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Abstract—We give an n2+o(1)-time algorithm for
finding s-t min-cuts for all pairs of vertices s and
t in a simple, undirected graph on n vertices.
We do so by constructing a Gomory-Hu tree (or
cut equivalent tree) in the same running time,
thereby improving on the recent bound of Õ(n2.5)
by Abboud et al. (STOC 2021). Our running time
is nearly optimal as a function of n.

I. Introduction
An s-t mincut is a minimum (weight/cardinality)

set of edges in a graph whose removal disconnects
two vertices s, t. Finding s-t mincuts, and by duality
the value of s-t maxflows, is a foundational question
in graph algorithms. Naïvely, mincuts for all vertex
pairs can be computed by running a maxflow
algorithm separately for each vertex pair, thereby
incurring Θ(n2) maxflow calls on an n-vertex graph.
In 1961, Gomory and Hu [10] gave a remarkable
result where they constructed a cut equivalent
tree (or Gomory-Hu tree, after its inventors) that
captures an s-t mincut for every vertex pair s, t
using just n − 1 maxflow calls. By plugging in the
current fastest maxflow algorithm [21], this gives
an Õ(mn + n5/2)-time1 algorithm for the all pairs
min-cuts (apmc) problem on an n-vertex, m-edge
graph. Improving on Gomory and Hu’s 60-year
old algorithm for the apmc problem on general,
weighted graphs remains a major open question in
graph algorithms.

For unweighted graphs however, we can do better.
The first algorithm to do so was by Bhalgat et
al. [6], who used Steiner mincuts to obtain a running
time of Õ(mn) in unweighted graphs. Karger and
Levine [13] matched this bound using the same
counting technique, but by a different algorithm
based on randomized maxflow computations. In
simple graphs, both these algorithms obtain a
running time of Õ(n3) since m = O(n2). The
first subcubic (in n) running time was recently
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1Õ(·) suppresses poly-logarithmic factors.

obtained in a beautiful work by Abboud et al. [4],
who achieved a running time of Õ(n2.5) for simple
graphs. They write: “Perhaps the most interesting
open question is whether Õ(m) time can be
achieved, even in simple graphs and even assuming
a linear-time maxflow algorithm.” Interestingly,
they also isolate why breaking the n2.5 bound is
challenging, and say: “. . . perhaps it will lead to
the first conditional lower bound for computing a
Gomory-Hu tree.”

In this paper, we give an n2+o(1)-time Gomory-Hu
tree algorithm in simple graphs, thereby improving
on the Õ(n2.5) bound of Abboud et al. Our result
is unconditional – specifically, we do not need to
assume an Õ(m)-time maxflow algorithm. As a
consequence, we also refute the possibility of a n2.5

lower bound for the Gomory-Hu tree problem. Since
there are

(
n
2
)

= Θ(n2) vertex pairs, the running
time of our algorithm is near-optimal for the all-pair
mincuts problem. Even if one were to only construct
a Gomory-Hu tree (and not report the mincut values
explicitly for all vertex pairs), our algorithm is near-
optimal as a function of n since m can be Θ(n2).

Our main theorem is the following:

Theorem I.1. There is an algorithm GHtree(G)
that, given a simple n-vertex m-edge graph G, with
high probability computes a Gomory-Hu tree of G in
n2+o(1) time.

Our techniques also yield a faster Gomory-Hu
tree algorithm in sparse graphs. The previous
record for sparse graphs is due to another recent
algorithm of Abboud et al. [2] that takes O(mc +∑m/c

i=1 T (m, n, Fi)) time, where
∑

i Fi = O(m) and
T (m, n, Fi) is the time complexity for computing a
maxflow of value at most Fi. (Here, c is a parameter
that can be chosen by the algorithm designer to
optimize the bound.) We improve this bound in
the following theorem to Õ(mc) + n1+o(1)

c · T (m, n)
where T (m, n) is the time complexity for computing
a maxflow. For comparison, if we assume an Õ(m)-
time maxflow algorithm, then the running time



improves from Õ(m1.5) in [2] to mn0.5+o(1) in this
paper. Using existing maxflow algorithms [14], [21],
the bound is Õ(m · g(m, n)) in [2] where g(m, n) =
min(m1/2n1/6, m1/2 + n3/4), and improves to

√
mn ·

no(1) · g(m, n) in this paper.

Theorem I.2. There is an algorithm
GHtreeSparse(G) that, given a simple n-vertex
m-edge graph G, with high probability computes a
Gomory-Hu tree of G in Õ(mc) + n1+o(1)

c · T (m, n))
time where T (m, n) denotes the time complexity for
computing a maximum flow on an n-vertex m-edge
graph and c is a parameter that we can choose.

Related Work: Gusfield [11] gave a Gomory-
Hu tree algorithm that simplifies Gomory and Hu’s
algorithm, particularly from an implementation
perspective, although it did not achieve an
asymptotic improvement in the running time. If
one allows a (1 + ϵ) approximation, then faster
algorithms are known; in fact, the problem can
be solved using (effectively) polylog(n) maxflow
calls [1], [16]. Finally, there is a robust literature
on Gomory-Hu tree algorithms for special graph
classes. This includes near-linear time algorithms for
the class of planar graphs [8] and more generally, for
surface-embedded graphs [7], as well as improved
runtimes for graphs with bounded treewidth [5],
[1]. For more discussion on the problem, the reader
is referred to a survey in the Encyclopedia of
Algorithms [20].

