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ABSTRACT

The Gomory-Hu tree or cut tree (Gomory and Hu, 1961) is a classic
data structure for reporting 𝑠 − 𝑡 mincuts (and by duality, the values
of 𝑠 − 𝑡 maxflows) for all pairs of vertices 𝑠 and 𝑡 in an undirected
graph. Gomory and Hu showed that it can be computed using 𝑛 − 1
exact maxflow computations. Surprisingly, this remains the best
algorithm for Gomory-Hu trees more than 50 years later, even for

approximate mincuts. In this paper, we break this longstanding bar-
rier and give an algorithm for computing a (1 + 𝜖)-approximate
Gomory-Hu tree using polylog(𝑛) maxflow computations. Specifi-
cally, we obtain the runtime bounds we describe below.

We obtain a randomized (Monte Carlo) algorithm for undirected,
weighted graphs that runs in �̃� (𝑚+𝑛3/2) time and returns a (1+𝜖)-
approximate Gomory-Hu tree algorithm whp. Previously, the best
running time known was �̃� (𝑛5/2), which is obtained by running
Gomory and Hu’s original algorithm on a cut sparsifier of the graph.

Next, we obtain a randomized (Monte Carlo) algorithm for undi-
rected, unweighted graphs that runs in𝑚4/3+𝑜 (1) time and returns
a (1 + 𝜖)-approximate Gomory-Hu tree algorithm whp. This im-
proves on our first result for sparse graphs, namely𝑚 = 𝑜 (𝑛9/8).
Previously, the best running time known for unweighted graphs
was �̃� (𝑚𝑛) for an exact Gomory-Hu tree (Bhalgat et al., STOC
2007); no better result was known if approximations are allowed.

As a consequence of our Gomory-Hu tree algorithms, we also
solve the (1 + 𝜖)-approximate all pairs mincut (APMC) and single
source mincut (SSMC) problems in the same time bounds. (These
problems are simpler in that the goal is to only return the 𝑠 − 𝑡
mincut values, and not the mincuts.) This improves on the recent
algorithm for these problems in �̃� (𝑛2) time due to Abboud et al.

(FOCS 2020).
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1 INTRODUCTION

The algorithmic study of cuts and flows is one of the pillars of combi-
natorial optimization. The foundations of this field were established
in the celebrated work of Ford and Fulkerson in the mid-50s [8].
They studied the 𝑠 − 𝑡 edge connectivity problem, namely finding a
set of edges of minimum weight whose removal disconnects two
vertices 𝑠 from 𝑡 in a graph (such a set of edges is called an 𝑠 − 𝑡
mincut). They showed that the weight of an 𝑠 − 𝑡 mincut equals
the maximum flow between 𝑠 and 𝑡 in the graph, a duality that
has underpinned much of the success in this field. Soon after their
work, in a remarkable result, Gomory and Hu [11] showed that
by using just 𝑛 − 1 maxflows, they could construct a tree 𝑇 on the
vertices of an undirected graph𝐺 such that for every pair of vertices
𝑠 and 𝑡 , the 𝑠 − 𝑡 edge connectivity in 𝑇 was equal to that in 𝐺 . In
other words, the

(𝑛
2
)
pairs of vertices had at most 𝑛 − 1 different

edge connectivities and they could be obtained using just 𝑛 − 1
maxflow calls. Moreover, for all vertex pairs 𝑠 and 𝑡 , the bipartition
of vertices in the 𝑠 − 𝑡 mincut in tree 𝑇 (note that this is just the
bipartition created by removing the minimum weight edge on the
unique 𝑠 − 𝑡 path in 𝑇 ) was also an 𝑠 − 𝑡 mincut in graph 𝐺 . This
data structure, called a cut tree or more appropriately a Gomory-Hu

tree (abbreviated GH-tree) after its creators, has become a standard
feature in algorithms textbooks, courses, and research since their
work.

But, rather surprisingly, in spite of the remarkable successes in
this field as a whole, the best algorithm for constructing a GH-tree
remains the one given by Gomory and Hu almost six decades after
their work. There have been alternatives suggested along the way,
although none of them unconditionally improves on the original
construction. Gusfield [12] gave an algorithm that also uses 𝑛 − 1
maxflows, but on the original graph itself (the GH algorithm runs
maxflows on contracted graphs as we will see later) to improve the
performance of the algorithm in practice. Bhalgat et al. [5] (see also
[13]) obtained an �̃� (𝑚𝑛) algorithm for this problem, but only for
unweighted graphs. (Note that using the state of the art maxflow
algorithms [17], the GH algorithm has a running time of𝑚4/3+𝑜 (1)𝑛
for unweighted graphs, which is slower.) Karger and Levine [14]
matched this running time using a randomized maxflow subroutine,
also for unweighted graphs. Recently, Abboud et al. [2] improved
this bound for sparse unweighted graphs to �̃� (𝑚3/2𝑛1/6), thereby
demonstrating that the �̃� (𝑚𝑛) is not tight, at least in certain edge
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density regimes. Further improvements have been obtained in spe-
cial cases: in particular, near-linear time algorithms are known for
planar graphs [7] and surface-embedded graphs [6]. Experimen-
tal studies of GH tree algorithms have also been performed [10].
The reader is referred to a survey article on this topic for more
background [18].

In spite of all the works described above, the status of the GH
tree problem for general weighted graphs has remained unchanged
for the last six decades. Namely, we know that a GH tree can be
constructed using 𝑛 − 1 maxflows, but can we do better? In fact,
surprisingly, a faster GH tree algorithm is not known even if one

allowed approximations, i.e., if the 𝑠 − 𝑡 mincuts in the GH tree
and those in the original graph could differ by a multiplicative
factor. At first glance, this would appear surprising, since �̃� (𝑚)-
time algorithms for (1 + 𝜖)-approximation of maxflows are known.
(In contrast, obtaining an exact maxflow algorithm that runs in
near-linear time remains one of the major open challenges in graph
algorithms.) But, the difficulty in using these faster approximate
maxflow algorithms in the GH tree problem is that the GH algorithm
(and also Gusfield’s algorithm) use recursive calls in a manner that
approximation errors can build up across the different recursive
layers of the algorithm. Approximation, however, does present
some advantage, in that one can use standard graph sparsification
techniques to reduce the number of edges to �̃� (𝑛) (see, e.g., [4, 9])
and then apply the GH algorithm (with exact maxflow) on this
sparse graph. This reduces the running time to 𝑛 − 1 invocations of
maxflow on �̃� (𝑛)-edge graphs, which has a total running time of
�̃� (𝑛5/2) using the current state of the art maxflow algorithm of Lee
and Sidford [15]. But, fundamentally, even allowing approximations,
we do not have a GH tree algorithm that beats the 𝑂 (𝑛) maxflows
benchmark set by the original GH algorithm.

But, there has been some exciting progress of late in this line
of research. Very recently, in a beautiful paper, Abboud et al. [1]
showed that the problem of finding all pairs edge connectivities
(that a GH tree obtains) can be reduced to polylog(𝑛) instances of
the single source mincut problem (we call this the SSMC problem).
Given a fixed source vertex 𝑠 , the latter problem asks for the 𝑠 − 𝑡
edge connectivity of 𝑠 with every other vertex 𝑡 . Their reduction is
also robust to approximations because, crucially, the recursive depth
of the reduction is only polylog(𝑛) (as against the recursive depth
of GH and Gusfield’s algorithms, which can be Ω(𝑛)). So, in essence,
they reduced the recursive depth of the algorithm in exchange for
using a more powerful primitive, namely edge connectivity for 𝑛−1
pairs of vertices (one of the pair is common) rather than for just a
single pair. The algorithm that they used to solve the single source
edge connectivity problem is the obvious one: run 𝑠 − 𝑡 maxflow
for every vertex 𝑡 . Naturally, this does not improve the running
time for exact all pairs edge connectivity, since we are still running
𝑛 − 1 maxflows. But, importantly, if approximations are allowed,
we can now use the �̃� (𝑚)-time approximate maxflow algorithm
rather than the exact one. Coupled with sparsification, this yields a
running time bound of �̃� (𝑛2) improving on the previous bound of
�̃� (𝑛5/2).

However, while this improves the time complexity of approxi-
mate all pairs edge connectivity, the reduction framework of
[1] does not support the construction of an approximate GH tree.

Namely, they give a data structure (called a flow tree) that returns
the (approximate) edge connectivity of a vertex pair when queried,
but does not return a mincut for that pair. Nevertheless, this result
creates a range of possibilities, now that we have a technique for de-
signing computation trees for all pairs edge connectivity that have
small recursive depth. In this paper, we give the first approximation
algorithm (our approximation factor is 1 + 𝜖 for any 𝜖 > 0) for GH
tree that beats the running time of 𝑛 − 1 maxflow calls. Namely, we
show that a (1 + 𝜖)-approximate GH-tree can be constructed using
polylog number of calls to an exact maxflow subroutine, plus �̃� (𝑚)
time outside these maxflow calls.

1.1 Our Results

To state our main result, we first formally define an approximate
GH tree.

Definition 1.1 (Approximate Gomory-Hu tree). Given a graph

𝐺 = (𝑉 , 𝐸), a (1 + 𝜖)-approximate Gomory-Hu tree is a weighted tree

𝑇 on 𝑉 such that

• For all 𝑠, 𝑡 ∈ 𝑉 , consider the minimum-weight edge (𝑢, 𝑣) on
the unique 𝑠−𝑡 path in𝑇 . Let𝑈 ′ be the vertices of the connected
component of𝑇 − (𝑢, 𝑣) containing 𝑠 . Then, the set𝑈 ′ ⊆ 𝑉 is a

(1 + 𝜖)-approximate (𝑠, 𝑡)-mincut, and its value is the weight

of the (𝑢, 𝑣) edge in 𝑇 .

Wenow state ourmain theorem that obtains a (1+𝜖)-approximate
GH tree for weighted graphs:

Theorem 1.2. Let 𝐺 be an undirected graph with non-negative

edge weights. There is a randomized algorithm that w.h.p., outputs

a (1 + 𝜖)-approximate Gomory-Hu tree and runs in �̃� (𝑚) time plus

calls to exact max-flow on instances with a total of �̃� (𝑛𝜖−1 log2 Δ)
vertices and �̃� (𝑛𝜖−1 log2 Δ) edges, where Δ is the ratio of maximum

to minimum edge weights. Assuming polynomially bounded edge

weights and using the �̃� (𝑚
√
𝑛) time max-flow algorithm of Lee and

Sidford [15], the algorithm runs in �̃� (𝑚 + 𝑛3/2𝜖−2) time.

For unweighted graphs, we obtain the following result, which
gives a better running time for sparse graphs (if𝑚 = 𝑜 (𝑛9/8)):

Theorem 1.3. Let𝐺 be an unweighted, undirected graph. There is

a randomized algorithm that w.h.p., outputs a (1 + 𝜖)-approximate

Gomory-Hu tree and runs in �̃� (𝑚) time plus calls to exact max-

flow on unweighted instances with a total of �̃� (𝑛𝜖−1) vertices and
�̃� (𝑚𝜖−1) edges. Using the 𝑚4/3+𝑜 (1)

-time max-flow algorithm for

unweighted graphs of Liu and Sidford [17], the algorithm runs in

𝑚4/3+𝑜 (1)𝜖−1 time.

