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Abstract—We study the k-server problem with time-windows.
In this problem, each request i arrives at some point vi of an n-
point metric space at time bi and comes with a deadline ei. One
of the k servers must be moved to vi at some time in the interval
[bi, ei] to satisfy this request. We give an online algorithm
for this problem with a competitive ratio of poly log(n,∆),
where ∆ is the aspect ratio of the metric space. Prior to our
work, the best competitive ratio known for this problem was
O(k poly log(n)) given by Azar et al. (STOC 2017).

Our algorithm is based on a new covering linear program
relaxation for k-server on HSTs. This LP naturally corresponds
to the min-cost flow formulation of k-server, and easily extends
to the case of time-windows. We give an online algorithm
for obtaining a feasible fractional solution for this LP, and
a primal dual analysis framework for accounting the cost of
the solution. Together, they yield a new k-server algorithm
with poly-logarithmic competitive ratio, and extend to the time-
windows case as well. Our principal technical contribution lies
in thinking of the covering LP as yielding a truncated covering
LP at each internal node of the tree, which allows us to keep
account of server movements across subtrees. We hope that
this LP relaxation and the algorithm/analysis will be a useful
tool for addressing k-server and related problems.

I. INTRODUCTION

The k-Server problem, originally proposed by Manasse,
McGeoch, and Sleator [17], is perhaps the most well-studied
problem in online algorithms. Given an n-point metric space
and an online sequence of requests at various locations,
the goal is to coordinate k servers so that each request is
served by moving a server to the corresponding location. The
objective of the algorithm is to minimize the total distance
moved by the servers (i.e., the movement cost). It has been
known for more than two decades that the best deterministic
competitive ratio for this problem is between k [17] and 2k−
1 [16], although determining the exact constant remains open.
For randomized algorithms, even obtaining a tight asymptotic
bound is still open, although there has been tremendous
progress in the last decade culminating in a poly-logarithmic
competitive ratio [4], [8], [9].

We focus on the k-server with time-windows (k-ServerTW)
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problem, where each request arrives at a location in the metric
space at some time b with a deadline e ≥ b. The algorithm
must satisfy the request by moving a server to that location at
any point during this time interval [b, e]. (If e = b for every
request, this reduces to k-Server.) The techniques used to
solve the standard k-Server problem seem to break down in
the case of time-windows. Nonetheless, an O(k poly log n)-
competitive deterministic algorithm was given for the case
where the underlying metric space is a tree [2]; this gives
an O(k poly log n)-competitive randomized algorithm for
arbitrary metric spaces using metric embedding results.

For the special case of k-ServerTW on an unweighted star,
[2] obtained competitive ratios of O(k) and O(log k) using
deterministic and randomized algorithms respectively. The
deterministic competitive ratio of O(k) extended to weighted
stars as well (which is same as Weighted Paging), but a
randomized (poly)-logarithmic bound already turned out to
be more challenging; a bound of poly log(n) was obtained
only recently [14]. This raises the natural question: can
we obtain a poly-logarithmic competitive ratio for the k-
ServerTW problem on general metric spaces? The technical
gap between Weighted Paging and k-Server is substantial
and bridging this gap for randomized algorithms was the
preeminent challenge in online algorithms for some time.
Moreover, the approaches eventually used to bridge this
gap do not seem to extend to time-windows, so we have
to devise a new algorithm for k-Server as well in solving
k-ServerTW. We successfully answer this question.

Theorem I.1 (Randomized Algorithm). There is an
O(poly log(n∆))-competitive randomized algorithm for k-
ServerTW on any n-point metric space with aspect ratio ∆.

Theorem I.1 follows from our main technical result Theo-
rem I.2 below. Indeed, since any n-point metric space can be
probabilistically approximated using λ-HSTs with height
H = O(logλ ∆) and expected stretch O(λ logλ n) [11],
we can set λ = O(log ∆) and use the rounding algorithm
from [4], [8] to complete the reduction.

Theorem I.2 (Fractional Algorithm for HSTs). Fix δ′ ≤
1/n2. There is an O(poly(H,λ, log n))-competitive fractional



algorithm for k-ServerTW using k
1−δ′ servers such that for

any instance on a λ-HST with height H and λ ≥ 10H , and
for each request interval R = [b, e] at some leaf ` in this
instance, there is a time in this interval at which the number
of servers at ` is at least 1.

Apart from the result itself, a key contribution of our paper
is an approach to solve a new covering linear program for
k-Server. Previous results in k-Server (e.g., [8]) used a
very different LP relaxation, and it remains unclear how
to extend that relaxation to the case of time-windows. The
covering LP in this paper is easy to describe and flexible. It
is quite natural, following from the min-cost LP formulation
for k-Server (see the full version for this connection).

A. Our Techniques

The basis of our approach is a restatement of k-Server
(and thence k-ServerTW) as a covering LP without box
constraints. This LP has variables x(v, t) that try to capture
the event that a server leaves the subtree rooted at v at some
time t. There are several complications with this LP: apart
from having an exponential number of constraints, it is too
unstructured to directly tell us how to move servers. E.g.,
the variable for a node may increase but that for its parent or
child edges may not. Or the online LP solver may increase
variables for timesteps in the past, which then need to be
translated to server movements at the present timestep.

Our principal technical contribution is to view this new LP
as yielding “truncated” LPs, one for each internal node v of
the tree. This “local” LP for v restricts the original LP to
inequalities and variables corresponding to the subtree below
v. This truncation is contingent on prior decisions taken by
the algorithm, and so the constraints obtained may not be
implied by those for the original LP. However, we show how
the primal—and just as importantly—the dual solutions to
local LPs can be composed to give primal/dual solutions to
the original LP. These are then crucial for our accounting.

The algorithm for k-Server proceeds as follows. Suppose a
request comes at some leaf `, and suppose ` has less than
1− δ′ amounts of server at it (else we deem it satisfied):

(i) Consider a vertex vi on the backbone (i.e., the path
` = v0, v1, . . . , vH = r from leaf ` to the root r). If vi
has off-backbone children whose descendant leaves contain
non-trivial amounts of server, we move servers from these
descendants to ` until the total server movement has cost
roughly some small quantity γ. Since the cost of server
movement grows exponentially up the tree, and the movement
cost is roughly the same for each vi, more server mass is
moved from closer locations. Since there are H levels in the
HST, the total movement cost is roughly Hγ. This concludes
one “round” of server movement. This server movement is
now repeated over multiple rounds until ` has 1− δ′ amount

of server at it. (This can be thought of as a discretization of
a continuous process.)

(ii) To account for server movement at node vi, we raise
both primal and dual variables of the local LP at vi. The
primal increase tells us which children of vi to move the
servers from. The dual increase allows us to account for
the server movement. Indeed, we ensure that the total dual
increase for the local LP at each vi—and hence by our
composition operations, the dual increase for the global LP—
is also approximately γ in each round. Moreover, we show
this dual scaled down by β ≈ O(log n) is feasible. This
means that the O(Hγ) cost of server movement in each round
can be approximately charged to this increase of the global
LP dual, giving us Hβ = O(H log n)-competitiveness.

