
Online Algorithms with Multiple Predictions

Keerti Anand 1 Rong Ge 1 Amit Kumar 2 Debmalya Panigrahi 1

Abstract
This paper studies online algorithms augmented
with multiple machine-learned predictions. We
give a generic algorithmic framework for online
covering problems with multiple predictions that
obtains an online solution that is competitive
against the performance of the best solution ob-
tained from the predictions. Our algorithm in-
corporates the use of predictions in the classic
potential-based analysis of online algorithms. We
apply our algorithmic framework to solve classi-
cal problems such as online set cover, (weighted)
caching, and online facility location in the multi-
ple predictions setting.

1. Introduction
In many real world computational tasks, parts of the input
are not known in advance and are revealed piecemeal over
time. However, the algorithm is constrained to take deci-
sions before the entire input is revealed, thereby optimizing
for an unknown future. For instance, when an online retailer
has to decide the locations of warehouses to serve clients,
it does so without precisely knowing how the clientele will
grow over time. Similarly, in an operating system, the cache
scheduler has to decide which pages to evict from the cache
without knowing future requests for page access. These
kinds of scenarios are traditionally captured by the field of
online algorithms, where the algorithm makes irrevocable
decisions without knowing the future. The performance of
an online algorithm is measured by its competitive ratio
which is defined as the maximum ratio across all inputs be-
tween the cost of the online algorithm and that of an optimal
solution (see, e.g., (Borodin & El-Yaniv, 1998)). While this
is a robust guarantee that holds for all inputs, the robustness
comes at the cost of making online algorithms excessively
cautious thereby resulting in strong lower bounds and also

1Department of Computer Science, Duke University, Durham,
NC, USA. 2Department of Computer Science and Engineering,
IIT Delhi, New Delhi, India.. Correspondence to: Keerti Anand
<kanand@cs.duke.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

affecting their real world performance.

To overcome the pessimistic behavior of online algorithms,
there has been a growing trend in recent years to incorporate
machine-learned predictions about the future. This exploits
the fact that in many real world settings, modern ML meth-
ods can predict future behavior to a high degree of accu-
racy. Formalized by Lykouris and Vassilvitksii (Lykouris
& Vassilvitskii, 2018; 2021) for the caching problem, the
online algorithms with prediction framework allows online
algorithms to access predicted future input values, but does
not give any guarantee on the accuracy of such predictions.
(This reflects the fact that ML predictions, say generated by
a neural network, are usually without worst-case guarantees,
and can occasionally be completely wrong.) The goal is to
design online algorithms whose competitive ratio gracefully
interpolates between offline algorithms if the predictions
are accurate – a property called consistency – and online
algorithms irrespective of predictions – a property called
robustness (these terms were coined by Kumar, Purohit, and
Svitkina (Kumar et al., 2018)).

Online algorithms with predictions have been extensively
studied in the last few years for a broad range of problems
such as variants of ski rental (Kumar et al., 2018; Khanafer
et al., 2013; Gollapudi & Panigrahi, 2019; Wei & Zhang,
2020; Anand et al., 2020; Wang et al., 2020), set cover (Ba-
mas et al., 2020b), scheduling (Kumar et al., 2018; Wei
& Zhang, 2020; Bamas et al., 2020a; Lattanzi et al., 2020;
Mitzenmacher, 2020; Lee et al., 2021; Azar et al., 2021),
caching (Lykouris & Vassilvitskii, 2018; Wei, 2020; Jiang
et al., 2020; Bansal et al., 2020), matching and secretary
problems (Lavastida et al., 2021; Dütting et al., 2021; An-
toniadis et al., 2020b; Jiang et al., 2021b), metric optimiza-
tion (Antoniadis et al., 2020a; Azar et al., 2022; Fotakis
et al., 2021; Jiang et al., 2021a; Almanza et al., 2021), data
structures (Mitzenmacher, 2018), statistical estimation (Hsu
et al., 2019; Indyk et al., 2019; Eden et al., 2021), online
search (Anand et al., 2021), and so on.

In this paper, we focus on online algorithms with multiple
machine-learned predictions. In many situations, different
ML models and techniques end up with distinct predictions
about the future, and the online algorithm has to decide
which prediction to use among them. Indeed, this is also
true of human experts providing inputs about expectations



Online Algorithms with Multiple Predictions

of the future, or other statistical tools for predictions such
as surveys, polls, etc. Online algorithms with multiple pre-
dictions were introduced by Gollapudi and Panigrahi (Gol-
lapudi & Panigrahi, 2019) for the ski rental problem, and
has since been studied for multi-shop ski rental (Wang et al.,
2020) and facility location (Almanza et al., 2021). Fur-
thermore, (Bhaskara et al., 2020) considers multiple hints
for regret minimization in Online Linear Optimization. In
our current paper, instead of focusing on a single problem,
we extend the powerful paradigm of online covering prob-
lems to incorporate multiple predictions. As a consequence,
we obtain online algorithms with multiple predictions for a
broad range of classical problems such as set cover, caching,
and facility location as corollaries of the general technique
that we develop in this paper.

The Online Covering Framework. Online covering is
a powerful framework for capturing a broad range of prob-
lems in combinatorial optimization. In each online step,
a new linear constraint a · x ≥ b is presented to the algo-
rithm, where x is the vector of variables, a is a vector of
non-negative coefficients, and b is a scalar. The algorithm
needs to satisfy the new constraint, and is only allowed to
increase the values of the variables to do so. The goal is to
minimize an objective function c · x, where c is the vector
of costs that is known offline. This formulation captures a
broad variety of problems including set cover, (weighted)
caching, revenue maximization, network design, ski rental,
TCP acknowledgment, etc. Alon et al. (Alon et al., 2009)
proposed a multiplicative weights update (MWU) technique
for this problem and used it to solve the online set cover
problem. This was quickly adapted to other online cov-
ering problems including weighted caching (Bansal et al.,
2007), network design (Alon et al., 2006), allocation prob-
lems for revenue maximization (Buchbinder et al., 2007),
etc. (The reader is referred to the survey (Buchbinder &
Naor, 2009b) for more examples.) All these algorithms
share a generic method for obtaining a fractional solution
to the online covering problem, which was formalized by
Buchbinder and Naor (Buchbinder & Naor, 2009a) and later
further refined by Gupta and Nagarajan (Gupta & Nagarajan,
2014). Since then, the online covering problem has been
generalized to many settings such as convex (non-linear) ob-
jectives (Azar et al., 2016) and mixed covering and packing
problems (Azar et al., 2013).

Comparison with Prior Work on Online Covering with
ML Prediction. Bamas, Maggiori, and Svensson (Bamas
et al., 2020b) were the first to consider the online covering
framework in the context of ML predictions. In a beautiful
work, they gave the first general-purpose tool for online
algorithms with predictions, and showed that this can be
used to solve several classical problems like set cover and
dynamic TCP acknowledgment. In their setting, a solution

is presented as advice to the online algorithm at the outset,
and the algorithm incorporates this suggestion in its online
decision making.

In our current paper, we give a general scheme for the online
covering framework with multiple predictions. In particular:

– Since we are in the multiple predictions setting, we
allow k > 1 suggestions instead of just a single sug-
gestion, and benchmark our algorithm’s performance
against the best suggested solution. (Of course, the
best suggestion is not known to the algorithm.)

– In contrast to Bamas et al. (Bamas et al., 2020b), we
do not make the assumption that the entire suggested
solution is given up front. Instead, in each online step,
each of the k suggestions gives a feasible way of satis-
fying the new constraint. Note that this is more general
than giving the suggested solution(s) up front, since
the entire solution(s) can be presented in each online
step as a feasible way of satisfying the new constraint.

– In terms of the analysis, we extend the potential method
from online algorithms (in contrast, Bamas et al. (Ba-
mas et al., 2020b) use the primal dual framework). The
potential method has been used recently for many clas-
sic problems in online algorithms such as weighted pag-
ing (Bansal et al., 2010), k-server (Buchbinder et al.,
2019), metric allocation (Bansal & Coester, 2021), on-
line set cover (Buchbinder et al., 2019), etc. In fact,
it can also be used to reprove the main results of Ba-
mas et al. (Bamas et al., 2020b) in the single prediction
setting. In this paper, we extend this powerful tool to
incorporate multiple ML predictions.

– Finally, we show that our techniques extend to a gener-
alization of the online covering framework to include
box-type constraints. This extension allows the frame-
work to handle more problems such as online facility
location that are not directly captured by the online
covering framework.

