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ABSTRACT
The vertex connectivity of an𝑚-edge 𝑛-vertex undirected graph

is the smallest number of vertices whose removal disconnects the

graph, or leaves only a singleton vertex. In this paper, we give a

reduction from the vertex connectivity problem to a set of maxflow

instances. Using this reduction, we can solve vertex connectivity in

�̃� (𝑚𝛼 ) time for any 𝛼 ≥ 1, if there is a𝑚𝛼
-time maxflow algorithm.

Using the current best maxflow algorithm that runs in𝑚4/3+𝑜 (1)

time (Kathuria, Liu and Sidford, FOCS 2020), this yields a𝑚4/3+𝑜 (1)
-

time vertex connectivity algorithm. This is the first improvement

in the running time of the vertex connectivity problem in over

20 years, the previous best being an �̃� (𝑚𝑛)-time algorithm due

to Henzinger, Rao, and Gabow (FOCS 1996). Indeed, no algorithm

with an 𝑜 (𝑚𝑛) running time was known before our work, even if

we assume an �̃� (𝑚)-time maxflow algorithm.

Our new technique is robust enough to also improve the best

�̃� (𝑚𝑛)-time bound for directed vertex connectivity to𝑚𝑛1−1/12+𝑜 (1)

time
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1 INTRODUCTION
The vertex connectivity of an undirected graph is the size of the

minimum vertex cut, defined as the minimum number of vertices

whose removal disconnects the graph (or becomes a singleton ver-

tex). Finding the vertex connectivity of a graph is a fundamental

problem in combinatorial optimization, and has been extensively

studied since the 1960s. It is well-known that the related problem

of an 𝑠-𝑡 vertex mincut, defined as the minimum vertex cut that

disconnects a specific pair of vertices 𝑠 and 𝑡 , can be solved using an

𝑠-𝑡 maxflow algorithm. This immediately suggests a natural start-

ing point for the vertex connectivity problem, namely use 𝑂 (𝑛2)
maxflow calls to obtain the 𝑠-𝑡 vertex mincuts for all pairs of ver-

tices, and return the smallest among them. It is against this baseline

that we discuss the history of the vertex connectivity problem be-

low. Following the literature, we use 𝑚, 𝑛, and 𝑘 to respectively

denote the number of edges, vertices, and the size of the vertex

mincut in the input graph.

In the 60s and 70s, several algorithms [8, 18, 23], showed that

for constant values of 𝑘 , only 𝑂 (𝑛) maxflow calls suffice, thereby

improving the running time for this special case. The first uncondi-

tional improvement over the baseline algorithm was obtained by

Becker et al. [3], when they used 𝑂 (𝑛 log𝑛) maxflow calls to solve

the vertex connectivity problem. The following simple observation

underpinned their new algorithm: if one were able to identify a

vertex 𝑠 that is not in the vertex mincut, then enumerating over the

remaining 𝑛 − 1 vertices as 𝑡 in the 𝑠-𝑡 maxflow calls is sufficient.

They showed that they could obtain such a vertex 𝑠 whp1 by a

random sampling of vertices.

The next round of improvement was due to Linial, Lovász, and

Wigderson (LLW) [20] who used an entirely different set of tech-

niques based on matrix multiplication to achieve a running time

bound of𝑂 ((𝑛𝜔 +𝑛𝑘𝜔 ) log𝑛), which is𝑂 (𝑛1+𝜔 log𝑛) in the worst

case of 𝑘 = Θ(𝑛); here, 𝜔 ≈ 2.37 is the matrix multiplication expo-

nent. To compare this with the maxflow based algorithms, we note

that the maxflow instances generated by the vertex connectivity

problem are on unit vertex-capacity graphs, for which an 𝑂 (𝑚
√
𝑛)

algorithm has been known since the celebrated work of Dinic using

blocking flows in the 70s [7]. Therefore, LLW effectively improved

the running time of vertex connectivity from 𝑂 (𝑛7/2) in the worst

case to 𝑂 (𝑛1+𝜔 ).

1
with high probability
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Adecade after LLW’swork, Henzinger, Rao, andGabow (HRG) [14]

improved the running time further to 𝑂 (𝑚𝑛 log𝑛) by reverting to

combinatorial flow-based techniques. They built on the idea of com-

puting 𝑂 (𝑛) maxflows suggested by Becker et al. [3], but with a

careful use of preflow push techniques [11] in these maxflow sub-

routines, they could amortize the running time of these maxflow

calls (similar to, but a more refined version of, what Hao and Orlin

had done for the edge connectivity problem a few years earlier [12]).

The HRG algorithm remained the fastest unconditional vertex con-

nectivity algorithm before our work.

We also consider the vertex connectivity problem on directed

graphs. Here, the goal is to find a smallest set of vertices whose

removal ensures that the remaining graph is not strongly connected.

The HRG bound of 𝑂 (𝑚𝑛 log𝑛) [13] generalizes to digraphs, and

sets the current record for this problem as well.

In concluding our tour of vertex connectivity algorithms, we

note that there has also been a large volume of work focusing

on faster algorithms for the special case of small 𝑘 . Nearly-linear

time algorithms are known only when 𝑘 ≤ 2 [5, 10, 15, 16, 21, 24]

until recently when [9, 22] give an �̃� (𝑚𝑘2)-time algorithm
2
for

both undirected and directed graphs, which is nearly-linear for

𝑘 = polylog(𝑛). Similarly, the question of approximating the vertex

connectivity of a graph efficiently has received some attention,

and a (1 + 𝜖)-approximation is known in �̃� (min{𝑚𝑘/𝜖, 𝑛𝜔/𝜖2})
time [9, 22] while a worse approximation factor of 𝑂 (log𝑛) can be

achieved in near-linear time [4]. These two lines of work are not

directly related to our paper.

1.1 Our Results
In this paper, we give the following result:

Theorem 1.1 (Main). Given an undirected graph on 𝑚 edges,

there is a randomized, Monte Carlo vertex connectivity algorithm that

makes 𝑠-𝑡 maxflow calls on unit capacity graphs that cumulatively

contain �̃� (𝑚) vertices and �̃� (𝑚) edges, and runs in �̃� (𝑚) time outside

these maxflow calls.

In other words, if maxflow can be solved in𝑚𝛼
time on unit capac-

ity graphs, for any 𝛼 ≥ 1, then we can solve the vertex connectivity

problem in �̃� (𝑚𝛼 ) time. In particular, using the current fastest

maxflow algorithm on unit capacity graphs (Kathuria, Liu and Sid-

ford [17]), we get a vertex connectivity algorithm for undirected

graphs that runs in𝑚4/3+𝑜 (1)
time, which strictly improves on the

previous best time complexity of �̃� (𝑚𝑛) achieved by the HRG al-

gorithm. Even more ambitiously, if maxflow is eventually solved

in �̃� (𝑚) time, as is often conjectured, then our theorem will au-

tomatically yield an �̃� (𝑚) algorithm for the vertex connectivity

problem, which would resolve the long standing open question by

Aho, Hopcroft and Ullman [1] since 1974 up to polylogarithmic

factors. In contrast, even with an �̃� (𝑚)-time maxflow algorithm, no

previous vertex connectivity algorithm achieves an 𝑜 (𝑚𝑛) running
time bound.

We remark that the reduction in the theorem generates instances

of the 𝑠-𝑡 vertex connectivity problem, i.e., a maximum set of vertex-

disjoint paths between 𝑠 and 𝑡 in an undirected graph, which are

solved by a maxflow call via a standard reduction. Also, we note that

2�̃� (𝑓 (𝑛)) = 𝑂 (polylog(𝑛) 𝑓 (𝑛)) .

our algorithm is randomized (Monte Carlo) even if the maxflow

subroutines are not. It is an interesting open question to match

the running time bounds of this theorem using a deterministic

algorithm, or even a Las Vegas one.

We also generalize our new technique to work directed graphs

and obtain a significant improvement upon the fastest �̃� (𝑚𝑛)-time

algorithm by HRG for the directed vertex connectivity problem

Theorem 1.2. Given a directed graph with𝑚 edges and 𝑛 vertices,

there are randomized Monte Carlo vertex connectivity algorithms

with

• 𝑚𝑛1−1/12+𝑜 (1) time, or

• �̃� (𝑛2) time assuming that max flow can be solved in near-

linear time.

As the result on directed graphs is obtained by using our new

technique in a less efficient way and does not give additional insight,

we discuss it in the full version of this paper.

1.2 Technical Overview
Our main technical contribution is a new technique that we call

sublinear-time kernelization for vertex connectivity. Namely, we

show that under certain technical conditions, we can find a sub-

graph whose size is sublinear in 𝑛 and preserves the vertex con-

nectivity of the original graph. We use sketching techniques to

construct such a subgraph in sublinear time. To the best of our

knowledge, all previous techniques require Ω(𝑛3) time even in the

extremely unbalanced case when the vertex mincut have size Ω(𝑛),
and the smaller side of the mincut contains 𝑂 (1) vertices. In con-

trast, sublinear-time kernelization allows us to reduce the problem

in this case to maxflow calls of total size �̃� (𝑚) in �̃� (𝑚) time. Below,

we elaborate on this new technique and discuss how it fits into the

entire vertex connectivity algorithm.