Concurrent to our work and independent of
it, there were two other teams of researchers
who achieved similar results to those presented
in this paper. In a paper presented at the same
conference as this paper (FOCS 2021), Abboud,
Krauthgamer, and Trabelsi [3] obtained a Gomory-
Hu tree algorithm for simple graphs that also
runs in O(n2+o(1)) time, thereby matching our
result. In another independent work, Zhang [22] also
obtained the same result, but under the additional
assumption of a near-linear time max-flow algoithm.
Without this assumption, the running time of
Zhang’s algorithm is Õ(n17/8).

Organization: In Section II, we introduce
the tools that we need for our Gomory-Hu tree
algorithm. We then give the Gomory-Hu tree
algorithm using these tools, and prove Theorem I.1
and Theorem I.2. In subsequent sections, we show
how to implement each individual tool and establish
their respective properties.

II. Gomory-Hu Tree Algorithm
We start this section by defining Gomory-Hu

trees. It will be convenient to also define partial

Gomory-Hu trees which will play an important role
in our algorithm.

Definition II.1 (Partial Gomory-Hu trees). Let
G = (V, E) be a graph. A partial Gomory-Hu tree
or simply a partial tree (T,P) of G satisfies the
following:

• T is a tree on V (T ) ⊆ V called a terminal set,
• P is a partition of V where each part Vu ∈ P

contains exactly one terminal u,
• for any pair of terminals u, v ∈ V (T ), a u-

v mincut (AT , BT ) in T corresponds to a u-v
mincut (A, B) in G where A =

⋃
x∈AT

Vx and
B =

⋃
y∈BT

Vy.
If V (T ) = V , then T is a Gomory-Hu tree of G.

Terminology about Partial Trees: Let X ⊆ V
be a vertex set. We say that a partial tree (T,P)
captures all mincuts separating X of size at most d
if, for every part U ∈ P and every pair of vertices
u, v ∈ U ∩X, mincutG(u, v) > d. When X = V , we
say that (T,P) captures all mincuts of size at most
d. If all edges of T have weight at most d, then we
say that (T,P) captures no mincut of size more than
d.

We say that (T ′,P ′) is a refinement of (T,P)
if (T,P) can be obtained from (T ′,P ′) by
contracting subtrees of T ′ and taking the union
of the corresponding parts of P ′. In other words,
a refinement adds edges while preserving the
properties of a partial tree. The classic algorithm of
Gomory and Hu [10] starts with a vacuous partial
tree comprising a single node and refines it in a series
of n−1 iterations, where each iteration adds a single
edge to the tree. Our goal is to refine the partial tree
faster by adding multiple edges in a single iteration.

Well-linked Decomposition: The key to defining
a single iteration of our algorithm that refines
a partial tree is the notion of a well-linked
decomposition. We first define a well-linked set of
vertices.

Definition II.2. We say that a vertex set X is
(d, ϕ)-well-linked in a graph G if

• For each v ∈ X, degG(v) ≥ d, where degG(v) is
the degree of vertex v in graph G, and

• For each partition (A, B) of X, mincutG(A,B)
d·min{|A|,|B|} ≥

ϕ. Here, mincutG(A, B) is the smallest cut of
G that has vertex subsets A and B on different
sides of the cut.

The next lemma is an important technical
contribution of our paper, and says that the set of
high-degree vertices can be partitioned into a small
number of well-linked sets. Actually, this is the only



place in this paper where we require that the input
graph G is a simple graph.

Lemma II.3. There is an algorithm
Partition(G, d) that, given a simple n-vertex
m-edge graph G and a parameter d, returns
with high probability a partition {X1, . . . , Xk} of
V≥d = {v | degG(v) ≥ d} such that k = Õ(n/d) and
every set Xi is (d, ϕpart)-well-linked in G, where
ϕpart = n−o(1). The algorithm Partition(G, d)
runs in m1+o(1) time.

In a single iteration, our goal is to refine a partial
tree that captures mincuts of size at most d to one
that captures mincuts of size at most 2d. For this, we
would like to partition all the vertices in V≥d using
the above lemma, and repeatedly refine the partial
tree so that it captures all mincuts of size at most 2d
separating the terminal set that includes the vertices
in the (d, ϕ)-well-linked set Xi. But, doing this on
the input graph G would be too slow; instead, we
use a sparse connectivity certificate that preserves
all cuts of size at most 3d. This suffices since in this
iteration, we only seek to capture cuts of size at most
2d.

Connectivity Certificate: We formally define
connectivity certificates next.

Definition II.4. For any graph G = (V, E), a k-
connectivity certificate H of G is a subgraph of G
that preserves all cuts in G of size < k, and ensures
that all cuts in G of size ≥ k have size ≥ k in H as
well. In other words, for any cut (S, V \S), we have
|EH(S, V \ S)| ≥ min{|EG(S, V \ S)|, k}.

The next lemma, due to Nagamochi and
Ibaraki [19], gives an efficient algorithm for
obtaining a connectivity certificate.

Lemma II.5 ([19]). There is an algorithm
Sparsify(G, k) that, given an n-vertex m-edge graph
G and a parameter k, return a k-connectivity
certificate H of G with at most min{m, nk} edges
in O(m) time.

The Main Lemma: We are now ready to state
our main lemma, which constitutes a refinement of
the partial tree.