Comparison with Online Learning. The reader will
notice the similarity of our problem to the classical ex-
perts’ framework from online learning (see, e.g., the sur-
vey (Shalev-Shwartz, 2012)). In the experts’ framework,
each of k experts provides a suggestion in each online step,
and the algorithm has to choose (play) one of these k op-
tions. After the algorithm has made its choice, the cost (loss)
of each suggestion is revealed before the next online step.
The goal of the algorithm is to be competitive with the best
expert in terms of total loss. In contrast,

– Since we are solving a combinatorial problem, the
(incremental) cost of any given step for an expert or



Online Algorithms with Multiple Predictions

the algorithm depends on their pre-existing solution
from previous steps (therefore, in particular, even after
following an expert’s choice, the algorithm might suffer
a larger incremental cost than the expert). This is unlike
online learning where the cost in a particular step is
independent of previous choices.

– In online learning, the algorithm is benchmarked
against the best static expert in hindsight, i.e., the best
solution whose choices match that of the same expert
across all the steps. Indeed, it can be easily shown
that no algorithm can be competitive against a dynamic
expert, namely a solution that chooses the best sug-
gestion in each online step even if those choices come
from different experts. Observe that such a dynamic
expert can in general perform much better than each
of the suggestions, e.g., when the suggestions differ
from each other but at each time, at least one of them
suggests a good solution. But, in our problem, since
the choices made by experts correspond to solutions
of a combinatorial problem, we can actually show that
our algorithm is competitive even against a dynamic
expert. Namely, the k suggestions in every step are not
indexed by specific experts, and the algorithm is com-
petitive against any composite solution that chooses
any one of the k suggestions in each step.

– In online learning, the goal is to obtain regret bounds
that show that the online algorithm approaches the
best (static) expert’s performance up to additive terms.
Such additive guarantees are easily ruled out for our
problem, even for a static expert. As is typically the
case in online algorithms, our performance guarantees
are in the form of (multiplicative) competitive ratios
rather than (additive) regret bounds.

Our Contributions. Our first contribution is to formalize
the online covering problem with multiple predictions (Sec-
tion 2). Recall that in each online step, along with a new
constraint, the algorithm receives k feasible suggestions
for satisfying the constraint. Using these suggestions, we
design an algorithm for obtaining a fractional solution to
the online covering problem–that we call the OCP algorithm
(Section 3). To compare this algorithm to the best suggested
solution, we define a benchmark DYNAMIC that captures the
minimum cost (fractional) solution that is consistent with at
least one of the suggestions in each online step.

– Our main technical result shows that the cost of the
solution produced by the OCP algorithm is at most
O(log k) times that of the DYNAMIC solution.

It is noteworthy that unlike in the classical online covering
problem (without predictions), the competitive ratio is in-
dependent of the problem size, and only depends on the

number of suggestions k. As the number of suggestions
increases, the competitive ratio degrades because the sug-
gestions have higher entropy (i.e., are less specific). As two
extreme examples, consider k = 1, in which case it is trivial
for an algorithm to exactly match the DYNAMIC benchmark
simply by following the suggestion in each step. In contrast,
when k is very large, the set of suggested solutions can es-
sentially include all possible solutions, and therefore, the
suggestions are useless.

The analysis of the OCP algorithm makes careful use of po-
tential functions that might be of independent interest. But,
while the analysis of the OCP algorithm is somewhat intri-
cate, we note that the algorithm itself is extremely simple.

– We show that the competitive ratio of O(log k) ob-
tained by the OCP algorithm is tight. We give a lower
bound of Ω(log k) by only using binary (0/1) coeffi-
cients and unit cost for each variable, which implies
that the lower bound holds even for the special case of
the unweighted set cover problem.

– Using standard techniques, we observe that the OCP
algorithm can be robustified, i.e., along with being
O(log k)-competitive against the best suggested so-
lution, the algorithm can be made O(α)-competitive
against the optimal solution where α is the competitive
ratio of the best online algorithm (without predictions).

We then use the OCP algorithm to solve two classic
problems–online set cover (Section 4) and caching (Sec-
tion 5)–in the multiple predictions setting.

– We generalize the online covering framework by intro-
ducing box-type constraints (Section 6). We show that
our techniques and results from online covering extend
to this more general setting.

We then use this more general formulation for solving the
classical online facility location problem (Section 7).

2. The Online Covering Framework
2.1. Problem Statement

We define the online covering problem (OCP) as follows.
There are n non-negative variables {xi : i ∈ [n]} where
each xi ∈ [0, 1]. Initially, xi = 0 for all i ∈ [n]. A linear
objective function c(x) :=

∑n
i=1 cixi is also given offline.

In each online step, a new covering constraint is presented,
the j-th constraint being given by

∑
i aijxi ≥ 1 where

aij ≥ 0 for all i ∈ [n].1 The algorithm is only allowed to

1A more general definition allows constraints of the form∑n
i=1 aijxi ≥ bj for any bj > 0, but restricting bj to 1 is without

loss of generality since we can divide throughout by bj without
changing the constraint.



Online Algorithms with Multiple Predictions

increase the values of the variables, and has to satisfy the
new constraint when it is presented. (We denote the total
number of constraints by m.) The goal is to minimize the
objective function c(x). We write this succinctly below:

min
xi∈[0,1]:i∈[n]

{
n∑
i=1

cixi :

n∑
i=1

aijxi ≥ 1 ∀j ∈ [m]

}
.

This framework captures a large class of algorithmic prob-
lems such as (fractional) set cover, caching, etc. that have
been extensively studied in the online algorithms literature.
Our goal will be to obtain a generic algorithm for OCP with
multiple suggestions. When the j-th constraint is presented
online, the algorithm also receives k suggestions of how
the constraint can be satisfied. We denote the s-th sugges-
tion for the j-th constraint by variables xi(j, s); they satisfy∑n
i=1 aijxi(j, s) ≥ 1, i.e., all suggestions are feasible.

To formally define the best suggestion, we say that a solution
{xi : i ∈ [n]} is supported by the suggestions {xi(j) : i ∈
[n], j ∈ [m]} if xi ≥ xi(j) for all j ∈ [m]. Using this
definition, we consider below two natural notions of the best
suggestion that we respectively call the experts setting and
the multiple predictions setting.

The Experts Setting. In the experts setting, there are k
experts, and the s-th suggestion for each constraint comes
from the same fixed expert s ∈ [k] (say some fixed ML
algorithm or a human expert). The online algorithm is
required to be competitive with the best among these k
experts2. To formalize this, we define the benchmark:

STATIC = min
s∈[k]

n∑
i=1

ci · max
j∈[m]

xi(j, s).

Note that {maxj∈[m] xi(j, s) : i ∈ [n]} is the minimal
solution that is supported by the suggestions of expert s;
hence, we define the cost of the solution proposed by expert
s to be the cost of this solution.

The Multiple Predictions Setting. In the multiple predic-
tions setting, we view the set of k suggestions in each step
as a bag of k predictions (without indexing them specifi-
cally to individual predictors or experts) and the goal is to
obtain a solution that can be benchmarked against the best
of these suggestions in each step. Formally, our benchmark
is the minimum-cost solution that is supported by at least
one suggestion in each online step:

DYNAMIC = min
x̂∈X̂

n∑
i=1

ci · x̂i, where

2This is similar to the experts model in online learning, hence
the name.

X̂ = {x̂ : ∀i ∈ [n],∀j ∈ [m],∃s ∈ [k], x̂i ≥ xi(j, s)}.

Note that every solution that is supported in the experts
setting is also supported in the multiple predictions setting.
This implies that STATIC ≥ DYNAMIC, and therefore, the
competitive ratios that we obtain in the multiple predictions
setting also hold in the experts setting. Conversely, the lower
bounds on the competitive ratio that we obtain in the experts
setting also hold in the multiple predictions setting.

2.2. Our Results

We obtain an algorithm for OCP with the following guarantee
in the multiple predictions setting (and therefore also in the
experts setting by the discussion above):

Theorem 2.1. There is an algorithm for the online covering
problem with k suggestions that has a competitive ratio of
O(log k), even against the DYNAMIC benchmark.

Note that this competitive ratio is independent of the size of
the problem instance, and only depends on the number of
suggestions. In contrast, in the classical online setting, the
competitive ratio (necessarily) depends on the size of the
problem instance.

Next, we show that the competitive ratio in Theorem 2.1 is
tight by showing a matching lower bound. This lower bound
holds even in the experts setting (hence, by the discussion
above, it automatically extends to the multiple predictions
setting):

Theorem 2.2. The competitive ratio of any algorithm for
the online covering problem with k suggestions is Ω(log k),
even against the STATIC benchmark.