Suppose the vertex mincut of the input graph 𝐺 is denoted by

(𝐿, 𝑆, 𝑅), where |𝐿 | ≤ |𝑅 | are the two sides of the cut, and |𝑆 | = 𝑘

is the set of vertices whose removal disconnects 𝐿 from 𝑅. For

intuitive purposes, let us assume that we know the values of |𝐿 |
and |𝑅 | and |𝑅 | = Ω(𝑛). This allows us to obtain a vertex in 𝑅

using just 𝑂 (log𝑛) samples. From now, we assume that we know

a vertex 𝑟 ∈ 𝑅. If we were also able to find a vertex 𝑥 ∈ 𝐿, then

we can simply compute an 𝑥-𝑟 maxflow to obtain a vertex mincut.

But, in general, |𝐿 | can be small, and obtaining a vertex in 𝐿 whp

requires �̃� (𝑛/|𝐿 |) samples. Recall that we promised that the total

number of edges in all the maxflow instances that we generate

will be �̃� (𝑚). One way of ensuring this would be to run each of

the �̃� (𝑛/|𝐿 |) maxflow calls on a graph containing only �̃� (𝑘 |𝐿 |)
edges; then, the total number of edges in the max flow instances

is �̃� ((𝑛/|𝐿 |) · (𝑘 |𝐿 |)) = �̃� (𝑛𝑘) = �̃� (𝑚) since the degree of every
vertex is at least 𝑘 . At first glance, this might sound impossible

because the number of edges incident to 𝑁 (𝑥) is already Ω(𝑘2).
Nevertheless, our main technical contribution is in showing that in

certain cases we can construct a graph 𝐻 with just �̃� (𝑘 |𝐿 |) edges
that gives us information about the vertex connectivity of𝐺 . We call

such graph a kernel. In achieving this property, we need additional

conditions on 𝐿 and 𝑆 , specifically on their relative sizes and the

degrees of vertices in 𝑆 . If these conditions do not hold, we give a

different algorithm that uses a recent tool called the isolating cut
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lemma used in the edge connectivity problem [19] (we adapt the

tool to vertex connectivity). More specifically, we consider three

cases depending on the sizes of 𝐿 and 𝑆
low

, where

𝑆
low

= {𝑣 ∈ 𝑆 | deg(𝑣) ≤ 8𝑘}.
It might not be intuitive now why we need 𝑆

low
. Distinguishing

cases using 𝑆
low

is a crucial idea that makes everything fits together.

Its role will be more clear in the discussion below. The use of our

kernelization is in the last case (Case 3). We now discuss all the

cases.

Case 1: Large 𝐿 (details in Section 4). We first consider the easier

case when 𝐿 is not too small compared to 𝑆 , i.e. |𝐿 | > 𝑘/polylog(𝑛).
Consider the vertex set 𝑇 where each vertex is included in 𝑇 with

probability
1

max{ |𝐿 |,𝑘 } . Then, with probability at least 1/polylog(𝑛),
𝑇 contains exactly one vertex from 𝐿 (call it 𝑥), no vertex from

𝑆 , and the remaining vertices are from 𝑅. Assume that it is the

case by repeating polylog(𝑛) times. Observe that a vertex mincut

separating 𝑥 from 𝑇 \ {𝑥}, denoted by (𝑥,𝑇 \ {𝑥})-vertex mincut,

is a (global) vertex mincut of 𝐺 .

The isolating cut lemma was recently introduced by Li and Pan-

igrahi [19] for solving the edge connectivity problem determinis-

tically. It says that in an undirected graph, given a set of termi-

nal vertices 𝑇 , we can make maxflow calls to graphs of total size

𝑂 (𝑚 log |𝑇 |) and return for each terminal 𝑡 ∈ 𝑇 , the smallest edge

cut separating 𝑡 from𝑇 \{𝑡}. In particular, it returns us a (𝑥,𝑇 \{𝑥})-
edge mincut. If this lemma worked for vertex cuts, it would return

us a (𝑥,𝑇 \ {𝑥})-vertex mincut and we would be done. It turns out

that the isolating cuts lemma can be adapted to work for vertex

connectivity, due to the submodularity property of vertex cuts.

Case 2: Small 𝐿, small 𝑆
low

(details in Section 4). From now on,

we assume that |𝐿 | < 𝑘/polylog(𝑛). Note that for every vertex

𝑥 ∈ 𝐿, all neighbors of 𝑥 are inside 𝐿 ∪ 𝑆 and so deg(𝑥) ≤ |𝐿 | +
𝑘 < 2𝑘 . Let 𝑉

low
be all vertices whose degrees are less than 8𝑘 .

We know that 𝐿 ⊆ 𝑉
low

and 𝑆
low

= 𝑆 ∩ 𝑉
low

by definition. It

is also easy to show that |𝑅 ∩ 𝑉
low
| ≥ |𝐿 | (see Claim 4.5). So, if

|𝑆
low
| < |𝐿 | · polylog(𝑛), then, by sampling from 𝑉

low
instead of 𝑉

with probability 1/(|𝐿 | polylog(𝑛)), we can obtain a random sample

that includes exactly one vertex from 𝐿, some vertices from 𝑅, and

none from 𝑆 , as in the previous case. In this case, we again can

apply the isolating cuts lemma.

Case 3: Small 𝐿, large 𝑆
low

(details in Section 3). The above brings

us to the crux of our algorithm, where the isolating cuts lemma is

no longer sufficient. Namely, 𝐿 is much smaller than the cut 𝑆 and

𝑆 contains many vertices with low degree, i.e.

|𝐿 | < 𝑘/polylog(𝑛) and |𝑆
low
| > |𝐿 | · polylog(𝑛). (1)

Let us first sample �̃� (𝑛/|𝐿 |) vertices; at least one of these vertices
is in 𝐿 whp. Now, for each vertex 𝑥 in the sample, we will invoke a

maxflow instance on �̃� (𝑘 |𝐿 |) edges that returns the vertex mincut

if 𝑥 ∈ 𝐿. This suffices because �̃� ((𝑛/|𝐿 |) · (𝑘 |𝐿 |)) = �̃� (𝑛𝑘) can be

bounded by �̃� (𝑚), noting that the degree of every vertex is at least

𝑘 . Thus, we can reduce our problem to the following goal:

Given a vertex 𝑥 ∈ 𝐿, describe a procedure to create

a maxflow instance on �̃� (𝑘 |𝐿 |) edges that returns a
vertex mincut.

In other words, assuming that we have a vertex 𝑥 ∈ 𝐿, we want

to construct a small graph 𝐻 and two vertices 𝑠 and 𝑡 in 𝐻 such

that the (𝑠, 𝑡)-maxflow in 𝐻 tells us about the vertex mincut in the

original input graph. The graph 𝐻 corresponds to the concept of

kernel in parameterized algorithms. A challenge is that it is not

clear if a small kernel exists for vertex connectivity; it is not even

clear if it is possible to reduce the number of edges at all. The entire

description below aims to show that it is possible to reduce the

number of edges to �̃� (𝑘 |𝐿 |). We ignore the time complexity for this

process for a moment.

The key step is to define the following set 𝑇𝑥 . First, let 𝑇 be

a set such that every vertex is in 𝑇 with probability 1/|𝐿 |. Then,
𝑇𝑥 is defined from 𝑇 by excluding 𝑥 and its neighbors, i.e. 𝑇𝑥 =

𝑇 \ 𝑁𝐺 [𝑥], where 𝑁𝐺 [𝑥] = 𝑁𝐺 (𝑥) ∪ {𝑥} and 𝑁𝐺 (𝑣) denotes the
set of neighbors of 𝑣 . (We drop 𝐺 when the context is clear). We

exploit a few properties of𝑇𝑥 . First, we claim that𝑇𝑥 ⊆ 𝑅 with Ω(1)
probability. To see this, note that 𝑁 [𝑥] ⊆ 𝐿 ∪𝑆 for any 𝑥 ∈ 𝐿. Since
|𝑁 [𝑥] | > 𝑘 but |𝐿 ∪ 𝑆 | ≤ |𝐿 | + 𝑘 , it must be the case that

| (𝐿 ∪ 𝑆) \ 𝑁 [𝑥] | < |𝐿 |. (2)

Now, 𝑇𝑥 ⊆ 𝑅 iff none of vertices from (𝐿 ∪ 𝑆) \ 𝑁 [𝑥] is sampled to

𝑇 . As | (𝐿 ∪ 𝑆) \ 𝑁 [𝑥] | < |𝐿 | and the sampling probability is 1/|𝐿 |,
so 𝑇𝑥 ⊆ 𝑅 with Ω(1) probability.

From now we assume that𝑇𝑥 ⊆ 𝑅. Consider contracting vertices

in 𝑇𝑥 into a single node 𝑡𝑥 . Since 𝑇𝑥 ⊆ 𝑅, an (𝑥, 𝑡𝑥 )-maxflow call

would return a vertex mincut of the original graph. However, the

contracted graph might still contain too many edges. To resolve

this issue, we make the following important observations:

(1) any vertex 𝑣 neighboring to both 𝑥 and 𝑡𝑥 must be in 𝑆 , and

(2) there exists a collection of 𝑘 vertex disjoint paths between 𝑥

and 𝑡𝑥 where each path contains exactly one neighbor of 𝑥

and exactly one neighbor of 𝑡𝑥 .

The observations above simply follow from the fact that 𝑥 and 𝑡𝑥
are on the different side of the vertex mincut. The first observation

allows us to remove all common neighbors of 𝑥 and 𝑡𝑥 and add them

back to the vertex mincut later. The second observation allows us

to remove all edges between neighbors of 𝑥 and all edges between

neighbors of 𝑡𝑥 without changing the (𝑥, 𝑡𝑥 ) vertex connectivity.