(iii) The choice of dual variables to raise for the local LP at
node v is dictated by the corresponding dual variables for
the children of v. Each constraint in the local LP at v is
composed from the local constraints at some of its children.
It is possible that there are several constraints at v that are
composed using the same constraint at a child u of v. We
maintain the invariant that the total dual values of the former
is bounded by the dual value of the latter. Now, we can only
raise those dual variables at v where there is some slack in
this invariant condition.

Finally, to extend our results to k-ServerTW, we say that
a request (`, I = [b, q]) becomes critical (at time q) if the
amount of server mass at ` at any time during I was at
most 1− δ′. We proceed as above to move server mass to
`. However, after servicing `, we also service active request
intervals at nearby leaves: we service these piggybacked
requests according to (a variation of) the earliest deadline rule
while ensuring that the total cost incurred remains bounded
by (a factor times) the cost incurred to service `. We use
ideas from [2] (for the case of k = 1) to find this tour, but
we need a new dual-fitting-based analysis of this algorithm.
Moreover, new technical insights are needed to fit this dual-
fitting analysis (which works only for k = 1) with the rest
of our analytical framework. Indeed, the power of our LP
relaxation for k-Server lies in the ease with which it extends
to k-ServerTW.

B. Related Work

The k-Server problem is arguably the most prominent prob-
lem in online algorithms. Early work focused on deterministic
algorithms [12], [16], and on combinatorial randomized
algorithms [13], [6]. k-Server has also been studied for
special metric spaces, such as lines, (weighted) stars, trees:
[7] gives more background on the k-Server problem. Works
obtaining poly-logarithmic competitive ratio are more recent,
starting with [5], and more recently, by [8]. ([9] gives an
alternate projection-based perspective on [8].) A new LP
relaxation was introduced by [8], who then use a mirror



descent strategy with a multi-level entropy regularizer to
obtain the online dynamics. However, it is unclear how to
extend their LP when there are time-windows, even for the
case of star metrics. Our competitive ratio for k-Server on
HSTs is poly log(n∆) as against just poly log(k) in their
work, but this weaker bound is in exchange for a more
flexible algorithm/analysis that extends to time-windows.

Online algorithms where requests can be served within some
time-window (or more generally, with delay penalties) have
recently been given for several problems (see [2], [3] and
references therein). The work closest to ours is that of [2]
who show O(k log3 n)-competitiveness for k-Server with
general delay functions, and leave open the problem of getting
poly-logarithmic competitiveness. Another related work is
[14] who show O(log k log n)-competitiveness for Weighted
Paging, which is the same as k-Server with delays for
weighted star metrics. This work also used a hitting-set LP:
this was based on two different kinds of extensions of the
request intervals and was very tailored to the star metric, and
is unclear how to extend it even to 2-level trees. Our new
LP relaxation is more natural, being implied by the min-cost
flow relaxation for k-Server, and extends to time-windows.

Algorithms for the online set cover problem were first given
by [1]: this led to the general primal-dual approach for
covering linear programs (and sparse set-cover instances) [10],
and to sparse CIPs [15]. Our algorithm also uses a similar
primal-dual approach for the local LPs defined at each node of
the tree; we also need to crucially use the sparsity properties
of the corresponding set-cover-like constraints.

II. A COVERING LP RELAXATION

For the rest of the paper, we consider the k-Server problem
on hierarchically well-separated trees (HSTs) with n leaves,
rooted at node r and having height H . (The standard
extension to general metrics via tree embeddings was outlined
in §I.) Define the level of a node as its combinatorial height,
with the leaves at level 0, and the root at level H . For a
non-root node v, the length of the edge (v, p(v)) going to
its parent p(v) is cv := λlevel(v). So leaf edges have length
1, and edges between the root and its children have length
λH−1. We assume that λ ≥ 10H . For a vertex v, let χv
be its children, Tv be the subtree rooted at v, and Lv be
the leaves in this subtree. Let nv := |Tv|. For a subset A
of nodes of a tree T , let TA denote the minimal subtree
of T containing the root node and set A, i.e., the subtree
consisting of all nodes in A and their ancestors.
Request Times and Timesteps.: Let the request sequence be
R := r1, r2, . . .. For k-Server, each request ri ∈ R is a
tuple (`qi , qi) for some leaf `qi and distinct request time
qi ∈ Z+, such that qi−1 < qi for all i. In k-ServerTW
each request ri is a tuple (`ei , Ii = [bi, ei]) for a leaf `i and
(request) interval Ii = [bi, ei] with arrival/start time bi and
end time ei. The algorithm sees this request ri at time bi;

again bi−1 < bi for all i. A solution must ensure that a server
visit `i during interval Ii. The set of all starting and ending
times of intervals are called request times; we assume these
are distinct integers. 1

Between any two request times q and q+1, we define a large
collection of timesteps (denoted by τ or t)—these timesteps
take on values {q + iη} for some small value η ∈ (0, 1).
(Each request arrival time is also a timestep). We use T to
denote the set of timesteps. Our fractional algorithm moves
a small amount of server to the request location rq at some
of the timesteps t ∈ [q, q + 1). Given a timestep τ , let bτc
refer to the request time q such that τ ∈ [q, q + 1).

A. The Covering LP Relaxation

We first give a covering LP relaxation for k-Server, and
then generalize it to k-ServerTW. Consider an instance
of k-Server specified by an HST and a request sequence
r1, r2, . . .. Our LP relaxation M has variables x(v, t) for
every non-root node v and timestep t, where x(v, t) indicates
the amount of server traversing the edge from v to its parent
p(v) at timestep t. The objective function is∑

v 6=r

∑
t

cv x(v, t). (II.1)

There are exponentially many constraints. Let A be a subset
of leaves. Let τττ := {τu}u∈TA be a set of timesteps for each
node in TA, i.e., nodes in A and their ancestors.2 These
timesteps must satisfy two conditions: (i) each (leaf) ` ∈ A
has a request at time bτ`c, and (ii) for each internal node
u ∈ TA, τu = max`∈A∩Tu τ`; i.e., τu is the latest timestep
assigned to a leaf in u’s subtree by τττ . For the tuple (A,τττ),
the LP relaxation contains the constraint ϕA,τττ :∑

v∈TA,v 6=r

x(v, (τv, τp(v)]) ≥ |A| − k. (II.2)

Define x(v, I) :=
∑
t∈I x(v, t) for any interval I . We now

prove validity of these constraints. (In the full version of the
paper, we show these constraints are implied by the usual
min-cost flow formulation for k-Server, giving another proof
of validity.)

Claim II.1. The linear program M is a valid relaxation for
the k-Server problem.

Proof: Consider a solution to the k-server instance that
ensures that for a request at a leaf ` at time q, there is a
server at ` at time q. We assume that this solution has the
eagerness property—if leaves ` and `′, requested at times
q and q′ respectively, are two consecutive locations visited
by a server, the server moves from q to q′ at timestep q + η
(which is less than q′).

1k-Server (without time-windows) can be modeled by time-intervals of
length 1, where each ei = bi + 1.