Lemma II.6. There is an algorithm
Refine(G, H, (T,P), X, d, ϕ) that given

• graph G on n vertices and m edges, and a
3d-connectivity certificate H of G with m′ ≤
min{m, 3nd} edges,

• a partial tree (T,P) of G that captures all
mincuts of size at most d and no mincut of size
more than 2d, and

• a set X that is (d, ϕ)-well-linked in H,
in Õ(min{m, nd}/ϕ) time plus max-flow calls on
several graph instances with Õ(n/ϕ) vertices and
Õ(min{m, nd}/ϕ) edges in total, returns with high
probability a partial tree (T ′,P ′) of G where

• (T ′,P ′) is a refinement of (T,P), and
• (T ′,P ′) captures all mincuts separating X ∪

V (T ) of size at most 2d and no mincut of size
more than 2d.

Crucially, when 3nd ≤ m, the running time in the
above lemma does not depend on m, the number of
edges in G. In other words, the algorithm does not
even read in the entire graph G, instead operating
on the 3d-connectivity certificate H directly.

Small Connectivities: Recall that in a single
iteration, Lemma II.3 produces Õ(n/d) sets each
of which is (d, ϕpart)-well-linked, and Lemma II.6
makes max-flow calls on graphs with Õ(n/ϕpart)
vertices and Õ(nd/ϕpart) edges in total. The current
fastest max flow algorithm gives the following
runtime:

Theorem II.7 ([21]). There is an algorithm that
can find, with high probability, a maximum flow on
a graph with n vertices and m edges in Õ(m + n1.5)
time.

Using this algorithm, the runtime of the max flow
calls in an iteration becomes Õ( n

d ) · Õ(nd + n1.5) ·
no(1) = (n2+ n2.5

d )·no(1) (recall that ϕpart = n−o(1) in
Lemma II.3). While this suffices for d ≥

√
n, we need

an additional trick to handle small connectivities,
namely d <

√
n.

The next theorem, due to Hariharan et al. [12]
and Bhalgat et al. [6], gives a fast algorithm for
computing a partial tree that captures all small cuts:

Theorem II.8 ([12], [6]). There is an algorithm
SmallConn(G, d) that, given a simple n-vertex m-
edge graph G and a parameter d, returns with high
probability a partial tree (T,P) that captures all cuts
of size at most d in Õ(min{md, m + nd2}) time.

If we set d =
√

n, then this theorem gives a partial
tree that captures all cuts of size at most

√
n in

Õ(n2) time. We initialize our algorithm with this
partial tree, and then run the iterative refinement
process described above for d =

√
n, 2
√

n, . . . , n/2, n
to obtain the Gomory-Hu tree. We formally describe
this algorithm below and prove its correctness and
runtime bounds.

The Gomory-Hu Tree Algorithm: The
algorithm is given in Algorithm 1. We first
establish correctness of the algorithm. The next



Algorithm 1: GHtree(G)
1) Initialize (T,P)← SmallConn(G, c) where c

is a parameter we can choose.
2) For d = c, 2c, . . . , n/2, n

a) H ← Sparsify(G, 3d)
b) {X1, . . . , XÕ(n/d)} ← Partition(H, d)
c) For each Xi,

(T,P)← Refine(G, H, (T,P), Xi, d, ϕpart)
3) Return T

property formalizes the progress made by the
algorithm in a single iteration of the for loop.

Lemma II.9. At the beginning of each for-loop
iteration of Algorithm 1, if (T,P) is a partial tree
of G that captures all mincuts of size at most d and
no mincut of size more than d, then at the end of the
iteration, (T,P) captures all mincuts of size at most
2d and no mincut of size more than 2d.

Proof: First, observe that the input to
Refine(·) is valid: (1) H is a 3d-connectivity
certificate of G containing ≤ min{m, 3nd} edges by
Lemma II.5, (2) (T,P) is a partial tree of G that
captures all mincuts of size at most d and no mincut
of size more than 2d by assumption, and (3) X is
(d, ϕpart)-well-linked in H by Lemma II.3.

By the second property in Lemma II.6, (T,P)
captures no mincut of size more than 2d. It remains
to show that at the end of the iteration, (T,P)
captures all mincuts of size at most 2d. For mincuts
of size at most d, this follows from the assumption.
Consider an s-t mincut of size more than d but
at most 2d. Since s, t ∈ V≥d in G, it follows
that s, t ∈ V≥d in H as well. Thus, s, t ∈
∪iXi produced by Partition(H, d). There are two
cases. If s, t ∈ Xi for some i, then Lemma II.6
ensures that the s-t mincut is captured by (T,P)
after Refine(G, H, (T,P), Xi, d, ϕpart). If s ∈ Xi,
t ∈ Xj where i < j (wlog), then, when we
call Refine(G, H, (T,P), Xj , d, ϕpart), we have s ∈
V (T ) and t ∈ Xj . Again, by Lemma II.6, the s-
t mincut is captured by (T,P) after the call to
Refine.

The following is a simple corollary of the above
lemma.

Lemma II.10. Algorithm 1 computes a Gomory-Hu
tree T .

Proof: First, note that (T,P) ←
SmallConn(G, c) captures all mincuts in G
of size at most c by Theorem II.8. Therefore, by
Lemma II.9, at the end of each iteration of the for

loop, Algorithm 1 captures all mincuts of size at
most 2d. As a consequence, at the end of the final
loop, Algorithm 1 captures all mincuts of size at
most n. Therefore, T is indeed a Gomory-Hu tree.

We now establish the running time of Algorithm 1.

Lemma II.11. By choosing c =
√

n, Algorithm 1
takes n2+o(1) time.