Further, after all these removals, neighbors of 𝑡𝑥 of degree one (i.e.

they are adjacent only to 𝑡𝑥 ) can be removed without changing the

(𝑥, 𝑡𝑥 ) vertex connectivity. Interestingly, these removals are already

enough for us to show that there are �̃� (𝑘 |𝐿 |) vertices and edges

left!

Small kernel. We call the remaining graph from above a kernel

and denote it by 𝐻 . We now show that 𝐻 contains �̃� (𝑘 |𝐿 |) edges
whp. Note that 𝐻 consists of the terminals 𝑥 and 𝑡𝑥 , disjoint sets

𝑁𝑥 ≜ 𝑁𝐻 (𝑥) and 𝑁𝑡 ≜ 𝑁𝐻 (𝑡𝑥 ), and all other vertices in a set that

we call 𝐹 ′ (for “far”). We illustrate this in Figure 1.

Recall that we have already discarded all internal edges in 𝑁𝑥

and 𝑁𝑡 ; hence, we have three types of edges in 𝐻 :

(E1) edges in 𝑁𝑥 × (𝐹 ′ ∪ 𝑁𝑡 ), i.e. edges with one endpoint in 𝑁𝑥

and the other in 𝐹 ′ or 𝑁𝑡 ,

(E2) edges in 𝐹 ′ × (𝐹 ′ ∪ 𝑁𝑡 ), i.e. edges with one endpoint in 𝐹 ′

and the other in 𝐹 ′ or 𝑁𝑡 , and

(E3) edges incident to terminals 𝑥 and 𝑡𝑥 .
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Figure 1: Kernel 𝐻 of graph 𝐺 = (𝑉 , 𝐸).

We count the number of edges in (E1) and (E2) by charging them to

its endpoint in 𝑁𝑥 and 𝐹 ′ respectively. We will show that there are

�̃� (𝑘 |𝐿 |) such edges in total. It then follows that there are �̃� (𝑘 |𝐿 |)
edges in (E3), since there are at most 𝑘 + |𝐿 | edges incident to 𝑥

and each vertex in 𝑁𝑡 must be incident to some edge in (E1) or

(E2) (otherwise, we would have already deleted such vertex). The

claimed �̃� (𝑘 |𝐿 |) bound on the number of edges in (E1) or (E2)

follows immediately once we show that whp

(a) every vertex in 𝑁𝑥 ∪ 𝐹 ′ is charged by �̃� (𝐿) edges, and
(b) there are 𝑂 (𝑘) vertices in 𝑁𝑥 ∪ 𝐹 ′.

To prove (a), consider any vertex 𝑣 ≠ 𝑥 in 𝐺 with deg𝐺\𝑁 [𝑥 ] (𝑣) >
|𝐿 | ·polylog(𝑛), i.e. 𝑣 has many neighbors outside 𝑁𝐺 [𝑥], the neigh-
borhood of 𝑥 . Then, one of these neighbors must have been sampled

to 𝑇 whp, and would be retained in 𝑇𝑥 . This implies that such 𝑣 is

in 𝑁𝑡 whp. This implies further that every vertex 𝑣 ∈ 𝑁𝑥 ∪ 𝐹 ′ has
at most |𝐿 | · polylog(𝑛) edges to vertices in 𝐹 ′ ∪𝑁𝑡 (since the latter

vertices are all outside of 𝑁𝐺 [𝑥]). This establishes (a).
To prove (b), first note that |𝑁𝑥 | < |𝐿 | + |𝑆 | < 2𝑘 since 𝑁𝑥 ⊆

𝑁𝐺 (𝑥) ⊆ 𝐿 ∪ 𝑆 ; so, it is left to show that |𝐹 ′ | = 𝑂 (𝑘). The key

statement that we need is that

Ω( |𝑆
low
|) neighbors of every vertex 𝑣 ∈ 𝐹 ′ are in 𝑆

low
. (3)

Given this, as we know that vertices in 𝑆
low

are incident to𝑂 (𝑘 |𝑆
low
|)

edges in total, we have |𝐹 ′ | = 𝑂 ( 𝑘 |𝑆low ||𝑆
low
| ) = 𝑂 (𝑘) as desired. To

prove (3), we essentially use the following facts (for precise quanti-

ties, see Figure 2).

(b1) There are less than 𝑘 + |𝐿 | vertices in 𝑁𝑥 , i.e. |𝑁𝑥 | < 𝑘 + |𝐿 |
(we just proved this above).

(b2) All but |𝐿 | of vertices in 𝑆
low

are in 𝑁𝑥 . This follows from

(2).

(b3) Whp, every vertex in 𝐹 ′ has at least 𝑘 − |𝐿 | polylog𝑛 neigh-

bors in 𝑁𝑥 . This follows from the argument in the proof of

(a).

This means that each 𝑣 ∈ 𝐹 ′ has at least the following number of

neighbors in 𝑆
low

:

𝑘 − |𝐿 | polylog(𝑛) − (|𝑁𝑥 | − (|𝑆low | − |𝐿 |)) ≥
𝑘 − |𝐿 | polylog(𝑛) − (𝑘 + |𝐿 |) + (|𝑆

low
| − |𝐿 |) = Ω( |𝑆

low
|)

where the last equality holds as 𝑘’s cancel each other and |𝑆
low
|

dominates other terms. This is the crucial place where we need that

𝑆
low

is large as stated in (1). Without this guarantee, we could not

have bounded the size of 𝐻 and this explains the reason why we

need to introduce Case 2 above. This completes the proof of (b).

Slow

v

|Slow \ Nx | < |L|  

|Slow|> 300|L|ln n 

(Assumption)

> k - 100|L|ln n 

< k +|L||Nx|

(b1)

(b2)

(b3)

Nx

Figure 2: Facts (b1), (b2) and (b3).

Building kernels in sublinear time. So far, we only bound the

size of the kernel 𝐻 . Below, we discuss how to actually build it in

sublinear time. Note that we will end up building a subgraph of 𝐻

instead of 𝐻 .

Consider the following BFS-like process: Initialize the queue

of the BFS with vertices in 𝑁𝑥 . Whenever 𝑣 is visited, if 𝑣 ∉ 𝑁𝑡 ,

we add 𝑁 (𝑣) \ 𝑁 [𝑥] into the queue. This process will explore the

“relevant” subgraph of 𝐻 \ {𝑥, 𝑡𝑥 } because the part that is not even
reached from 𝑁𝑥 cannot be relevant to (𝑥, 𝑡𝑥 )-vertex connectivity
in 𝐻 and so we ignore it. The kernel graph that our algorithm

actually constructs is obtained by adding 𝐸 (𝑥, 𝑁𝑥 ) and 𝐸 (𝑁𝑡 , 𝑡𝑥 )
into the above explored subgraph of 𝐻 . Our goal is to implement

this process in �̃� (𝑘 |𝐿 |) time. There are two main challenges.

(c1) For all𝑂 (𝑘) visited vertices 𝑣 ∉ 𝑁𝑡 , we must list 𝑁 (𝑣) \𝑁 [𝑥]
in �̃� ( |𝐿 |) time. Note that simply listing neighbors of 𝑣 already

takes deg(𝑣) ≥ 𝑘 time which is too expensive.

(c2) For all �̃� (𝑘 |𝐿 |) visited vertices 𝑣 , we must test if 𝑣 ∈ 𝑁𝑡 (i.e. if

its neighborhood in 𝐺 overlaps with 𝑇𝑥 ) in polylog(𝑛) time.

We address both challenges by implementing our BFS-like pro-

cess based on linear sketches from the streaming algorithm commu-

nity, and so we call our technique sketchy search. The key tech-

nique for (c1) is sparse recovery sketches: An 𝑠-sparse recovery

sketch linearly maps a vector ®𝑎 ∈ Z𝑛 to a smaller vector sk𝑠 ( ®𝑎) ∈
Z�̃� (𝑠) in �̃� (∥ ®𝑎∥0) time so that, if ®𝑎 has at most 𝑠 non-zero en-

tries, then we can recover ®𝑎 from sk𝑠 ( ®𝑎) in �̃� (𝑠) time. For any

vertex 𝑣 , let 1𝑁 (𝑣) and 1𝑁 [𝑣 ] be the indicator vectors of 𝑁 (𝑣) and
𝑁 [𝑣] respectively. We observe two things: (1) non-zero entries in

1𝑁 (𝑣)−1𝑁 [𝑥 ] correspond to the symmetric difference𝑁 (𝑣)△𝑁 [𝑥],
and (2) |𝑁 (𝑣)△𝑁 [𝑥] | = Θ( |𝑁 (𝑣) \ 𝑁 [𝑥] | + |𝐿 |) (formally proved in

(6)).