2We use boldface τττ to denote a vector of timesteps, and τu to be the
value of this vector for a vertex u.
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Figure 1: Example of a tuple (A,τττ): the set A is given by the leaves
in bold, the tree TA by the bold edges, and τττ is shown against
each vertex in TA. Bold circles on the timeline denote request
arrival times, the dots denote timesteps. Each shown timestep has
the corresponding request arriving at the shown leaf at the arrival
time (bold dot) preceding it.

Now for a constraint of the form (II.2), let A1, A2, . . . , Ak
be the subsets of A that are served by the different servers
(some of these sets may be empty). Define xi(v, t) ← 1
if server i crosses the edge (v, p(v)) from v to p(v) (i.e.,
upwards) at timestep t, and 0 otherwise. We show that∑

v∈T (Ai),v 6=r

xi(v, (τv, τp(v)]) ≥ |Ai| − 1.

Defining x(v, t) :=
∑
i xi(v, t) by summing over all i

gives (II.2). For any server i and set Ai, define E′ to
be the edges (v, p(v)) for which xi(v, (τv, τp(v)]) = 1. If
|E′| < |Ai| − 1, then deleting the edges in E′ from the tree
leaves a connected component C with at least two vertices
from Ai. Server i serves at least two leaf vertices C∩Ai, say
v, w, requested at times qv = bτvc, qw = bτwc respectively.
Say qv < qw, and let u be the least common ancestor of
v, w. Notice that τu ≥ τv, and if the path from v to u is
labeled v0 = v, v1, . . . , vh = u, then the intervals (τvi , τvi+1 ]
partition (τv, τu]. Since the server is at v at timestep τv (by
the construction above) and is at w at time qw ≤ τw, there
must be an edge (vi, vi+1) such that it crosses this edge
upwards during (τvi , τvi+1

]. Then this edge should be in E′,
a contradiction.

Remark II.2. We could have replaced the constraint (II.2) by
its simpler version involving xi(v, (qv, qp(v)]), where qv :=
bτvc: that would be valid and sufficient. However, since our
algorithm works at the level of timesteps, it is convenient to
use (II.2).
Extension to Time-Windows: We now extend these ideas to k-
ServerTW. In constraint (II.2) for a pair (A,τττ), the timesteps
for ancestors of (a leaf in) A could be inferred from the values
assigned by τ to A. We now generalize this by (i) allowing
A to contain non-leaf nodes, as long as they are independent

1 2 3 4 5 6 7 8

[1,4] [2,5]
[3,6]

τ1 τ2 τ3

τ1

τ2
τ3

τ3

Figure 2: Example of a tuple (A, f,τττ) for k-ServerTW: the set A
is given by the bold nodes, the tree TA by the bold edges, and τττ
is shown against each internal vertex in TA. Arrows indicate the
mapping f to a leaf request interval.

(in terms of the ancestor-descendant relationship), and (ii)
the timestep assigned to an internal node is at least that
of each of its descendants in A. Formally, consider a tuple
(A, f,τττ), where A is a subset of tree nodes such that no
two of them have an ancestor-descendant relationship, the
function f : A → R maps each node v ∈ A to a request
(`v, [bv, ev]) given by a leaf `v ∈ Tv and an interval [bv, ev]
at `v, and the assignment τττ maps each node u ∈ TA to
a timestep τu satisfying the following two (monotonicity)
properties:

(a) For each node v ∈ TA, τv ≥ maxu∈A∩Tv eu.
(b) If v1, v2 are two nodes in TA with v1 being the

ancestor of v2, then τv1 ≥ τv2 .

Given such a tuple (A, f,τττ), define the constraint ϕA,f,τττ 3∑
v∈A,v 6=r

x(v, (bv, τp(v)]) +
∑

v∈TA\A,v 6=r

x(v, (τv, τp(v)])

≥ |A| − k. (II.3)

Note the differences with constraint (II.2): the LHS for a
node v ∈ A has a longer interval starting from bv instead
of from τv . Also, (II.3) does not use the timesteps {τv}v∈A:
these will be useful later in defining the truncated constraints.
In the special case of k-Server where ev = bv+1, the above
constraint is similar to (II.2), though the terms for nodes in
A differ slightly. The objective function is the same as (II.1).
We denote this LP by MTW . The proof of the following
result is given in the full version.

Claim II.3. The linear program MTW is a valid relaxation
for k-ServerTW.

III. THE LOCAL LPS: TRUNCATION AND COMPOSITION

We maintain a collection of local LPs Lv, one for each
internal vertex v of the tree. While the constraints of local
LPs for the non-root nodes are not necessarily valid for

3The condition v 6= r in the first summation is invoked only when
A = {r}, in which case the LHS is empty.



the original k-Server instance, those in the local LP Lr are
implied by constraints of M or MTW . This gives us a handle
on the optimal cost. The constraints in the local LP at a node
are related to those in its children’s local LPs, allowing us
to relate their primal/dual solutions, and their costs.

To define the local LPs, we need some notation. Our
(fractional) algorithm A moves server mass around over
timesteps. In the local LPs, we define constraints based on
the state of our algorithm A. Let kv,t be the server mass that
A has in v’s subtree Tv at timestep t (when v is a leaf, this
is the amount of server mass at v at timestep t). We choose
three non-negative parameters δ, δ′, γ. The first two help
define lower and upper bounds on the amount of (fractional)
servers at any leaf, and γ denotes the granularity at which
movement of server mass happens. We ensure δ′ � δ � γ,
and set δ′ = 1

n2 , δ = 1
10n3 , γ = 1

n4 .

Definition III.1 (Active and Saturated Leaves). Given an
algorithm A, a leaf ` is active if it has at least δ amount
of server (and inactive otherwise). The leaf is saturated if
` has more than 1− δ′ amount of server (and unsaturated
otherwise).

The server mass at each location should ideally lie in the
interval [δ, 1 − δ′], but since we move servers in discrete
steps, we maintain the following (slightly weaker) invariant:

Invariant (I1). The server mass at each leaf lies in
the interval [δ/2, 1− δ′/2].

Constraints of Lv are defined using truncations of the
constraints ϕA,τττ . For a node v and subset of nodes A in T ,
let the subtree TAv be the minimal subtree of Tv containing
v and all the nodes in A ∩ Tv .

Definition III.2 (Truncated Constraints). Consider a node
v, a subset A of leaves in T and a set τττ := {τu}u∈TAv of
timesteps satisfying the conditions: (i) each (leaf) ` ∈ A
has a request at time bτ`c, and (ii) for each internal node
u ∈ TAv , τu = max`∈A ∩Tv . The truncated constraint ϕA,τττ,v
is defined as:∑

u:u6=v,u∈TAv

yv(u, (τu, τp(u)])

≥ |A ∩ Tv| − kv,τv − 2δ(n− nv); (III.1)

recall that kv,τv is the amount of server mass in Tv at the end
of timestep τv. We say that the truncated constraint ϕA,τττ,v
ends at τv .