We noted earlier that it is desirable for online algorithms to
have robustness guarantees, i.e., that the algorithm does not
fare much worse than the best online algorithm (without pre-
dictions) even if the predictions are completely inaccurate.
Our next result is the robust version of Theorem 2.1:

Theorem 2.3. Suppose a class of online covering prob-
lems have an online algorithm (without predictions) whose
competitive ratio is α. Then, there is an algorithm for
this class of online covering problems with k suggestions
that produces an online solution whose cost is at most
O(min{log k · DYNAMIC, α · OPT}).

We will prove Theorem 2.1 in the next section. The proofs
of Theorem 2.2 and Theorem 2.3 are given in Section 3.2
and Section 3.1 respectively. Subsequently, we apply the
algorithmic framework developed in Theorem 2.1 to obtain
tight competitive ratios for specific instantiations of OCP,
namely the set cover problem (Section 4) and the caching
problem (Section 5). Finally, we extend our OCP result to
include box-type constraints (Section 6) and apply it to the
online facility location problem (Section 7).



Online Algorithms with Multiple Predictions

3. Online Covering Algorithm
Recall that in the online covering problem, the new con-
straint that arrives in the j-th online step is

∑n
i=1 aijxi ≥ 1

and the algorithm receives k suggestions where the s-th
suggestion is denoted xi(j, s). If the current solution of
the algorithm given by the variables xi is feasible, i.e.,∑n
i=1 aijxi ≥ 1, then the algorithm does not need to do

anything. Otherwise, the algorithm needs to increase these
variables until they satisfy the constraint. Next, we describe
the rules governing the increase of variables.

Intuitively, the rate of the increase of a variable xi should
depend on three things. First, it should depend on the cost
of this variable in the objective, namely the value of ci; the
higher the cost, the slower we should increase this variable.
Second, it should depend on the contribution of variable xi
in satisfying the new constraint, namely the value of aij ;
the higher this coefficient, the faster should we increase the
variable. Finally, the third factor is how strongly xi has been
suggested. To encode this mathematically, we first make the
assumption that every suggestion is tight, i.e.,

n∑
i=1

aijxi(j, s) = 1 for every suggestion s ∈ [k]. (1)

This assumption is without loss of generality because, if not,
we can decrease the variables xi(j, s) in an arbitrary manner
until the constraint becomes tight. (Note that this change can
only decrease the cost of the benchmark solutions DYNAMIC
and STATIC; hence, any competitive ratio bounds obtained
after this transformation also hold for the original set of
suggestions.)

Having made all the suggestions tight, we now encode how
strongly a variable has been suggested by using its aver-
age suggested value 1

k ·
∑k
s=1 xi(j, s). Our algorithm (see

Algorithm 1) increases all variables xi satisfying xi < 1
2

simultaneously at rates governed by these parameters; pre-
cisely, we use

dxi
dt

=
aij
ci

(xi + δ · xij) , where δ =
1

k
, xij =

k∑
s=1

xi(j, s).

The algorithm continues to increase the variables until∑n
i=1 aijxi ≥ 1

2 ; along the way, any variable xi that
reaches 1

2 is dropped from the set of increasing variables.
To satisfy the j-th constraint, we note that the variables 2xi
are feasible for the constraint. (Note that since all variables
xi ≤ 1

2 before the scaling, every variable can be doubled
without violating xi ≤ 1.) Since this last step of multiplying
every variable by 2 only increases the cost of the algorithm
by a factor of 2, we ignore this last scaling step in the rest
of the analysis.

Algorithm 1 Online Covering Algorithm
Offline: All variables xi are initialized to 0.
Online: On arrival of the j-th constraint:

while
∑n
i=1 aijxi <

1
2 ,

for i ∈ [n]
if xi < 1

2 , increase xi by dxi

dt =
aij
ci

(xi + δ · xij),
where δ = 1

k and xij =
∑k
s=1 xi(j, s).

Before analyzing the algorithm, we note that although we
described it using a continuous process driven by a differ-
ential equation, the algorithm can be easily discretized and
made to run in polynomial time where in each discrete step,
some variable xi reaches 1

2 (and therefore, xi cannot in-
crease any further) or

∑n
i=1 aijxi reaches 1

2 (and therefore,
the algorithm ends for the current online step). In this sec-
tion, we will analyze the continuous algorithm rather than
the equivalent discrete algorithm for notational simplicity.

Next, we show that the algorithm is valid, i.e., that there
is always a variable xi that can be increased inside the
while loop. If not, then we have

∑n
i=1 aijxi <

1
2 but

xi ≥ 1
2 for all variables xi, i ∈ [n]. This implies that∑n

i=1 aij < 1, which is a contradiction because the con-
straint

∑n
i=1 aijxi ≥ 1 is then unsatisfiable by any setting

of variables xi ≤ 1. (In particular, this would mean that
there cannot be any feasible suggestion for this constraint.)

Now, we are ready to bound the competitive ratio of Algo-
rithm 1 with respect to the DYNAMIC benchmark. First, we
bound the rate of increase of algorithm’s cost:

Lemma 3.1. The rate of increase of cost in Algorithm 1 is
at most 3

2 .

Proof. The rate of increase of cost is given by:

n∑
i=1

ci ·
dxi
dt

=

n∑
i=1

aij (xi + δ · xij)

=

n∑
i=1

aijxi +
1

k
·
n∑
i=1

k∑
s=1

aijxi(j, s)

<
1

2
+

1

k
·
k∑
s=1

(
n∑
i=1

aijxi(j, s)

)
=

3

2
,

where we used
∑n
i=1 aijxi <

1
2 from the condition on the

while loop, and
∑n
i=1 aijxi(j, s) = 1 for all s ∈ [k] from

Equation (1).

We now define a carefully crafted non-negative potential
function ϕ. We will show that the potential decreases at
constant rate when Algorithm 1 increases the variables xi
(Lemma 3.4). By Lemma 3.1, this implies that the potential
can pay for the cost of Algorithm 1 up to a constant. We



Online Algorithms with Multiple Predictions

will also show that the potential ϕ is at most O(log k) times
the DYNAMIC benchmark (Lemma 3.3). Combined, these
yield Theorem 2.1.

Let xDYN
i denote the value of variable xi in the DYNAMIC

benchmark. The potential function for a variable xi is then
defined as follows:

ϕi = ci · xDYN
i · ln (1 + δ)xDYN

i

xi + δxDYN
i

, where δ =
1

k
.

and the overall potential is:

ϕ =
∑

i:xDYN
i ≥xi

ϕi.

The intuition behind only including those variables that
have xDYN

i ≥ xi in the potential function is that the potential
stores the excess cost paid by the DYNAMIC benchmark for
these variables so that it can be used later to pay for increase
in the algorithm’s variables.

First, we verify that the potential function is always non-
negative.

Lemma 3.2. For any values xi, xDYN
i of the variables, the

potential function ϕ is non-negative.

Proof. Note that ϕ only includes variables xi such that
xDYN
i ≥ xi. For such variables,

ϕi = ci ·xDYN
i ·ln (1 + δ)xDYN

i

xi + δxDYN
i

= ci ·xDYN
i ·ln 1 + δ

xi

xDYN
i

+ δ
≥ 0.

Next, we bound the potential as a function of the variables
xDYN
i in the DYNAMIC benchmark:

Lemma 3.3. The potential ϕi for variable xi is at most
cix

DYN
i · ln

(
1 + 1

δ

)
= cix

DYN
i ·O(log k). As a consequence,

the overall potential ϕ ≤ O(log k) ·
∑n
i=1 cix

DYN
i .

Proof. We have

ϕi = cix
DYN
i · ln (1 + δ)xDYN

i

xi + δxDYN
i

≤ cix
DYN
i · ln (1 + δ)xDYN

i

δxDYN
i

= cix
DYN
i · ln

(
1 +

1

δ

)
= cix

DYN
i ·O(log k).

Finally, we bound the rate of decrease of potential ϕ with
increase in the variables xi in Algorithm 1. Our goal is
to show that up to constant factors, the decrease in poten-
tial ϕ can pay for the increase in cost of the solution of
Algorithm 1.

Lemma 3.4. The rate of decrease of the potential ϕ with
increase in the variables xi in Algorithm 1 is at least 1

2 .

Proof. Recall that ϕi = ci · xDYN
i · ln (1+δ)xDYN

i

xi+δxDYN
i

. Therefore,

dϕi
dxi

= −ci ·
xDYN
i

xi + δxDYN
i

.