This motivates the following algorithm. Set 𝑠 ← |𝐿 | polylog(𝑛)
and precompute sk𝑠 (1𝑁 (𝑣) ) and sk𝑠 (1𝑁 [𝑣 ] ) for all vertices 𝑣 . This
takes

∑
𝑣 �̃� (deg(𝑣)) = �̃� (𝑚) time. Now, given any 𝑣 , we can com-

pute in �̃� (𝑠) time sk𝑠 (1𝑁 (𝑣) ) − sk𝑠 (1𝑁 [𝑥 ] ) = sk𝑠 (1𝑁 (𝑣) −1𝑁 [𝑥 ] ),
where the equality is because the map is linear. If 𝑣 ∉ 𝑁𝑡 , then

we have argued previously that |𝑁 (𝑣) \ 𝑁 [𝑥] | ≤ |𝐿 | polylog(𝑛)
and so 1𝑁 (𝑣) − 1𝑁 [𝑥 ] has at most 𝑠 non-zero entries. Thus, from

sk𝑠 (1𝑁 (𝑣) −1𝑁 [𝑥 ] ) we can obtain 𝑁 (𝑣)△𝑁 [𝑥] which contains the

desired set 𝑁 (𝑣) \ 𝑁 [𝑥] in �̃� (𝑠) = �̃� ( |𝐿 |) time.

320



Vertex Connectivity in Poly-logarithmic Max-Flows STOC ’21, June 21–25, 2021, Virtual, Italy

To address (c2), recall that if |𝑁 (𝑣) \ 𝑁 [𝑥] | ≥ |𝐿 | polylog(𝑛),
then 𝑣 ∈ 𝑁𝑡 . This condition can be checked in 𝑂 (log𝑛) time us-

ing another linear sketch (called norm estimation) for estimating

∥1𝑁 (𝑣) − 1𝑁 [𝑥 ] ∥2 which is proportional to |𝑁 (𝑣) \ 𝑁 [𝑥] | + |𝐿 |.
However, there can still be some 𝑣 ∈ 𝑁𝑡 but |𝑁 (𝑣) \ 𝑁 [𝑥] | ≤
|𝐿 | polylog(𝑛). Fortunately, there are only𝑂 (𝑘) such vertices in 𝑁𝑡

(using the same argument that bounds |𝐹 | = 𝑂 (𝑘) in the proof of

(b)). For those vertices, we have enough time to list 𝑁 (𝑣) \ 𝑁 [𝑥]
in �̃� ( |𝐿 |) time using the sparse recovery sketches and check if

𝑡𝑥 ∈ 𝑁 (𝑣) \ 𝑁 [𝑥], which holds iff 𝑣 ∈ 𝑁𝑡 .

Remarks: Note that all we have established is that in any one of

the many invocations of the sampling processes being used, we will

return a vertex mincut. For the sake of correctness, we carefully

argue later that in all the remaining calls, i.e., when sampling does

not give us the properties we desire, we actually return some vertex

cut in the graph. This allows us to distinguish the vertex mincut

from the other cuts returned, since it has the fewest vertices.

2 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸) be an undirected graph. For any set 𝑇 of vertices,

we let 𝑁𝐺 (𝑇 ) = {𝑣 ∉ 𝑇 | ∃𝑢 ∈ 𝑇 and (𝑢, 𝑣) ∈ 𝐸} and 𝑁𝐺 [𝑇 ] =
𝑇 ∪ 𝑁𝐺 (𝑇 ). If 𝑇 = {𝑣}, we also write 𝑁 (𝑣) and 𝑁 [𝑣]. The set

𝐸𝐺 (𝐴, 𝐵) denote the edges with one endpoint in 𝐴 and another in

𝐵. If 𝐴 = {𝑣}, we write 𝐸𝐺 (𝑣, 𝐵). We usually omit the subscript

when𝐺 refers to the input graph. For any graph 𝐻 , we use𝑉 (𝐻 ) to
denote the set of vertices of 𝐻 , and 𝐸 (𝐻 ) to denote the set of edges

of 𝐻 . Whenever we contract a set of vertices in a graph, we remove

all parallel edges to keep the graph simple. This is because parallel

edges does not affect vertex connectivity.

A vertex cut (𝐿, 𝑆, 𝑅) of a graph 𝐺 = (𝑉 , 𝐸) is a partition of 𝑉

such that 𝐿, 𝑅 ≠ ∅ and 𝐸𝐺 (𝐿, 𝑅) = ∅. We call 𝑆 the correspond-

ing separator of (𝐿, 𝑆, 𝑅). The size of a vertex cut is the size of its
separator |𝑆 |. A vertex cut (𝐿, 𝑆, 𝑅) is an (𝑠, 𝑡)-vertex cut if 𝑠 ∈ 𝐿

and 𝑡 ∈ 𝑅. A vertex mincut is a vertex cut with minimum size. An

(𝑠, 𝑡)-vertex mincut is defined analogously. If (𝐿, 𝑆, 𝑅) is an (𝑠, 𝑡)-
vertex mincut, we say that 𝑆 is an (𝑠, 𝑡)-min-separator. For disjoint

subsets 𝐴, 𝐵 ⊂ 𝑉 , a vertex cut (𝐿, 𝑆, 𝑅) is an (𝐴, 𝐵)-vertex cut if

𝐴 ⊆ 𝐿 and 𝐵 ⊆ 𝑅. (𝐴, 𝐵)-separator and (𝐴, 𝐵)-min-separator are

defined analogously. Throughout the paper, we assume wlog that

|𝐿 | ≤ |𝑅 |.
In Section 3.3, we will employ the following standard linear

sketching techniques. We state the known results in the form which

is convenient for us below. We prove them in the Appendix. In

both theorems below, an input vector 𝑣 is represented in a sparse

representation, namely a list of (index,value) of non-zero entries.

The number of non-zero entries of 𝑣 is denoted as ∥𝑣 ∥
0
.

Theorem 2.1 (Norm Estimation). For any number 𝑛, there is

an algorithm that preprocesses in �̃� (𝑛) time and then, given any

vector 𝑣 ∈ R𝑛 , return a sketch skℓ2 (𝑣) ∈ R𝑂 (log𝑛) in �̃� (∥𝑣 ∥0) time

such that ∥𝑣 ∥2 ≤ ∥ skℓ2 (𝑣)∥2 ≤ 1.1∥𝑣 ∥2 whp. Moreover, the sketch is

linear, i.e. skℓ2 (𝑢 + 𝑣) = skℓ2 (𝑣) + skℓ2 (𝑢) for any 𝑢, 𝑣 ∈ R𝑛 .

Theorem 2.2 (Sparse Recovery). For any numbers 𝑛 and 𝑠 , there

is an algorithm that preprocesses in �̃� (𝑠) time and then, given any

vector 𝑣 ∈ {−1, 0, 1}𝑛 , return a sketch sk𝑠 (𝑣) ∈ Z�̃� (𝑠) in �̃� (∥𝑣 ∥0)

time and guarantees the following whp (as long as the number of

recovery operations is poly(𝑛)).3

• If ∥𝑣 ∥0 ≤ 𝑠 , then we can recover 𝑣 from sk𝑠 (𝑣) in �̃� (𝑠) time.

(More specifically, we obtain all non-zero entries of 𝑣 together

with their indices).

• Otherwise, if ∥𝑣 ∥0 > 𝑠 , then the algorithm returns ⊥.
Moreover, the sketch is linear, i.e. sk𝑠 (𝑢 + 𝑣) = sk𝑠 (𝑣) + sk𝑠 (𝑢) for
any 𝑢, 𝑣 ∈ Z𝑛 .

3 USING SUBLINEAR-TIME KERNELIZATION
We say that a vertex cut (𝐿, 𝑆, 𝑅) is a 𝑘-scratch if |𝑆 | < 𝑘 , |𝐿 | ≤
𝑘/(100 log𝑛) and |𝑆

low
| ≥ 300|𝐿 | ln𝑛 where |𝑆

low
| = {𝑣 ∈ 𝑆 |

deg(𝑣) ≤ 8𝑘}. This kind of cuts is considered in Case 3 of Section 1.2.
In this section, we show that if a graph has 𝑘-scratch, then we can

return some vertex cut of size less than 𝑘 .

Lemma 3.1. There is an algorithm that, given an undirected graph

𝐺 with 𝑛 vertices and𝑚 edges and a parameter 𝑘 , returns a vertex cut

(𝐿, 𝑆, 𝑅) in 𝐺 . If 𝐺 has a 𝑘-scratch, then |𝑆 | < 𝑘 w.h.p. The algorithm

makes 𝑠-𝑡 maxflow calls on unit-vertex-capacity graphs with �̃� (𝑚)
total number of vertices and edges and takes �̃� (𝑚) additional time.

Throughout this section, we assume that minimum degree of

𝐺 is at least 𝑘 , otherwise the lemma is trivial. The rest of this

section is for proving the above lemma. Assume that a 𝑘-scratch

exists, let (𝐿, 𝑆, 𝑅) be an arbitrary 𝑘-scratch. We start with a simple

observation which says that, given a vertex 𝑥 ∈ 𝐿, the remaining

part of 𝐿 ∪ 𝑆 outside 𝑁 [𝑥] has size at most |𝐿 | which is potentially

much smaller than 𝑘 .

Proposition 3.2. For any 𝑥 ∈ 𝐿, | (𝐿 ∪ 𝑆) \ 𝑁 [𝑥] | < |𝐿 |.

Proof. Note that 𝑁 [𝑥] ⊆ 𝐿 ∪ 𝑆 as 𝑥 ∈ 𝐿. The claim follows

because |𝐿 ∪ 𝑆 | < |𝐿 | + 𝑘 and |𝑁 [𝑥] | > 𝑘 as the minimum degree is

at least 𝑘 . □

We will use ℓ̃ as an estimate of |𝐿 | (since |𝐿 | is actually unknown
to us). Let 𝑇 be obtained by sampling each vertex with probability

1/(8ℓ̃). Let𝑇𝑥 ≜ 𝑇 \𝑁 [𝑥] for any 𝑥 ∈ 𝑉 . Below, we show two basic

properties of 𝑇 .

