in on a single project; and countries decide whether to
abide by an agreement on, for instance, reducing pollution. In
reality, however, it is rare to have an isolated problem at hand,
as the same agents generally interact with each other in other
settings as well. Firms often compete in several markets (e.g.,
on computers and phones, cameras, and displays); members
of a team usually work on several projects simultaneously;
and countries interact with each other in other contexts, say
trade agreements, as well.

Looking at a problem in such an isolated manner can be
limiting. There are games where a player has insufficient in-
centive to play the “cooperative” action, as the payoff from
that action and the threat of punishment for defection are not
high enough. In such scenarios, putting two or more games
with compensating asymmetries can leave hope for coopera-
tion. A firm may allow another firm to dominate one market
in return for dominance in another; a team member may agree
to take on an undesirable task on one project in return for a
desirable one on another; and a country may agree to a severe
emissions-reducing role in one agreement in return for being
given a desirable role in a trade agreement.

In this paper, we first formalize this setup. Subsequently,
we give useful necessary and sufficient conditions for a role
assignment to sustain cooperation. We then consider the com-
putational problem of finding a role assignment satisfying

texts, such reassignment is infeasible or prohibitively costly due to
agents having built up personalized infrastructure or specialized ex-
pertise for their roles, as is easily seen in some of the examples in
the next paragraph.



these conditions. We show that this problem is NP-hard. We
then give two algorithms for solving the problem nonetheless,
both of which can be modified to find the minimal subsidy
necessary to induce cooperation as well. One relies on an in-
teger program formulation; the other relies on a dynamic pro-
gramming formulation. We show the latter solves the prob-
lem in pseudopolynomial time when the number of agents is
constant. However, in our experiments, the former algorithm
is significantly faster, as shown at the end of our paper.

2 Background: Repeated Games and the Folk
Theorem

When considering systems of multiple self-interested agents,
behavior cannot be directly imposed on the agents. However,
incentives for desirable behavior can be created by means of
rewards and punishments. In one-shot games, there are no
opportunities to reward cooperation or to punish defection.
On the other hand, when the game is repeated and agents in-
teract repeatedly over time, richer outcomes could arise in
equilibrium. Intuitively, when there is potential for future in-
teractions (given that agents care about future outcomes, that
is, the discount factor § is positive), outcomes not sustainable
in the one-shot version can be attained given the right reward
and punishment strategies.

The folk theorem characterizes equilibrium payoffs that can
be obtained in infinitely repeated games, as agents become
arbitrarily patient (see, e.g., [Fudenberg and Tirole, 1991]).
The focus is on infinitely repeated games with discount fac-
tor § (or, equivalently, repeated games that end after each pe-
riod with probability 1 — §). The possibility of future rewards
and punishments makes certain outcomes besides the static
Nash equilibria of the stage game sustainable, if the agents
care “enough” about future payoffs. To characterize which
outcomes are sustainable in equilibrium, an agent’s minimax
payoff—the payoff that the other agents can guarantee she
gets at most, if they set out to minimize her utility—is key.
There can be no equilibrium where an agent receives less
than her minimax payoff, because the agent could then de-
viate and receive more. The folk theorem states that basically
all feasible payoff vectors that Pareto dominate the minimax
payoff vector can be attained in equilibrium with the threat of
sufficiently harsh punishment for deviating from the intended
behavior.

Based on the ideas behind the folk theorem, we develop
a characterization theorem (Theorem 1) that will serve as
the foundation for analyzing our problem of bundling roles
within (mini)games for game-theoretic cooperation. This the-
orem provides an easy-to-check condition for whether coop-
eration can be attained under a given role assignment.