The truncated constraint ϕA,τττ,v can be thought of as truncat-
ing an actual LP constraint of the form (II.2) for the nodes in
TAv only. One subtle difference is the last term that weakens
the constraint slightly; we will see in Lemma III.5 that this
weakening is crucial. The truncated constraint ϕA,f,τττ,v in

case of k-ServerTW is defined analogously: given a node v,
a tuple (A, f,τττ) satisfying the conditions stated above (II.3)
with the restriction that A lies in Tv and τττ is defined for
nodes in TAv only, the truncated constraint ϕA,f,τττ,v (ending
at τv) is defined analogously as∑

u∈A∩Tv,u 6=v

yv(u, (bu, τp(u)])

+
∑

u∈TAv \A,u 6=v

yv(u, (τu, τp(u)])

≥ |A ∩ Tv| − kv,τv − 2δ(n− nv) (III.2)

A few remarks about the truncation: first, this truncated
constraint uses local variables yv that are “private” for the
node v instead of the global variables x. In fact, we can
think of x as denoting variables yr local to the root, and
therefore ϕA,τττ,r = ϕA,τττ (or ϕA,f,τττ,r = ϕA,f,τττ ). Second, a
truncated constraint is not necessarily implied by the LP
relaxation M (or MTW ) even when we replace yv by x,
since a generic algorithm is not constrained to maintain kv,τv
servers in subtree Tv after timestep τv . But, at the root (i.e.,
when v = r), we always have kv,τv = k and the last term is
0, so replacing yr by x in its constraints gives us constraints
of the form (II.2) from the actual LP.

Definition III.3 (⊥-constraints). A truncated constraint
where |A| = 1 is called a ⊥-constraint.

Such ⊥-constraints play a special role when a subtree has
only one active leaf, namely the requested leaf. In the case
of k-Server, if |A| = 1 then the constraint (III.1) has no
terms on the LHS but a positive RHS, so it can never be
satisfied. Nevertheless, such constraints will be useful when
forming new constraints by composition.
Composing Truncated Constraints: The next concept is that
of constraint composition: a truncated constraint ϕA,τττ,v can
be obtained from the corresponding truncated constraints
for the children of v. Consider a subset X of v’s children.
For u ∈ X , let Cu := ϕA(u),τττ(u),u be a constraint in Lu

ending at τu := τ(u)u, given by some linear inequality
〈aCu , yu〉 ≥ bCu . Then defining A := ∪u∈XA(u) and τ :
TA → T obtained by extending maps τττ(u) and setting
τv = maxu∈X τu, the constraint ϕA,τττ,v is written as: 4∑

u∈X

(
yv(u, (τu, τv]) + 〈aCu , yv〉

)
≥
∑
u∈X

bCu−(
kv,τv −

∑
u∈X

ku,τu

)
+ 2δ

(
nv −

∑
u∈X

nu

)
. (III.3)

The constraints ϕA(u),τττ(u),u used their local variables yu,
whereas this new constraint uses yv. Every constraint in
Lv can be obtained this way, and so the constraints of Lr

4The vector aCu has one coordinate for every node in TA
u , whereas yv

has one coordinate for each node in TA
v ⊇ TA

u . We define the inner product
〈aCu , yv〉 by adding extra coordinates (set to 0) in the vector aCu .



(which are implied by M) can be obtained by recursively
composing truncated constraints for its children’s local LPs.
In case of k-ServerTW, the composition operation holds for
the constraints ϕA,f,τττ,v: a minor change is that the terms in
LHS involving a vertex u ∈ A have yv(u, (bu, τv]), where
bu is the starting time of the request corresponding to f(u).

A. Constraints in Terms of Local Changes

The local constraints (III.1) and the composition rule (III.3)
are written in terms of ku,τu , the amount of server that
our algorithm A places at various locations and times. It
will be more convenient to rewrite them in terms of server
movements in A.

Definition III.4 (g, r,D). For a vertex v and timestep t,
let the give g(v, t) and the receive r(v, t) denote the total
(fractional) server movement out of and into the subtree
Tv on the edge (v, p(v)) at timestep t. For interval I , let
g(v, I) :=

∑
t∈I g(v, t) and define r(v, I) similarly, and

define the “difference” D(v, I) := g(v, I)− r(v, I).

Restating the composition rule in terms of the quantities D
defined above shows the utility of the extra term on the RHS
of the truncated constraint.

Lemma III.5. Consider a vertex v, a timestep τ and a subset
X of children of v such that at timestep τ all active leaves
in Tv are descendants of the nodes in X . For each u ∈ X ,
consider a truncated constraint Cu := ϕA(u),τττ(u),u given
by some linear inequality 〈aCu , yu〉 ≥ bCu . Define (A,τττ)
as in (III.3) with τ := τv, and assume Invariant (I1) holds.
Then the truncated constraint ϕA,τττ,v from (III.3) implies the
inequality:5∑

u∈X

(
yv(u, (τu, τv]) + 〈aCu , yv〉

)
≥

∑
u∈X

(
D(u, (τu, τv]) + bCu

)
+
(
nv −

∑
u∈X

nu
)
δ, (III.4)

We call this the composition rule. An analogous statement
holds for a tuple (A, f,τττ) for a vertex v in the case of k-
ServerTW, except that τu is replaced by bu for every vertex
u ∈ A on the LHS (details in the full version).

B. Timesteps and Constraint Sets

Recall that T is the set of all timesteps. For each vertex v
we define a subset R(v) ⊆ T of relevant timesteps, such
that the local LP Lv contains a non-empty set of constraints
Lv(τ) for each τ ∈ R(v). The variables in this local LP are
x(u, τ) where u ∈ Tv and τ is a timestep. Each constraint
in Lv(τ) is of the form ϕA,τττ,v for a tuple (A,τττ) ending at
τ . Overloading notation, let Lv :=

⋃
τ∈R(v) L

v(τ) denote
the set of all constraints in the local LP at v. The objective
function of this local LP is

∑
u∈Tv,τ cu y

v(u, τ).

5When y ≥ 0, a constraint 〈a, y〉 ≥ b is said to imply a constraint
〈a′, y〉 ≥ b′ if a ≤ a′ (componentwise) and b ≥ b′.

The timesteps inR(v) are partitioned intoRs(v) andRns(v),
the solitary and non-solitary timesteps for v. The decision
whether a timestep belongs to R(v) is made by our algorithm.
and is encoded by adding τ to either Rs(v) or Rns(v).
For each timestep τ ∈ Rs(v), the algorithm creates a
constraint set Lv(τ) consisting of a single ⊥-constraint (recall
Definition III.3); for each timestep τ ∈ Rns(v) it creates
a constraint set Lv(τ) containing only non-⊥-constraints
obtained by composing constraints from Lw(τw) for some
children w of v and timesteps τw ∈ R(w), where τw ≤ τ .

For each τ , a constraint C ∈ Lv(τ) corresponds to a dual
variable zC , which is raised only at timestep τ . We ensure
the following invariant.

Invariant (I2). At the end of each timestep τ ∈ Rns(v),
the objective function value of the dual variables
corresponding to constraints in Lv(τ) equals γ. I.e.,
if a generic constraint C is given by 〈aC · yv〉 ≥ bC ,
then ∑

C∈Lv(τ)

bC · zC = γ ∀τ ∈ Rns(v). (I2)

Furthermore, bC > 0 for all C ∈ Lv(τ) and τ ∈ R(v).