Recall that in Algorithm 1, the rate of increase of variables
xi is given by dxi

dt =
aij
ci

(xi + δ · xij), where δ = 1
k and

xij =
∑k
s=1 xi(j, s). Thus, we have:

dϕi
dt

=
dϕi
dxi

· dxi
dt

= −ci ·
xDYN
i

xi + δxDYN
i

· aij
ci

(xi + δ · xij)

= −aij · xDYN
i · xi + δxij

xi + δxDYN
i

.

Now, we have two cases:

• If xij ≥ xDYN
i , then

dϕi
dt

= −aij · xDYN
i · xi + δxij

xi + δxDYN
i

≤− aij · xDYN
i · xi + δxDYN

i

xi + δxDYN
i

= −aijxDYN
i . (2)

• If xij < xDYN
i , then

dϕi
dt

= −aij · xDYN
i · xi + δ · xij

xi + δxDYN
i

=− aij · xij ·
xDYN
i

xij
· xi + δ · xDYN

i

xi + δxDYN
i

< −aijxij . (3)

We know that at least one of the suggestions in the j-th step
is supported by the DYNAMIC benchmark. Let s(j) ∈ [k]
be such a supported suggestion. Then,

xij =

k∑
s=1

xi(j, s) ≥ xi(j, s(j)), and

xDYN
i ≥ xi(j, s(j)) since s(j) is supported by DYNAMIC.

Therefore, in both cases (Equation (2) and Equation (3))
above, we get

dϕi
dt

≤ −aijxi(j, s(j)).

Let us denote Ij = {i | xi(j, s(j)) ≥ xi}. Then, the total
decrease in potential is given by:

dϕ

dt
=

∑
i:xDYN

i ≥xi

dϕi
dt

≤ −
∑
i∈Ij

aijxi(j, s(j)). (4)



Online Algorithms with Multiple Predictions

By feasibility of the s(j)-th suggestion for the j-th con-
straint, we have

∑n
i=1 aijxi(j, s(j)) ≥ 1. Therefore,∑

i∈Ij

aijxi(j, s(j)) +
∑
i/∈Ij

aijxi(j, s(j)) ≥ 1

i.e.,
∑
i∈Ij

aijxi(j, s(j)) +
∑
i/∈Ij

aijxi > 1,

since xi > xi(j, j(s)) for i /∈ Ij . Thus,∑
i∈Ij

aijxi(j, s(j)) +
∑
i

aijxi > 1

i.e.,
∑
i∈Ij

aijxi(j, s(j)) >
1

2
,

since
∑n
i=1 aijxi <

1
2 in Algorithm 1. The lemma follows

by Equation (4).

Theorem 2.1 now follows from the above lemmas using
standard arguments as follows:

Proof of Theorem 2.1. Initially, let xi = 0 for all i ∈ [n]
but let xDYN

i be their final value. Then, by Lemma 3.3, the
potential ϕ is at most O(log k) times the cost of DYNAMIC.
Now, as Algorithm 1 increases the values of the variables
xi, it incurs cost at rate at most 3

2 (by Lemma 3.1) and
the potential ϕ decreases at rate at least 1

2 (by Lemma 3.4).
Since ϕ is always non-negative (by Lemma 3.2), it follows
that the total cost of the algorithm is at most 3 times the
potential ϕ at the beginning, i.e., at most O(log k) times
the DYNAMIC benchmark. This completes the proof of
Theorem 2.1.

3.1. Robust Algorithm for the Online Covering Problem

Now, we prove the robust version of Theorem 2.1, namely
Theorem 2.3.

Proof of Theorem 2.3. We run a meta algorithm with two
sets of suggestions corresponding to two solutions. The
first solution is obtained by using Algorithm 1 with k sug-
gestions. By Theorem 2.1 this solution has cost at most
O(log k) · DYNAMIC. The second solution is produced by
the online algorithm that achieves a competitive ratio of α in
the statement of Theorem 2.3. Using Algorithm 1 again for
the meta algorithm, Theorem 2.3 now follows by invoking
Theorem 2.1.

As one particular application of Theorem 2.3, we note that
for general OCP, the best competitive ratio is due to the fol-
lowing result of Gupta and Nagarajan (Gupta & Nagarajan,
2014) (see also Buchbinder and Naor (Buchbinder & Naor,
2009a)):

Theorem 3.5 (Gupta and Nagarajan (Gupta & Nagarajan,
2014)). There is an algorithm for the online covering prob-
lem that has a competitive ratio of O(log d), where d is the
maximum number of variables with non-zero coefficients in
any constraint.

This automatically implies the following corollary of Theo-
rem 2.3:

Theorem 3.6. There is an algorithm for the fractional
online covering problem that produces an online solution
whose cost is at most O(min{log k · DYNAMIC, ln d · OPT})
in the multiple predictions setting with k predictions, where
d is the maximum number of non-zero coefficients in any
constraints of the online covering problem instance.

For specific problems that can be modeled as OCP, it might
be possible to obtain a better competitive ratio thanO(log d)
by using the structure of those instances. In that case, the
competitive ratio in the multiple predictions setting also
improves accordingly by Theorem 2.3.

3.2. Lower Bound for the Online Covering Problem

Here we show that the competitive ratio obtained in Theo-
rem 2.1 is tight, i.e., we prove Theorem 2.2. We will restrict
ourselves to instances of OCP where aij ∈ {0, 1} and ci = 1
for all i, j; this is called the online (fractional) set cover
problem. (We will discuss the set cover problem in more
detail in the next section.) Moreover, our lower bound will
hold even in the experts model, i.e., against the STATIC
benchmark. Since the DYNAMIC benchmark is always at
most the STATIC benchmark, it follows that the lower bound
also holds for the DYNAMIC benchmark.

Proof of Theorem 2.2. We index the k experts {1, 2 . . . k}
using a uniform random permutation. We will construct an
instance of OCP, where the cost of the optimal solution is T .
The instance has k rounds, where in each round there are
T constraints. We index the jth constraint of the ith round
as (i, j) for i ∈ [k], j ∈ [T ]. There are kT variables that
are also indexed as (i, j) for i ∈ [k], j ∈ [T ]. Constraint
(i, j) is satisfied by each of the variables (i′, j) for all i′ ≥ i
(i.e., a(i,j),(i′,j) = 1). When constraint (i, j) is presented
(in round i), expert i′ for every i′ ≥ i sets variable (i′, j)
to 1 to satisfy it. (The suggestions of experts i′′ < i are
immaterial in this round, and they can set any arbitrary
variable satisfying constraint (i, j) to 1.)

The optimal solution is to follow expert k, i.e., the variables
(k, j) for all j ∈ [T ] should be set to 1; this has cost T . After
round i, the cumulative expected cost of any deterministic
algorithm across the variables (i, 1), (i, 2), . . . , (i, T ) is at
least Ti . Across all i ∈ [k], this adds up to a total expected
cost T ·

(
1 + 1

2 + . . .+ 1
k

)
= Ω(T log k). The theorem

then follows by Yao’s minimax principle (Yao, 1977).



Online Algorithms with Multiple Predictions

4. Online Set Cover
In the (weighted) set cover problem, we are given a collec-
tion of subsets S of a ground set U , where set S ∈ S has
weight wS . The goal is to select a collection of sets T ⊆ S
of minimum weight

∑
T∈T wT that cover all the elements

in U , i.e., that satisfies ∪T∈T T = U . In the online version
of this problem (see (Alon et al., 2009)), the set of elements
in U is not known in advance. In each online step, a new
element u ∈ U is revealed, and the sets in S that contain u
are identified. If u is not covered by the sets in the current
solution T , then the algorithm must augment T by adding
some set containing u to it.

In the fractional version, sets can be selected to fractions
in [0, 1], i.e., a solution is given by variables xS ∈ [0, 1]
for all S ∈ S. The constraint is that the total fraction of
all sets containing each element u must be at least 1, i.e.,∑
S:u∈S xS ≥ 1 for every element u ∈ U . The cost of the

solution is given by
∑
S∈S wSxS . Clearly, this is a special

case of the online covering problem in the previous section
where each variable xi represents a set and each constraint∑n

i=1 aijxi ≥ 1 is for an element, where aij = 1 if and
only if element j is in set i, else aij = 0.

The frequency of an element is the number of sets containing
it. Let us denote the maximum frequency of any element
by d. Note that this coincides with the maximum number
of non-zero coefficients in any constraint. The following
theorem is an immediate corollary of Theorem 3.6:

Theorem 4.1. There is an algorithm for the fractional on-
line set cover problem that produces an online solution
whose cost is at most O(min{ln k · DYNAMIC, ln d · OPT})
in the multiple predictions setting with k predictions.