To the best of our knowledge, this is the first algorithm for (ap-
proximate) GH tree that goes beyond 𝑛 − 1maxflow calls in general
weighted graphs. Our reduction to exact maxflow instances is “black
box”, i.e., any maxflow algorithm can be used; as a consequence, if
one were to assume that eventually maxflow would be solved in
�̃� (𝑚)-time as is often conjectured, then these theorems would au-
tomatically yield an �̃� (𝑚)-time algorithm for a (1+𝜖)-approximate
GH tree.

Given these results, one might be tempted to replace the exact
maxflow calls in our algorithm by approximate maxflow subrou-
tines. Indeed, if this were possible, the running time of the overall
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algorithm would be �̃� (𝑚) without additional assumptions (i.e.,
without assuming a �̃� (𝑚)-time exact maxflow algorithm). Unfortu-
nately, a key tool that we employ called the isolating cuts lemma,
which was recently introduced by the authors for the deterministic
mincut problem [16], requires the computation of exact maxflows;
we are not aware of any approximation versions of this lemma. We
leave the problem of obtaining a near-linear time approximate GH
tree algorithm as an interesting open question (that is probably
easier than an exact �̃� (𝑚)-time maxflow algorithm).

Abboud et al. [1] recently considered the APMC (also called flow
tree) problem, which asks for the value of the 𝑠 − 𝑡 mincut for all
vertex pairs 𝑠, 𝑡 but not a mincut itself.

Definition 1.4 (All-pairs min-cut). In the all-pairs min-cut (APMC)
problem, the input is an undirected graph 𝐺 = (𝑉 , 𝐸) and we need

to output a data structure that allows us to query the value of the

(𝑠, 𝑡)-mincut for each pair 𝑠, 𝑡 ∈ 𝑉 . In the (1+𝜖)-approximate APMC
problem, the input is the same, and we need to output a (1 + 𝜖)-
approximation to the value of the (𝑠, 𝑣)-mincut for each 𝑣 ∈ 𝑉 \ {𝑠}.

Abboud et al. gave a framework that reduces the APMC problem
to polylog(𝑛) calls to the single source mincut (SSMC) problem.

Definition 1.5 (Single-source min-cut). In the single-source min-
cut (SSMC) problem, the input is an undirected graph𝐺 = (𝑉 , 𝐸) and
a source vertex 𝑠 ∈ 𝑉 , and we need to output a (𝑠, 𝑣)-mincut for each

𝑣 ∈ 𝑉 \ {𝑠}. In the (1 + 𝜖)-approximate SSMC problem, the input is

the same, and we need to output a (1 + 𝜖)-approximate (𝑠, 𝑣)-mincut

for each 𝑣 ∈ 𝑉 \ {𝑠}.

To solve the SSMC instances, Abboud et al. used 𝑛 − 1 maxflows.
Our work shows that the SSMC problem can be approximately
solved using polylog(𝑛) maxflows calls, and that an approximate
GH tree can be recovered in the process. Our main tool is the
following subroutine that we call the Cut Threshold (CT) problem,
which may have further applications on its own:

Theorem 1.6 (Cut Threshold algorithm). Let 𝐺 = (𝑉 , 𝐸) be
a weighted, undirected graph, and let 𝑠 ∈ 𝑉 , and let _ ≥ 0 be a

parameter (the “cut threshold"). There is an algorithm that outputs

whp all vertices 𝑣 ∈ 𝑉 withmincut(𝑠, 𝑣) ≤ _, and runs in �̃� (𝑚) time

plus polylog(𝑛) calls to max-flow instances on 𝑂 (𝑛)-vertex, 𝑂 (𝑚)-
edge graphs.

We use this theorem to obtain an algorithm for approximately
solving the SSMC problem that is faster than running approximate
maxflows for all the 𝑛 − 1 vertices separately:

Theorem 1.7. Let𝐺 be a weighted, undirected graph, and let 𝑠 ∈ 𝑉 .

There is an algorithm that outputs, for each vertex 𝑣 ∈ 𝑉 \ {𝑠}, a
(1 + 𝜖)-approximation of mincut(𝑠, 𝑣), and runs in �̃� (𝑚 logΔ) time

plus polylog(𝑛) · logΔ calls to max-flow on𝑂 (𝑛)-vertex,𝑂 (𝑚)-edge
graphs, where Δ is the ratio of maximum to minimum edge weights.

Finally, note that a (approximate) GH tree also solves the (approx-
imate) APMC problem. But, we can also get an APMC algorithm
by simply plugging in the SSMC algorithm in Theorem 1.7 to the
reduction framework of Abboud et al. This improves the time com-
plexity of the APMC problem from �̃� (𝑚𝑛) obtained by Abboud et

al. [1] to �̃� (𝑚 + 𝑛3/2).

1.2 Our Techniques

To sketch our main ideas, let us first think of the CT problem (The-
orem 1.6). Note that this theorem is already sufficient to obtain the
improved the running times for the SSMC and APMC problems,
although obtaining a (1 + 𝜖)-approximate GH tree needs additional
ideas. To solve the CT problem, our main tool is the isolating cuts
lemma, introduced by the authors recently for solving the deter-
ministic mincut problem [16]. We first describe this tool.1

Definition 1.8 (Minimum isolating cuts). Consider a weighted,

undirected graph 𝐺 = (𝑉 , 𝐸) and a subset 𝑅 ⊆ 𝑉 (|𝑅 | ≥ 2). The
minimum isolating cuts for 𝑅 is a collection of sets {𝑆𝑣 : 𝑣 ∈ 𝑅}
such that for each vertex 𝑣 ∈ 𝑅, the set 𝑆𝑣 is the side containing 𝑣

of the minimal (𝑣, 𝑅 \ 𝑣)-mincut, i.e., for any set 𝑆 satisfying 𝑣 ∈ 𝑆
and 𝑆 ∩ (𝑅 \ 𝑣) = ∅, we have 𝑤 (𝜕𝑆) ≤ 𝑤 (𝜕𝑆𝑣), and moreover, if

𝑤 (𝜕𝑆) = 𝑤 (𝜕𝑆𝑣) then 𝑆𝑣 ⊆ 𝑆 .

Lemma 1.9 (Isolating Cuts Lemma [16])). Fix a subset 𝑅 ⊆ 𝑉

(|𝑅 | ≥ 2). There is an algorithm that computes the minimum isolating

cuts {𝑆𝑣 : 𝑣 ∈ 𝑅} for 𝑅 using 𝑂 (log |𝑅 |) calls to 𝑠–𝑡 max-flow on

weighted graphs of 𝑂 (𝑛) vertices and 𝑂 (𝑚) edges, and takes �̃� (𝑚)
deterministic time outside of the max-flow calls. If the original graph

𝐺 is unweighted, then the inputs to the max-flow calls are also un-

weighted. Moreover, the sets {𝑆𝑣 : 𝑣 ∈ 𝑅} are disjoint.

The crucial aspect of the isolating cuts lemma is that the number
of maxflow calls is 𝑂 (log𝑛) irrespective of the size of 𝑅. For the
CT problem, define 𝑍 = 𝑉 \ {𝑠}; our goal is to invoke the isolat-
ing cuts lemma polylog(𝑛) times and identify all vertices 𝑣 ∈ 𝑍

with mincut(𝑠, 𝑣) ≤ _ whp. In fact, we will only describe an algo-
rithm that identifies each vertex in 𝑍 satisfying this condition with
probability Ω(1/polylog(𝑛)); removing these vertices from 𝑍 and
repeating 𝑂 (log𝑛) times identifies all such vertices in 𝑍 whp. Fix
a GH tree 𝑇 of the graph rooted at 𝑠 , and let (𝑢, 𝑣) be an edge of
weight ≤ _ in 𝑇 where 𝑢 is closer to 𝑠 than 𝑣 . Let 𝑇𝑣 denote the
subtree under 𝑣 in 𝑇 , and let 𝑛𝑣 be the number of vertices in 𝑍 that
appear in𝑇𝑣 . For any vertex 𝑧 ∈ 𝑇𝑣 , we havemincut(𝑠, 𝑧) ≤ _. Now,
suppose we sample a set of vertices from 𝑍 at rate 1/𝑛𝑣 and define
this sample as 𝑅. Then, we invoke the isolating cuts lemma with
the set 𝑅, after adding 𝑠 to this set. Next, if the isolating cuts lemma
returns cuts of value ≤ _, we mark the vertices in 𝑍 separated by
those cuts from 𝑠 as having mincut(𝑠, 𝑧) ≤ _ and remove them
from 𝑍 . Clearly, every marked vertex 𝑧 indeed has min(𝑠, 𝑧) ≤ _.
But, how many vertices do we end up marking? Let us focus on the
subtree 𝑇𝑣 . With constant probability, exactly one vertex from 𝑇𝑣
is sampled in 𝑅, and with probability Ω(1/𝑛𝑣), this sampled vertex
is 𝑣 itself. In that happens, the isolating cut lemma would return
the 𝑠 − 𝑣 mincut, namely the cut represented by the edge (𝑢, 𝑣) in
the GH tree. This allows us to mark all the 𝑛𝑣 vertices that are in
𝑍 and appear in 𝑇𝑣 . So, roughly speaking, we are able to mark at
least 𝑛𝑣 vertices with probability 1/𝑛𝑣 in this case. Of course, we do
not know the value of 𝑛𝑣 , but we try all sampling levels in inverse
powers of 2. We formalize and refine this argument to show that
we can indeed mark every vertex 𝑧 ∈ 𝑍 withmincut(𝑠, 𝑧) ≤ _ with
probability at least Ω(1/log𝑛) using this algorithm.
1We remark that the minimal condition was not present in [16], but the algorithm to
find minimum isolating cuts from [16] can be trivially modified to output the minimal
(𝑣, 𝑅 \ 𝑣)-mincuts, so we omit the algorithm and direct interested readers to [16].

1740



STOC ’21, June 21–25, 2021, Virtual, Italy Jason Li and Debmalya Panigrahi

We now use the CT algorithm as a “sieve” to obtain an SSMC
algorithm. We start withmincut(𝑠, 𝑣) for all vertices 𝑣 ∈ 𝑉 \ {𝑠} ten-
tatively set to the maximum possible edge connectivity (call it _max).
Next, we run the CT algorithm with _ = (1 − 𝜖)_max. The vertices
𝑣 that are identified by this algorithm as having mincut(𝑠, 𝑣) ≤ _

drop down to the next level of the hierarchy, while the remaining
vertices 𝑣 ′ are declared to have mincut(𝑠, 𝑣 ′) ∈ ((1 − 𝜖)_, _]. In
the next level of the hierarchy, we again invoke the CT algorithm,
but now with _ equal to (1 − 𝜖) factor of the previous iteration. In
this manner, we iteratively continue moving down the hierarchy,
cutting the threshold _ by a factor of (1− 𝜖) in every step, until the
connectivity of all vertices has been determined.