Proposition 3.3. For any 𝑥 ∈ 𝑉 , we have the following whp.

For every 𝑣 ∉ 𝑁 [𝑇𝑥 ], |𝑁 (𝑣) \ 𝑁 [𝑥] | ≤ 40ℓ̃ ln𝑛 (4)

Proof. It suffices to prove that, for any 𝑣 ∈ 𝑉 , if |𝑁 (𝑣) \𝑁 [𝑥] | >
40ℓ̃ ln𝑛, then 𝑣 is incident to𝑇𝑥 whp. Indeed, 𝑣 is not incident to𝑇𝑥

is with probability at most (1 − 1

8ℓ̃
) |𝑁 (𝑣)\𝑁 [𝑥 ] | < 𝑛−5. □

Proposition 3.4. Suppose |𝐿 |/4 ≤ ℓ̃ ≤ |𝐿 |. For each 𝑥 ∈ 𝐿, ∅ ≠

𝑇𝑥 ⊆ 𝑅 with constant probability.

Proof. Note that ∅ ≠ 𝑇𝑥 ⊆ 𝑅 iff none of vertices from (𝐿 ∪ 𝑆) \
𝑁 [𝑥] is sampled to 𝑇 and some vertex from 𝑅 \ 𝑁 [𝑥] is sampled

to 𝑇 . Observe that | (𝐿 ∪ 𝑆) \ 𝑁 [𝑥] | < |𝐿 | by Proposition 3.2 and

|𝑅 \ 𝑁 [𝑥] | = |𝑅 | ≥ |𝐿 |.
To rephrase the situation, we have two disjoint sets 𝐴1 and 𝐴2

where |𝐴1 | < |𝐿 | and |𝐴2 | ≥ |𝐿 | and each element is sampled

3
The algorithm works for larger range [− poly(𝑛), poly(𝑛) ] of integers, but the range
{−1, 0, 1} is sufficient for our purpose.
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with probability
1

8ℓ̃
∈ [ 1

8 |𝐿 | ,
1

2 |𝐿 | ]. No element is 𝐴1 is sampled

with probability at least (1 − 1

2 |𝐿 | )
|𝐿 | ≥ 0.5. Some element in 𝐴2 is

sampled with probability at least 1 − (1 − 1

8 |𝐿 | )
|𝐿 | ≥ 1 − 𝑒1/8 ≥ 0.1.

As both events are independent, so they happen simultaneously

with probability at least 0.05. That is, ∅ ≠ 𝑇𝑥 ⊆ 𝑅 with probability

at least 0.05. □

For intuition, let us see why these observations above can be

useful. Suppose ℓ̃ ≈ |𝐿 | and we can guess 𝑥 ∈ 𝐿. Then, Proposi-

tion 3.4 says that ∅ ≠ 𝑇𝑥 ⊆ 𝑅 with some chance. This implies that

any (𝑥,𝑇𝑥 )-vertex mincut must have size at most |𝑆 | < 𝑘 and we

so could return it as the answer of Lemma 3.1. However, directly

computing a (𝑥,𝑇𝑥 )-vertex mincut in𝐺 is too expensive. One initial

idea is to contract𝑇𝑥 into a single vertex 𝑡𝑥 (denoted the contracted

graph by 𝐺 ′
𝑥,𝑇

) and then compute a (𝑥, 𝑡𝑥 )-vertex mincut in the

smaller graph 𝐺 ′
𝑥,𝑇

. Now, Equation (4) precisely means that, for

every vertex 𝑣 in 𝐺 ′
𝑥,𝑇

not incident to the sink 𝑡𝑥 and not 𝑡𝑥 itself,

the neighbor set of 𝑣 outside 𝑁 [𝑥] is at most 40ℓ̃ ln𝑛.

This fact that many vertices in 𝐺 ′
𝑥,𝑇

has “degree outside 𝑁 [𝑥]”
at most �̃� (ℓ̃) is the key structural property used for constructing a

small graph𝐺𝑥,𝑇 with �̃� (𝑘ℓ̃) edges such that a (𝑥, 𝑡𝑥 )-vertex mincut

in𝐺𝑥,𝑇 corresponds to a (𝑥,𝑇𝑥 )-vertex mincut in𝐺 . The graph𝐺𝑥,𝑇

fits into the notion of kernel in parameterized algorithms and hence

we call it a kernel graph. The graph𝐺𝑥,𝑇 will be obtained from𝐺 ′
𝑥,𝑇

by removing further edges and vertices.

The following key lemma further shows that, given a set 𝑋 , we

can build the kernel graph𝐺𝑥,𝑇 for each 𝑥 ∈ 𝑋 in �̃� (𝑘ℓ̃) time, which

is sublinear time.

Lemma 3.5 (Sublinear-time Kernelization). Let 𝐺 and 𝑘 be the

input of Lemma 3.1. Let ℓ̃ ≤ 𝑘/(100 log𝑛). Let 𝑋 be a set of vertices.

Let 𝑇 be obtained by sampling each vertex with probability 1/(8ℓ̃)
and 𝑇𝑥 ≜ 𝑇 \ 𝑁 [𝑥] for any 𝑥 ∈ 𝑋 . There is an algorithm that takes

total �̃� (𝑚 + |𝑋 |𝑘ℓ̃) time such that, whp, for every 𝑥 ∈ 𝑋 , either

• outputs a kernel graph 𝐺𝑥,𝑇 containing 𝑥 and 𝑡𝑥 as vertices

where |𝐸 (𝐺𝑥,𝑇 ) | = 𝑂 (𝑘ℓ̃ log𝑛) together with a vertex set 𝑍𝑥,𝑇
such that a set 𝑌 is a (𝑥, 𝑡𝑥 )-min-separator in𝐺𝑥,𝑇 if and only

if 𝑌 ∪ 𝑍𝑥,𝑇 is a (𝑥,𝑇𝑥 )-min-separator in 𝐺 , or

• certifies that𝑇𝑥 = ∅ or that there is no 𝑘-scratch (𝐿, 𝑆, 𝑅) where
∅ ≠ 𝑇𝑥 ⊆ 𝑅, ℓ̃ ∈ [|𝐿 |/2, |𝐿 |] and 𝑥 ∈ 𝐿.

Below, we prove the main result of this section using the key

lemma (Lemma 3.5) above.

Proof of Lemma 3.1. For each 𝑖 = 1, . . . , lg(𝑘/(100 log𝑛)), let
ℓ̃ (𝑖) = 2

𝑖
. Let 𝑇 (𝑖,1) , . . . ,𝑇 (𝑖,𝑂 (log𝑛)) be independently obtained by

sampling each vertex with probability 1/(8ℓ̃ (𝑖) ) and let 𝑋 (𝑖) be
a set of 𝑂 (𝑛 log𝑛/ℓ̃ (𝑖) ) random vertices. We invoke Lemma 3.5

with parameters (ℓ̃ (𝑖) , 𝑋 (𝑖) ,𝑇 (𝑖, 𝑗) ) for each 𝑗 = 1, . . . ,𝑂 (log𝑛). For
each 𝑥 ∈ 𝑋 (𝑖) where the kernel graph 𝐺𝑥,𝑇 (𝑖,𝑗 ) is returned, we find

(𝑥, 𝑡𝑥 )-min-separator in𝐺𝑥,𝑇 (𝑖,𝑗 ) by calling the maxflow subroutine

and obtain a (𝑥,𝑇 (𝑖, 𝑗)𝑥 )-min-separator in 𝐺 by combining it with

𝑍𝑥,𝑇 (𝑖,𝑗 ) . Among all obtained (𝑥,𝑇 (𝑖, 𝑗)𝑥 )-min-separators (over all

𝑖, 𝑗, 𝑥), we return the one with minimum size as the answer of

Lemma 3.1. Before returning such cut, we verify in 𝑂 (𝑚) time that

it is indeed a vertex cut in 𝐺 (as Lemma 3.5 is only correct whp.).

If not, we return an arbitrary vertex cut of 𝐺 (e.g., 𝑁𝐺 (𝑣) where
𝑣 is a minimum degree vertex). Also, if there is no graph 𝐺𝑥,𝑇 (𝑖,𝑗 )

returned from Lemma 3.5 at all, then we return an arbitrary vertex

cut of 𝐺 as well.

For correctness, it is clear that the algorithm always returns some

vertex cut of𝐺 with certainty. Now, suppose that𝐺 has a 𝑘-scratch

(𝐿, 𝑆, 𝑅). Consider 𝑖 such that ℓ̃ (𝑖) ∈ [|𝐿 |/2, |𝐿 |]. Then, there exists
𝑥 ∈ 𝑋 (𝑖) where 𝑥 ∈ 𝐿 whp. Also, by Proposition 3.4, there is 𝑗

where ∅ ≠ 𝑇
(𝑖, 𝑗)
𝑥 ⊆ 𝑅 whp. Therefore, a (𝑥,𝑇 (𝑖, 𝑗)𝑥 )-min-separator

must have size less than 𝑘 and we must obtain it by Lemma 3.5.

Finally, we bound the running time. As we call Lemma 3.5

𝑂 (log2 𝑛) times, this takes time at most

�̃� (
∑︁
𝑖

(𝑚 + |𝑋𝑖 |𝑘ℓ̃ (𝑖) )) = �̃� (𝑚 +
∑︁
𝑖

𝑛

ℓ̃ (𝑖)
𝑘ℓ̃ (𝑖) ) = �̃� (𝑚).