Proof: SmallConn(G, c) takes Õ(m + nc2) =
Õ(n2) time by Theorem II.8. For each of the
O(log n) iterations, Sparsify(G, 3d) takes O(m)
time (by Lemma II.5) and Partition(G, d) takes
m1+o(1) = n2+o(1) time (by Lemma II.3).
Since H has O(nd) edges and Xi is (d, ϕpart)-
well-linked, Refine(G, H, (T,P), Xi, d, ϕpart) takes
(min{m, nd}+ n1.5) · no(1) ≤ (nd + n1.5) · no(1) time
by Lemma II.6 and Theorem II.7.2 Since there are
at most Õ(n/d) well-linked sets Xi, the total time
spent on Refine is (n2 + n2.5/d) · no(1) = n2+o(1)

since d ≥ c =
√

n. The lemma follows by summing
the time over all iterations.

By analyzing the time differently, we obtain the
following.

Lemma II.12. For any parameter c, Algorithm 1
takes Õ(mc) + n1+o(1)

c · T (m, n) time where T (m, n)
denotes the time complexity for computing a
maximum flow on an n-vertex m-edge graph.

Proof: SmallConn(G, c) takes Õ(mc)
time. For each of the O(log n) iterations,
Sparsify(G, 3d) takes O(m) time (by Lemma II.5)
and Partition(G, d) takes m1+o(1) = m · no(1)

time (by Lemma II.3). Also, Refine(·)
takes (min{m, nd} + T (m, n)) · no(1) ≤
(m + T (m, n)) · no(1) ≤ T (m, n) · no(1) time
by Lemma II.6.3 Since there are at most
Õ(n/d) = Õ(n/c) well-linked sets Xi, the total time
spent on Refine is n1+o(1)

c · T (m, n). The lemma
follows by summing the time over all iterations.

To conclude, observe that Theorem I.1 follows
from Lemma II.10 and Lemma II.11. Similarly,
Theorem I.2 follows from Lemma II.10 and
Lemma II.12.

2Note that since the running time is convex and each graph
has at most nd edges and n vertices, the worst case is when
there are no(1) maxflow calls on graphs with nd edges and n
vertices.

3Note that since the running time is convex and each graph
has at most m edges and n vertices, the worst case is when
there are no(1) maxflow calls on graphs with m edges and n
vertices.



III. Refinement with Well-linked Set

Our goal in this section is to prove the main
lemma (Lemma II.6). Let us first recall the setting
of the lemma. We have a graph G = (V, E)
with n vertices and m edges and a 3d-connectivity
certificate H of G containing m′ ≤ min{m, 3nd}
edges. Let (T,P) be a partial tree of G that captures
all mincuts of size at most d and no mincut of size
more than 2d. Let X be a (d, ϕ)-well-linked set in H.
For each terminal ui ∈ V (T ) and its corresponding
part Vi ∈ P, let Xi = Vi ∩X.

Now, we define the sparsified auxiliary graph Hi.
For each connected component C in T \ {ui}, let
VC =

⋃
u∈V (C) Vu where each Vu ∈ P. The graph

Hi is obtained from H by contracting VC into one
vertex uC for every component C in T \ {ui}.
Let n′

i and m′
i denote the number of vertices and

edges in Hi respectively. (Hi is unweighted but
not necessarily a simple graph.) Below, we bound
the total size of Hi over all i. The bound on∑

i m′
i crucially exploits the fact that the graph is

unweighted.

Proposition III.1.
∑

ui∈V (T ) n′
i ≤ 3n and∑

ui∈V (T ) m′
i ≤ min{3m, 5nd}.

Proof: Observe that n′
i = |Vi| + degT (ui). So∑

ui∈V (T ) n′
i = n + 2|V (T )| ≤ 3n. Next, we bound∑

ui∈V (T ) m′
i. For any vertex x ∈ V , let rep(x) ∈

V (T ) be the unique terminal such that x ∈ Vrep(x).
Consider each edge (x, y) ∈ E(H). Let Pxy =
(rep(x), . . . , rep(y)) ⊆ V (T ) be the unique path in
T between rep(x) and rep(y). (Possibly x and y are
in the same part of P and so rep(x) = rep(y).) The
crucial observation is that an edge (x, y) appears in
Hi if and only if the terminal ui is in Pxy (otherwise,
x are y are contracted into one vertex in Hi). That is,
the contribution of (x, y) to

∑
ui∈V (T ) m′

i is exactly
|VT (Pxy)| = 1 + |ET (Pxy)|. Summing over all edges
e ∈ E(H), this implies that∑

ui∈V (T )

m′
i ≤ |E(H)|+

∑
(x,y)∈E(H)

|ET (Pxy)|.

Recall that |E(H)| = m′ ≤ min{m, 3nd}.
The last important observation is that∑

(x,y)∈E(H) |ET (Pxy)| is exactly the total weight
of edges in T . This is because each (x, y) ∈ E(H)
contributes exactly one unit of weight to each
tree-edge in ET (Pxy). The total weight of edges in
T is at most min{2m, 2nd}. To see this, observe
that it is at most (|V (T )| − 1) · 2d ≤ 2nd,
because T has no edge with weight more than
2d. Also, it is at most

∑
ui∈V (T ) degG(ui) ≤ 2m

because each tree edge (ui, uj) ∈ E(T ) has weight

mincutG(ui, uj) ≤ min{degG(ui), degG(uj)}. This
implies the bound

∑
ui∈V (T ) m′

i ≤ min{3m, 5nd} as
claimed.

The key step for proving Lemma II.6 is captured
by the following lemma.