Finally, we come to the problem of obtaining an approximate
GH tree. Gomory and Hu’s original algorithm uses the following
strategy: find an 𝑠 − 𝑡 mincut for any pair of vertices 𝑠 and 𝑡 , and
recurse on the two sides of the cut in separate subproblems where
the other side of the cut is contracted to a single vertex. They used
submodularity of cuts to show that contracting one side of an 𝑠 − 𝑡
mincut does not change the connectivity between vertices on the
other side. Moreover, they gave a procedure for combining the two
GH trees returned by the recursive calls into a single GH tree at
the end of the recursion. Ideally, we would like to use the same
algorithm but replace an exact 𝑠 − 𝑡 mincut with an approximate
one. But now, the connectivities in the recursive subproblems are
(additively) distorted by the approximation error of the 𝑠 − 𝑡 mincut.
This imposes two additional restrictions. (a) First, the values of the
𝑠 − 𝑡 mincuts identified in the recursive algorithm must now be
monotone non-decreasing with depth of the recursion so that the
approximation error on a larger 𝑠 − 𝑡 mincut doesn’t get propagated
to a smaller 𝑠 ′−𝑡 ′ mincut further down in the recursion. (b) Second,
the depth of recursion must now be polylog(𝑛) so that one can
control the buildup of approximation error in the recursion by
setting the error parameter in a single step to be 𝜖/polylog(𝑛).
Unfortunately, neither of these conditions is met by Gomory and
Hu’s algorithm. For instance, the recursion depth can be 𝑛 − 1 if
each 𝑠 − 𝑡 mincut is a degree cut. The order of 𝑠 − 𝑡 mincut values
in the recursion is also arbitrary and depends on the choice of 𝑠
and 𝑡 in each step (which itself is arbitrary).

Let us first consider condition (a). Instead of finding the 𝑠 − 𝑡
mincut for an arbitrary pair of terminal vertices 𝑠 and 𝑡 , suppose we
found the Steiner mincut on the terminals, i.e., the cut of smallest
value that splits the terminals. This would also suffice in terms
of the framework since a Steiner mincut is also an 𝑠 − 𝑡 mincut
for some pair 𝑠, 𝑡 . But, it brings additional advantages: namely, we
get the monotonicity in cut values with recursive depth that we
desire. At a high level, this is the idea that we implement: we use
the CT algorithm (with some technical modifications) where we
set the threshold _ to the value of the Steiner mincut, and identify
a partitioning of the terminals where each subset of the partition
represents a (1 + 𝜖) approximation to the Steiner mincut.

But, how do we achieve condition (b)? Fixing the vertex 𝑠 in
the invocation of the SSMC algorithm, we can identify terminal
vertices 𝑣 that have mincut(𝑠, 𝑣) ∈ ((1 − 𝜖)_, _], where _ is the
Steiner mincut. But, these approximate Steiner mincuts might be
unbalanced in terms of the number of vertices on the two sides of
the cut. To understand the problem, suppose there is a single Steiner
mincut identified by the CT algorithm, and this cut is the degree cut

of 𝑠 . Then, one subproblem contains all but one vertex in the next
round of recursion; consequently, the recursive depth can be high.
We overcome this difficulty in two steps. First, we ensure that the
only “large” subproblem that we recurse on is the one that contains
𝑠 . This can be ensured by sampling 𝑂 (log𝑛) different vertices as
𝑠 , which boosts the probability that 𝑠 is on the larger side of an
unbalanced approximate Steiner mincut. This ensures that in the
recursion tree, we can only have a large recursive depth along the
path containing 𝑠 . Next, we show that even though we are using
an approximate method for detemining mincuts, the approxima-
tion error only distorts the connectivities in the subproblems not
containing 𝑠 . This ensures that the approximation errors can build
up only along paths in the recursion tree that have depth 𝑂 (log𝑛).
Combining these two techniques, we obtain our overall algorithm
for an approximate GH tree.

2 (1 + 𝜖)-APPROXIMATE SINGLE SOURCE

MIN-CUT ALGORITHM

2.1 Preliminaries

We have already defined the SSMC problem, but for our analysis,
we need some more definitions. In particular, we first define a
Gomory-Hu Steiner tree and its approximation version.

Definition 2.1 (Gomory-Hu Steiner tree). Given a graph 𝐺 =

(𝑉 , 𝐸) and a set of terminals𝑈 ⊆ 𝑉 , the Gomory-Hu Steiner tree is a

weighted tree𝑇 on the vertices𝑈 , together with a function 𝑓 : 𝑉 → 𝑈 ,

such that

• For all 𝑠, 𝑡 ∈ 𝑈 , consider the minimum-weight edge (𝑢, 𝑣)
on the unique 𝑠 − 𝑡 path in 𝑇 . Let 𝑈 ′ be the vertices of the
connected component of 𝑇 − (𝑢, 𝑣) containing 𝑠 . Then, the set
𝑓 −1 (𝑈 ′) ⊆ 𝑉 is an (𝑠, 𝑡)-mincut, and its value is𝑤𝑇 (𝑢, 𝑣).

Definition 2.2 (Approximate Gomory-Hu Steiner tree). Given

a graph 𝐺 = (𝑉 , 𝐸) and a set of terminals 𝑈 ⊆ 𝑉 , the (1 + 𝜖)-
approximate Gomory-Hu Steiner tree is a weighted tree 𝑇 on the

vertices𝑈 , together with a function 𝑓 : 𝑉 → 𝑈 , such that

• For all 𝑠, 𝑡 ∈ 𝑈 , consider the minimum-weight edge (𝑢, 𝑣)
on the unique 𝑠 − 𝑡 path in 𝑇 . Let 𝑈 ′ be the vertices of the
connected component of 𝑇 − (𝑢, 𝑣) containing 𝑠 . Then, the set
𝑓 −1 (𝑈 ′) ⊆ 𝑉 is a (1 + 𝜖)-approximate (𝑠, 𝑡)-mincut, and its

value is𝑤𝑇 (𝑢, 𝑣).

It would also be useful in our analysis to use the notion of a
minimal Gomory-Hu tree. We define this next.

Definition 2.3 (Rooted minimal Gomory-Hu Steiner tree). Given

a graph 𝐺 = (𝑉 , 𝐸) and a set of terminals𝑈 ⊆ 𝑉 , a rooted minimal

Gomory-Hu Steiner tree is a Gomory-Hu Steiner tree on𝑈 , rooted at

some vertex 𝑟 ∈ 𝑈 , with the following additional property:

(∗) For all 𝑡 ∈ 𝑈 \{𝑟 }, consider the minimum-weight edge (𝑢, 𝑣) on
the unique 𝑟−𝑡 path in𝑇 ; if there are multiple minimumweight

edges, let (𝑢, 𝑣) denote the one that is closest to 𝑡 . Let𝑈 ′ be the
vertices of the connected component of 𝑇 − (𝑢, 𝑣) containing
𝑟 . Then, 𝜕𝐺 𝑓 −1 (𝑈 ′) ⊆ 𝑉 is a minimal (𝑟, 𝑡)-mincut, and its

value is𝑤𝑇 (𝑢, 𝑣).

The following theorem establishes the existence of a rooted
minimal Gomory-Hu Steiner tree rooted at any given vertex.
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Theorem 2.4. For any graph 𝐺 = (𝑉 , 𝐸), terminals 𝑈 ⊆ 𝑉 , and

root 𝑟 ∈ 𝑈 , there exists a rooted minimal Gomory-Hu Steiner tree

rooted at 𝑟 .

Proof. Let 𝜖 > 0 be a small enough weight, and let 𝐺 ′ be the
graph 𝐺 with an additional edge (𝑟, 𝑣) of weight 𝜖 added for each
𝑣 ∈ 𝑉 \ {𝑟 }. (If the edge (𝑟, 𝑣) already exists in 𝐺 , then increase
its weight by 𝜖 instead.) If 𝜖 > 0 is small enough, then for all
𝑡 ∈ 𝑉 \ {𝑟 } and 𝑆 ⊆ 𝑉 , if 𝜕𝐺′𝑆 is an (𝑟, 𝑡)-mincut in𝐺 ′, then 𝜕𝐺𝑆 is
an (𝑟, 𝑡)-mincut in 𝐺 .

Let (𝑇 ′, 𝑓 ) be a Gomory-Hu Steiner tree for 𝐺 ′. We claim that it
is essentially a minimal Gomory-Hu Steiner tree for 𝐺 , except that
its edge weights need to be recomputed as mincuts in 𝐺 and not
𝐺 ′. More formally, let 𝑇 be the tree 𝑇 ′ with the following edge re-
weighting: for each edge (𝑢, 𝑣) in𝑇 , take a connected component𝑈 ′
of𝑇 − (𝑢, 𝑣) and reset the edge weight of (𝑢, 𝑣) to be𝑤 (𝜕𝐺 𝑓 −1 (𝑈 ′))
and not 𝑤 (𝜕𝐺′ 𝑓 −1 (𝑈 ′)). We now claim that (𝑇, 𝑓 ) is a minimal
Steiner Gomory-Hu tree for 𝐺 .

We first show that (𝑇, 𝑓 ) is a Gomory-Hu Steiner tree for 𝐺 . Fix
𝑠, 𝑡 ∈ 𝑈 , let (𝑢, 𝑣) be the minimum-weight edge on the 𝑠 − 𝑡 path
in 𝑇 ′, and let 𝑈 ′ be the vertices of the connected component of
𝑇 ′ − (𝑢, 𝑣) containing 𝑠 . Since (𝑇 ′, 𝑓 ) is a Gomory-Hu Steiner tree
for𝐺 ′, we have that 𝜕𝐺′ 𝑓 −1 (𝑈 ′) is an (𝑠, 𝑡)-mincut in𝐺 ′. If 𝜖 > 0 is
small enough, then by our argument from before, 𝜕𝐺 𝑓 −1 (𝑈 ′) is also
an (𝑠, 𝑡)-mincut in𝐺 . By our edge re-weighting of𝑇 , the edge (𝑢, 𝑣)
has the correct weight. Moreover, (𝑢, 𝑣) is the minimum-weight
edge on the 𝑠 − 𝑡 path in 𝑇 , since a smaller weight edge would
contradict the fact that 𝜕𝐺 𝑓 −1 (𝑈 ′) is an (𝑠, 𝑡)-mincut.