No dual variables zC are defined for ⊥-constraints, and (the
first statement of) Invariant (I2) does not apply to timesteps
τ ∈ Rs(v). In the following sections, we show how to
maintain a dual solution that is feasible for Dv (the dual LP
for Lv) when scaled down by some factor β = poly log(nλ).
Awake Timesteps: For a vertex v, we maintain a subset
Awake(v) of awake timesteps. The set Awake(v) has the
property that it contains all the solitary timesteps, i.e., Rs(v),
and some non-solitary ones. Hence Rs(v) ⊆ Awake(v) ⊆
Rs∪Rns(v) = R(v). Whenever we add a timestep to R(v),
we initially add it to Awake(v); some of the non-solitary
ones subsequently get removed. A timestep τ is awake for
vertex v at some moment in the algorithm if it belongs to
Awake(v) at that moment. For any vertex v, define

prev(v, τ) := arg max{τ ′ ∈ Awake(v) | τ ′ ≤ τ} (III.5)

Note that as the set Awake(v) evolves over time, so does
the identity of prev(v, τ). We show in the full version that
prev is well-defined for all relevant (v, τ) pairs.
Starting configuration: At the beginning of the algorithm,
assume that the root has 2k “dummy” leaves as children,
each of which has server mass 1/2 at time q = 0. All other
leaves of the tree have mass δ/2. (This ensures Invariant (I1)
holds.) No requests arrive at any dummy leaf v; moreover,
we add a ⊥-constraint ϕA,τττ,v, where A = {v} and τv = 0.
Assuming this starting configuration only changes the cost of
our solution by at most an additive term of O(k∆), where
∆ is the aspect ratio of the metric space.



IV. ALGORITHM FOR k-SERVER

We now describe our algorithm for k-Server. At request
time q, the request arrives at a leaf `q . The main procedure
calls local update procedures for each ancestor of `q . Each
such local update possibly moves servers to `q , and also adds
constraints to the local LPs and raises the primal/dual values
to account for this movement. We use ReqLoc(τ) to denote
the location of request with deadline at time bτc, i.e., `bτc.

A. The Main Procedure

In the main procedure of Algorithm 1, let the backbone
be the leaf-root path `q = v0, v1, . . . , vH = r. We move
servers to `q from other leaves until it is saturated: this
server movement happens in small discrete increments over
several timesteps. Each iteration of the while loop in line (1.4)
corresponds to a distinct timestep τ . Let activesib(v, τ) be
the siblings v′ of v with active leaves in their subtrees Tv′
(at timestep τ ). Let i0 be the smallest index with non-empty
activesib(vi0 , τ). The procedure SIMPLEUPDATE adds a ⊥-
constraint to each of the sets Lvi(τ) for i = 0, . . . , i0. For
i > i0, the procedure FULLUPDATE adds (non-⊥) constraints
to Lvi(τ). If activesib(vi, τ) is non-empty, it also transfers
some servers from the subtrees below activesib(vi, τ) to `q .

Algorithm 1: Main Procedure

1.1 foreach q = 1, 2, . . . do
1.2 get request rq; let the path from rq to the root be

`q = v0, v1, . . . , vH = r.
1.3 τ ← q + η, the first timestep after q.
1.4 while kv0,τ ≤ 1− δ′ do
1.5 let i0 ← smallest index such that

activesib(vi0 , τ) 6= ∅.
1.6 for i = 0, . . . , i0 do call

SIMPLEUPDATE(vi, τ).
1.7 for i = i0 + 1, . . . ,H do call

FULLUPDATE(vi, τ).
1.8 τ ← τ + η. // move to the next timestep

B. The Simple Update Procedure

This procedure adds timestep τ to both Rs(v) and Awake(v),
and creates a ⊥-constraint in the LP Lv .

Algorithm 2: SIMPLEUPDATE(v, τ )

2.1 let v0 ← ReqLoc(τ).
2.2 add timestep τ to event set Rs(v) and to Awake(v).

// “solitary” timestep for v
2.3 Lv(τ)← the ⊥-constraint ϕA,τττ,v, where A = {v0}

and τw = τ for nodes w on the v0-v path.

C. The Full Update Procedure

The FULLUPDATE(v, τ ) procedure is called for backbone
nodes v that are above vi0 (using the notation of Algorithm 1).
It has two objectives. First, it transfers servers to the requested
leaf node v0 from the subtrees of the off-backbone children
of v, incurring a total cost of at most γ. Second, it defines
the constraints Lv(τ) and runs a primal-dual update on these
constraints until the total dual value raised is exactly γ. This
dual increase is at least the server transfer cost, which we
use to bound the algorithm’s cost. We now explain the steps
of Algorithm 3 in more detail. (The notions of slack and
depleted constraints are in Definition IV.1.)

Algorithm 3: FULLUPDATE(v, τ )

3.1 let h← level(v)− 1 and u0 ∈ χv be child containing
the current request v0 := ReqLoc(τ).

3.2 let U ← {u0} ∪ activesib(u0, τ); say
U = {u0, u1, . . . , u`}, LU ← active leaves below
U \ {u0}.

3.3 add timestep τ to event set Rns(v) and to Awake(v).
// “non-solitary” timestep for v

3.4 set timer s← 0.
3.5 repeat
3.6 for u ∈ U do
3.7 let τu ← prev(u, τ) and Iu = (τu, τ ].
3.8 let Cu be a slack constraint in Lu(τu). // slack

constraint exists since prev(u, τ) is awake

3.9 let σ ← (Cu0
, Cu1

, . . . , Cu`) be the resulting
tuple of constraints.

3.10 add new constraint C(v, σ, τ) to constraint set
Lv(τ).

3.11 while all constraints Cuj in σ are slack and dual
objective for Lv(τ) less than γ do

3.12 increase timer s at uniform rate.
3.13 increase zC(v,σ,τ) at the same rate as s.
3.14 for all u ∈ U , define

Su := Iu ∩ (Rns(u) ∪ {τu + η}) .
3.15 increase yv(u, t) for u ∈ U, t ∈ Su according

to dyv(u,t)
ds = yv(u,t)

λh
+ γ

Mn·λh .
3.16 transfer server mass from Tu into v0 at rate

dyv(u,Iu)
ds + bCu

λh
using the leaves in LU ∩ Tu,

for each u ∈ U \ {u0}
3.17 foreach constraint Cuj that is depleted do
3.18 if all the constraints in Luj (τuj ) are depleted

then remove τuj from Awake(uj).

3.19 until the dual objective corresponding to constraints
in Lv(τ) becomes γ.

Consider a call to FULLUPDATE(v, τ) with u0 being the
child of v on the path to the request v0 (See Figure 3).
Each iteration of the repeat loop adds a constraint C to



Lv(τ) and raises the dual variable zC corresponding to it.
For each node u in U := {u0} ∪ activesib(u0, τ), define
τu := prev(u, τ) to be the most recent timestep currently in
Awake(u). This timestep τu may move backwards over the
iterations as nodes are removed from Awake(u) in line (3.17).
One exception is the node u0: we will show that τu0

stays
equal to τ for the entire run of FULLUPDATE. Indeed,
we add τ to Awake(u0) during SIMPLEUPDATE(u0, τ) or
FULLUPDATE(u0, τ) before calling FULLUPDATE(v, τ). We
will prove in the full version that τ stays awake in R(u0)
during FULLUPDATE(v, τ ).