3 Motivating Example

Consider two individuals (e.g., faculty members or board
members) who together are to form two distinct committees.
Each of the committees needs a chair and another member;
these are the roles we need to assign to the two individuals.
Each committee’s chair can choose to behave selfishly or co-
operatively. Each committee’s other member can choose to

sabotage the committee or be cooperative. The precise pay-
offs differ slightly across the two committees because of their
different duties. (For example, acting selfishly as the chair of
a graduate admissions committee is likely to lead to different
payoffs than acting selfishly as the chair of a faculty search
committee.)
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Let us first consider each of these two minigames sepa-
rately. If the minigame is only played once, the chair has a
strictly dominant strategy of playing selfishly (and hence, by
iterated dominance, the other member will sabotage the com-
mittee). Even if the game is repeated (with a discount factor
§ < 1), we cannot sustain the (cooperate, cooperate) outcome
forever. This is because the chair would receive a payoff of
2 in each round from this outcome—but defecting to playing
selfishly would give her an immediate utility of 3 or 4 in that
round after which she can still guarantee herself a utility of at
least 2 in each remaining round by playing selfishly.

Now let us consider the minigames together. If the same
agent is assigned as chair in each minigame, again we could
not sustain the (cooperate, cooperate) outcome in both mini-
games, because the chair would gain 3 4 4 immediately from
defecting and still be able to obtain 2 + 2 in each round for-
ever after. On the other hand, if each agent is chair in one
game, then with a reasonably high discount factor, (cooper-
ate, cooperate) can be sustained. For suppose the chair of the
second committee deviates by acting selfishly in that com-
mittee. This will give her an immediate gain of 4 — 2 = 2.
However, the other agent can respond by playing selfishly on
committee 1 and sabotaging committee 2 forever after. Hence
in each later round the original defector can getonly 1+2 = 3
instead of the 2+ 2 = 4 from both agents cooperating, result-
ing in a loss of 1 in each round relative to cooperation. Hence,
if § is such that 2 < §/(1 — ¢), the defection does not benefit
her in the long run. This shows that linking the minigames
allows us to attain cooperative behavior where this would not
have been possible in each individual minigame separately. It
also illustrates the importance of assigning the roles carefully
in order to attain cooperation.

One may wonder what would happen if we link the mini-



games in a single-shot (i.e., not repeated) context. This would
correspond to the case § = 0, so that the above formula in-
dicates that cooperation is not attained in this case. In fact,
linking minigames cannot help in single-shot games in gen-
eral: in a single-shot model, any equilibrium of the (linked)
game must consist simply of playing an equilibrium of each
individual minigame. (Otherwise, a player could improve
her overall payoff by deviating in a minigame where she is
not best-responding.) Linking becomes useful only when the
game is repeated, because then one’s actions in one minigame
can affect one’s future payoffs in other minigames, by affect-
ing other players’ future actions. This is why the repeated
game aspect is essential to our model.

4 Definitions

When there is a risk of confusion, we distinguish between
minigames (of which there are two in the example above,
corresponding to the two committees) and the larger meta-
game that the minigames together constitute after roles have
been assigned to agents. Note that technically the players in
minigames are roles, not agents, and the metagame among
the agents is not defined until roles have been assigned to
them. Let N = {1,...,n} be the set of agents and G the
set of minigames. We assume each minigame has n roles
(such as committee chair or committee member); if this is
not the case, we can simply add dummy roles. For each
minigame g € G and each role r in g, there is a set of ac-
tions AY for the agent in that role to play, and a utility func-
tion ug that takes as input a profile of actions @? in g, con-
sisting of one action a¢ for each role 7 in g, and as output
returns the utility of the agent in role r from this minigame.
An agent i’s total payoff in round ¢ is > uf(i7g)(69(t)),
where 7 (4, g) denotes the role assigned to agent ¢ in minigame
g and @?(t) is the profile played in minigame g in round ¢.
For the repeated game, we consider both discounted pay-
off (327200 Y geq Uy 4 (@(t))) and limit average pay-

off (Hm inf7 o0 (1/7) 32050 3 ger ;. (@ (£))). We as-

sume perfect monitoring, i.e., agents observe all actions taken
by all agents in prior rounds. All this is common knowledge,
and so is the role assignment (%, g) once the agents play the
game.