We now show the additional property (∗) that makes (𝑇, 𝑓 ) a
minimal Gomory-Hu Steiner tree. Fix 𝑡 ∈ 𝑈 \ {𝑟 }, and let (𝑢, 𝑣)
and 𝑈 ′ be defined as in (∗), i.e., (𝑢, 𝑣) is the minimum-weight
edge (𝑢, 𝑣) on the 𝑟 − 𝑡 path that is closest to 𝑡 , and 𝑈 ′ is the ver-
tices of the connected component of 𝑇 − (𝑢, 𝑣) containing 𝑟 . Since
(𝑇, 𝑓 ) is a Gomory-Hu Steiner tree for 𝐺 , we have that 𝜕𝐺 𝑓 −1 (𝑈 ′)
is an (𝑟, 𝑡)-mincut of value 𝑤𝑇 (𝑢, 𝑣). Suppose for contradiction
that 𝜕𝐺 𝑓 −1 (𝑈 ′) is not a minimal (𝑟, 𝑡)-mincut. Then, there ex-
ists 𝑆 ⊊ 𝑓 −1 (𝑈 ′) such that 𝜕𝑆 is also an (𝑟, 𝑡)-mincut. By con-
struction of 𝐺 ′, 𝑤 (𝜕𝐺′𝑆) = 𝑤 (𝜕𝐺𝑆) + |𝑆 |𝜖 and 𝑤 (𝜕𝐺′ 𝑓 −1 (𝑈 ′)) =
𝑤 (𝜕𝐺 𝑓 −1 (𝑈 ′)) + |𝑓 −1 (𝑈 ′) |𝜖 . We have 𝑤 (𝜕𝐺𝑆) = 𝑤 (𝜕𝐺 𝑓 −1 (𝑈 ′))
and |𝑆 | < |𝑓 −1 (𝑈 ′) |, so𝑤 (𝜕𝐺′𝑆) < 𝑤 (𝜕𝐺′ 𝑓 −1 (𝑈 ′)). In other words,
𝑓 −1 (𝑈 ′) is not an (𝑟, 𝑡)-mincut in 𝐺 ′, contradicting the fact that
(𝑇 ′, 𝑓 ) is a Gomory-Hu Steiner tree for𝐺 ′. Therefore, property (∗)
is satisfied, concluding the proof. □

2.2 Algorithms for the CT and SSMC Problems

As described earlier, the main tool in our SSMC algorithm is an
algorithm for the Cut Threshold (CT) problem. We first describe
a single step of the CutThreshold algorithm (we call this Cut-
ThresholdStep).

We remark that throughout this section, wewill always set 𝑧 = ∞,
so the constraint |𝑆𝑖𝑣 ∩𝑈 | ≤ 𝑧 in line 4 can be ignored. However,
the variable 𝑧 will play a role in the next section on computing a
Gomory-Hu tree.

Let 𝐷 = 𝐷0 ∪𝐷1 ∪ · · · ∪𝐷 ⌊lg |𝑈 | ⌋ be the union of the sets output
by the algorithm. Let 𝐷∗ be all vertices 𝑣 ∈ 𝑈 \ 𝑠 for which there
exists an (𝑠, 𝑣)-cut of weight at most𝑊 whose side containing 𝑣

has at most 𝑧 vertices in𝑈 .

Algorithm 1 CutThresholdStep(𝐺 = (𝑉 , 𝐸), 𝑠,𝑈 ,𝑊 , 𝑧)

1: Initialize 𝑅0 ← 𝑈 and 𝐷 ← ∅
2: for 𝑖 from 0 to ⌊lg |𝑈 |⌋ do
3: Compute minimum isolating cuts {𝑆𝑖𝑣 : 𝑣 ∈ 𝑅𝑖 } on inputs
𝐺 and 𝑅𝑖

4: Let 𝐷𝑖 be the union of 𝑆𝑖𝑣 ∩𝑈 over all 𝑣 ∈ 𝑅𝑖 \ {𝑠} satisfying
𝑤 (𝜕𝑆𝑖𝑣) ≤𝑊 and |𝑆𝑖𝑣 ∩𝑈 | ≤ 𝑧

5: 𝑅𝑖+1 ← subsample of 𝑅𝑖 where each vertex in 𝑅𝑖 \ {𝑠} is
sampled independently with probability 1/2, and 𝑠 is sampled
with probability 1

6: return 𝐷0 ∪ 𝐷1 ∪ · · · ∪ 𝐷 ⌊lg |𝑈 | ⌋

uv

r(v)

Ur(v)

Figure 1: Let 𝑖 = ⌊lg𝑛𝑟 (𝑣) ⌋ = ⌊lg 7⌋ = 2, and let the red vertices

be those sampled in 𝑅2. Vertex 𝑣 is active and hits 𝑢 because

𝑣 is the only vertex in𝑈𝑟 (𝑣) that is red.

Lemma 2.5. 𝐷 ⊆ 𝐷∗ and E[|𝐷 |] = Ω( |𝐷∗ |/log |𝑈 |).

Proof. We first prove that 𝐷 ⊆ 𝐷∗. Each vertex 𝑢 ∈ 𝐷 belongs
to some 𝑆𝑖𝑣 satisfying𝑤 (𝜕𝑆𝑖𝑣) ≤𝑊 and |𝑆𝑖𝑣 ∩𝑈 | ≤ 𝑧. In particular,
𝜕𝑆𝑖𝑣 is an (𝑠,𝑢)-cut with weight at most𝑊 whose side 𝑆𝑖𝑣 containing
𝑢 has at most 𝑧 vertices in𝑈 , so 𝑢 ∈ 𝐷∗.

It remains to prove that E[|𝐷 |] ≥ Ω( |𝐷∗ |/log |𝑈 |). Consider
a rooted minimal Steiner Gomory-Hu tree 𝑇 of 𝐺 on terminals 𝑈
rooted at 𝑠 , which exists by Theorem 2.4. For each vertex 𝑣 ∈ 𝑈 \{𝑠},
let 𝑟 (𝑣) be defined as the child vertex of the lowest weight edge on
the path from 𝑣 to 𝑠 in 𝑇 . If there are multiple lowest weight edges,
choose the one with the maximum depth.

For each vertex 𝑣 ∈ 𝐷∗, consider the subtree rooted at 𝑣 , define
𝑈𝑣 ⊆ 𝐷∗ to be the vertices in the subtree, and define 𝑛𝑣 as the
number of vertices in the subtree. We say that a vertex 𝑣 ∈ 𝐷∗ is
active if 𝑣 ∈ 𝑅𝑖 for 𝑖 = ⌊lg𝑛𝑟 (𝑣) ⌋. In addition, if 𝑈𝑟 (𝑣) ∩ 𝑅𝑖 = {𝑣},
then we say that 𝑣 hits all of the vertices in 𝑈𝑟 (𝑣) (including itself);
see Figure 1. In particular, in order for 𝑣 to hit any other vertex, it
must be active. For completeness, we say that any vertex in𝑈 \ 𝐷∗
is not active and does not hit any vertex.

To prove that E[|𝐷 |] ≥ Ω( |𝐷∗ |/log |𝑈 |), we will show that
(a) each vertex 𝑢 that is hit is in 𝐷 ,
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(b) the total number of pairs (𝑢, 𝑣) for which 𝑣 ∈ 𝐷∗ hits 𝑢 is at
least 𝑐 |𝐷∗ | in expectation for some small enough constant
𝑐 > 0, and

(c) with probability at least 1 − 𝑐
2 |𝑈 |2 (for the constant 𝑐 > 0

in (b)), each vertex 𝑢 is hit by at most 𝑂 (log |𝑈 |) vertices
𝑣 ∈ 𝐷∗.

For (a), consider the path from 𝑢 to the root 𝑠 in 𝑇 , and take any
vertex 𝑣 ∈ 𝐷∗ on the path that is active (possibly 𝑢 itself). Such a
vertex must exist since 𝑢 is hit by some vertex. By definition, for 𝑖 =
⌊lg𝑛𝑟 (𝑣) ⌋, we have𝑈𝑟 (𝑣)∩𝑅𝑖 = {𝑣}, so 𝜕𝑓 −1 (𝑈𝑟 (𝑣) ) is a (𝑣, 𝑅𝑖 \{𝑣})-
cut. By the definition of 𝑟 (𝑣), we have that 𝜕𝑓 −1 (𝑈𝑟 (𝑣) ) is a (𝑣, 𝑠)-
mincut. On the other hand, we have that 𝜕𝑆𝑖𝑣 is a (𝑣, 𝑅𝑖 \{𝑣})-mincut,
so in particular, it is a (𝑣, 𝑠)-cut. It follows that 𝜕𝑓 −1 (𝑈𝑟 (𝑣) ) and
𝜕𝑆𝑖𝑣 are both (𝑣, 𝑠)-mincuts and (𝑣, 𝑅𝑖 \ 𝑣)-mincuts, and 𝑤 (𝜕𝑆𝑖𝑣) =
mincut(𝑠, 𝑣) ≤ 𝑊 . Since 𝑇 is a minimal Gomory-Hu Steiner tree,
we must have 𝑓 −1 (𝑈𝑟 (𝑣) ) ⊆ 𝑆𝑖𝑣 . Since 𝑆𝑖𝑣 is the minimal (𝑣, 𝑅𝑖 \ {𝑣})-
mincut, it is also the minimal (𝑣, 𝑠)-mincut, so 𝑆𝑖𝑣 ⊆ 𝑓 −1 (𝑈𝑟 (𝑣) ).
It follows that 𝑓 −1 (𝑈𝑟 (𝑣) ) = 𝑆𝑖𝑣 . Since 𝑓 −1 (𝑈𝑟 (𝑣) ) is the minimal
(𝑣, 𝑠)-mincut and 𝑣 ∈ 𝐷∗, we must have |𝑓 −1 (𝑈𝑟 (𝑣) ) ∩𝑈 | ≤ 𝑧, so in
particular, |𝑆𝑖𝑣 ∩𝑈 | = |𝑓 −1 (𝑈𝑟 (𝑣) ) ∩𝑈 | ≤ 𝑧. Therefore, the vertex
𝑣 satisfies all the conditions of line 4. Moreover, since 𝑢 ∈ 𝑈𝑟 (𝑣) ⊆
𝑓 −1 (𝑈𝑟 (𝑣) ) = 𝑆𝑖𝑣 , vertex 𝑢 is added to 𝐷 in the set 𝑆𝑖𝑣 ∩𝑈 .

For (b), for 𝑖 = ⌊lg𝑛𝑟 (𝑣) ⌋, we have 𝑣 ∈ 𝑅𝑖 with probability exactly
1/2𝑖 = Θ(1/𝑛𝑟 (𝑣) ), and with probability Ω(1), no other vertex in
𝑈𝑟 (𝑣) joins 𝑅𝑖 . Therefore, 𝑣 is active with probability Ω(1/𝑛𝑟 (𝑣) ).
Conditioned on 𝑣 being active, it hits exactly 𝑛𝑟 (𝑣) many vertices.
It follows that 𝑣 hits Ω(1) vertices in expectation.