1) We add a constraint C(v, σ, τ) to Lv(τ) by taking one
constraint Cu ∈ Lu(τu) for each u ∈ U and setting
σ := (C1, . . . , C|U |). (The choice of constraint from
Lu(τu) is described in item 3 below.) Each Cu has
form ϕA(u),τττ(u),u ending at τu := τττ(u)u for some tuple
(A(u), τττ(u)). The new constraint C(v, σ, τ) is the
composition ϕA,τττ,v as in (III.3), where Iu := (τu, τ ].
Since U contains all the children of v whose subtrees
contain active leaves at τ , the set A = ∪uA(u) and
the τττ obtained by extending the τττ(u) functions both
satisfy the conditions of Lemma III.5, which shows
that ϕA(u),τττ(u),u implies:∑

u∈U

(
yv(u, Iu) + aCu · yv

)
︸ ︷︷ ︸

aC(v,σ,τ)·yv

≥

∑
u∈U

(
D(u, Iu) + bCu

)
+ (nv −

∑
u∈U

nu)δ︸ ︷︷ ︸
≤bC(v,σ,τ)

. (IV.1)

2) Having added constraint C(v, σ, τ), we raise the new
dual variable zC(v,σ,τ) at a constant rate in line (3.13),
and the primal variables yv(u, t) for each u ∈ U and
any t in some index set Su using an exponential update
rule in line (3.15). The index set Su consists of all
timesteps in Iu ∩ Rns(u) and the first timestep of
Iu—which is τu + η if Iu is non-empty.6 We will
soon show that Su is not too large, yet captures
all the “necessary” variables that should be raised
(see Figure 3). Moreover, we transfer servers from
active leaves in Tu into ReqLoc(q) in line (3.16). This
transfer is done arbitrarily, i.e., we move servers out of
any of the leaf nodes that were active at the beginning
of this procedure. Our definition of activesib(u0, τ)
means that Tu has at least one active leaf and hence at
least δ servers to begin with. Since we move at most
γ � δ amounts of server, we maintain Invariant (I1).
The case of u0 is special: since τu0

= τ , the interval
Iu0

is empty so no variables yv(u0, t) are raised.

6This timestep may not belong to R(u), but all other timesteps in Su

lie in R(u); see also Figure 3.

Somewhat unusually for an online primal-dual algo-
rithm, both the primal and dual variables are used to
account for our algorithm’s cost, and not for actual
algorithmic decisions (i.e., the server movements). This
allows us to increase primal variables from the past,
even though the corresponding server movements are
always executed at the current timestep.

To describe the stopping condition for this process, we need
to explain the relationships between these local LPs, and
define the notions of slack and depleted constraints. We
use the fact that we have an almost-feasible dual solution
{zC}C∈Lu(τu) for each u ∈ U . This in turn corresponds to
an increase in primal values for variables yu(u′, τ ′) in Lu.
It will suffice for our proof to ensure that when we raise
zC(v,σ,τ), we constrain it as follows:

Invariant (I3). For every u ∈ χv, t ∈ Rns(u), and
every constraint C ∈ Lu(t) (which by definition of
Rns(u) is not a ⊥-constraint):(

1 +
1

H

)
zC ≥

∑
τ ′≥t

∑
σ:C∈σ

zC(v,σ,τ ′). (I3)

Definition IV.1 (Slack and Depleted Local Constraints). A
non-⊥ constraint C ∈ Lu is slack if (I3) is satisfied with
a strict inequality, else it is depleted. By convention, ⊥-
constraints are always slack.

We can now explain the remainder of the local update.

3) The choice of the constraint in line (3.8) is now easy:
Cu is chosen to be any slack constraint in Lu(τu). If
τu ∈ Rs(u), this is the unique ⊥-constraint in Lu(τu).
The primal-dual update in the while loop proceeds
as long as all constraints Cu in σ are slack: once a
constraint becomes tight, some other slack constraint
Cu ∈ Lu(τu) is chosen to be in σ. If there are no
more slack constraints in Lu(τu), the timestep τu is
removed from the awake set (in line (3.17)). In the next
iteration, τu gets redefined to be the most recent awake
timestep before τ (in line (3.7)). In the full version,
we show that there is always an awake timestep on the
timeline of every vertex.

4) The dual objective corresponding to constraints in
Lv(τ) is

∑
C∈Lv(τ) b

C zC , where C is of the form
〈aC , yv〉 ≥ bC . The local update process ends when the
increase in this dual objective due to raising variables
{zC | C ∈ Lv(τ)} equals γ.

For a constraint C ∈ Lu(t), the variable zC is only raised in
the call FULLUPDATE(u, t). Subsequently, only the right side
of (I3) can be raised. Hence, once a constraint C becomes
depleted, it stays depleted. It is worth discussing the special
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Figure 3: Illustration of FULLUPDATE(v, τ): leaves with filled dots are
active and open dots are inactive, so activesib(u0, τ) = {u1, u2}. The bold
red squares or black circles denote timesteps in R(u) = Rs(u)∪Rns(u),
with the red squares being awake at timestep τ . Hence, Iu0 = Su0 =
∅, Iu1 = (τ3, τ ], Su1 = {τ4, τ5, τ6, τ7}, Iu2 = (τ1, τ ], Su2 = {τ2}.
Timesteps in Rs(u) always remain awake.

case when activesib(u0, τ) is empty, so that U = {u0}. In
this case, no server transfer can happen, and the constraint
C(v, σ, τ) is same as a slack constraint of Lu0(τ), but with
an additive term of (nv − nu0)δ on the RHS, as in (IV.1).
We still raise the dual variable zC(v,σ,τ), and prove that the
dual objective value rises by γ.

There is a parameter M in line (3.15) that specifies the rate of
change of yv . This value M should be an upper bound on the
size of the index set Su over all calls to FULLUPDATE, and
over all u ∈ U . We show that M ≤ 5HλHk

4γ + 1, independent
of the trivial bound M ≤ T , where T is the length of the
input sequence.

V. ANALYSIS DETAILS

The proof rests on two lemmas: the first (proved in §V-A)
bounds the movement cost in terms of the increase in dual
value, and the second (proved in §V-B) shows near-feasibility
of the dual solutions.

Lemma V.1 (Server Movement). The total movement cost
during an execution of the procedure FULLUPDATE is at
most 2γ, and the objective value of the dual Dv increases
by exactly γ.

Lemma V.2 (Dual Feasibility). For each vertex v, the dual
solution to Lv is feasible if scaled down by a factor of β,
where β = O(log nMk

γ ) = O(H log(nλ)).

Theorem V.3 (Competitiveness for k-server). Given any
instance of the k-server problem on a λ-HST with height
H ≤ λ/10, Algorithm 1 ensures that each request location
`q is saturated at some timestep in [q, q + 1). The total cost
of (fractional) server movement is O(βH) = O(H2 log(nλ))
times the cost of the optimal solution.