Our main interest is in assessing whether a particular out-
come can be sustained in repeated play. We assume that for
each game ¢, for each role r in g, there is a distinguished ac-
tion a9 € AY that we call the target action. (There is no
requirement that this action should be “cooperative” in the
sense of increasing other agents’ utilities or maximizing the
social utility; it can be any action, for example one that a
principal assigning the roles would like to see happen for ex-
ogenous reasons. Alternatively, one can think of the principal
having an extremely large utility for the target action being
played, and including the principal’s utility in the social wel-
fare.) Our main question is whether there exists a role assign-
ment function 7 (¢, g) such that there is an equilibrium of the
repeated game where every agent always plays the target ac-
tion in every role assigned to her. For this question, the key
issue is which roles (from different minigames) are bundled
together, rather than which particular agent is assigned this

bundle of roles. We postpone the definition of this question
as a computational problem until we have done some further
simplifying analysis.

5 Related Literature

The assignment of roles in multiagent systems has of course
received previous attention, especially in domains such as
RoboCup soccer. However, we are not aware of any mul-
tiagent systems literature on assigning roles across multiple
games in a way to achieve game-theoretically stable cooper-
ation. The work by Grossi and Turrini (2012) that combines
the concepts of dependence theory and game theory is dis-
tantly related to our work, focusing on identifying coalitions
such that agents mutually benefit within this coalition.

In the economics literature, some of the first work to rec-
ognize the effect of playing multiple games in parallel took
place in research on industrial behavior. In 1955, Corwin Ed-
wards proposed the possibility that multimarket contact be-
tween firms could allow them to reach strategically stable ar-
rangements that could not be reached in a single market and
thereby foster anticompetitive outcomes. Subsequent theo-
retical works explore the effect of multimarket contact on
economic performance (e.g., [Bulow et al., 1985]) and the
degree of cooperation sustainable with repeated competition
(e.g., [Bernheim and Whinston, 1990]).

Papers by Folmer and von Mouche (2007) and Just and
Netanyahu (2000) concern how the structure of the linked
component games affect the potential for cooperation. Both
identify the expansion in the bargaining set through linkage
as the key to potential increase in cooperation. The latter
work further examines linking common game classes such as
the prisoner’s dilemma, assurance, iterated dominance, and
chicken games; they do not observe the chances of coming
to a fully cooperative equilibrium increasing significantly ex-
cept for the case of linking prisoner’s dilemma games.

The intuition that linking games relaxes incentive con-
straints and the results on what game structure allows linkage
to lead to cooperation are both in accordance with the results
by Jackson and Sonnenschein (2007). These authors formally
address the relaxation of incentive constraints through linking
decision problems and the resulting efficiency gains in the
general context of social choice with preference announce-
ments.

6 Theoretical Analysis

In this section, we use the ideas behind the folk theorem
to analyze whether our problem has a solution or not. We
show that whether it does comes down to a single number
per minigame role. The intuition that allows us to show this
is as follows. To determine whether a given agent ¢ will de-
fect (i.e., play something other than the target action in some
role assigned to her), by the folk theorem, we may assume
that all other agents will play their target actions until some
defection has taken place, after which they maximally pun-
ish agent ¢ (in all games, not just the ones in which she de-
fected). Thus, in the round in which agent ¢ defects, she may
as well play the single-round best-response to the target ac-
tions in every role assigned to her; afterwards, she will for-



ever receive the best she can do in response to maximal pun-
ishment. (Since we only consider Nash equilibrium, we do
not have to worry about multiple agents deviating.) Target
actions are limited to pure strategies (since agents cannot ob-
serve whether a specific mixed strategy was played), but we
allow for mixed (even correlated, as we discuss below) ac-
tions in the punishment phase. The net effect of the defection
on ¢’s utility may be positive or negative for any given role;
whether ¢ will defect depends solely on the sum of these ef-
fects. We now formalize this. Recall that a*9 is the profile of
target actions for minigame g.

Definition 1. Given a minigame g and a role r in g, let cJ

denote the (long-run) cooperation value for that role when

the target actions are played by all players. With limit av-

emge payoffs, ¢4 = ud(a*9). With discounted payoffs,
= 32520 8t (@) = ud(a*) /(1 - ).