For (c), the number of vertices 𝑣 that hit vertex 𝑢 is at most the
number of active vertices 𝑣 for which 𝑟 (𝑣) is on the path from 𝑢

to 𝑠 in 𝑇 . Label these vertices 𝑢 = 𝑣1, 𝑣2, . . . , 𝑣ℓ = 𝑠 , ordered by
increasing distance from 𝑢 to 𝑟 (𝑣𝑖 ) in 𝑇 . Each vertex 𝑣 𝑗 ∈ 𝐷∗ is
active with probability Θ(1/𝑛𝑟 (𝑣𝑗 ) ), which is at most Θ(1/ 𝑗) since
𝑣1, . . . , 𝑣 𝑗 ∈ 𝑈𝑟 (𝑣𝑗 ) . Each vertex 𝑣 𝑗 ∉ 𝐷∗ is never active. Therefore,
the expected number of active vertices on the path from 𝑢 to 𝑠 is
at most

∑ℓ
𝑗=1 Θ(1/ 𝑗) = Θ(ln ℓ) ≤ Θ(ln |𝑈 |). A standard Chernoff

bound shows that with probability at least 1− 𝑐
2 |𝑈 |3 for any constant

𝑐 > 0, the number of active vertices on the path is indeed𝑂 (ln |𝑈 |),
where the 𝑂 (·) hides the dependency on 𝑐 . Taking a union bound
over all 𝑢 ∈ 𝑈 , the probability that this is true for all vertices is at
least 1 − 𝑐

2 |𝑈 |2 .
Finally, we show why properties (a) to (c) imply

E[|𝐷 |] ≥ Ω( |𝐷∗ |/log |𝑈 |). In the event that property (c) fails, the
total number of pairs (𝑢, 𝑣) for which 𝑣 hits 𝑢 can be trivially upper
bounded by |𝑈 |2. Since this occurs with probability at most 𝑐

2 |𝑈 |2 ,
the total contribution to the expectation 𝑐 |𝐷∗ | in property (b) is
at most 𝑐/2. Therefore, the contribution to the expectation in the
event that property (c) succeeds is at least 𝑐 |𝐷∗ | − 𝑐/2 ≥ (𝑐/2) |𝐷∗ |.
In this case, since each vertex is hit at most 𝑂 (log |𝑈 |) times, there
are at least Ω( |𝐷∗ |/log |𝑈 |) vertices hit in expectation, all of which
are included in 𝐷 by property (a). □

We now use iterate Algorithm CutThresholdStep to obtain
the CutThreshold algorithm:

Algorithm 2 CutThreshold(𝐺 = (𝑉 , 𝐸), 𝑠,𝑊 )
1: Initialize𝑈 ← 𝑉 and 𝐷total ← ∅
2: for 𝑂 (log2 𝑛) iterations do
3: Let 𝐷 be the union of the sets output by

CutThresholdStep(𝐺, 𝑠,𝑈 ,𝑊 ,∞)
4: Update 𝐷total ← 𝐷total ∪ 𝐷 and𝑈 ← 𝑈 \ 𝐷
5: return 𝐷total

Corollary 2.6. W.h.p., the output 𝐷total of CutThreshold is ex-

actly all vertices 𝑣 ∈ 𝑈 \ {𝑠} for which the (𝑠, 𝑣)-mincut has weight

at most𝑊 .

Proof. By Lemma 2.5, |𝑈 ∩ 𝐷∗ | decreases by Ω( |𝐷∗ |/log𝑛) in
expectation. After 𝑂 (log2 𝑛) iterations, we have E[|𝑈 ∩ 𝐷∗ |] ≤
1/poly(𝑛), so w.h.p.,𝑈 ∩𝐷∗ = ∅. Each vertex in 𝐷∗ that is removed
from 𝑈 is added to 𝐷total, and no vertices in 𝑈 \ 𝐷∗ are added to
𝐷total, so w.h.p., the algorithm returns the correct set 𝐷∗. □

In other words, CutThreshold is an algorithm that fulfills The-
orem 1.6, restated below.

Theorem 1.6 (Cut Threshold algorithm). Let 𝐺 = (𝑉 , 𝐸) be
a weighted, undirected graph, and let 𝑠 ∈ 𝑉 , and let _ ≥ 0 be a

parameter (the “cut threshold"). There is an algorithm that outputs

whp all vertices 𝑣 ∈ 𝑉 withmincut(𝑠, 𝑣) ≤ _, and runs in �̃� (𝑚) time

plus polylog(𝑛) calls to max-flow instances on 𝑂 (𝑛)-vertex, 𝑂 (𝑚)-
edge graphs.

Finally, we use the CutThreshold algorithm to design our
SSMC algorithm:

Algorithm 3 ApproxSSMC(𝐺 = (𝑉 , 𝐸), 𝑠, 𝜖)
1: Initialize bounds: 𝑤min ← minimum weight of an edge in 𝐺 ,

and𝑤max ← maximum weight of an edge
2: for all integers 𝑗 ≥ 0 s.t. (1 + 𝜖) 𝑗𝑤min ∈ [𝑤min, (1 + 𝜖)𝑛𝑤max]

do

3: 𝑊𝑗 ← (1 + 𝜖) 𝑗𝑤min
4: 𝐷 𝑗 ← CutThreshold(𝐺, 𝑠,𝑊 )
5: For each vertex 𝑣 ∈ 𝑉 , take the largest 𝐷𝑖 containing 𝑣 , and set

_̃(𝑣) ←𝑊𝑖

6: return _̃ : 𝑉 → R

Lemma 2.7. W.h.p., the output _̃ of ApproxSSMC satisfies

mincut(𝑠, 𝑣) ≤ _̃(𝑣) ≤ (1 + 𝜖)mincut(𝑠, 𝑣).

Proof. For all 𝑣 ∈ 𝑉 \ {𝑠}, we have 𝑤min ≤ mincut(𝑠, 𝑣) ≤
𝑤 (𝜕({𝑠})) ≤ 𝑛𝑤max, so there is an integer 𝑗 with
𝑊𝑗 ∈ [mincut(𝑠, 𝑣), (1 + 𝜖)mincut(𝑠, 𝑣)). The lemma follows from
Corollary 2.6 applied to this 𝑗 . □

We have therefore proved Theorem 1.7, restated below.

Theorem 1.7. Let𝐺 be a weighted, undirected graph, and let 𝑠 ∈ 𝑉 .

There is an algorithm that outputs, for each vertex 𝑣 ∈ 𝑉 \ {𝑠}, a
(1 + 𝜖)-approximation of mincut(𝑠, 𝑣), and runs in �̃� (𝑚 logΔ) time

plus polylog(𝑛) · logΔ calls to max-flow on𝑂 (𝑛)-vertex,𝑂 (𝑚)-edge
graphs, where Δ is the ratio of maximum to minimum edge weights.

1743



Approximate Gomory–Hu Tree Is Faster Than 𝑛 − 1Max-Flows STOC ’21, June 21–25, 2021, Virtual, Italy

v1

Si
v1

Si
v2v2

Si
v3v3

xv2

xv1
xv3

fv2

fv3

fv1

Tv2

Tv3

Tv1

flarge

Tlarge

T

Gv2

Glarge

Gv3

Gv1

G

yv1

yv3

yv2

recursive graphs

Combine

Figure 2: Recursive construction of 𝐺
large

and 𝐺𝑣 for 𝑣 ∈
𝑅𝑖
small

. Here, 𝑅𝑖
small

= {𝑣1, 𝑣2, 𝑣3}, denoted by red vertices on

the top left. The dotted blue curves on the right mark the

boundaries of the regions 𝑓 −1𝑣𝑖
(𝑢) : 𝑢 ∈ 𝑈𝑣𝑖 and 𝑓 −1𝑣

large

(𝑢) : 𝑢 ∈
𝑈
large

. The light green edges on the bottom left are the edges

(𝑓𝑣𝑖 (𝑥𝑣𝑖 ), 𝑓large (𝑦𝑣𝑖 )) added on line 1 of Combine.

3 APPROXIMATE GOMORY-HU STEINER

TREE

3.1 Unweighted Graphs

Let 𝜖 > 0 be a fixed parameter throughout the recursive algorithm.
We present our approximate Steiner Gomory-Hu tree algorithm in
ApproxSteinerGHTree below. See Figure 2 for a visual guide to
the algorithm.

At a high level, the algorithm applies divide-and-conquer by
cutting the graph along sets 𝑆𝑖𝑣 computed by CutThreshold-
Step, applying recursion to each piece, and stitching the recur-
sive Gomory-Hu trees together in the same way as the standard
recursive Gomory-Hu tree construction. To avoid complications,
we only select sets 𝑆𝑖𝑣 from a single level 𝑖 ∈ {0, 1, 2 . . . , ⌊lg |𝑈 |⌋},
which are guaranteed to be vertex-disjoint. Furthermore, instead
of selecting all sets {𝑆𝑖𝑣 : 𝑣 ∈ 𝑅𝑖 }, we only select those for which
|𝑆𝑖𝑣 ∩𝑈 | ≤ |𝑈 |/2; this allows us to bound the recursion depth. By
choosing the source 𝑠 ∈ 𝑈 at random, we guarantee that in ex-
pectation, we do not exclude too many sets 𝑆𝑖𝑣 . The chosen sets
partition the graph into disjoint sets of vertices (including the set of
vertices outside of any chosen set 𝑆𝑖𝑣 ). We split the graph along this
partition a similar way to the standard Gomory-Hu tree construc-
tion: for each set in the partition, contract all other vertices into a
single vertex and recursively compute the Steiner Gomory-Hu tree
of the contracted graph. This gives us a collection of Gomory-Hu
Steiner trees, which we then stitch together into a single Gomory-
Hu Steiner tree in the standard way.

Algorithm 4 ApproxSteinerGHTree(𝐺 = (𝑉 , 𝐸),𝑈 )
1: _ ← global Steiner mincut of 𝐺 with terminals𝑈
2: 𝑠 ← uniformly random vertex in𝑈
3: Call CutThresholdStep(𝐺, 𝑠,𝑈 , (1 + 𝜖)_, |𝑈 |/2), and let 𝑅 𝑗

and 𝑆 𝑗𝑣 : 𝑣 ∈ 𝑅 𝑗 (0 ≤ 𝑗 ≤ lg |𝑈 |) be the intermediate variables
in the algorithm

4: Let 𝑖 ∈ {0, 1, . . . , ⌊lg |𝑈 |⌋} be the iteration maximizing�� ⋃
𝑣∈𝑅𝑖 (𝑆𝑖𝑣 ∩𝑈 )

��
5: for each 𝑣 ∈ 𝑅𝑖 do ⊲ Construct recursive graphs and apply

recursion
6: Let 𝐺𝑣 be the graph 𝐺 with vertices 𝑉 \ 𝑆𝑖𝑣 contracted to a

single vertex 𝑥𝑣 ⊲ 𝑆𝑖𝑣 are disjoint
7: Let𝑈𝑣 ← 𝑆𝑖𝑣 ∩𝑈
8: (𝑇𝑣, 𝑓𝑣) ← ApproxSteinerGHTree(𝐺𝑣,𝑈𝑣)
9: Let 𝐺large be the graph 𝐺 with (disjoint) vertex sets 𝑆𝑖𝑣 con-

tracted to single vertices 𝑦𝑣 for all 𝑣 ∈ 𝑅𝑖
10: Let𝑈large ← 𝑈 \⋃𝑣∈𝑅𝑖 (𝑆𝑖𝑣 ∩𝑈 )
11: (𝑇large, 𝑓large) ← ApproxSteinerGHTree(𝐺large,𝑈large)

12: Combine (𝑇large, 𝑓large) and {(𝑇𝑣, 𝑓𝑣) : 𝑣 ∈ 𝑅𝑖 } into (𝑇, 𝑓 ) ac-
cording to Combine

13: return (𝑇, 𝑓 )

Algorithm 5 Combine((𝑇large, 𝑓large), {(𝑇𝑣, 𝑓𝑣) : 𝑣 ∈ 𝑅𝑖 })

1: Construct𝑇 by startingwith the disjoint union𝑇large∪
⋃

𝑣∈𝑅𝑖 𝑇𝑣

and, for each 𝑣 ∈ 𝑅𝑖 , adding an edge between 𝑓𝑣 (𝑥𝑣) ∈ 𝑈𝑣 and
𝑓large (𝑦𝑣) ∈ 𝑈large of weight𝑤 (𝜕𝐺𝑆𝑖𝑣)

2: Construct 𝑓 : 𝑉 → 𝑈 by 𝑓 (𝑣 ′) = 𝑓large (𝑣 ′) if 𝑣 ′ ∈ 𝑈large and
𝑓 (𝑣 ′) = 𝑓𝑣 (𝑣 ′) if 𝑣 ′ ∈ 𝑈𝑣 for some 𝑣 ∈ 𝑅𝑖

3: return (𝑇, 𝑓 )

3.2 Approximation

Since the approximation factors can potentially add up down the
recursion tree, we need to bound the depth of the recursive algo-
rithm. Here, there are two types of recursion: the recursive calls
(𝐺𝑣,𝑈𝑣), and the single call (𝐺large,𝑈large). Taking a branch down
(𝐺𝑣,𝑈𝑣) is easy: since |𝑈𝑣 | ≤ |𝑈 |/2, the algorithm can travel down
such a branch at most lg |𝑈 | times. The difficult part is in bounding
the number of branches down (𝐺large,𝑈large). It turns out that after
polylog(𝑛) consecutive branches down (𝐺large,𝑈large), the Steiner
mincut increases by factor (1 + 𝜖), w.h.p.; we elaborate on this in-
sight in Section 3.3, which concerns the running time. Since the
Steiner mincut can never decrease down any recursive branch, it
can increase by factor (1 + 𝜖) at most 𝜖−1polylog(𝑛) logΔ times.
Thus, we have a bound of 𝜖−1polylog(𝑛) logΔ on the recursion
depth, w.h.p.