It is interesting to note that when the suggestions are good
in the sense that DYNAMIC = O(OPT), the competitive
ratio of O(log k) in the above theorem is independent of the
size of the problem instance. In contrast, for the classical
fractional online set cover problem, there is a well-known
lower bound of Ω(log d) on the competitive ratio. We also
note that the competitive ratio in Theorem 4.1 is tight since
as we noted earlier, the lower bound instance constructed in
Theorem 2.2 is actually an instance of the set cover problem.

Theorem 4.1 obtains a fractional solution to the set cover
problem that can be rounded online to obtain an integer
solution using standard techniques. Details of the integral
case are given in Appendix A.

5. (Weighted) Caching
The caching problem is among the most well-studied online
problems (see, e.g., (Sleator & Tarjan, 1985; Fiat et al.,
1991; McGeoch & Sleator, 1991; Achlioptas et al., 2000;
Young, 1991; Blum et al., 1999), and the textbook (Borodin

& El-Yaniv, 1998)). In this problem, there is a set of n pages
and a cache that can hold any h pages at a time.3 In every
online step j, a page pj is requested; if this page is not in
the cache, then it has to be brought into the cache (called
fetching) by evicting an existing page from the cache. In the
weighted version (see, e.g., (Chrobak et al., 1991; Young,
1994; Bansal et al., 2007)), the cost of fetching a page p into
the cache is given by its non-negative weight wp. (In the
unweighted version, wp = 1 for all pages.) The goal of a
caching algorithm is to minimize the total cost of fetching
pages while serving all requests.

The (weighted) caching problem can be formulated as online
covering problem by defining variables xp(r) ∈ {0, 1} to
indicate whether page p is evicted between its r-th and (r +
1)-st requests. Let r(p, j) denote the number of times page
p is requested until (and including) the j-th request. For any
online step j, let B(j) = {p : r(p, j) ≥ 1} denote the set of
pages that have been requested until (and including) the j-th
request. The covering program formulation is as follows:

min
∑
p

∑
r wp · xp(r) subject to∑

p∈B(j),p̸=pj
xp(r(p, j)) ≥ |B(j)| − h, ∀j ≥ 1

xp(r) ∈ {0, 1}, ∀p,∀r ≥ 1

In the fractional version of the problem, we replace the con-
straints xp(r) ∈ {0, 1} with the constraints xp(r) ∈ [0, 1].
Clearly, this fits the definition of the online covering prob-
lem.4 Moreover, for the fractional weighted caching prob-
lem, Bansal, Buchbinder, and Naor gave an online algorithm
with a competitive ratio of O(log h):

Theorem 5.1 ((Bansal et al., 2007)). There is an online
algorithm for the fractional weighted caching problem with
a competitive ratio of O(log h).

Note that the competitive ratio of O(log h) is better than
that given by Theorem 3.5 since the cache size h is typically
much smaller than the total number of pages. Now, we
apply Theorem 2.3 to get the following result for fractional
weighted caching with k predictions:

Theorem 5.2. There is an algorithm for the fractional
weighted caching problem that produces an online solution
whose cost is at most O(min{ln k · DYNAMIC, lnh · OPT})
in the multiple predictions setting with k predictions.

As for set cover, the fractional solution for weighted caching
can also be rounded online to obtain an integer solution (see
Appendix A).

3The usual notation for cache size is k, but we have changed it
to h since we are using k to denote the number of suggestions.

4Strictly speaking, we need to scale the first set of coefficients
by |B(j)|−h, but as we mentioned earlier, this is equivalent since
scaling the coefficients has no bearing on the competitive ratio of
our algorithm.



Online Algorithms with Multiple Predictions

6. Online Covering with Box Constraints
In this section, we generalize the online covering framework
in Section 2 by allowing additional box-type constraints of
the form xij ≤ yi. The new linear program is given by:

Minimize
n∑
i=1

ciyi +

n∑
i=1

m∑
j=1

dijxij subject to

xij ≤ yi ∀i, j (5)
n∑
i=1

aijxij ≥ 1 ∀j (6)

yi ∈ [0, 1] ∀i (7)

The box constraints xij ≤ yi do not have coefficients and
hence are known offline. As in OCP, the cost coefficients
ci are known offline. In each online step, a new covering
constraint

∑n
i=1 aijxij ≥ 1 is revealed to the algorithm, and

the corresponding costs of coefficients dij are also revealed.

We first note that this is a generalization of the online cover-
ing problem. To see this, set dij = 0. Then, we get:

min
yi∈[0,1]:i∈[n]

{
n∑
i=1

ciyi :

n∑
i=1

aijyi ≥ 1 ∀j ∈ [m]

}
,

which is precisely the online covering problem.

The more general version captures problems like facility
location (shown in the next section) that are not directly
modeled by OCP. We denote the s-th suggestion for the
j-th constraint by variables yi(j, s) and xij(s); they satisfy∑n
i=1 aijxij(s) ≥ 1, i.e., all suggestions are feasible.

For this more general problem, we obtain the following
theorem that is an analog of Theorem 2.3.

Theorem 6.1. Suppose a class of online covering problems
with box constraints have an online algorithm (without pre-
dictions) whose competitive ratio is α. Then, there is an
algorithm for this class of online problems with k sugges-
tions that produces an online solution whose cost is at most
O(min{log k · DYNAMIC, α · OPT}).

The proof of this theorem (Appendix B) is similar to OCP.

7. Online Facility Location
We apply the online covering with box constraints frame-
work to the online FACILITY LOCATION problem. An in-
stance of FACILITY LOCATION is given by a set of potential
facility locations F , a set R of client locations and a metric
space d(·, ·) defined on these points. Further, each location
fi ∈ F has a facility opening cost oi. A solution opens a
subset F ′ ⊆ F of facilities, and assigns each client rj to the
closest open facility fij ∈ F ′. The connection cost of this

client is d(rj , fij ) and the goal is to minimize the sum of the
connection costs of all the clients and the facility opening
costs of the facilities in F ′.

In the online FACILITY LOCATION problem, clients arrive
over time and the solution needs to assign each arriving
client to an open facility (possibly after opening a new fa-
cility). This problem was first studied by (Meyerson, 2001)
who gave a competitive ratio of O(log n) for n clients. This
was later improved by (Fotakis, 2008) to O( logn

log logn ). Since
then, many variants of the problem have been studied (see
survey (Fotakis, 2011)). We will encode this problem in
the online covering (with box constraints) framework. We
have a variable yi for each facility location fi ∈ F , which
denotes the extent to which facility fi is open, and a variable
xij for each client rj and facility fi denoting the extent to
which rj is assigned to fi. Note that this is a special case
of the online covering problem with box constraints, where
ci = oi for all i, and aij = 1 for all i, j. As a corollary
of Theorem 6.1, we get the following result:

Theorem 7.1. There is an algorithm for the fractional on-
line FACILITY LOCATION problem that produces an online
solution with costO(min{ logn

log logn ·OPT, log k ·DYNAMIC})
in the multiple predictions setting with k predictions.

We also note that theO(log k) bound in Theorem 7.1 cannot
be improved further (except lower order terms) since we can
simulate an instance of the online facility location problem
without predictions by giving all prior client locations as
suggested facility locations for k = n. Furthermore, a lower
bound of Ω

(
logn

log logn

)
is known (due to Fotakis (Fotakis,

2008)) for online facility location, and this construction
easily extends to the fractional version of the problem.

8. Conclusion
This paper presented a general recipe for the design of on-
line algorithms with multiple ML predictions for covering
problems, and applied it to set cover, (weighted) caching,
and facility location. It would be interesting to extend this
framework to packing problems such as online budgeted
allocation, and to more general settings for mixed packing
and covering LPs and non-linear (convex) objectives.

9. Acknowledgements
This research was supported by the Indo-US Virtual Net-
worked Joint Center No. IUSSTF/JC-017/2017. K. Anand
and D. Panigrahi were supported in part by NSF Awards
CCF-1955703 and CCF-1750140 (CAREER), and ARO
Award W911NF2110230. R. Ge was supported in part by
NSF Awards DMS-2031849, CCF-1704656, CCF-1845171
(CAREER), CCF-1934964 (TRIPODS), a Sloan Research
Fellowship, and a Google Faculty Research Award.



Online Algorithms with Multiple Predictions

References
Achlioptas, D., Chrobak, M., and Noga, J. Competitive anal-

ysis of randomized paging algorithms. Theor. Comput.
Sci., 234(1-2):203–218, 2000.