The total size of maxflow instances is at most∑︁
𝑖, 𝑗

∑︁
𝑥 ∈𝑋 (𝑖 )

|𝐸 (𝐺𝑥,𝑇 (𝑖,𝑗 ) ) | =
∑︁
𝑖

�̃� (𝑘ℓ̃ (𝑖) · (𝑛/ℓ̃ (𝑖) )) = �̃� (𝑚) .

This completes the proof.

Organization of this section. We formally show the existence of

𝐺𝑥,𝑇 in Section 3.2 (using the help of reduction rules shown in

Section 3.1). Next, we give efficient data structures for efficiently

building each𝐺𝑥,𝑇 in Section 3.3 and then use them to finally prove

Lemma 3.5 in Section 3.4.

3.1 Reduction Rules for (𝑠, 𝑡)-Vertex Mincut
In this section, we describe a simple and generic “reduction rules”

for reducing the instance size of the (𝑠, 𝑡)-vertex mincut problem.

We will apply these rules in Section 3.2. Let 𝐻 = (𝑉 , 𝐸) be an

arbitrary simple graph with source 𝑠 and sink 𝑡 where (𝑠, 𝑡) ∉ 𝐸.

The first rule helps us identify vertices that must be in every

mincut and hence we can remove them. More specifically, we can

always remove common neighbors of both source 𝑠 and sink 𝑡 and

work on the smaller graph.

Proposition 3.6 (Identify rule). Let 𝐻 ′ = 𝐻 \ 𝑁 (𝑠) ∩ 𝑁 (𝑡). Then,
𝑆 ′ is an (𝑠, 𝑡)-min-separator in 𝐻 ′ iff 𝑆 = 𝑆 ′ ∪ (𝑁 (𝑠) ∩ 𝑁 (𝑡)) is an
(𝑠, 𝑡)-min-separator in 𝐻 ′.

Proof. Let 𝑣 ∈ 𝑁 (𝑠) ∩𝑁 (𝑡). Observe that 𝑣 is contained in every

(𝑠, 𝑡)-separator in𝐻 . So 𝑆 ′ is an (𝑠, 𝑡)-min-separator in𝐻\{𝑣} iff 𝑆 ′∪
{𝑣} is an (𝑠, 𝑡)-min-separator in 𝐻 . The claim follows by applying

the same argument on another vertex 𝑣 ′ ∈ 𝑁 (𝑠) ∩ 𝑁 (𝑡) \ {𝑣} in
𝐻 \ {𝑣} and repeating for all vertices in 𝑁 (𝑠) ∩ 𝑁 (𝑡). □

The second rule helps us “filter” useless edges and vertices w.r.t.

(𝑠, 𝑡)-vertex connectivity.

Proposition 3.7 (Filter rule). There exists a maximum set of (𝑠, 𝑡)-
vertex-disjoint paths 𝑃1, . . . , 𝑃𝑧 in 𝐻 such that no path contains edges

or vertices that satisfies any of the following properties.

(1) an edge 𝑒 with both endpoints in 𝑁 (𝑠) or both in 𝑁 (𝑡).
(2) a vertex 𝑣 where 𝑡 ∈ 𝑁 (𝑣) ⊆ 𝑁 [𝑡].
(3) a vertex 𝑣 where 𝑠 cannot reach 𝑣 in 𝐻 \ 𝑁 [𝑡].

Therefore, by maxflow-mincut theorem, the size of (𝑠, 𝑡)-vertex mincut

in 𝐻 stays the same even after we remove these edges and vertices

from 𝐻 .
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Proof. (1): Suppose there exists 𝑃𝑖 = (𝑠, . . . , 𝑢1, 𝑢2, . . . , 𝑡) where
(𝑢1, 𝑢2) ∈ 𝑁 (𝑠) × 𝑁 (𝑠). We can replace 𝑃𝑖 with 𝑃 ′

𝑖
= (𝑠,𝑢2, . . . , 𝑡)

which is disjoint from other paths 𝑃 𝑗 . The argument is symmetric

for 𝑁 (𝑡).
(2): Let 𝑣 be such that 𝑡 ∈ 𝑁 (𝑣) ⊆ 𝑁 [𝑡]. We first apply rule (1).

This means that 𝑁 (𝑣) = {𝑡}. It is clear that there is no simple 𝑠-𝑡

path through 𝑣 .

(3): Suppose 𝑣 ∈ 𝑃𝑖 . There must exist 𝑡 ′ ∈ 𝑁 (𝑡) where 𝑃𝑖 =

(𝑠, . . . , 𝑡 ′, . . . , 𝑣, . . . , 𝑡) because 𝑠 could not reach 𝑣 if 𝑁 [𝑡] was re-
moved. Then, we can replace 𝑃𝑖 with 𝑃 ′

𝑖
= (𝑠, . . . , 𝑡 ′, 𝑡) which does

not contain 𝑣 and is still disjoint from other paths 𝑃 𝑗 . □

3.2 Structure of Kernel 𝐺𝑥,𝑇

Let𝐺 and 𝑘 be the input of Lemma 3.1. Throughout this section, we

fix a vertex 𝑥 and a vertex set 𝑇 ≠ ∅. The goal of this section is to

show the existence of the graph 𝐺𝑥,𝑇 as needed in Lemma 3.5 and

state its structural properties which will be used later in Sections 3.3

and 3.4.

Recall that 𝑇𝑥 ≜ 𝑇 \ 𝑁 [𝑥] and also the graph 𝐺 ′
𝑥,𝑇

is obtained

from 𝐺 by contracting 𝑇𝑥 into a sink 𝑡𝑥 . We call 𝑥 a source. Clearly,

every (𝑥, 𝑡𝑥 )-vertex cut in 𝐺 ′𝑥,𝑇 is a (𝑥,𝑇𝑥 )-vertex cut in 𝐺 .
Let 𝐺𝑥,𝑇 be obtained from 𝐺 ′

𝑥,𝑇
by first applying Identify rule

from Proposition 3.6. Let 𝑍𝑥,𝑇 = 𝑁𝐺′
𝑥,𝑇
(𝑥) ∩ 𝑁𝐺′

𝑥,𝑇
(𝑡𝑥 ) be the set

removed from 𝐺 ′
𝑥,𝑇

by Identify rule. We also write 𝑍 = 𝑍𝑥,𝑇 for

convenience. After removing 𝑍𝑥,𝑇 , we apply Filter rule from Propo-

sition 3.7. We call the resulting graph the kernel graph 𝐺𝑥,𝑇 . The

reduction rules from Propositions 3.6 and 3.7 immediately imply

the following.

Lemma 3.8. Any set𝑌 is a (𝑥, 𝑡𝑥 )-min-separator in𝐺𝑥,𝑇 iff𝑌 ∪𝑍𝑥,𝑇
is a (𝑥,𝑇𝑥 )-min-separator in 𝐺 .

Let us partition vertices of𝐺𝑥,𝑇 as follows. Let 𝑁𝑥 = 𝑁𝐺𝑥,𝑇
(𝑥) be

the neighborhood of source 𝑥 . Let 𝑁𝑡 = 𝑁𝐺𝑥,𝑇
(𝑡𝑥 ) be the neighbor

of sink 𝑡𝑥 . Note that 𝑁𝑥 and 𝑁𝑡 are disjoint by Identify rule. Let

𝐹 = 𝑉 (𝐺𝑥,𝑇 ) \ (𝑁𝑥 ∪ 𝑁𝑡 ∪ {𝑥, 𝑡𝑥 }) be the rest of vertices, which
is “far” from both 𝑥 and 𝑡𝑥 . By Filter rule(1), 𝐺𝑥,𝑇 has no internal

edges inside 𝑁𝑥 nor 𝑁𝑡 . So, the edges of 𝐺𝑥,𝑇 can be partitioned to

𝐸 (𝐺𝑥,𝑇 ) = 𝐸𝐺𝑥,𝑇
(𝑥, 𝑁𝑥 ) ∪ 𝐸𝐺𝑥,𝑇

(𝑁𝑥 , 𝐹 ∪ 𝑁𝑡 )
∪ 𝐸𝐺𝑥,𝑇

(𝐹, 𝐹 ∪ 𝑁𝑡 ) ∪ 𝐸𝐺𝑥,𝑇
(𝑁𝑡 , 𝑡𝑥 ) . (5)

Below, we further characterize each part in 𝐺𝑥,𝑇 in term of sets in

𝐺 = (𝑉 , 𝐸). See Figure 3 for illustration.

Lemma 3.9. We have the following:

(1) 𝑍 = 𝑁 (𝑥) ∩ 𝑁 (𝑇𝑥 ) and 𝑁𝑥 = 𝑁 (𝑥) \ 𝑁 (𝑇𝑥 ). So, 𝑍 and 𝑁𝑥

partition 𝑁 (𝑥).
(2) 𝐹 = {𝑣 ∈ 𝑉 \ (𝑁 [𝑥] ∪ 𝑁 [𝑇𝑥 ]) | 𝑣 is reachable from 𝑁𝑥 in

𝐺 \ 𝑁 [𝑇𝑥 ]}.
(3) 𝑁𝑡 = {𝑣 ∈ 𝑁 (𝑇𝑥 ) \ 𝑁 [𝑥] | 𝑣 is incident to 𝐹 or 𝑁𝑥 }

Proof. (1): Observe that 𝑁 ′𝑡 ≜ 𝑁𝐺′
𝑥,𝑇
(𝑡𝑥 ) = 𝑁 (𝑇𝑥 ) and 𝑁 ′𝑥 ≜

𝑁𝐺′
𝑥,𝑇
(𝑥) = 𝑁 (𝑥) because 𝐺 ′

𝑥,𝑇
is simply 𝐺 after contracting 𝑇𝑥 .