This depth bound alone is not enough for the following reason:
if the approximation factor increase by (1 + 𝜖) along each recursive
branch, then the total approximation becomes (1+𝜖)𝜖−1polylog(𝑛) logΔ,
which is no good because the (1 + 𝜖) and 𝜖−1 cancel each other.
Here, our key insight is that actually, the approximation factor does
not distort at all down (𝐺large,𝑈large). It may increase by factor

1744



STOC ’21, June 21–25, 2021, Virtual, Italy Jason Li and Debmalya Panigrahi

(1 + 𝜖) down any (𝐺𝑣,𝑈𝑣), but this can only happen lg |𝑈 | times,
giving us an approximation factor of (1 + 𝜖)lg |𝑈 | , which is fine
because we can always retroactively replace 𝜖 with Θ(𝜖/lg |𝑈 |) to
obtain the desired (1 + 𝜖).

The lemma below formalizes our insight that approximation
factors are preserved down the branch (𝐺large,𝑈large).

Lemma 3.1. For any distinct vertices 𝑝, 𝑞 ∈ 𝑈large, we have

mincut𝐺large (𝑝, 𝑞) = mincut𝐺 (𝑝, 𝑞).

Proof. Since 𝐺large is a contraction of 𝐺 , we have
mincut𝐺large (𝑝, 𝑞) ≥ mincut𝐺 (𝑝, 𝑞). To show the reverse inequality,
fix any (𝑝, 𝑞)-mincut in 𝐺 , and let 𝑆 be one side of the mincut. We
show that for each 𝑣 ∈ 𝑅𝑖 , either 𝑆𝑖𝑣 ⊆ 𝑆 or 𝑆𝑖𝑣 ⊆ 𝑉 \ 𝑆 . Assuming
this, the cut 𝜕𝑆 stays intact when the sets 𝑆𝑖𝑣 are contracted to form
𝐺large, so mincut𝐺large (𝑝, 𝑞) ≤ 𝑤 (𝜕𝑆) = mincut𝐺 (𝑝, 𝑞).

Consider any 𝑣 ∈ 𝑅𝑖 , and suppose first that 𝑣 ∈ 𝑆 . Then, 𝑆𝑖𝑣 ∩
𝑆 is still a (𝑣, 𝑅𝑖 \ 𝑣)-cut, and 𝑆𝑖𝑣 ∪ 𝑆 is still a (𝑝, 𝑞)-cut. By the
submodularity of cuts,

𝑤 (𝜕𝐺𝑆𝑖𝑣) +𝑤 (𝜕𝐺𝑆) ≥ 𝑤 (𝜕𝐺 (𝑆𝑖𝑣 ∪ 𝑆)) +𝑤 (𝜕𝐺 (𝑆𝑖𝑣 ∩ 𝑆)) .

In particular, 𝑆𝑖𝑣 ∩ 𝑆 must be a minimum (𝑣, 𝑅𝑖 \ 𝑣)-cut. Since 𝑆𝑖𝑣
is the minimal (𝑣, 𝑅𝑖 \ 𝑣)-mincut, it follows that 𝑆𝑖𝑣 ∩ 𝑆 = 𝑆𝑖𝑣 , or
equivalently, 𝑆𝑖𝑣 ⊆ 𝑆 .

Suppose now that 𝑣 ∉ 𝑆 . In this case, we can swap 𝑝 and 𝑞,
and swap 𝑆 and 𝑉 \ 𝑆 , and repeat the above argument to get 𝑆𝑖𝑣 ⊆
𝑉 \ 𝑆 . □

Similarly, the lemma below says that approximation factors dis-
tort by at most (1 + 𝜖) down a (𝐺𝑣,𝑈𝑣) branch.

Lemma 3.2. For any 𝑣 ∈ 𝑅𝑖 and any distinct vertices 𝑝, 𝑞 ∈ 𝑈𝑣 , we

have mincut𝐺 (𝑝, 𝑞) ≤ mincut𝐺𝑣
(𝑝, 𝑞) ≤ (1 + 𝜖)mincut𝐺 (𝑝, 𝑞).

Proof. The lower boundmincut𝐺 (𝑝, 𝑞) ≤ mincut𝐺𝑣
(𝑝, 𝑞) holds

because 𝐺𝑣 is a contraction of 𝐺 , so we focus on the upper bound.
Fix any (𝑝, 𝑞)-mincut in 𝐺 , and let 𝑆 be the side of the mincut not
containing 𝑠 (recall that 𝑠 ∈ 𝑈 and 𝑠 ∉ 𝑆𝑖𝑣 ). Since 𝑆𝑖𝑣∪𝑆 is a (𝑝, 𝑠)-cut
(it is also a (𝑞, 𝑠)-cut), it is in particular a Steiner cut for terminals
𝑈 , so 𝑤 (𝑆𝑖𝑣 ∪ 𝑆) ≥ _. Also, 𝑤 (𝑆𝑖𝑣) ≤ (1 + 𝜖)_ by the choice of the
threshold (1+ 𝜖)_ (line 3). Together with the submodularity of cuts,
we obtain

(1 + 𝜖)_ +𝑤 (𝜕𝐺𝑆) ≥ 𝑤 (𝜕𝐺𝑆𝑖𝑣) +𝑤 (𝜕𝐺𝑆)
≥ 𝑤 (𝜕𝐺 (𝑆𝑖𝑣 ∪ 𝑆)) +𝑤 (𝜕𝐺 (𝑆𝑖𝑣 ∩ 𝑆))
≥ _ +𝑤 (𝜕𝐺 (𝑆𝑖𝑣 ∩ 𝑆)) .

The set 𝑆𝑖𝑣 ∩ 𝑆 stays intact under the contraction from 𝐺 to 𝐺𝑣 , so
𝑤 (𝜕𝐺𝑣

(𝑆𝑖𝑣 ∩ 𝑆)) = 𝑤 (𝜕𝐺 (𝑆𝑖𝑣 ∩ 𝑆)). Therefore,

mincut𝐺𝑣
(𝑝, 𝑞) ≤ 𝑤 (𝜕𝐺𝑣

(𝑆𝑖𝑣 ∩ 𝑆))
= 𝑤 (𝜕𝐺 (𝑆𝑖𝑣 ∩ 𝑆))
≤ 𝑤 (𝜕𝐺𝑆) + 𝜖_
≤ mincut𝐺 (𝑝, 𝑞) + 𝜖mincut𝐺 (𝑝, 𝑞),

as promised. □

Finally, the lemma below determines our final approximation
factor.

Lemma 3.3. ApproxSteinerGHTree(𝐺 = (𝑉 , 𝐸),𝑈 ) outputs a
(1 + 𝜖)lg |𝑈 |-approximate Gomory-Hu Steiner tree.

Proof. We apply induction on |𝑈 |. Since |𝑈𝑣 | ≤ |𝑈 |/2 for all
𝑣 ∈ 𝑅𝑖 , by induction, the recursive outputs (𝑇𝑣, 𝑓𝑣) are Gomory-Hu
Steiner trees with approximation (1 + 𝜖)lg |𝑈𝑣 | ≤ (1 + 𝜖)lg |𝑈 |−1.
By definition, this means that for all 𝑠, 𝑡 ∈ 𝑈𝑣 and the minimum-
weight edge (𝑢,𝑢 ′) on the 𝑠–𝑡 path in 𝑇𝑣 , letting 𝑈 ′𝑣 ⊆ 𝑈𝑣 be the
vertices of the connected component of 𝑇𝑣 − (𝑢,𝑢 ′) containing 𝑠 ,
we have that 𝑓 −1𝑣 (𝑈 ′𝑣 ) is a (1 + 𝜖)lg |𝑈 |−1-approximate (𝑠, 𝑡)-mincut
in 𝐺𝑣 with value is𝑤𝑇 (𝑢,𝑢 ′). Define𝑈 ′ ⊆ 𝑈 as the vertices of the
connected component of 𝑇 − (𝑢,𝑢 ′) containing 𝑠 . By construction
of (𝑇, 𝑓 ) (lines 1 and 2), the set 𝑓 −1 (𝑈 ′) is simply 𝑓 −1𝑣 (𝑈 ′𝑣 ) with
the vertex 𝑥𝑣 replaced by 𝑉 \ 𝑆𝑖𝑣 in the case that 𝑥𝑣 ∈ 𝑓 −1 (𝑈 ′).
Since 𝐺𝑣 is simply 𝐺 with all vertices 𝑉 \ 𝑆𝑖𝑣 contracted to 𝑥𝑣 , we
conclude that𝑤𝐺𝑣

(𝜕𝑓 −1𝑣 (𝑈 ′𝑣 )) = 𝑤𝐺 (𝜕𝑓 −1 (𝑈 ′)). By Lemma 3.2, the
values mincut𝐺 (𝑠, 𝑡) and mincut𝐺𝑣

(𝑠, 𝑡) are within factor (1 + 𝜖)
of each other, so𝑤𝐺 (𝜕𝑓 −1 (𝑈 ′)) approximates the (𝑠, 𝑡)-mincut in
𝐺 to a factor (1 + 𝜖) · (1 + 𝜖)lg |𝑈 |−1 = (1 + 𝜖)lg |𝑈 | . In other words,
the Gomory-Hu Steiner tree condition for (𝑇, 𝑓 ) is satisfied for all
𝑠, 𝑡 ∈ 𝑈𝑣 for some 𝑣 ∈ 𝑅𝑖 .