Lemma III.2. Given Hi, Xi, and (T,P), there is an
algorithm that takes Õ(m′

i/ϕ) time and additionally
makes max-flow calls on several graphs with Õ(n′

i/ϕ)
vertices and Õ(m′

i/ϕ) edges in total, and then returns
a partial tree (T ′

i ,P ′
i) of G such that

• (T ′
i ,P ′

i) is a refinement of (T,P), and
• (T ′

i ,P ′
i) captures all mincuts separating Xi ∪

V (T ) of size at most 2d and no mincut of size
more than 2d.

Before proving Lemma III.2, we show that it
implies Lemma II.6. (See Figure 1 for illustration.)

Proof of Lemma II.6. : We apply Lemma III.2
for all i simultaneously and obtain (T ′

i ,P ′
i) each of

which refines (T,P) in exactly one part Vi ∈ P.
Let (T ′,P ′) be the refinement of (T,P) such that
(T ′,P ′) refines the part Vi ∈ P according to (T ′

i ,P ′
i)

for every i. Note that (T ′,P ′) can be computed in
O(n) time. Clearly, (T ′,P ′) captures no mincut of
size more than 2d (i.e., T ′ has no edge of weight
more than 2d) because none of T ′

i does.
It remains to prove that (T ′,P ′) captures all

mincuts separating V (T ) ∪
( ⋃

i Xi

)
= V (T ) ∪ X

of size at most 2d. That is, there is no pair x, y ∈
V (T ) ∪ X where mincutG(x, y) ≤ 2d and x, y ∈ P ′

are in the same part. This is true because, if x and
y are from a different part of P, then they are still
from a different part in P ′ as P ′ is a refinement
of P. Otherwise, if x and y are from the same
part of P, say Vi ∈ P, then x, y ∈ Xi ∪ V (T )
and so Lemma III.2 guarantees that they must be
separated by P ′

i and hence in P ′. This concludes the
correctness of Lemma II.6.

Next, we analyze the running time. The total
running time is

∑
i Õ(m′

i/ϕ) = Õ(min{m, nd}/ϕ)
by Proposition III.1 and Lemma III.2. Finally, the
graphs that the algorithm makes max-flow calls on
contain in total at most

∑
i Õ(n′

i/ϕ) = Õ(n/ϕ)
vertices and

∑
i Õ(m′

i/ϕ) = Õ(min{m, nd}/ϕ) edges
by Proposition III.1. This completes the proof.

Proof of Lemma III.2. : For the remaining part
of this section, we prove Lemma III.2. There are two
main ingredients.

First, we show that the problem of creating a
partial tree on a set of terminals can be reduced to
finding single source connectivity on the terminals.
This step closely mirrors [16]: while they focus on
the approximate Gomory-Hu tree problem, their
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Figure 1. Refining (T, P) to (T ′, P ′). The algorithm for Lemma III.2 computes partial trees (T ′′
i , P ′′

i ) of every sparsified
auxiliary graph Hi. This is illustrated in the second box in the figure above. The algorithm in Lemma III.2 computes a partial
tree (T ′

i , P ′
i) of G which is a refinement of (T ′, P) in (not shown in the figure above). Then, in the proof of Lemma II.6, we

“combine” these refinement on each part Vi and we obtain the refined partial tree (T ′, P ′) of (T, P).



techniques translate over to the exact case. (See
details in full version [17].)

Lemma III.3. Let G = (V, E) be an n-vertex m-
edge unweighted (respectively, weighted) graph with a
terminal set X ⊆ V , and let k ≥ 0 be a real number.
Suppose we have an oracle that, given a terminal
p ∈ X, returns min{mincutG(p, v), k} for all other
terminals v ∈ X. Then, there is an algorithm that
computes with high probability a partial tree (T,P)
of G where V (T ) ⊆ X that captures all mincuts
separating X of size at most k and no mincuts of size
more than k. It makes calls to the oracle and max-
flow on unweighted (respectively, weighted) graphs
with a total of Õ(n) vertices and Õ(m) edges, and
runs for Õ(m) time outside of these calls.

Note that it is crucial for us that the reduction
above works even when the oracle only returns
min{mincutG(p, v), k} and not mincutG(p, v). The
next lemma exactly implements this oracle:

Lemma III.4. Let G = (V, E) be an n-vertex m-
edge graph. Let X be a (d, ϕ)-well-linked set in G.
Let p ∈ X be any fixed vertex in X. Then, there is
an algorithm that computes min{mincutG(p, v), 2d}
for all other v ∈ X in O( m log n

ϕ ) time plus polylog(n)
ϕ

max-flow calls each on a graph with O(n) vertices
and O(m) edges.

We will prove Lemma III.4 in Section III-A. First,
we show how to apply both lemmas above to prove
Lemma III.2. We start with a simple observation.

Proposition III.5. Xi is (d, ϕ)-well-linked in Hi.

Proof: As X is (d, ϕ)-well-linked in H, any
subset Xi ⊆ X is also (d, ϕ)-well-linked in H. Now,
observe that the property that a vertex set is (d, ϕ)-
well-linked is preserved under graph contraction.
As Hi is a contracted graph of H, the proposition
follows.

By setting parameters G ← Hi and X ← Xi as
the inputs of Lemma III.4, we obtain the required
oracle for Lemma III.3 when k = 2d. By applying
Lemma III.3, we obtain a partial tree (T ′′

i ,P ′′
i ) of

Hi where V (T ′′
i ) ⊆ X, that captures all mincuts

separating Xi of size at most 2d and no mincuts of
size more than 2d. This steps takes Õ(m′

i/ϕ) time
and makes max-flow calls on several graphs with
Õ(n′

i/ϕ) vertices and Õ(m′
i/ϕ) edges in total.