Next, we want to specify the defection value. This requires
us to know what utility a player will get in rounds after defec-
tion, which depends on how effective the other players are in
pumshmg In a two-player game, the punishing player should
play a minimax strategy—i.e., play as if she were playing
a zero-sum game where her utility is the negative of that of
the defecting player. With three or more players, an impor-
tant question is whether the players other than the defector
can coordinate (i.e., correlate) their strategies.2 If not, this
leads to NP-hardness [Borgs et al., 2010]. Therefore, we as-
sume that they can correlate, which allows polynomial-time
computability [Kontogiannis and Spirakis, 2008]. Formally,
when the player in role r has defected, the remaining players
—r will play arg min,s max,g u?(af,o?,), where 0? isa
mixed strategy for the players —r (allowed to be correlated
if there are two or more players in —r). In the case of dis-
counted payoffs, we also need to know the utility a player will
get in the first round she defects; this is max,s u? (a4, a™%).
Definition 2. Given a minigame g and a vrole r
in g, let d9 denote the (long-run) defection value
for that role. With limit average payoffs, dJ =
mings Mmax,s uj 9(ag,09,). With discounted payoffs, dJ =
o?,) =
max,g ud(ad,a’d) + %—6 mings max,g uf(ad, o).

In the end, what matters is the net effect of defection.

*g t .
maxafl u7g" (aﬁ, —r)+Zt:1 5 mlnagr maxafl u7g~ (aga

Definition 3. Given a minigame g and a role r in g, let mg =
cd — d¥ denote the robustness measure for that role.

ZFor 3+ players, it strengthens our hardness result (to be dis-
cussed in Section 7) that it holds even with correlated punishment.
Computational issues aside, without correlated punishment there are
some (known) conceptual problems because the minimax theorem
fails with 2 players against 1. Briefly, consider a variant of rock-
paper-scissors where player 3 just plays R, P, or S, but players 1 and
2, who play together in a sense that they have identical payoffs, both
pick from {0, 1}; 00 means rock, 01 means paper, 10 means scis-
sors, and 11 means a fourth action (fragile) that always loses. If 1
and 2 can correlate, they can play the regular RPS minimax strategy
guaranteeing payoff 0. But if they cannot, there is no joint strategy
for 1 and 2 guaranteeing 0. On the other hand, the best that player
3 can guarantee is 0. So there is no well-defined value of the game
and it is arguably less clear what will happen.

The theorem now says that we can obtain the desired out-
come if and only if there is an assignment that gives each
agent a nonnegative sum of robustness measures.

Theorem 1. The repeated metagame with assignment r(i, g)
has an equilibrium (allowing correlated punishment) in
which on the path of play, in every round t, in every minigame
g, every role r plays a9 if and only if the assignment r(i, g)
is such that for all i, 3, mf(w) > 0.

Proof. We first prove the “if” direction, supposing that
> 9 mff (3,9) > 0 for all <. Consider a grim trigger strat-
egy profile where all players cooperate (play a;9) in every
role r to which they have been assigned as long as everyone
else does so; if some player (say 7) has deviated, the other
players —¢ switch to maximally punishing ¢ via correlated
punishment—that is, in every game g, they play a strategy
in argmin, s iy DBXGS f(w)(aT(z 00 i) We
must show this strategy profile is an equilibrium. Con-
sider an arbitrary agent ¢. Not deviating will give ¢
a long-term utility of Z r(q )" What about deviat-
ing?  Without loss of generahty, suppose ¢ deviates in
the first round. The highest expected payoff ¢ can obtain
in that first round is 35 max,s w0 (@ @O )
she can obtain at most
Hence,

in every remaining round,

: g g g
2ogmings L WAXas UG ) (9r.g) T i)
her long-term utility is at most ) 9 d But by assump-

tion, 35 my;
> g d? (ir9)" So agent 7 has no incentive to deviate.