By induction, the recursive output (𝑇large, 𝑓large) is a Gomory-
Hu Steiner tree with approximation (1 + 𝜖)lg |𝑈large | ≤ (1 + 𝜖)lg |𝑈 | .
Again, consider 𝑠, 𝑡 ∈ 𝑈large and the minimum-weight edge (𝑢,𝑢 ′)
on the 𝑠–𝑡 path in𝑇large, and let𝑈 ′large ⊆ 𝑈large be the vertices of the
connected component of𝑇large−(𝑢,𝑢 ′) containing 𝑠 . Define𝑈 ′ ⊆ 𝑈

as the vertices of the connected component of 𝑇 − (𝑢,𝑢 ′) contain-
ing 𝑠 . By a similar argument, we have 𝑤𝐺large (𝜕𝑓 −1large (𝑈

′
large)) =

𝑤𝐺 (𝜕𝑓 −1 (𝑈 ′)). By Lemma 3.1, we also have
mincut𝐺 (𝑠, 𝑡) = mincut𝐺large (𝑠, 𝑡), so𝑤𝐺 (𝜕𝑓 −1 (𝑈 ′)) is a (1+𝜖)lg |𝑈 |-
approximate (𝑠, 𝑡)-mincut in 𝐺 , fulfilling the Gomory-Hu Steiner
tree condition for (𝑇, 𝑓 ) in the case 𝑠, 𝑡 ∈ 𝑈large.

There are two remaining cases: 𝑠 ∈ 𝑈𝑣 and 𝑡 ∈ 𝑈𝑣′ for distinct
𝑣, 𝑣 ′ ∈ 𝑅𝑖 , and 𝑠 ∈ 𝑈𝑣 and 𝑡 ∈ 𝑈large; we treat both cases simul-
taneously. Since 𝐺 has Steiner mincut _, each of the contracted
graphs 𝐺large and 𝐺𝑣 has Steiner mincut at least _. By induction,
every edge in𝑇𝑣 and𝑇large or𝑇𝑣′ (depending on case) has weight at
least (1 + 𝜖)− lg |𝑈 |_. By construction, the 𝑠–𝑡 path in 𝑇 has at least
one edge of the form (𝑓𝑣 (𝑥𝑣), 𝑓large (𝑦𝑣)), added on line 1; this edge
has weight𝑤 (𝜕𝐺𝑆𝑖𝑣) ≤ (1 + 𝜖)_. Therefore, the minimum-weight
edge on the 𝑠–𝑡 path in 𝑇 has weight at least (1 + 𝜖)− lg |𝑈 |_ and
at most (1 + 𝜖)_; in particular, it is a (1 + 𝜖)lg |𝑈 |-approximation
ofmincut𝐺 (𝑠, 𝑡). If the edge is of the form (𝑓𝑣 (𝑥𝑣), 𝑓large (𝑦𝑣)), then
by construction, the relevant set 𝑓 −1 (𝑈 ′) is exactly 𝑆𝑖𝑣 , which is a
(1 + 𝜖)-approximate (𝑠, 𝑡)-mincut in 𝐺 . If the edge is in 𝑇large or 𝑇𝑣
or 𝑇𝑣′ , then we can apply the same arguments used previously. □

3.3 Running Time Bound

In order for a recursive algorithm to be efficient, it must make
substantial progress on each of its recursive calls, which can then
be used to bound its depth. For each recursive call (𝐺𝑣,𝑈𝑣, 𝜖), we
have |𝑈𝑣 | ≤ |𝑈 |/2 by construction, so we can set our measure of
progress to be |𝑈 |, the number of terminals, which halves upon
each recursive call. However, progress on (𝐺large,𝑈large, 𝜖) is un-
clear; in particular, it is possible for |𝑈large | to be very close to |𝑈 |
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with probability 1. For𝐺large, we define the following alternative
measure of progress. Let 𝑃 (𝐺,𝑈 ,𝑊 ) be the set of unordered pairs
of distinct vertices whose mincut is at most𝑊 :

𝑃 (𝐺,𝑈 ,𝑊 ) =
{
{𝑢, 𝑣} ∈

(
𝑈

2

)
: mincut𝐺 (𝑢, 𝑣) ≤𝑊

}
.

In particular, we will consider its size |𝑃 (𝐺,𝑈 ,𝑊 ) |, and show the
following expected reduction:

Lemma 3.4. For any𝑊 ≤ (1 + 𝜖)_, over the random selection of 𝑠

and the randomness in CutThresholdStep, we have

E[|𝑃 (𝐺large,𝑈large,𝑊 ) |] ≤
(
1 − Ω

(
1

log2 𝑛

))
|𝑃 (𝐺,𝑈 ,𝑊 ) |.

Before we prove Lemma 3.4, we show how it implies progress
on the recursive call for 𝐺large.

Corollary 3.5. Let _0 be the global Steiner mincut of𝐺 . W.h.p., after

Ω(log3 𝑛) recursive calls along 𝐺large (replacing 𝐺 ← 𝐺large each
time), the global Steiner mincut of𝐺 is at least (1 + 𝜖)_0 (where _0 is
still the global Steiner mincut of the initial graph).

Proof. Let 𝑊 = (1 + 𝜖)_0. Initially, we trivially have
|𝑃 (𝐺,𝑈 ,𝑊 ) | ≤

( |𝑈 |
2
)
. The global Steiner mincut can only increase

in the recursive calls, since𝐺large is always a contraction of𝐺 , so we
always have𝑊 ≤ (1 + 𝜖)_ for the current global Steiner mincut _.
By Lemma 3.4, the value |𝑃 (𝐺,𝑈 ,𝑊 ) | drops by factor 1− Ω( 1

log2 𝑛 )
in expectation on each recursive call, so after Ω(log3 𝑛) calls, we
have

E[|𝑃 (𝐺,𝑈 ,𝑊 ) |] ≤
(
|𝑈 |
2

)
·
(
1 − Ω

(
1

log2 𝑛

))Ω (log3 𝑛)
≤ 1

poly(𝑛) .

In other words, w.h.p., we have |𝑃 (𝐺,𝑈 ,𝑊 ) | = 0 at the end, or
equivalently, the Steiner mincut of 𝐺 is at least (1 + 𝜖)_. □

Combining both recursive measures of progress together, we
obtain the following bound on the recursion depth:

Lemma 3.6. Let𝑤min and𝑤max be the minimum weight and max-

imum weight of any edge in 𝐺 . W.h.p., the depth of the recursion tree

of ApproxSteinerGHTree is 𝑂 (𝜖−1 log3 𝑛 log(𝑛Δ)).

Proof. For any Θ(log3 𝑛) successive recursive calls down the
recursion tree, either one call was on a graph 𝐺𝑣 , or Θ(log3 𝑛) of
them were on the graph 𝐺large. In the former case, |𝑈 | drops by
half, so it can happen 𝑂 (log𝑛) times total. In the latter case, by
Corollary 3.5, the global Steiner mincut increases by factor (1 + 𝜖).
Let 𝑤min and 𝑤max be the minimum and maximum weights in
𝐺 , so that Δ = 𝑤max/𝑤min. Note that for any recursive instance
(𝐺 ′,𝑈 ′) and any 𝑠, 𝑡 ∈ 𝑈 ′, we have 𝑤min ≤ mincut𝐺′ (𝑠, 𝑡) ≤
𝑤 (𝜕({𝑠})) ≤ 𝑛𝑤max, so the global Steiner mincut of (𝐺 ′,𝑈 ′) is
always in the range [𝑤min, 𝑛𝑤max]. It follows that calling 𝐺large
can happen 𝑂 (𝜖−1 log(𝑛𝑤max/𝑤min)) times, hence the bound. □

We state the next theorem for unweighted graphs only. For
weighted graphs, there is no nice bound on the number of new
edges created throughout the algorithm, and therefore no easy
bound on the overall running time. In the next section, we intro-
duce a graph sparsification step to handle this issue.

Lemma 3.7. For an unweighted graph 𝐺 = (𝑉 , 𝐸), and terminals

𝑈 ⊆ 𝑉 , ApproxSteinerGHTree(𝐺,𝑉 , 𝜖) takes time �̃� (𝑚𝜖−1) plus
calls to max-flow on instances with a total of �̃� (𝑛𝜖−1) vertices and
�̃� (𝑚𝜖−1) edges.

Proof. For a given recursion level, consider the instances
{(𝐺𝑖 ,𝑈𝑖 ,𝑊𝑖 )} across that level. By construction, the terminals 𝑈𝑖

partition𝑈 . Moreover, the total number of vertices over all 𝐺𝑖 is at
most 𝑛+2( |𝑈 | −1) = 𝑂 (𝑛) since each branch creates 2 new vertices
and there are at most |𝑈 | − 1 branches. The total number of new
edges created is at most the sum of weights of the edges in the final
(1 + 𝜖)-approximate Gomory-Hu Steiner tree. For an unweighted
graph, this is 𝑂 (𝑚) by the following well-known argument. Root
the Gomory-Hu Steiner tree𝑇 at any vertex 𝑟 ∈ 𝑈 ; for any 𝑣 ∈ 𝑈 \𝑟
with parent 𝑢, the cut 𝜕{𝑣} in 𝐺 is a (𝑢, 𝑣)-cut of value deg(𝑣), so
𝑤𝑇 (𝑢, 𝑣) ≤ deg(𝑣). Overall, the sum of the edge weights in 𝑇 is at
most

∑
𝑣∈𝑈 deg(𝑣) ≤ 2𝑚.

Therefore, there are 𝑂 (𝑛) vertices and 𝑂 (𝑚) edges in each re-
cursion level. By Lemma 3.6, there are 𝑂 (𝜖−1 log4 𝑛) levels (since
Δ = 1 for an unweighted graph), for a total of �̃� (𝑛𝜖−1) vertices and
�̃� (𝑚𝜖−1) edges. In particular, the instances to the max-flow calls
have �̃� (𝑛𝜖−1) vertices and �̃� (𝑚𝜖−1) edges in total. □

Combining Lemmas 3.3 and 3.7 and resetting 𝜖 ← Θ(𝜖/log𝑛),
we obtain Theorem 1.3, restated below.

Theorem 1.3. Let𝐺 be an unweighted, undirected graph. There is

a randomized algorithm that w.h.p., outputs a (1 + 𝜖)-approximate

Gomory-Hu tree and runs in �̃� (𝑚) time plus calls to exact max-

flow on unweighted instances with a total of �̃� (𝑛𝜖−1) vertices and
�̃� (𝑚𝜖−1) edges. Using the 𝑚4/3+𝑜 (1)

-time max-flow algorithm for

unweighted graphs of Liu and Sidford [17], the algorithm runs in

𝑚4/3+𝑜 (1)𝜖−1 time.

Finally, we prove Lemma 3.4, restated below.

Lemma 3.4. For any𝑊 ≤ (1 + 𝜖)_, over the random selection of 𝑠

and the randomness in CutThresholdStep, we have

E[|𝑃 (𝐺large,𝑈large,𝑊 ) |] ≤
(
1 − Ω

(
1

log2 𝑛

))
|𝑃 (𝐺,𝑈 ,𝑊 ) |.