Almanza, M., Chierichetti, F., Lattanzi, S., Panconesi, A.,
and Re, G. Online facility location with multiple advice.
In Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, 2021.

Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor,
J. A general approach to online network optimization
problems. ACM Transactions on Algorithms, 2(4):640–
660, 2006.

Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor,
J. The online set cover problem. SIAM J. Comput., 39(2):
361–370, 2009.

Anand, K., Ge, R., and Panigrahi, D. Customizing ML pre-
dictions for online algorithms. In Proceedings of the 37th
International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 303–313.
PMLR, 2020.

Anand, K., Ge, R., Kumar, A., and Panigrahi, D. A regres-
sion approach to learning-augmented online algorithms.
In Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Process-
ing Systems 2021, NeurIPS 2021., 2021.

Antoniadis, A., Coester, C., Elias, M., Polak, A., and Simon,
B. Online metric algorithms with untrusted predictions.
In Proceedings of the 37th International Conference on
Machine Learning,ICML 2020, 2020a.

Antoniadis, A., Gouleakis, T., Kleer, P., and Kolev, P. Secre-
tary and online matching problems with machine learned
advice. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020b.

Azar, Y., Bhaskar, U., Fleischer, L., and Panigrahi, D. On-
line mixed packing and covering. In Khanna, S. (ed.),
Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013, pp. 85–100.
SIAM, 2013.

Azar, Y., Buchbinder, N., Chan, T. H., Chen, S., Cohen, I. R.,
Gupta, A., Huang, Z., Kang, N., Nagarajan, V., Naor, J.,
and Panigrahi, D. Online algorithms for covering and
packing problems with convex objectives. In IEEE 57th

Annual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pp. 148–157, 2016.

Azar, Y., Leonardi, S., and Touitou, N. Flow time schedul-
ing with uncertain processing time. In Khuller, S. and
Williams, V. V. (eds.), STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pp. 1070–1080. ACM,
2021.

Azar, Y., Panigrahi, D., and Touitou, N. Online graph algo-
rithms with predictions. In Proceedings of the Thirty-third
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2022, January 9-12, 2022.

Bamas, É., Maggiori, A., Rohwedder, L., and Svensson,
O. Learning augmented energy minimization via speed
scaling. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020a.

Bamas, É., Maggiori, A., and Svensson, O. The primal-dual
method for learning augmented algorithms. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.
(eds.), Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020b.

Bansal, N. and Coester, C. Online metric allocation. CoRR,
abs/2111.15169, 2021. URL https://arxiv.org/
abs/2111.15169.

Bansal, N., Buchbinder, N., and Naor, J. A primal-dual
randomized algorithm for weighted paging. In FOCS, pp.
507–517, 2007.

Bansal, N., Buchbinder, N., and Naor, J. S. A simple analy-
sis for randomized online weighted paging. Unpublished
Manuscript, 2010. URL https://www.win.tue.
nl/˜nikhil/pubs/pot-wt2.pdf.

Bansal, N., Coester, C., Kumar, R., Purohit, M., and Vee, E.
Scale-free allocation, amortized convexity, and myopic
weighted paging. CoRR, abs/2011.09076, 2020. URL
https://arxiv.org/abs/2011.09076.

Bhaskara, A., Cutkosky, A., Kumar, R., and Purohit, M.
Online learning with imperfect hints. In Proceedings of
the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 822–
831. PMLR, 2020.

https://arxiv.org/abs/2111.15169
https://arxiv.org/abs/2111.15169
https://www.win.tue.nl/~nikhil/pubs/pot-wt2.pdf
https://www.win.tue.nl/~nikhil/pubs/pot-wt2.pdf
https://arxiv.org/abs/2011.09076


Online Algorithms with Multiple Predictions

Blum, A., Burch, C., and Kalai, A. Finely-competitive
paging. In 40th Annual Symposium on Foundations of
Computer Science, FOCS ’99, 17-18 October, 1999, New
York, NY, USA, pp. 450–458. IEEE Computer Society,
1999.

Borodin, A. and El-Yaniv, R. Online Computation and
Competitive Analysis. Cambridge University Press, 1998.

Buchbinder, N. and Naor, J. Online primal-dual algorithms
for covering and packing. Math. Oper. Res., 34(2):270–
286, 2009a.

Buchbinder, N. and Naor, J. The design of competitive
online algorithms via a primal-dual approach. Founda-
tions and Trends in Theoretical Computer Science, 3(2-3):
93–263, 2009b.

Buchbinder, N., Jain, K., and Naor, J. Online primal-dual
algorithms for maximizing ad-auctions revenue. In ESA,
pp. 253–264, 2007.

Buchbinder, N., Gupta, A., Molinaro, M., and Naor, J. S.
k-servers with a smile: Online algorithms via projections.
In Chan, T. M. (ed.), Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pp.
98–116. SIAM, 2019.

Chrobak, M., Karloof, H., Payne, T., and Vishwnathan,
S. New results on server problems. SIAM Journal on
Discrete Mathematics, 4(2):172–181, 1991.

Dütting, P., Lattanzi, S., Leme, R. P., and Vassilvitskii, S.
Secretaries with advice. In Biró, P., Chawla, S., and
Echenique, F. (eds.), EC ’21: The 22nd ACM Conference
on Economics and Computation, Budapest, Hungary, July
18-23, 2021, pp. 409–429. ACM, 2021.

Eden, T., Indyk, P., Narayanan, S., Rubinfeld, R., Silwal,
S., and Wagner, T. Learning-based support estimation in
sublinear time. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021.

Fiat, A., Karp, R. M., Luby, M., McGeoch, L. A., Sleator,
D. D., and Young, N. E. Competitive paging algorithms.
J. Algorithms, 12(4):685–699, 1991.

Fotakis, D. On the competitive ratio for online facility
location. Algorithmica, 50(1):1–57, 2008.

Fotakis, D. Online and incremental algorithms for facility
location. SIGACT News, 42(1):97–131, 2011.

Fotakis, D., Gergatsouli, E., Gouleakis, T., and Patris, N.
Learning augmented online facility location. CoRR,
abs/2107.08277, 2021. URL https://arxiv.org/
abs/2107.08277.

Gollapudi, S. and Panigrahi, D. Online algorithms for rent-
or-buy with expert advice. In Chaudhuri, K. and Salakhut-
dinov, R. (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pp. 2319–2327.
PMLR, 2019.

Gupta, A. and Nagarajan, V. Approximating sparse covering
integer programs online. Math. Oper. Res., 39(4):998–
1011, 2014.

Hsu, C., Indyk, P., Katabi, D., and Vakilian, A. Learning-
based frequency estimation algorithms. In 7th Interna-
tional Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net, 2019.

Indyk, P., Vakilian, A., and Yuan, Y. Learning-based low-
rank approximations. In Wallach, H. M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 7400–7410, 2019.

Jiang, S. H., Liu, E., Lyu, Y., Tang, Z. G., and Zhang,
Y. Online facility location with predictions. CoRR,
abs/2110.08840, 2021a. URL https://arxiv.org/
abs/2110.08840.

Jiang, Z., Panigrahi, D., and Sun, K. Online algorithms for
weighted caching with predictions. In 47th International
Colloquium on Automata, Languages, and Programming,
ICALP 2020, 2020.

Jiang, Z., Lu, P., Tang, Z. G., and Zhang, Y. Online selection
problems against constrained adversary. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pp. 5002–5012. PMLR,
2021b.

Khanafer, A., Kodialam, M., and Puttaswamy, K. P. N. The
constrained ski-rental problem and its application to on-
line cloud cost optimization. In Proceedings of the INFO-
COM, pp. 1492–1500, 2013.

Kumar, R., Purohit, M., and Svitkina, Z. Improving online
algorithms via ML predictions. In Bengio, S., Wallach,
H. M., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pp. 9684–9693,
2018.

https://arxiv.org/abs/2107.08277
https://arxiv.org/abs/2107.08277
https://arxiv.org/abs/2110.08840
https://arxiv.org/abs/2110.08840


Online Algorithms with Multiple Predictions

Lattanzi, S., Lavastida, T., Moseley, B., and Vassilvitskii,
S. Online scheduling via learned weights. In Chawla, S.
(ed.), Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pp. 1859–1877. SIAM, 2020.