We now prove the “only if” direction, supposing that
Zg mf(iyg) < 0 for some 7. Consider a strategy
profile where on the path of play all players cooper-
ate (play ay9). Again, not deviating will give player
1 a long-term utility of Z By the minimax

g
o (i.g)" p
> 0, which is equivalent to 9 Cr(ig) >

r(1 9)’
a9 g
theorem, mings  maxes . ul; g (@7 6020 g)
. 9 9 ;
ma}.(aif(i,g) mings -l o (JT(Z}g), afr(.i’g)). Cons.ld.er the
deviating strategy where player ¢ plays, in every minigame
g 9 *g
g, a strategy from arg maxgs ur(.iyg)(ar(w),a_r(l.vg))
in the first round, and then a mixed strategy from
g g g :
argmaxgs = min,s . LT(Lg)(UT(i’g),a_r(i,g)). This
guarantees her a long- term utility of at least d? (i29) in each
minigame ¢g. By assumption, Zg mf(i’g) < 0, which is
. g g }
faqulva.lent to g Crlig) < Z'g. dr(i’g). So player z has an
incentive to deviate and the original strategy profile is not an
equilibrium. O

To determine whether cooperation can be attained, proper-
ties of the group of minigames as a whole matter, as opposed
to those of individual minigames: even if there are many
minigames with negative robustness measuress to all agents,
one more minigame could reverse the sum of the robustness
measures to poositive and result in cooperation. Because it
is straightforward to compute the robustness measures from
the minigames using the formulas above, Theorem 1 allows
us to efficiently check whether a given role assignment has
the desired behavior as an equilibrium. It also reduces the



problem of finding such a role assignment to the following
computational problem

Definition 4. (ROLE-ASSIGNMENT) We are given the m?
(a vector of n|G| numbers). We are asked whether there exists
a function r(i, g) that maps players one-to-one to the roles of
the game g, such that for all 1, Zg mf(w) > 0.

The reader may be concerned that perhaps the formal
ROLE-ASSIGNMENT problem is harder than the problem
we actually need to solve, because perhaps some instances of
this problem would not correspond to any actual game. Theo-
rem 2 establishes that, conversely, given any vector of robust-
ness measures m¢ (a vector of n|G| numbers), it is straight-
forward to construct a vector of g normal-form minigames
that results in these robustness measures. This implies that
if there is an efficient algorithm to solve the original prob-
lem given in the normal-form representation, then any ROLE-
ASSIGNMENT instance can also be solved efficiently by
solving the corresponding normal-form instance. We omit
some proofs to save space.

Theorem 2. Given a length n vector of robustness mea-
sures m, we can efficiently construct an n-player normal-
form minigame with two actions per player that generates
exactly these robustness measures.

Proof. We refer to the i-th element of the vector m by
m;. From the robustness measure vector, we construct an
n-player binary-action normal-form minigame, where each
agent chooses whether to play the target action (cooperate) or
not (defect).

We first show how to construct the normal-form game in
the limit average payoff model. If a given m; is nonnegative,
then we let the ¢-th agent’s payoff for when the action profile

d = (cooperate, . .., cooperate) is played be m,. If, on the
other hand, a given m; is negative, then we let the i-th agent’s
payoff for when @ = (cooperate, ..., cooperate) is played

be 0, and all of ¢’s payoffs where i’s action a; is defect (re-
gardless of the actions of others —a;) be —m; (that is, there is
a positive value for defection). All payoffs not yet specified
are set to 0.

In the discounted payoff model, we go through the same
operations, except instead of using the payoffs m; and —m,,
we replace them with (1 — §)m; and —(1 — 0)m;, to account
for the discounting.

Finally, we show that the normal-form game we con-
structed produces the original set of robustness measures. If
m; was nonnegative, ¢; = m; and d; = 0, and if m; was

negative, ¢; = 0 and d; = —m;, for both limit average and
discounted payoffs. Consequently, we get ¢; — d; = m; for
all 7, as desired. O

7 Complexity of ROLE-ASSIGNMENT

In this section, we show that the ROLE-ASSIGNMENT prob-
lem is NP-complete. We first show that it is weakly NP-
complete even in an extremely restricted special case, namely,
the case where we have only two players and each minigame
has the following structure.