Proof. Let 𝐷∗ be all vertices 𝑣 ∈ 𝑈 \ 𝑠 for which there exists
an (𝑠, 𝑣)-cut of weight at most𝑊 whose side containing 𝑣 has at
most |𝑈 |/2 vertices in𝑈 . Define 𝐷 =

⋃ ⌊lg |𝑈 | ⌋
𝑗=0

⋃
𝑣∈𝑅𝑖 (𝑆𝑖𝑣 ∩𝑈 ). Let

𝑃ordered (𝐺,𝑈 ,𝑊 ) be the set of ordered pairs (𝑢, 𝑣) : 𝑢, 𝑣 ∈ 𝑉 for
which there exists an (𝑢, 𝑣)-mincut of weight at most𝑊 with at
most |𝑈 |/2 vertices in𝑈 on the side 𝑆 (𝑢, 𝑣) ⊆ 𝑉 containing 𝑢. We
now state and prove the following four properties:

(a) For all 𝑢, 𝑣 ∈ 𝑈 , {𝑢, 𝑣} ∈ 𝑃 (𝐺,𝑈 ,𝑊 ) if and only if either
(𝑢, 𝑣) ∈ 𝑃ordered (𝐺,𝑈 ,𝑊 ) or (𝑣,𝑢) ∈ 𝑃ordered (𝐺,𝑈 ,𝑊 ) (or
both).

(b) For each pair (𝑢, 𝑣) ∈ 𝑃ordered (𝐺,𝑈 ,𝑊 ), we have 𝑢 ∈ 𝐷∗

with probability at least 1/2,
(c) For each 𝑢 ∈ 𝐷∗, there are at least |𝑈 |/2 vertices 𝑣 ∈ 𝑈 for

which (𝑢, 𝑣) ∈ 𝑃ordered (𝐺,𝑈 ,𝑊 ).
(d) Over the randomness in CutThresholdStep(𝐺,𝑈 , (1+𝜖)_),
E[|𝐷 |] ≥ Ω( |𝐷∗ |/log |𝑈 |).
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Property (a) follows by definition. Property (b) follows from
the fact that 𝑢 ∈ 𝐷∗ whenever 𝑠 ∉ 𝑆 (𝑢, 𝑣), which happens with
probability at least 1/2. Property (c) follows because any vertex
𝑣 ∈ 𝑈 \ 𝑆 (𝑢, 𝑣) satisfies (𝑢, 𝑣) ∈ 𝑃ordered (𝐺,𝑈 ,𝑊 ), of which there
are at least |𝑈 |/2. Property (d) follows from Lemma 2.5 applied on
CutThresholdStep(𝐺,𝑈 ,𝑊 , |𝑈 |/2), and then observing that even
though we actually call CutThresholdStep(𝐺,𝑈 , (1 + 𝜖)_, |𝑈 |/2),
the set 𝐷 can only get larger if the weight parameter is increased
from𝑊 to (1 + 𝜖)_.

With properties (a) to (d) in hand, we now finish the proof of
Lemma 3.4. Consider the iteration 𝑖 maximizing the size of 𝐷𝑖 :=⋃

𝑣∈𝑅𝑖 (𝑆𝑖𝑣 ∩𝑈 ) (line 4), so that |𝐷𝑖 | ≥ |𝐷 |/(⌊lg |𝑈 |⌋ + 1). For any
vertex 𝑢 ∈ 𝐷𝑖 , all pairs (𝑢, 𝑣) ∈ 𝑃ordered (𝐺,𝑈 ,𝑊 ) (over all 𝑣 ∈ 𝑈 )
disappear from 𝑃ordered (𝐺,𝑈 ,𝑊 ), which is at least |𝑈 |/2 many by
(c). In other words,

|𝑃ordered (𝐺,𝑈 ,𝑊 ) \ 𝑃ordered (𝐺large,𝑈large,𝑊 ) |

≥ |𝑈 |2 |𝐷
𝑖 |

≥ Ω

(
|𝑈 | · |𝐷 |
log |𝑈 |

)
.

Taking expectations and applying (d),
E[|𝑃ordered (𝐺,𝑈 ,𝑊 ) \ 𝑃ordered (𝐺large,𝑈large,𝑊 ) |]

≥ Ω

(
|𝑈 | · E[|𝐷 |]
log |𝑈 |

)
≥ Ω

(
|𝑈 | · |𝐷∗ |
log2 |𝑈 |

)
.

Moreover,

|𝑈 | · |𝐷∗ | ≥ E
[��{(𝑢, 𝑣) : 𝑢 ∈ 𝐷∗}��] ≥ 1

2 |𝑃ordered (𝐺,𝑈 ,𝑊 ) |,

where the second inequality follows by (b). Putting everything
together, we obtain

E[|𝑃ordered (𝐺,𝑈 ,𝑊 ) \ 𝑃ordered (𝐺large,𝑈large,𝑊 ) |]

≥ Ω

(
|𝑃ordered (𝐺,𝑈 ,𝑊 ) |

log |𝑈 |

)
.

Finally, applying (a) gives

E[|𝑃 (𝐺,𝑈 ,𝑊 ) \ 𝑃 (𝐺large,𝑈large,𝑊 ) |] ≥ Ω

(
|𝑃 (𝐺,𝑈 ,𝑊 ) |

log |𝑈 |

)
.

Finally, we have 𝑃 (𝐺large,𝑈large,𝑊 ) ⊆ 𝑃 (𝐺,𝑈 ,𝑊 ) since the (𝑢, 𝑣)-
mincut for 𝑢, 𝑣 ∈ 𝑈large can only increase in 𝐺large due to 𝐺large
being a contraction of 𝐺 (in fact it says the same by Lemma 3.1).
Therefore,

|𝑃 (𝐺,𝑈 ,𝑊 ) | − |𝑃 (𝐺large,𝑈large,𝑊 ) |
= |𝑃 (𝐺,𝑈 ,𝑊 ) \ 𝑃 (𝐺large,𝑈large,𝑊 ) |,

and combining with the bound on
E[|𝑃 (𝐺,𝑈 ,𝑊 ) \ 𝑃 (𝐺large,𝑈large,𝑊 ) |] concludes the proof. □

3.4 Weighted Graphs

For weighted graphs, we cannot easily bound the total size of the
recursive instances. Instead, to keep the sizes of the instances small,
we sparsify the recursive instances to have roughly the same num-
ber of edges and vertices. By the proof of Lemma 3.7, the total

number of vertices over all instances in a given recursion level is at
most 𝑛 + 2( |𝑈 | − 1) = 𝑂 (𝑛). Therefore, if each such instance is spar-
sified, the total number of edges becomes �̃� (𝑛), and the algorithm
is efficient.

It turns out we only need to re-sparsify the graph in two cases:
when we branch down to a graph 𝐺𝑣 (and not 𝐺large), and when
the mincut _ increases by a constant factor, say 2. The former
can happen at most 𝑂 (log𝑛) times down any recursion branch,
since |𝑈 | decreases by a factor 2 each time, and the latter occurs
𝑂 (log(𝑛Δ)) times down any branch. Each time, we sparsify up to
factor 1 +Θ(𝜖/log(𝑛Δ)), so that the total error along any branch is
1 + Θ(𝜖).

We now formalize our arguments. We begin with the specifica-
tion routine due to Benczur and Karger [3].

Theorem 3.8. Given a weighted, undirected graph 𝐺 , and param-

eters 𝜖, 𝛿 > 0, there is a randomized algorithm that with probability

at least 1 − 𝛿 outputs a (1 + 𝜖)-approximate sparsifier of 𝐺 with

𝑂 (𝑛𝜖−2 log(𝑛/𝛿)) edges.

We now derive approximation and running time bounds.

Theorem 3.9. Suppose that the recursive algorithmApproxStein-
erGHTree sparsifies the input in the following three cases, using The-
orem 3.8 with the same parameter 𝜖 and the parameter 𝛿 = 1/poly(𝑛):

(1) The instance was the original input, or
(2) The instance was obtained from calling (𝐺𝑣,𝑈𝑣), or
(3) The instance was obtained from calling (𝐺large,𝑈large), and

the Steiner mincut increased by a factor of at least 2 since the
last sparsification.

Then w.h.p., the algorithm outputs a (1 + 𝜖)𝑂 (log(𝑛Δ)) -approximate

Gomory-Hu Steiner tree and takes �̃� (𝑚) time plus calls to maxflow

on instances with a total of �̃� (𝑛𝜖−1 logΔ) vertices and �̃� (𝑛𝜖−1 logΔ)
edges.

Proof. We first argue about the approximation factor. Along
any branch of the recursion tree, there is at most one sparsification
step of type (1), at most 𝑂 (log𝑛) sparsification steps of type (2),
and at most 𝑂 (log(𝑛Δ)) sparsification steps of type (3). Each spar-
sification distorts the pairwise mincuts by a (1 + 𝜖) factor, so the
total distortion is (1 + 𝜖)𝑂 (log(𝑛Δ)) .

Next, we consider the running time. The recursion tree can be
broken into chains of recursive 𝐺large calls, so that each chain
begins with either the original instance or some intermediate 𝐺𝑣

call, which is sparsified by either (1) or (2). Fix a chain, and let
𝑛′ be the number of vertices at the start of the chain, so that the
number of edges is 𝑂 (𝑛′ log𝑛). Within each chain, the number of
vertices can only decrease down the chain. After each sparsification,
many sparsifications of type (2), and between two consecutive
sparsifications, the number of edges can only decrease down the
chain since the graph can only contract. It follows that each instance
in the chain has at most 𝑛′ vertices and 𝑂 (𝑛′𝜖−2 log𝑛) edges. By
Lemma 3.6, each chain has length 𝑂 (𝜖−1 log3 𝑛 log(𝑛Δ)), so the
total number of vertices and edges in the chain is �̃� (𝑛′𝜖−3 logΔ).
Imagine charging these vertices and edges to the 𝑛′ vertices at the
root of the chain. In other words, to bound the total number of
edges in the recursion tree, it suffices to bound the total number of
vertices in the original instance and in intermediate 𝐺𝑣 calls.
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In the recursion tree, there are 𝑛 original vertices and at most
2( |𝑈 | − 1) new vertices, since each branch creates 2 new vertices
and there are at most |𝑈 | − 1 branches. Each vertex joins 𝑂 (log𝑛)
many 𝐺𝑣 calls, since every time a vertex joins one, the number of
terminals drops by half; note that a vertex is never duplicated in the
recursion tree. It follows that there are 𝑂 (𝑛 log𝑛) many vertices
in intermediate 𝐺𝑣 calls, along with the 𝑛 vertices in the original
instance. Hence, from our charging scheme, we conclude that there
are a total of �̃� (𝑛𝜖−3 logΔ) vertices and edges in the recursion tree.
In particular, the instances to the max-flow calls have �̃� (𝑛𝜖−3 logΔ)
vertices and edges in total. □

Resetting 𝜖 ← Θ(𝜖/log(𝑛Δ)), we have thus proved Theorem 1.2,
restated below.

Theorem 1.2. Let 𝐺 be an undirected graph with non-negative

edge weights. There is a randomized algorithm that w.h.p., outputs

a (1 + 𝜖)-approximate Gomory-Hu tree and runs in �̃� (𝑚) time plus

calls to exact max-flow on instances with a total of �̃� (𝑛𝜖−1 log2 Δ)
vertices and �̃� (𝑛𝜖−1 log2 Δ) edges, where Δ is the ratio of maximum

to minimum edge weights. Assuming polynomially bounded edge

weights and using the �̃� (𝑚
√
𝑛) time max-flow algorithm of Lee and

Sidford [15], the algorithm runs in �̃� (𝑚 + 𝑛3/2𝜖−2) time.
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