We are not quite done as we need a partial tree
of G (not of Hi) with all properties required by
Lemma III.2, but the remaining steps are quite
easy. Suppose the vertex ui, which was the unique
terminal in Vi in the partial tree (T,P), is now in
part Vui

⊆ V (H) of the partition P ′′
i . Moreover,

let xui
∈ Xi ∩ V (T ′′

i ) denote the unique terminal
of part Vui

∈ P ′′
i . The algorithm just checks if

mincutHi(ui, xui) ≤ 2d by using a single max-flow
call on Hi. If so, we further refine (T ′′

i ,P ′′
i ) according

to the mincut separating ui and xui
. If not, then

we let ui replace xui
as a unique terminal of part

Vui
∈ P ′′

i . At this point, (T ′′
i ,P ′′

i ) is a partial tree
of Hi that captures all mincuts separating Xi∪{ui}
of size at most 2d and no mincuts of size more than
2d. Finally, we refine the part Vi of (T,P) according
to (T ′′

i ,P ′′
i ) and obtain a partial tree (T ′

i ,P ′
i) of

G as desired. The reason this is correct is because
(T ′′

i ,P ′′
i ) captures only mincuts of size at most 2d

but H preserves exactly all cuts of G of size at
most 3d. The running times in these final steps are
subsumed by the previous steps. This completes the
proof of Lemma III.2.

A. Single-source Mincut Values for Well-linked Sets:
Proof of Lemma III.4

We recall the setting of Lemma III.4. We have
an n-vertex m-edge graph G and a (d, ϕ)-well-linked
set X in G. Let p ∈ X be any fixed vertex in X.
The goal is to compute min{mincutG(p, v), 2d} for
all other v ∈ X \ {p}.

Now, we need to introduce some notation. We say
that a cut (A, B) in G is an (S, T )-cut if S ⊆ A
and T ⊆ B. Moreover, (A, B) is an (S, T )-mincut
if, additionally, |EG(A, B)| = mincutG(S, T ). We
say that (A, B) is the (unique) S-minimal (S, T )-
mincut if, for any (S, T )-mincut (A′, B′), we have
S ⊆ A ⊆ A′. A key tool in proving Lemma III.4
is the following Isolating Cuts Lemma of Li and
Panigrahi [15], which was discovered independently
by Abboud, Krauthgamer, and Trabelsi [4].

Lemma III.6 (Isolating Cut Lemma [15], [4]).
There is an algorithm that, given an undirected graph
G = (V, E) on n vertices and m edges and a terminal
set T ⊆ V , finds the t-minimal (t, T \{t})-mincut for
every t ∈ T in O(m log n) time plus O(log n) maxflow
calls each on a graph with O(n) vertices and O(m)
edges.

Fix any x ∈ X where mincutG(p, x) ≤ 2d.
Let (A, B) be any (p, x)-mincut where p ∈ A and
x ∈ B. We have three observations. The first crucial
observation says that (A, B) must be “unbalanced”
w.r.t. X.

Proposition III.7. min(|A ∩X|, |B ∩X|) ≤ 2
ϕ .

Proof: By the well-linkedness of X, we have dϕ ·
min(|A ∩ X|, |B ∩ X|) ≤ |E(A, B)|. On the other
hand, we have |E(A, B)| ≤ mincutG(p, x) ≤ 2d. The
bound follows by combining the two inequalities.



Let S be an i.i.d. sample of X with rate ϕ/2. Let
T = S ∪ {p}. The second observation roughly says
that, with probability Ω(ϕ) ≥ 1/no(1), one side of
(A, B) contains only one vertex from T .

Proposition III.8. With probability at least ϕ/(2e),
either

• A ∩ T = {p} and x ∈ T , or
• B ∩ T = {x} and p ∈ T .

Proof: By Proposition III.7, either |A∩X| ≤ 2/ϕ
or |B ∩X| ≤ 2/ϕ. If |A ∩X| ≤ 2/ϕ, then we have

Pr[A ∩ T = {p} and x ∈ T ]
= Pr[(A \ {p}) ∩ S = ∅] · Pr[x ∈ S]

=
(

1− ϕ

2

)|A∩X|−1
· ϕ

2 ≥
1
e
· ϕ

2 .

If |B ∩X| ≤ 2/ϕ, then we have

Pr[B ∩ T = {x} and p ∈ T ]
= Pr[(B \ {x}) ∩ S = ∅] · Pr[x ∈ S]

=
(

1− ϕ

2

)|B∩X|−1
· ϕ

2 ≥
1
e
· ϕ

2 .

The last observation says that given that the
event in Proposition III.8 happens, then either the
(p, T \ {p})-mincut or the (x, T \ {x})-mincut is a
(p, x)-mincut. This will be useful for us because the
Isolating Cut Lemma can compute the (p, T \ {p})-
mincut and the (x, T \ {x})-mincut quickly.

Proposition III.9. We have the following:
1) If A∩T = {p} and x ∈ T , then any (p, T \{p})-

mincut is a (p, x)-mincut.
2) If B∩T = {x} and p ∈ T , then any (x, T \{x})-

mincut is a (p, x)-mincut.

Proof: (1): As A ∩ T = {p}, (A, B) is a (p, T \
{p})-cut and so mincut(p, T \ {p}) ≤ |E(A, B)| =
mincut(p, x). Since x ∈ T , any (p, T \ {p})-cut is a
(p, x)-cut. Therefore, a (p, T \{p})-mincut is a (p, x)-
cut of size at most mincut(p, x). So it is a (p, x)-
mincut.