Each minigame has two roles, Active and Passive. Pas-
sive has no choice. Active can choose to defect, in which

Active

cooperate defect

—T4 0
Ty 0

(no choice)

Passive

case both players get 0, or to cooperate, in which case Ac-
tive gets —z, < 0 and Passive gets x, > 0. Hence, the
robustness values are mf.,. = —4 and M. = 4, for
all g € G. We call these games Two-Player Active-Passive
(2PAP) games. Intuitively, cooperating in a game means giv-
ing the other player a specified gift, and enabling cooperation
in all games requires that we balance the gifts exactly be-
tween the players.®> This suggests a reduction from the PAR-
TITION problem (which is only weakly NP-hard, allowing
pseudopolynomial-time algorithms).

Theorem 3. ROLE-ASSIGNMENT is (weakly) NP-complete
for 2PAP games.

Proof. To prove NP-hardness, we reduce from the PARTI-
TION problem, in which we are given a set of integers
{wn,...,wq}, and are asked whether there exists a subset
S C{1,...,q} such that 3°, gw; = 3%, w;/2. For an
arbitrary instance of the PARTITION problem, we construct
a ROLE-ASSIGNMENT instance by creating a 2PAP game
g(j) with 2,(;) = w; foreach j € {1,...,q}.

If a solution S to the PARTITION instance exists, then
assign agent 1 to the Active role in all g(j) with j €
S and to the Passive role in all other games. Then, we
have 35 mi, =2 jesWj + > jgsw; = 0 and
Dy Miag) = — 2jgs Wi T 2 jesw; = 0. Hence a so-
lution to the ROLE-ASSIGNMENT instance exists.

Conversely, if a solution to the ROLE-ASSIGNMENT
instance exists, let S be the set of all j such that agent
1 is assigned to the Active role in g(j). We know

0 < gzg 1) —2jesWj + Xjggw; and 0 <
PO My gy = =2 g5 Wi+ 2 s wj. Hence 37, gw; =
> jgsw; and S is a solution to the PARTITION in-
stance. O

In the coming subsection on the dynamic program algo-
rithm, we will show that the ROLE-ASSIGNMENT prob-
lem can in fact be solved in pseudopolynomial time when
there are at most a constant number of agents. We now pro-
ceed to exhibit strong NP-completeness for n-Player Active-
Passive (nPAP) games, in which each minigame g has one
Active and n — 1 Passive players, and the Active player can
choose to make a specified gift x4, that will be equally divided
among the other players (so they each receive z,/(n — 1)).
The reduction resembles the previous one but is based on the
strongly NP-hard 3-PARTITION problem.

Theorem 4. ROLE-ASSIGNMENT is (strongly) NP-complete
for nPAP games.

30One may wonder why cooperation is desirable at all in these
games, but note that the reduction will work just as well if Passive
receives a sufficiently small bonus € when receiving a gift and Active
does not have to pay this bonus. Alternatively, the principal may
have an exogenous reason for preferring cooperation.



8 Algorithms for Role Assignment
Here, we present two algorithms for ROLE-ASSIGNMENT.

8.1 Integer Program

First, we reduce ROLE-ASSIGNMENT to the integer pro-
gram (IP) in Figure 1. Combining this with any IP solver
results in an algorithm for ROLE-ASSIGNMENT. The ro-
bustness measure m? for each minigame g and each role 7 in
g is a parameter of the integer program. We have an indicator
variable b(i,g,7) € {0, 1} for each agent 4, each minigame
g, and each role r in g. (b(i,g,7) = 1 if and only if ¢ is
assigned role r in g.) There is another variable v which the
solver will end up setting to the minimum aggregate robust-
ness value any agent has, min; Zg mf(i7q); maximizing this
is the objective of the IP.