So 𝑍 = 𝑁 (𝑥) ∩ 𝑁 (𝑇𝑥 ). After removing 𝑍 from 𝐺 ′
𝑥,𝑇

via Identify

rule, the remaining neighbor set of 𝑥 is 𝑁 (𝑥) \ 𝑁 (𝑇𝑥 ). Since Filter
rule never further removes any neighbor of the source 𝑥 , we have

𝑁𝑥 = 𝑁 (𝑥) \ 𝑁 (𝑇𝑥 ).

x tx

F’

N’x N’t

G’x,T

F

Z

Nx
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Gx,T

F

Nx Nt

Figure 3:𝐺 ′
𝑥,𝑇

(left) is obtained from𝐺 by contracting𝑇𝑥 .𝐺𝑥,𝑇

(right) is obtained from 𝐺 ′
𝑥,𝑇

by applying Identify rule and
Filter rule, respectively. The set 𝑍 is identified using Identify
rule. Note that 𝑁𝑥 = 𝑁 ′𝑥 \ 𝑍 . The vertices in 𝐹 ′ \ 𝐹 cannot be
reached from𝑁𝑥 in𝐺 ′

𝑥,𝑇
\𝑁𝐺′

𝑥,𝑇
(𝑡𝑥 ). The vertices in𝑁 ′𝑡 \(𝑁𝑡∪𝑍 )

have edges only to 𝑁𝑡 or 𝑡𝑥 .

(2): Let 𝐹 ′ = 𝑉 \ (𝑁 [𝑥] ∪𝑁 [𝑇𝑥 ]). Note that 𝐹 ′ is precisely the set
of vertices in 𝐺 ′

𝑥,𝑇
that is not dominated by source 𝑥 or sink 𝑡𝑥 . As

𝐹 is an analogous set for 𝐺𝑥,𝑇 and 𝐺𝑥,𝑇 is a subgraph of 𝐺 ′
𝑥,𝑇

, we

have 𝐹 ⊆ 𝐹 ′. Observe that only Filter rule(3) may remove vertices

from 𝐹 ′. (Identify rule and Filter rule(1,2) do not affect 𝐹 ′). Now,
Filter rule(3) precisely removes vertices in 𝐹 ′ that are not reachable
from source 𝑥 in 𝐺 ′

𝑥,𝑇
\ 𝑁𝐺′

𝑥,𝑇
[𝑡𝑥 ]. Equivalently, it removes those

that are not reachable from 𝑁𝑥 in𝐺 \𝑁 [𝑇𝑥 ]. Hence, the remaining

part of 𝐹 ′ in 𝐺𝑥,𝑇 is exactly 𝐹 .

(3): Let 𝑁 ′′𝑡 = 𝑁 (𝑇𝑥 ) \ 𝑁 [𝑥]. 𝑁 ′′𝑡 precisely contains neighbors

of sink 𝑡𝑥 in 𝐺 ′
𝑥,𝑇

outside 𝑁 [𝑥]. As 𝑁𝑡 is the neighbor set of 𝑡𝑥 in

𝐺𝑥,𝑇 and 𝑍 = 𝑁 (𝑥) ∩ 𝑁 (𝑇𝑥 ) is removed from 𝐺𝑥,𝑇 , we have that

𝑁𝑡 ⊆ 𝑁 ′′𝑡 . Now, only Filter rule(2) may remove vertices from 𝑁 ′′𝑡 ,

and it precisely removes those that are not incident to 𝐹 or 𝑁𝑥 .

Therefore, the remaining part of 𝑁 ′′𝑡 in 𝐺𝑥,𝑇 is exactly 𝑁𝑡 . □

Next, we show we bound the size of |𝐸 (𝐺𝑥,𝑇 ) |.

Lemma 3.10. Suppose Equation (4) holds. Then, |𝐸 (𝐺𝑥,𝑇 ) | = 𝑂 ((𝑘 +
|𝐹 |)ℓ̃ log𝑛).

Proof. We bound |𝐸 (𝐺𝑥,𝑇 ) | by bounding each term in Equa-

tion (5). First, |𝐸 (𝑥, 𝑁𝑥 ) | ≤ |𝑁𝑥 | ≤ |𝐿 ∪ 𝑆 | ≤ 2𝑘 . Next, for any

𝑣 ∈ 𝑉 (𝐺𝑥,𝑇 ) \ 𝑁𝑡 , we have |𝐸𝐺𝑥,𝑇
(𝑣, 𝐹 ∪ 𝑁𝑡 ) | ≤ 40ℓ̃ ln𝑛 by Equa-

tion (4). So |𝐸𝐺𝑥,𝑇
(𝑁𝑥 , 𝐹 ∪ 𝑁𝑡 ) ∪ 𝐸𝐺𝑥,𝑇

(𝐹, 𝐹 ∪ 𝑁𝑡 ) | ≤ (|𝑁𝑥 | + |𝐹 |) ·
40ℓ̃ ln𝑛 = 𝑂 ((𝑘 + |𝐹 |)ℓ̃ log𝑛) because |𝑁𝑥 | ≤ 2𝑘 . Lastly, each vertex

in 𝑁𝑡 must have a neighbor in either 𝑁𝑥 or 𝐹 by Lemma 3.9(3). So

|𝐸𝐺𝑥,𝑇
(𝑁𝑡 , 𝑡𝑥 ) | ≤ |𝑁𝑡 | ≤ |𝐸𝐺𝑥,𝑇

(𝑁𝑡 , 𝑁𝑥 ∪ 𝐹 ) | which can be charged

to either 𝐸𝐺𝑥,𝑇
(𝑁𝑥 , 𝐹 ∪ 𝑁𝑡 ) or 𝐸𝐺𝑥,𝑇

(𝐹, 𝐹 ∪ 𝑁𝑡 ) whose size are

𝑂 ((𝑘+|𝐹 |)ℓ̃ log𝑛). To conclude, |𝐸 (𝐺𝑥,𝑇 ) | = 𝑂 ((𝑘+|𝐹 |)ℓ̃ log𝑛). □

Since |𝐸 (𝐺𝑥,𝑇 ) | depends on |𝐹 |, we will bound |𝐹 | as follows.
We show that the set 𝐹 ′

relax
= {𝑣 ∈ 𝑉 \ 𝑁 [𝑥] | |𝑁 (𝑣) \ 𝑁 [𝑥] | ≤

100ℓ̃ log𝑛} is a superset of 𝐹 and then bound |𝐹 ′
relax
|. The bound

on |𝐹 ′
relax
| will be also used later in Proposition 3.18 for proving

efficiency of our algorithm.
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Lemma 3.11. Suppose Equation (4) holds and there is a 𝑘-scratch

(𝐿, 𝑆, 𝑅) where ∅ ≠ 𝑇𝑥 ⊆ 𝑅, ℓ̃ ∈ [|𝐿 |/2, |𝐿 |], and 𝑥 ∈ 𝐿. Then, we

have that 𝐹 ⊆ 𝐹 ′
relax

and |𝐹 ′
relax
| ≤ 16𝑘 .

Proof. Let 𝐹 ′ = 𝑉 \ (𝑁 [𝑥] ∪ 𝑁 [𝑇𝑥 ]), which is precisely the set

of vertices in𝐺 ′
𝑥,𝑇

that is not dominated by source 𝑥 or sink 𝑡𝑥 . We

have 𝐹 ⊆ 𝐹 ′ because 𝐺𝑥,𝑇 is a subgraph of 𝐺 ′
𝑥,𝑇

and we have 𝐹 ′ ⊆
𝐹 ′
relax

because of Equation (4). Now, we bound |𝐹 ′
relax
|. Recall that

the definition of a 𝑘-scratch (𝐿, 𝑆, 𝑅) says that |𝑆
low
| ≥ 300|𝐿 | ln𝑛

where |𝑆
low
| = {𝑣 ∈ 𝑆 | deg(𝑣) ≤ 8𝑘}. Let 𝑁

low
= 𝑁 (𝑥) ∩ 𝑆

low
. We

will show that |𝐹 ′
relax
| · |𝑆

low
|/2 ≤ |𝐸𝐺 (𝑁low

, 𝐹 ′
relax
) | ≤ 8𝑘 |𝑆

low
|.

This would imply that |𝐹 ′
relax
| ≤ 16𝑘 and complete the proof of the

claim.

The upper bound on |𝐸𝐺 (𝑁low
, 𝐹 ′

relax
) | follows because 𝑁

low
⊆

𝑆
low

and each vertex in 𝑆
low

has degree at most 8𝑘 . To prove the

lower bound on |𝐸𝐺 (𝑁low
, 𝐹 ′

relax
) |, we will actually show that for

every 𝑣 ∈ 𝐹 ′
relax

, |𝐸𝐺 (𝑣, 𝑁low
) | ≥ |𝑆

low
|/2. We have

|𝐸𝐺 (𝑣, 𝑁low
) | ≥ |𝐸𝐺 (𝑣, 𝑁 (𝑥)) | − |𝑁 (𝑥) \ 𝑁low

|
≥ 𝑘 − 100ℓ̃ ln𝑛 − (𝑘 + |𝐿 | − |𝑁

low
|)

= |𝑁
low
| − 100ℓ̃ ln𝑛 − |𝐿 |

≥ |𝑆
low
| − |𝐿 | − 100ℓ̃ ln𝑛 − |𝐿 |

≥ |𝑆
low
| − 102|𝐿 | ln𝑛 ≥ |𝑆

low
|/2.