(2): The proof is symmetric. As B ∩ T = {x},
(B, A) is a (x, T \ {x})-cut and so mincut(x, T \
{x}) ≤ |E(A, B)| = mincut(p, x). Since p ∈ T ,
any (x, T \ {x})-cut is a (p, x)-cut. Therefore, a
(x, T \ {x})-mincut is a (p, x)-cut of size at most
mincut(p, x). So it is a (p, x)-mincut.

The above observations directly suggest an
algorithm stated in Algorithm 2. Below, we prove its
correctness in Lemma III.10 and bound the running
time in Lemma III.11.

Algorithm 2: SingleSourceMincut(G, X, d, ϕ, p)
1) Initialize val[x] = 2d for all x ∈ X \ {p}.
2) Repeat c · ln n

ϕ times (for a large enough
constant c)

a) Sample S from X i.i.d. at rate ϕ
2 .

b) Call the Isolating Cuts Lemma
(Lemma III.6) on terminal set T = S ∪ {p}
and obtain a (t, T \ {t})-mincut Ct of size
δ(Ct) for every t ∈ T .

c) For each x ∈ S \ {p}, do the following:
i) If Cx is a (p, x)-cut (i.e., p /∈ Cx), then

val[x]← min{val[x], δ(Cx)}.
ii) If Cp is a (p, x)-cut (i.e., x /∈ Cp), then

val[x]← min{val[x], δ(Cp)}.
3) Return val[·].

Lemma III.10. Algorithm 2 computes, with high
probability, val[x] = min{2d, mincut(p, x)} for all
x ∈ X \ {p}.

Proof: Note that val[x] ≤ 2d from initialization.
So we only need to show that if mincut(p, x) ≤ 2d,
then val[x] = mincut(p, x) whp. On one hand,
val[x] ≥ mincut(p, x) because whenever val[x] is
decreased, it is assigned the size of some (p, x)-
cut (which is either Cx or Cp). On the other
hand, we claim val[x] ≤ mincut(p, x) whp. To
see this, observe that, with probability at least
1 − (1 − ϕ/(2e))c· ln n

ϕ ≥ 1 − 1/n10, that there exists
an iteration in Algorithm 2 where the event in
Proposition III.8 happens. That is, A ∩ T = {p}
and x ∈ T , or B ∩ T = {x} and p ∈ T . Given this,
by Proposition III.9, either a (x, T \{x})-mincut Cx

or a (p, T \ {p})-mincut Cp is a (p, x)-mincut and so
the algorithm sets val[x] ≤ mincut(p, x).

Lemma III.11. Algorithm 2 takes O
(

m log2 n
ϕ

)
time plus O

(
log2 n

ϕ

)
max-flow calls each on a graph

with O(n) vertices and O(m) edges.

Proof: Note that O
(

log n
ϕ

)
invocations of

Lemma III.6 takes O
(

log2 n
ϕ

)
max-flow calls each

on a graph with O(n) vertices and O(m) edges plus
O

(
m log2 n

ϕ

)
time. Additionally, for each invocation

of Lemma III.6, we update val[·] in O(n) time for a
total of O

(
n log n

ϕ

)
time.

By Lemma III.10 and Lemma III.11, this
completes the proof of Lemma III.4.



IV. Well-linked Partitioning
The goal of this section is to prove Lemma II.3.

We start with some notation. For disjoint vertex
subsets V1, . . . , Vℓ ⊆ V , define EG(V1, . . . , Vℓ) as the
set of edges (u, v) ∈ E with u ∈ Vi and v ∈ Vj for
some i ̸= j. For a vector d ∈ RV of entries on the
vertices, define d(v) as the entry of v in d, and for a
subset U ⊆ V , define d(U) :=

∑
v∈U d(v). We now

introduce the concept of an expander “weighted” by
demands on the vertices.

Definition IV.1 ((ϕ, d)-expander). Consider a
weighted, undirected graph G = (V, E) with edge
weights w and a vector d ∈ RV

≥0 of non-negative
“demands” on the vertices. The graph G is a (ϕ, d)-
expander if for all subsets S ⊆ V ,

|EG(S, V \ S)|
min{d(S), d(V \ S)} ≥ ϕ.

We now state the algorithm of [18] that
computes our desired expander decomposition,
which generalizes the result from [9].

Theorem IV.2 ((ϕ, d)-expander decomposition
algorithm [18]). Fix any ϵ > 0 and any parameter
ϕ > 0. Given a weighted, undirected graph G =
(V, E) with edge weights w and a non-negative
demand vector d ∈ RV

≥0 on the vertices, there is a
deterministic algorithm running in m1+ϵ(lg n)O(1/ϵ2)

time that partitions V into subsets V1, . . . , Vℓ such
that

1) For each i ∈ [ℓ], define the demands di ∈ RVi

≥0
as d restricted to the vertices in Vi. Then, the
graph G[Vi] is a (ϕ, di)-expander.

2) The total number |EG(V1, . . . , Vℓ)| of inter-
cluster edges is Bϕ · d(V ) where B =
(lg n)O(1/ϵ4).

Given Theorem IV.2, we can apply it to obtain
the desired well-linked sets using the following key
lemma:

Lemma IV.3. There is an algorithm that, given
any subset U ⊆ V≥d = {v | degG(v) ≥ d}, outputs
disjoint subsets X1, . . . , Xk of U such that k ≤ 2n/d,
every set Xi is (d, ϕ)-well-linked in G for ϕ = n−o(1),
and |∪i Xi| ≥ |U |/2. This algorithm runs in m1+o(1)

time.