Note that this is not necessarily pushing things towards an
equitable solution, as m? is not the payoff to the agent. The
point is that this lets the IP determine not only whether the
ROLE-ASSIGNMENT instance has a solution (which is the
case if and only if the optimal objective value is nonnegative),
but also the “most robust” solution.* The assignment does not
affect the overall welfare of the agents as the aggregate pay-
offs are constant and predetermined from the prescription of
the “cooperation” actions. This IP can easily be modified to
determine the minimal subsidy necessary to induce cooper-
ation, by adding a payment variable for each player, whose
sum is then minimized (cf. cost of stability [Bachrach er al.,
2009]).

maximize v
subject to
(V4) v — Zg > rin g méb; g, <0  (min. robustness)

(Vg,ring) >, bigr =1 (one player per role)
i, 9) >, in p b; g.r = 1 (one role per player per game)

Figure 1: Integer program for ROLE-ASSIGNMENT.

8.2 Dynamic Program

Even though the general n-player ROLE-ASSIGNMENT
problem is strongly NP-complete (Theorem 4), below we
give a dynamic programming algorithm that solves it in pseu-
dopolynomial time when the number of agents is constant.
For the purpose of presenting this algorithm, we assume that
the payoffs are integers. (Of course, any rational numbers
could be scaled up to integers).

The algorithm takes as input the the vector of robustness
measure m? for each minigame g € G and each role r in
g Let L = 3  min{0, min,(m{)} (the lowest possible
aggregate robustness measure for an agent from any subset
of the games), U = Zg max{0, max,(m2)} (the highest),
and X = U — L. Also, let P, be a (size r!) set of vec-
tors of length |N|, where each element is a permutation of

“The word “robustness” was chosen as a higher value implies the
solution would be more robust to changes in the utilities.

{mi{,m3,..., m‘le }. That is, P, is the set of all the possible
robustness measure vectors from game g.

The algorithm fills up a table of size |G| x X™ containing
Boolean values, with the first axis of the table ranging from
1 to |G|, and the other n axes (one for each agent) ranging
from L to U. The table entry T'(g, k1, ko, . . ., ky,,) represents
whether it is possible for each player i to obtain an aggregate
robustness measure of k; from role assignments to the first g
minigames only (arbitrarily labeling the games as 1, . . ., |G)).
We omit the formal description of the algorithm to save space.

The ROLE-ASSIGNMENT instance then has a solution if
and only if the last row of the table (for ¢ = |G|) has a
1 for an entry with nonnegative values for the other axes—
ie., (3k1,....k, > 0) T(|G|,k1,...,kn) = 1. In this
row we can also find the maxmin aggregate robustness level
that the integer programming algorithm finds, i.e., max{v :
(Fk1, ... kn > v) T(|G|, k1, ..., k,) = 1}. We can also
determine the minimal subsidy necessary to induce coopera-
tion by a single pass through this row. All that is needed is
to bring up aggregate robustness values that are below zero to
Zero.

Theorem 5. ROLE-ASSIGNMENT can be solved in pseu-
dopolynomial time for a constant number of agents n.

Proof. The table has |G| x X™ entries, and filling in an entry
requires up to n! lookups. Moreover, X < |G| - d, where d is
the maximum difference between two robustness values in a
minigame, which itself is O(v — \) where v () is the largest
(smallest) single payoff in a minigame. Hence, with constant
n, the algorithm is polynomial in |G| and v — A. (Of course,
the input size is polynomial in |G| and log(v — A), which is
why the algorithm is only pseudopolynomial.) O

9 Simulation Analysis

In this section, we evaluate the two algorithms on random in-
stances, generated using GAMUT [Nudelman et al., 2004].
For a given number n of players, a given number |G| of
minigames, and a given game generator in GAMUT, we gen-
erate an instance by drawing |G| n-player games with payoffs
in the interval [—5, 5] from the generator. (Though we have
done the simulation on many different families of games (dis-
persion, coordination, N-player chicken, etc.), the runtimes
do not appear to depend on the family, so we omit them due
to limited space.) Because the DP algorithm requires payoffs
to be integers, we round all the payoffs in each game to in-
tegers in {—5,—4,...,5}. We evaluate the IP algorithm on
nondiscretized payoffs. (When we run it on the rounded pay-
offs, the IP algorithm is in fact even faster, and always returns
the same solution as the DP.) CPLEX 12.6.0.0 and g++ 4.8.4
were used for IP and DP respectively.