Proof: All the server movement happens within calls to

FULLUPDATE. By Lemma V.1, each iteration of the while
loop of line (1.4) in Algorithm 1 incurs a total movement
cost of O(Hγ) over at most H vertices on the backbone.
Moreover, the call FULLUPDATE(r, τ) corresponding to the
root vertex r increases the value of the dual solution to the LP
Lr by γ. This means the total movement cost is at most O(H)
times the dual solution value. Since all constraints of Lr are
implied by the relaxation M, any feasible dual solution gives
a lower-bound on the optimal solution to M. By Lemma V.2,
the dual solution is feasible when scaled down by β, and
so the (fractional) algorithm is O(βH) = O(H2 log(nλ))-
competitive.

As mentioned in the introduction, using λ-HSTs with λ =
O(log ∆) allows us to extend this result to general metrics
with a further loss of O(log2 ∆).

A. Bounds on Server Transfer and Dual Increase

The dual increase of γ claimed by Lemma V.1 will follow
from the proof of Invariant (I2). The upper bound on the
server movement will follow from a new invariant, which
we state below. Then in §V-A we show both invariants are
indeed maintained throughout the algorithm.

We first define the notion of the “lost” dual increase.
Consider a call FULLUPDATE(v, τ). Let u be v’s child such
that request location v0 lies in Tu. We say that u is v’s
principal child at timestep τ . We can prove that τ ∈ R(u)
remains in the awake set and hence τu = τ throughout
this procedure call. The dual update raises zC(v,σ,τ) in
line (3.13) and transfers servers from subtrees Tu′ for
u′ ∈ activesib(u, τ) into subtree Tu in line (3.16). This
transfer has two components, which we consider separately.
The first is the local component dyv(u,t)

ds , and the second
is the inherited component bCu

λh
. In a sense, the inherited

component matches the dual increase corresponding to the
term

∑
u′∈activesib(u,τ) b

Cu′ on the RHS of (IV.1). The only
term without a corresponding server transfer is bCu itself,
where Cu ∈ Lu(τ) is the constraint in σ corresponding to the
principal child u. Motivated by this, we give the following
definition.

Definition V.4 (Loss). For vertex u with parent v, consider
a timestep τ ∈ Rns(v) such that τ ∈ R(u) as well. If
τ ∈ Rs(u), define loss(u, τ) := 0. Else τ ∈ Rns(u), in
which case.

loss(u, τ) :=
∑

C∈Lu(τ)

∑
C(v,σ,τ):C∈σ

bC zC(v,σ,τ) . (V.1)

Invariant (I4). For node v and timestep τ ∈ Rns(v),
let u be v’s principal child at timestep τ . The
server mass entering subtree Tu during the procedure



FULLUPDATE(v, τ) is at most

γ − loss(u, τ)

λlevel(u)
. (I4)

Moreover, timestep τ ∈ R(u) stays awake during the
call FULLUPDATE(v, τ).

Multiplying the amount of transfer by the cost of this
transfer, we get that the total movement cost is at most
O(γ). Invariants (I2) and (I4) prove Lemma V.1. In order to
prove these invariants, we define a total order on the pairs
(v, τ), with τ ∈ R(v), and proceed by induction on this
ordering. Details are deferred to the full version.

B. Approximate Dual Feasibility

For β ≥ 1, a dual solution z is β-feasible if z/β satisfies
satisfies the dual constraints. We now show that the dual
variables raised during the calls to FULLUPDATE(v, τ) for
various timesteps τ remain β-feasible for β = O(ln nMk

γ ). In-
variant (I1) can be shown easily. We now give bounds on
variables yv(u, t).

Claim V.5. For any vertex v, any child u of v, and timestep
τ , the variable yv(u, τ) ≤ 4γM + k, and M ≤ 5HλHk

4γ + 1.

The following key claim shows that each constraint in the
local LP Lv is essentially sparse in the sense that variables
in the constraint are dominated by a much smaller subsets
of variables.

Claim V.6. Let t be any timestep in R(u), and v be the
parent of u. Define t1 to be the last timestep in R(u)∩ [0, t],
and t2 to be the next timestep, i.e., t1 + η. Let C be a
constraint in Lv containing the variable yv(u, t) on the LHS.
Then C contains at least one of yv(u, t1) and yv(u, t2).
Moreover, whenever we raise z(C) in line (3.13) of the
FULLUPDATE procedure, we also raise either yv(u, t1) or
yv(u, t2) according to line (3.15).

We now show the approximate dual feasibility. Recall that
the constraints added to Lv(τ) are of the form C(v, σ, τ)
given in (IV.1), and we raise the corresponding dual variable
zC(v,σ,τ) only during the procedure FULLUPDATE(v, τ ) and
never again.

Lemma V.7 (Approximate Dual Feasibility). For a node v
at height h+1, the dual variables zC are βh-feasible for the
dual program Dv , where βh = (1 + 1/H)

h
O(lnn+ lnM +

ln(k/γ)).

Proof: We prove the claim by induction on the height
of v. For a leaf node, this follows vacuously, since the
primal/dual programs are empty. Suppose the claim is true
for all nodes of height at most h. For a node v at height
h+ 1 > 0 with children χv, the variables in Lv are of two
types: (i) yv(u, t) for some timestep t and child u ∈ χv , and

(ii) yv(u′, t) for some timestep t and non-child descendant
u′ ∈ Tv \ χv . We consider these cases separately:

I. Suppose the dual constraint corresponds to variable
yv(u, t) for some child u ∈ χv. Let L′ be the set of
constraints in Lv containing yv(u, t) on the LHS. The
dual constraint is:∑

C∈L′

zC ≤ cu = λh. (V.2)

Let t1, t2 be as in the statement of Claim V.6. When
we raise zC for a constraint C ∈ L′ in line (3.13) at
unit rate, we raise either yv(u, τ1) or yv(u, t2) at the
rate given by line (3.15). Therefore, if we raise the
LHS of the dual constraint (V.2) for a total of Γ units
of the timer, we would have raised one of the two
variables, say yv(u, τ1), for at least Γ/2 units of the
timer. Therefore, the value of yv(u, τ1) variable due
to this exponential update is at least

γ

Mn
(eΓ/2λh − 1).

By Claim V.5, this is at most 4γM + k, so we get

Γ = λh ·O (lnn+ lnM + ln(k/γ)) = β0cu,

hence showing that (V.2) is satisfied up to β0 factor.
II. Suppose the dual constraint corresponds to some

variable yv(u′, τ) with u′ ∈ Tu, and u ∈ χv . Suppose
u′ is a node at height h′ < h. Now let L′ be the
constraints in Lu (the LP for the child u) which contain
yu(u′, τ). By the induction hypothesis:∑

C∈L′

zC ≤ βh−1 cu′ . (V.3)

Let L′′ denote the set of constraints in Lv (the
LP for the parent v) which contain yv(u′, τ). Each
constraint C(v, σ, τ) in this set L′′ has the coordinate
σu corresponding to the child u being a constraint in
L′, which implies:∑

C(v,σ,τ)∈L′′

zC(v,σ,τ)

=
∑
C∈L′

∑
C(v,σ,τ)∈L′′:σu=C

zC(v,σ,τ)

≤ (1 + 1/H)
∑
C∈L′

zC , (V.4)

where the last inequality uses Invariant (I3). Now the
induction hypothesis (V.3) and the fact that βh = (1 +
1/H)βh−1 completes the proof.