Proof: Apply Theorem IV.2 with ϕ = 1
8B

(recall that B = (lg n)O(1/ϵ4)), and the following
demands: d(v) = d for all v ∈ U and d(v) =
0 for all v /∈ U . (We will set the value of ϵ
later.) We obtain a partition V1, . . . , Vℓ of V with
|EG(V1, . . . , Vℓ)| ≤ Bϕ · d(V ) = d(V )/8 = d · |U |/8.
For each i ∈ [ℓ] and vertex v ∈ U ∩ Vi, assign v

the value x(v) = |EG(Vi,V \Vi)|
|U∩Vi| , so that

∑
v∈U x(v) =

2|EG(V1, . . . , Vℓ)| ≤ d · |U |/4. If we select a vertex
v ∈ U uniformly at random, then the expected value
of x(v) is at most d/4; so, by Markov’s inequality,
we have x(v) ≤ d/2 with probability at least 1/2.
Let U ′ ⊆ U be all vertices v ∈ U with x(v) ≤ d/2;
it follows that |U ′| ≥ |U |/2. For each subset Vi, the
value of x(v) is identical for all vertices in U ∩ Vi.
Hence, either U ∩Vi is contained in U ′ or is disjoint
from it; without loss of generality, let V1, . . . , Vk be
the sets that are contained in U ′ for some k ≤ ℓ. We
now set Xi = U ∩ Vi for all i ∈ [k].

We first show that each set Xi is (d, ϕ)-well-
linked. Since Xi ⊆ U ⊆ V≥d, we have degG(v) ≥ d
for all v ∈ Xi. Now consider a partition (A, B)
of Xi. For any subset S ⊆ Vi that contains A
and is disjoint from B, we have |EG(S, Vi \ S)| ≥
ϕ ·min{d(S), d(V \ S)} = dϕ ·min{|A|, |B|}, where
the inequality holds by definition of (ϕ, d)-expander.
It follows that mincutG(A, B) ≥ dϕ ·min{|A|, |B|},
and hence, Xi is (d, ϕ)-well-linked.

We now show that |Vi| ≥ d/2 for all i ∈ [k];
since the Vi are disjoint, this would imply that
k ≤ 2n/d. Recall that Xi = U ∩ Vi, so that
|EG(Vi, V \ Vi)| =

∑
v∈Xi

x(v) ≤ |Xi| · d/2. By
averaging, there exists v ∈ Xi with |EG(v, V \Vi)| ≤
d/2. Since degG(v) ≥ d, at least d/2 edges incident
to v must have their other endpoint inside Vi. Since
G is simple, the endpoints must be distinct, so
|Vi| ≥ d/2, as promised.

Finally, we fix the value of ϵ = (lg n)−1/5. Then,

ϕ = 1
8B

= 1
8(lg n)O(1/ϵ4) = 1

8(lg n)O((lg n)4/5) = 1
no(1) .

The running time is m1+ϵ · (lg n)O(1/ϵ2) =
m1+(lg n)−1/5 · (lg n)O(lg n)2/5 = m1+o(1).

We now prove Lemma II.3 using Lemma IV.3.
Begin with U = V≥d and repeatedly apply
Lemma IV.3 to obtain disjoint X1, . . . , Xk ⊆ U , and
then reassign U to be U \

⋃
i∈[k] Xi for the next

iteration; stop when |U | = 1. Since the size of U
halves at each iteration, the number of iterations
is at most ⌈log2 n⌉. We thus obtain ⌈log2 n⌉ · 2n/d
sets, each of which is (d, ϕ)-well-linked in G, where
ϕ = n−o(1).

V. Conclusion
In this paper, we gave an n2+o(1)-time algorithm

for constructing a Gomory-Hu tree in a simple,
undirected graph thereby solving the All Pairs
Minimum Cuts problem in the same running
time. Generalizing this result to weighted graphs,
thereby improving on Gomory and Hu’s 60-year
old algorithm that uses n − 1 maxflow calls would



be a breakthrough result. An intermediate goal
would be to show this for unweighted multigraphs,
i.e., allowing parallel edges but not edge weights.
The Õ(mn)-time Gomory-Hu tree algorithms of
Bhalgat et al. [6] and of Karger and Levine [13] apply
to these graphs, but not to general weighted graphs,
suggesting that this intermediate class might be
easier for the apmc problem than general weighted
graphs. Obtaining subcubic (in n) running times
for the apmc problem in unweighted (but not
necessarily simple) graphs remains an interesting
open question.

A different question concerns the optimality of the
result presented in this paper. As we discussed, our
result is nearly optimal if mincut values have to be
explicitly reported for all vertex pairs. Even if that
is not required, our algorithm is nearly optimal if
the input graph is dense, i.e., if m = Θ(n2). So,
that leaves graphs containing o(n2) edges under the
condition that we do not need explicit reporting of
mincut values for all vertex pairs. Ideally, for such
graphs, one would like to design a near-linear time
algorithm, i.e., a running time of m1+o(1). But, that
is not known even for a single s-t mincut, i.e. for
the maxflow problem. A more immediate goal is to
construct a Gomory-Hu tree via a subpolynomial (or
polylogarithmic) number of maxflow calls. Indeed,
this was recently achieved at the cost of obtaining
an approximate Gomory-Hu tree instead of an exact
one [16]. For the exact problem, the current paper
gives a reduction, but to polylogarithmic calls of
the single source mincut problem rather than the
s-t mincut problem.4 Clearly, the former is a more
powerful oracle, and hence the reduction is easier.
Improving this reduction to the s-t mincut problem,
or equivalently removing the approximation in the
result of [16], remains an interesting open question.
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