We present the experimental results for when the target ac-
tion is determined as the action profile maximizing the social
welfare. (Similar patterns are observed when the target action
is determined randomly.) We evaluate whether the target ac-
tion can be sustained in an equilibrium. Both algorithms are
guaranteed to return a solution, if one exists.

Figure 2 show the results for the DP algorithm.Predictably,
the runtime of the DP algorithm closely tracks the number of
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Figure 2: The plot represents the average runtime of solving an instance of ROLE-ASSIGNMENT through dynamic programming, given the
social welfare maximizing target action profile. The x axis represents how many minigames are to be assigned (|G|), and the y-axis represents
how long it took to solve the instances, in seconds. Each data point in the graph is an average of multiple instances (ranging from 4 to 200,
due to cases such as n = 6, where we decide to timeout the program). While we studied many different game generators, as a representative
case, we present the results for the case where G consists of uniformly random games.

n=2 n=3 n=4 n=5
o
B
J < 4 — [To}l
I3
(=]
S A o - 8 | E
I
il - w0
~ A -
o
[= = o | i
- - 3] I
| 'L 0 |! il - '
= (=3 i) =3 o

10 20 30 40 50 10 20 30 40 50

10 20 30 40 50

10 20 30 40 50 10 20 30 40 50

Figure 3: The plot represents the average runtime of solving an instance of ROLE-ASSIGNMENT through integer programming, given the

social welfare maximizing target action profile. The x axis represents how many minigames are to be assigned (|G

), and the y-axis represents

how long it took to solve the instances, in seconds. Each data point in the graph is an average of 200 instances. The top of the range bar
indicates the maximum time an individual instance required to be solved, and the bottom of the range bar indicates the shortest. The graphs
presented here are from uniformly random games with no integral payoft restrictions.

table entries that need to be filled in (|G| x X™). The number
of table entries blows up quickly when n increases.

Figure 3 shows the results for the IP algorithm.The IP al-
gorithm scales much, much better.

10 Conclusion

In this paper, we have identified the problem of assigning
roles to agents across multiple games in such a way that co-
operative behavior becomes an equilibrium. We provided an
easy-to-check necessary and sufficient condition for a given
role assignment to induce cooperation and used this to ob-
tain hardness results as well as algorithms for the problem
of finding such a role assignment. Our integer programming
algorithm significantly outperformed our dynamic program-
ming algorithm in experiments, even though the latter is pseu-
dopolynomial for constant numbers of agents.

We believe that there are many other important directions
that can be studied in the context of game-theoretic role as-
signment. Our model can be extended to allow (perhaps
costly) reassignment of roles as time progresses; different
agent types that value roles differently, and preferences not
only over roles but also over which type of agent one is
matched with (providing connections to matching [Klaus et
al., 2015] and hedonic games [Aziz and Savani, 2015]); side
payments between agents (providing connections to match-
ing with contracts [Hatfield and Milgrom, 2005]); not every
minigame being played in each round; generalizing from re-
peated games to stochastic or arbitrary extensive-form games;
and so on. An alternate formation of studying which payoff
profiles can be sustained can be considered as well. In the

limit-average scenario generalizing to this is straightforward.
In the discounted case, however, it is less obvious because the
immediate payoff from deviation becomes significant, which
depends on which specific entry is played (especially when
6 < 1 is considered). We believe that our paper provides a
good foundation for such follow-up work.

The availability of a pseudopolynomial-time algorithm,
when the number of agents is constant, also suggests that
there may be potential for approximation algorithms. How-
ever, note that the problems as we have defined them are de-
cision problems, and it is not immediately obvious what the
right optimization variant would be. One possibility may be
to consider approximate equilibria.
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