Lavastida, T., Moseley, B., Ravi, R., and Xu, C. Learn-
able and instance-robust predictions for online matching,
flows and load balancing. In Mutzel, P., Pagh, R., and
Herman, G. (eds.), 29th Annual European Symposium
on Algorithms, ESA 2021, September 6-8, 2021, Lisbon,
Portugal (Virtual Conference), volume 204 of LIPIcs,
pp. 59:1–59:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

Lee, R., Maghakian, J., Hajiesmaili, M. H., Li, J., Sitaraman,
R. K., and Liu, Z. Online peak-aware energy scheduling
with untrusted advice. In de Meer, H. and Meo, M. (eds.),
e-Energy ’21: The Twelfth ACM International Conference
on Future Energy Systems, Virtual Event, Torino, Italy,
28 June - 2 July, 2021, pp. 107–123. ACM, 2021.

Lykouris, T. and Vassilvitskii, S. Competitive caching with
machine learned advice. In Dy, J. G. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 3302–3311.
PMLR, 2018.

Lykouris, T. and Vassilvitskii, S. Competitive caching with
machine learned advice. J. ACM, 68(4):24:1–24:25, 2021.

McGeoch, L. A. and Sleator, D. D. A strongly competitive
randomized paging algorithm. Algorithmica, 6(6):816–
825, 1991.

Meyerson, A. Online facility location. In 42nd Annual
Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pp.
426–431. IEEE Computer Society, 2001.

Mitzenmacher, M. A model for learned bloom filters and op-
timizing by sandwiching. In Bengio, S., Wallach, H. M.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pp. 462–471, 2018.

Mitzenmacher, M. Scheduling with predictions and the
price of misprediction. In Vidick, T. (ed.), 11th Innova-
tions in Theoretical Computer Science Conference, ITCS
2020, January 12-14, 2020, Seattle, Washington, USA,
volume 151 of LIPIcs, pp. 14:1–14:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

Shalev-Shwartz, S. Online learning and online convex op-
timization. Found. Trends Mach. Learn., 4(2):107–194,
2012.

Sleator, D. D. and Tarjan, R. E. Amortized efficiency of list
update and paging rules. Commun. ACM, 28(2):202–208,
1985.

Wang, S., Li, J., and Wang, S. Online algorithms for
multi-shop ski rental with machine learned advice. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Wei, A. Better and simpler learning-augmented online
caching. In Byrka, J. and Meka, R. (eds.), Approximation,
Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, APPROX/RANDOM 2020, August
17-19, 2020, Virtual Conference, volume 176 of LIPIcs,
pp. 60:1–60:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

Wei, A. and Zhang, F. Optimal robustness-consistency
trade-offs for learning-augmented online algorithms. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Yao, A. C.-C. Probabilistic computations: Toward a unified
measure of complexity. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pp. 222–
227. IEEE Computer Society, 1977.

Young, N. On-line caching as cache size varies. In Proceed-
ings of the Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’91, pp. 241–250, Philadel-
phia, PA, USA, 1991. Society for Industrial and Applied
Mathematics. ISBN 0-89791-376-0.

Young, N. E. The k-server dual and loose competitiveness
for paging. Algorithmica, 11(6):525–541, 1994.



Online Algorithms with Multiple Predictions

A. Integral Solutions via Online Rounding
In this section, we combine the fractional solutions produced by the algorithms described earlier with existing online
rounding techniques to obtain integral solutions for problems. In general, we state the following meta theorem:

Theorem A.1. Suppose there is an online rounding algorithm for a class of online covering problems (with box constraints)
such that the cost of (output) integral solution is at most β times the cost of the (input) fractional solution. Moreover, suppose
there is an online algorithm (without predictions) for this class of online covering problems that produces integral solutions
and has a competitive ratio of α. Then, there is an algorithm for this class of online covering problems with k suggestions
that produces an online integral solution whose cost is at most O(min{β ln k · DYNAMIC, α · OPT}).

We now consider some specific instantiations of this meta theorem for specific integral covering problems.

A.1. Integral Set Cover

We consider the integral set cover problem, i.e., where the variables xi are required to be integral, i.e., in {0, 1} rather than
in [0, 1]. The following a well-known result on rounding fractional set cover solutions online:

Theorem A.2 (Alon et al. (Alon et al., 2009)). Given any feasible solution to the fractional online set cover problem, there
is an online algorithm for finding a feasible solution to the integral online set cover problem whose cost is at most O(logm)
times that of the fractional solution, where m is the number of elements.

By applying this theorem on the fractional solution produced by Theorem 4.1, we get a competitive ratio of O(logm log k)
for the integral online set cover problem with k predictions against the DYNAMIC benchmark:

Theorem A.3. There is an algorithm for the integral online set cover problem that produces an online solution whose cost
is at most O(min{lnm ln k · DYNAMIC, lnm ln d · OPT}) in the multiple predictions setting with k predictions.

It is well-known that the competitive ratio of the integral online set cover problem (without predictions) is at least
Ω̃(logm log d) (Alon et al., 2009)5. In the degenerate case of k = d, any instance of online set cover can be generated in the
k predictions settings where the benchmark solution DYNAMIC will be the optimal solution, since all the sets containing an
element can be provided as suggestions in each online step. As a consequence, the competitive ratio in Theorem A.3 is tight
(up to lower order terms).

A.2. Integral (Weighted) Caching

Next, we consider the integral weighted caching problem, i.e., where the variables xp(r) have to be in {0, 1} rather than
[0, 1]. We use the following known result about online rounding of fractional weighted caching solutions:

Theorem A.4 (Bansal, Buchbinder, and Naor (Bansal et al., 2007)). Given any feasible online solution to the fractional
weighted caching problem, there is an online algorithm for finding a feasible online solution to the integral weighted caching
problem whose cost is at most O(1) times that of the fractional solution.

By applying this theorem on the fractional solution produced by Theorem 5.2, we get a competitive ratio of O(log k) for the
integral weighted caching problem with k predictions against the DYNAMIC benchmark:

Theorem A.5. There is an online algorithm for the integral weighted caching problem that produces an online solution
whose cost is at most O(min{ln k · DYNAMIC, lnh · OPT}) in the multiple predictions setting with k predictions.

B. Details for Online Covering with Box Constraints
In this section, we give details of the online covering problem with box constraints, and prove Theorem 6.1.

B.1. Online Algorithm

Our algorithm for OCP with box constraints is given in Algorithm 2. As earlier, for all i, we simultaneously raise xij (and
possibly yi as well) at the rate specified by the algorithm. As in the case of OCP, we raise these variables only till the
constraint is satisfied up to a factor of 1

2 , and any individual variable does not cross 1
2 . This allows us to double all variable

5The notations Ω̃(·) and Õ(·) hide lower order terms.



Online Algorithms with Multiple Predictions

and satisfy the constraints at an additional factor of 2 in the cost. Moreover, the same argument as in Algorithm 1 implies
that this algorithm is also feasible, i.e., there is at least one variable that can be increased in the while loop.

Algorithm 2 Algorithm for Online FACILITY LOCATION

On arrival of a new constraint
∑n
i=1 aijxij = 1:

Initialize xij = 0, ∀j.
Set Γij :=

∑k
s=1 xij(s), ∀j and δ = 1

k .
while

∑
j xij <

1
2

for all i such that xij < 1
2 :

if xij < yi

Increase xij at the rate ∂xij

∂t =
(
aij
dij

)
· (xij + δ · Γij)

else
Increase both variables xij , yi at the same rate

∂yi
∂t =

∂xij

∂t =
(

aij
dij+ci

)
· (xij + δ · Γij).

B.2. Analysis

In this section, we analyze Algorithm 2. We first bound the rate of increase of the cost of the algorithm.
Lemma B.1. The rate of increase of the cost for Algorithm 2 is at most 3

2 .

Proof. Consider Algorithm 2 when the constraint
∑n
i=1 aijxij = 1 arrives. For any i, we claim:

dij ·
∂xij
∂t

+ ci ·
∂yi
∂t

= aij (xij + δ · Γij) . (8)

To show this, there are two cases to consider:

• xij < yi: In this case, ∂yi∂t = 0, and dij · ∂xij

∂t = aij (xij + δ · Γij) and so (8) holds.

• xij = yi: In this case, ∂yi∂t =
∂xij

∂t =
aij

dij+ci
·
(
xij +

Γij

k

)
, i.e., ci · ∂yi∂t + dij · ∂xij

∂t = aij (xij + δ · Γij), and so (8)
holds.

Therefore, the rate of change of the objective function is given by:∑
i

(
dij ·

∂xij
∂t

+ ci ·
∂yi
∂t

)
(8)
=
∑
i

aij (xij + δ · Γij) =
∑
i

aijxij +

∑
s

∑
i aijxij(s)

k
≤ 1

2
+ 1 =

3

2
.