Lemma V.7 means that the dual solution for Lr is βH -
feasible, where βH = O(ln nMk

γ ). This proves Lemma V.2
and completes the proof of our fractional k-server algorithm.



VI. ALGORITHM FOR k-SERVERTW

In this section, we give an overview of the online algorithm
for k-ServerTW. The structure of the algorithm remains
similar to that for k-Server. Again, we have a main procedure
(Algorithm 4) which considers the backbone consisting of
the path from the requested leaf node to the root node. It
calls a suitable subroutine for each node on this backbone to
add local LP constraints and/or transfer servers to v0. We say
that a request interval Rq = [b, q] at a leaf node `q becomes
critical (at time q) if it has deadline q, and it has not been
served until time q, i.e., if k`q,t < 1− 2δ′ for all timesteps
t ∈ [b, q): for technical reasons we allow a gap of up to 2δ′

instead of δ′. In case this node becomes critical at q, the
algorithm ensures that `q receives at least 1 − δ′ amount
of server at time q. This ensures that we move at least δ′

amount of server mass when a request becomes critical. The
parameters δ, δ′ remain unchanged, but we set γ to 1

n4∆ . We
extend the definition of ReqLoc from §IV in the natural
way: ReqLoc(τ) is location of request with deadline at time
bτc, and ReqInt(τ) is the request interval with deadline at
time bτc.

Algorithm 4: Main Procedure for Time-Windows

4.1 foreach q = 1, 2, . . . do
4.2 if ReqInt(q) exists and is critical then
4.3 let the path from `q := ReqLoc(q) to the root

be `q = v0, v1, . . . , vH = r.
4.4 let Zq, {Fv,q | v ∈ Zq} ← BUILDTREE(q)

4.5 τ ← q + η, the first timestep after q
4.6 while kv0,τ ≤ 1− δ′ do
4.7 let i0 ← smallest index such that

activesib(vi0 , τ) 6= ∅.
4.8 for i = 0, . . . , i0 do call

SIMPLEUPDATE(vi, τ, λ
i · γ/λi0).

4.9 for i = i0 + 1, . . . ,H do call
FULLUPDATE(vi, τ).

4.10 τ ← τ + η. // create a new timestep

4.11
serve requests at leaves in {Fvi,q | vi ∈ Zq}
using server mass at v0.

We now describe the main differences with respect to Al-
gorithm 1 and a brief description of the subroutines called
in Algorithm 4:

(i) When we service a critical request at a leaf `q , we would
like to also serve active requests at nearby nodes. The
procedure BUILDTREE(q) returns a set of backbone
nodes Zq ⊆ {v0, . . . , vH}, and a tree Fvi,q rooted at
each node vi ∈ Zq. In line (4.11), we service all the
outstanding requests at the leaf nodes of these subtrees
{Fvi,q | vi ∈ Zq} using the server at v0. (These are

called piggybacked requests.)
(ii) For a node vi with i ≤ i0, the previous SIMPLEUPDATE

procedure in §IV-B would define the set Lvi(τ) in the
local LP Lvi to contain just one ⊥-constraint. For the
case of time-windows, we give a new SIMPLEUPDATE
procedure, which defines a richer set of constraints
based on a charging forest Fch(vi). This procedure also
raises some local dual variables; this dual increase was
not previously needed in the case of the ⊥-constraint.
Finally, the procedure constructs the tree Fvi,q rooted at
vi which is used for piggybacking requests. Although
this construction of the charging tree is based on ideas
used by [2] for the single-server case, we need a
new dual-fitting analysis in keeping with our analysis
framework.

(iii) We need a finer control over the amount of dual raised
in the call SIMPLEUPDATE in line (4.8). Fix a call to
SIMPLEUPDATE(vi, τ, ξ); hence i ≤ i0 at this timestep.
To prove dual feasibility, we want the increase in the dual
objective function value to match the cost (with respect
to vertex vi) of the server movement into vi during this
iteration of the while loop. This server mass entering
vi is dominated by the server mass transferred to the
request location v0 by FULLUPDATE(vi0+1, τ), which
is roughly γ/λi0 . The cost of transferring this server
mass to vi from its parent is λi · γ/λi0 . We pass this
value as an argument ξ to SIMPLEUPDATE in line (4.8),
indicating the extent to which we should raise dual
variables in this procedure.
Moreover, we need to remember these values: for each
node v and timestep τ ∈ Rns(v), we maintain a quantity
Γ(v, τ), which denotes the total dual objective value
raised for the constraints in Lv(τ). If these constraints
were added by SIMPLEUPDATE(v, τ, ξ), we define it as
ξ; and finally, if they were added by FULLUPDATE(v, τ)
procedure, this stays equal to the usual amount γ (as
in the algorithm for k-Server). In case τ ∈ Rs(v), this
quantity is undefined.

(iv) The procedure is essentially the same as the version
in §IV-C, with one change. Previously, if activesib(, τ)
was not empty, we could have had very little server
movement, in case most of the dual increase was because
of bC . To avoid this, we now force a non-trivial amount
of server movement. When the dual growth reaches γ,
we stop the dual growth, but if there has been very little
server movement, we transfer servers from active leaves
below activesib(vi, τ).
The intuition for this step is as follows: in the
SIMPLEUPDATE(vi, v0, ξ) procedure for vi below v,
we need to match the dual increase (given by ξ) by
the amount of server that actually moves into vi. This
matching is based on the assumption that at least γ/λh

transfer happens during the FULLUPDATE procedure.
By adding this extra step to FULLUPDATE, we ensure



that a roughly comparable amount of transfer always
happens.

Again, most of the details are deferred to the full version of
this paper.

VII. CLOSING REMARKS

Our work suggests several interesting directions for future
research. Can our LP extend to variants and generalizations of
k-Server in the literature? One natural candidate is the hard
version of the k-taxi problem. Another interesting direction
is to exploit the fact that our LP easily extends to time-
windows. The special case of k-ServerTW where k = 1 is
known as online service with delay. While poly-logarithmic
competitive ratios are known for this problem (and also follow
from our current work), no super-constant lower bound on
its competitive ratio bound is known. On the other hand,
a sub-logarithmic competitive ratio is not known even for
simple metrics like the line. Can our LP (or a variant) bridge
this gap?

More immediate technical questions concern the k-
ServerTW problem itself. For instance, can the competi-
tive ratio of the k-ServerTW problem be improved from
poly log(n,∆) to poly log(k)? Another direction is to extend
k-ServerTW to general delay penalties. Often, techniques for
time-windows extend to general delay functions by reducing
the latter to a prize-collecting version of the time-windows
problem. Exploring this direction for k-ServerTW would be
a useful extension of the results presented in this paper.
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