We now describe the potential function, which has a similar structure as OCP. Let xDYN
ij , yDYN

i denote the values of the
variables xij , yi respectively in the benchmark solution DYNAMIC. The potential function for a variable xij is then defined
as follows:

ϕij = dij · xDYN
ij · ln

(1 + δ)xDYN
ij

xij + δxDYN
ij

, where δ =
1

k
,

and the potential for the variable yi is given by:

ψi = ci · yDYN
i · ln (1 + δ)yDYN

i

yi + δyDYN
i

.

The overall potential is
ϕ =

∑
i,j:xDYN

ij ≥xij

ϕij +
∑

i:yDYN
i ≥yi

ψi.

The rest of the proof proceeds along the same lines as that for the online covering problem. But we give the details for the
sake of completeness.

The next lemma is the analogue of Lemma 3.2, and shows that the potential ϕ is always non-negative.



Online Algorithms with Multiple Predictions

Lemma B.2. For any values of the variables xij , yi, xDYN
ij , yDYN

i , the potential function ϕ is non-negative.

Proof. We show that each of the quantities ϕij , ψi in the expression for ϕ is non-negative. Consider a pair i, j for which
xDYN
ij ≥ xij . Then

ϕij = dij · xDYN
ij · ln

(1 + δ)xDYN
ij

xij + δxDYN
ij

= dij · xDYN
ij · ln 1 + δ

xij

xDYN
ij

+ δ
≥ 0.

Similarly, ψi ≥ 0 if yDYN
i ≥ yi. This shows that ϕ ≥ 0.

Now we bound the potential against the benchmark solution DYNAMIC. The proof of this lemma is very similar to that
of Lemma 3.3.

Lemma B.3. The following bounds hold: ϕij ≤ dij ·xDYN
ij · ln(1+ 1

δ ) = dijx
DYN
ij ·O(log k) and ψi ≤ ci ·yDYN

i · ln(1+ 1
δ )) =

ciy
DYN
i ·O(log k). As a consequence, the overall potential ϕ ≤ O(log k) ·

(∑
i

∑
j dijx

DYN
ij +

∑
j ciy

DYN
i

)
.

Proof. We have

ϕij = dijx
DYN
ij · ln

(1 + δ)xDYN
ij

xi + δxDYN
ij

≤ dijx
DYN
ij · ln

(1 + δ)xDYN
ij

δxDYN
ij

= dijx
DYN
ij · ln

(
1 +

1

δ

)
= dijx

DYN
ij ·O(log k).

The bound for ψi also follows similarly.

Finally, we bound the rate of decrease of potential ϕ with increase in the variables in Algorithm 2.

Lemma B.4. The rate of decrease of the potential ϕ in Algorithm 2 is at least 1
2 .

Proof. It is easy to check that
∂ϕij
∂xij

= −
dijx

DYN
ij

xij + δxDYN
ij

,
∂ψi
∂yi

= − ciy
DYN
i

yi + δyDYN
i

. (9)

Consider the step when the j-th constraint arrives. We claim that for any index i ∈ [n],

∂ (ϕij + ψi)

∂t
≤ −aijxDYN

ij · xij + δΓij
xij + δxDYN

ij

. (10)

To prove this, we consider two cases:

• xij < yi: In this case, ∂xij

∂t =
aij
dij

· (xij + δΓij) ,
∂yi
∂t = 0. Combining this with (9), we see that

∂ (ϕij + ψi)

∂t
=
∂ϕij
∂t

=
∂ϕij
∂xij

· ∂xij
∂t

= −aijxDYN
ij · xij + δΓij

xij + δxDYN
ij

.

• xij = yi: In this case, ∂xij

∂t = ∂yi
∂t =

aij
dij+ci

·
(
xij +

Γij

k

)
. Using (9) again and the fact that yi = xij , we see that

∂ (ϕij + ψi)

∂t
=
∂ϕij
∂xij

· ∂xij
∂t

+
∂ψi
∂yi

· ∂yi
∂t

= − aij
ci + dij

(
dijx

DYN
ij

xij + δxDYN
ij

+
ciy

DYN
i

xij + δyDYN
i

)
· (xij + δΓij) .

Since yDYN
i ≥ xDYN

ij ,
yDYN
i

xij+δyDYN
i

≥ xDYN
ij

xij+δxDYN
ij
. Therefore, the RHS above is at most −aijxDYN

ij · xij+δΓij

xij+δxDYN
ij
.

Thus, we have shown that inequality (10) always holds. Now, we have two cases:

• Γij ≥ xDYN
ij : Inequality (10) implies that

∂(ϕij + ψi)

∂t
≤ −aijxDYN

ij .



Online Algorithms with Multiple Predictions

• Γij < xDYN
ij : Using (10) again, we see that

d(ϕij + ψi)

dt
≤ −aijxDYN

ij · xij + δ · Γij
xij + δxDYN

ij

= −aijΓij ·
xDYN
ij

Γij
· xij + δ · xDYN

ij

xij + δxDYN
ij

≤ −aijΓij .

We know that at least one of the suggestions in the i-th step is supported by the DYNAMIC benchmark. Let s(j) ∈ [k] be the
index of such a supported suggestion. Then,

Γij =

k∑
s=1

xij(s) ≥ xij(s(j)), and

xDYN
ij ≥ xij(s(j)) since s(j) is supported by DYNAMIC.

Therefore, in both cases above, we get
∂(ϕij + ψi)

∂t
≤ −aij · xij(s(j)).

Let I denote the index set {i ∈ [n] : xDYN
ij ≥ xij} (here j is fixed). We claim that the total decrease in potential satisfies:

∂ϕ

∂t
≤ −

∑
i∈I

aij · xij(s(j)). (11)

To see this, let I ′ denote the index set {i : yDYN
i ≥ yi}. Then the term in ϕ corresponding to step j is ϕj :=

∑
i∈I ϕij +∑

i∈I′ ψi. First consider an index i ∈ I for which xij < yi. In this case, we know that ∂ψi

∂t = 0, and so irrespective of
whether i belongs to I ′ or not, the rate of change of the terms in ϕj corresponding to i is

∂(ϕij + ψi)

∂t
≤ −aij · xij(s(j)).

Now consider an index i ∈ I for which xij = yi. Since yDYN
i ≥ xDYN

ij , it follows that yDYN
i ≥ yi and so i ∈ I ′ as well.

Therefore, the rate of change of the terms in ϕj corresponding to i is equal to

∂(ϕij + ψi)

∂t
≤ −aij · xij(s(j)).

Finally, consider an index i ∈ I ′ \ I . It is easy to verify that ∂ψi

∂t ≤ 0. Thus, inequality (11) follows.

The rest of the argument proceeds as in the proof of Lemma 3.4. By feasibility of the s(j)-th suggestion in step j, we have:∑
j

aijxij(s(j)) ≥ 1

i.e.,
∑
i∈I

aijxij(s(j)) +
∑
i/∈I

aijxij(s(j)) ≥ 1

i.e.,
∑
i∈I

aijxij(s(j)) +
∑
i/∈I

aijxij > 1
(
since i /∈ I, we have xij > xDYN

ij ≥ xij(s(j))
)

i.e.,
∑
i∈I

aijxij(s(j)) +

n∑
i=1

aijxij > 1

i.e.,
∑
i∈I

aijxij(s(j)) >
1

2

(
since

n∑
i=1

xij <
1

2
in Algorithm 2

)
.

The desired result now follows from (11).

We now combine these lemmas to obtain the following result:



Online Algorithms with Multiple Predictions

Theorem B.5. There is an algorithm for the online covering problem with box constraints that produces an online solution
whose cost is at most O(log k) · DYNAMIC in the multiple predictions setting with k predictions.

Proof. Initially, let xij = yi = 0 for all i, j but let xDYN
ij , yDYN

i be their final value. Then, by Lemma B.3, the potential
ϕ is at most O(log k) times the cost of DYNAMIC. Now, as Algorithm 2 increases the values of the variables xij , yi, it
incurs cost at rate at most 3

2 (by Lemma B.1) and the potential ϕ decreases at rate at least 1
2 (by Lemma B.4). Since ϕ is

always non-negative (by Lemma B.2), it follows that the total cost of the algorithm is at most 3 times the potential ϕ at the
beginning, i.e., at most O(log k) times the DYNAMIC benchmark.

Finally, we robustify the solution produced by Algorithm 2 using the same ideas as in Theorem 2.3. Namely, we run
Algorithm 2 to produce one solution and an online algorithm without prediction to obtain another solution. Then, these two
solutions are fed into a meta algorithm running Algorithm 2 to obtain the final solution. This obtains Theorem 6.1, which
we stated in Section 6.