To see the second inequality, we have |𝐸𝐺 (𝑣, 𝑁 (𝑥)) | ≥ 𝑘 − 100ℓ̃ ln𝑛
because deg𝐺 (𝑣) ≥ 𝑘 but |𝐸𝐺 (𝑣,𝑉 \𝑁 (𝑥)) | ≤ 100ℓ̃ ln𝑛 by definition

of 𝐹 ′
relax

. Also, |𝑁 (𝑥) | ≤ |𝐿 ∪ 𝑆 | ≤ 𝑘 + |𝐿 |. The third inequality

follows because |𝑆
low
| ≤ |𝑁

low
| + |𝑆

low
\ 𝑁

low
| ≤ |𝑁

low
| + |𝐿 | by

Proposition 3.2 (the part of 𝑆 outside 𝑁 [𝑥] has size less than 𝐿, and

so the part of 𝑆
low

outside 𝑁
low

has size less than 𝐿 as well). This

completes the proof of the claim. □

3.3 Data Structures
In this section, we show fast data structures needed for proving

Lemma 3.5. Throughout this section, let (𝐺,𝑘, ℓ̃,𝑇 ) denote the input
given to Lemma 3.5. We treat them as global variables in this section.

Moreover, as the guarantee from Equation (4) holds whp, we will
assume that Equation (4) holds in this section.

There are two steps. First, we build an oracle that, given any

vertices 𝑥 and 𝑣 , lists all neighbors of 𝑣 outside 𝑁 [𝑥] if the set is
small. Second, given an arbitrary vertex 𝑥 , we use this oracle to

perform a BFS-like process that allows us to gradually build 𝐺𝑥,𝑇

without having an explicit representation of 𝐺𝑥,𝑇 in the beginning.

We show how to solves these tasks respectively in the subsections

below.

3.3.1 An Oracle for Listing Neighbors Outside 𝑁 [𝑥]. In this section,

we show the following data structure.

Lemma 3.12 (Neighbor Oracle). There is an algorithm that prepro-

cesses (𝐺 = (𝑉 , 𝐸), 𝑘, ℓ̃) in �̃� (𝑚) time and supports queries

OutNeighbor(𝑥, 𝑣) for any vertex 𝑥 where |𝑁 [𝑥] | ≤ 𝑘 + 2ℓ̃ and
𝑣 ∈ 𝑉 \ {𝑥}.

OutNeighbor(𝑥, 𝑣) either returns the neighbor set of 𝑣 outside

𝑁 [𝑥], i.e. 𝑁 (𝑣) \ 𝑁 [𝑥], in �̃� (ℓ̃) time, or report “too big” in 𝑂 (log𝑛)
time. If |𝑁 (𝑣) \ 𝑁 [𝑥] | ≤ 40ℓ̃ ln𝑛, then 𝑁 (𝑣) \ 𝑁 [𝑥] is returned. If

|𝑁 (𝑣) \ 𝑁 [𝑥] | > 100ℓ̃ ln𝑛, then “too big” is reported. Whp, every

query is answered correctly.

For any vertex set𝑉 ′ ⊆ 𝑉 , let the indicator vector 1𝑉 ′ ∈ {0, 1}𝑉
of 𝑉 ′ be the vector where 1𝑉 ′ (𝑢) = 1 iff 𝑢 ∈ 𝑉 ′. In this section, we

always use sparse representation of vectors, i.e. a list of (index,value)

of non-zero entries of the vector.

The algorithm preprocesses as follows. Set 𝑠 ← 100ℓ̃ ln𝑛. For ev-

ery vertex 𝑣 ∈ 𝑉 , we compute the sketches sk𝑠 (1𝑁 (𝑣) ), sk𝑠 (1𝑁 [𝑣 ] ),
skℓ2 (1𝑁 (𝑣) ), and skℓ2 (1𝑁 [𝑣 ] ) using Theorems 2.1 and 2.2. Observe

the following.

Proposition 3.13. The preprocessing time is �̃� (𝑚).

Proof. Theorems 2.1 and 2.2 preprocess in �̃� (𝑛) time. The total

time to compute the sketches is

∑
𝑣∈𝑉 �̃� (deg(𝑣)) = �̃� (𝑚). □

Now, given a vertex 𝑥 where |𝑁 [𝑥] | ≤ 𝑘 + 2ℓ̃ and 𝑣 ∈ 𝑉 \ {𝑥},
observe that the non-zero entries of 1𝑁 (𝑣) − 1𝑁 [𝑥 ] ∈ {−1, 0, 1}𝑉
corresponds to the symmetric difference (𝑁 (𝑣) \ 𝑁 [𝑥]) ∪ (𝑁 [𝑥] \
𝑁 (𝑣)). We will bound the size of 𝑁 [𝑥] \ 𝑁 (𝑣) as follows:

|𝑁 [𝑥] \ 𝑁 (𝑣) | ≤ |𝑁 [𝑥] | − |𝑁 [𝑥] ∩ 𝑁 (𝑣) |
≤ 𝑘 + 2ℓ̃ − (𝑘 − |𝑁 (𝑣) \ 𝑁 [𝑥] |)
= |𝑁 (𝑣) \ 𝑁 [𝑥] | + 2ℓ̃ (6)

where the second inequality is because 𝑘 ≤ |𝑁 (𝑣) | = |𝑁 (𝑣) ∩
𝑁 [𝑥] | + |𝑁 (𝑣) \ 𝑁 [𝑥] |. Therefore, we have

|𝑁 (𝑣) \ 𝑁 [𝑥] | ≤ ∥1𝑁 (𝑣) − 1𝑁 [𝑥 ] ∥0
(6)
≤ 2|𝑁 (𝑣) \ 𝑁 [𝑥] | + 2ℓ̃ .

Since 1𝑁 (𝑣) − 1𝑁 [𝑥 ] ∈ {−1, 0, 1}𝑉 , we have

|𝑁 (𝑣) \ 𝑁 [𝑥] | ≤ ∥1𝑁 (𝑣) − 1𝑁 [𝑥 ] ∥2 ≤ 2|𝑁 (𝑣) \ 𝑁 [𝑥] | + 2ℓ̃ . (7)

Now, we describe how to answer the query. First, we compute

skℓ2 (1𝑁 (𝑣) )−skℓ2 (1𝑁 [𝑥 ] ) = skℓ2 (1𝑁 (𝑣) −1𝑁 [𝑥 ] ) in𝑂 (log𝑛) time.

If ∥ skℓ2 (1𝑁 (𝑣)−1𝑁 [𝑥 ] )∥2 > 𝑠 , then we report “too big”. Otherwise,

we have 𝑠 ≥ ∥ skℓ2 (1𝑁 (𝑣) − 1𝑁 [𝑥 ] )∥2 ≥ ∥1𝑁 (𝑣) − 1𝑁 [𝑥 ] ∥2 =

∥1𝑁 (𝑣) − 1𝑁 [𝑥 ] ∥0 by Theorem 2.1 and because 1𝑁 (𝑣) − 1𝑁 [𝑥 ] ∈
{−1, 0, 1}𝑉 . So, we can compute

sk𝑠 (1𝑁 (𝑣) ) − sk𝑠 (1𝑁 [𝑥 ] ) = sk𝑠 (1𝑁 (𝑣) − 1𝑁 [𝑥 ] )
and obtain the set𝑁 (𝑣)\𝑁 [𝑥] inside (𝑁 (𝑣)\𝑁 [𝑥])∪(𝑁 [𝑥] \𝑁 (𝑣))
using Theorem 2.2 in �̃� (𝑠) = �̃� (ℓ̃) time.

To see the correctness, if |𝑁 (𝑣) \ 𝑁 [𝑥] | ≤ 40ℓ̃ ln𝑛, then

∥ skℓ2 (1𝑁 (𝑣) − 1𝑁 [𝑥 ] )∥2 ≤ 1.1∥1𝑁 (𝑣) − 1𝑁 [𝑥 ] ∥2
(7)
≤ 1.1 · (2|𝑁 (𝑣) \ 𝑁 [𝑥] | + 2ℓ̃)
≤ 100ℓ̃ ln𝑛 = 𝑠 .

So the set𝑁 (𝑣)\𝑁 [𝑥] must be returned. If |𝑁 (𝑣)\𝑁 [𝑥] | > 100ℓ̃ ln𝑛,

then

∥ skℓ2 (1𝑁 (𝑣) − 1𝑁 [𝑥 ] )∥2 ≥ ∥1𝑁 (𝑣) − 1𝑁 [𝑥 ] ∥2
(7)
≥ |𝑁 (𝑣) \ 𝑁 [𝑥] |
> 100ℓ̃ ln𝑛.

and so “too big” is reported in𝑂 (log𝑛) time. Every query is correct

whp because of the whp guarantees from Theorems 2.1 and 2.2.

This completes the proof of Lemma 3.12.
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3.3.2 Building 𝐺𝑥,𝑇 by Sketchy Search. In this section, we show

how to use the oracle from Lemma 3.12 to return the kernel graph

𝐺𝑥,𝑇 . As the oracle is based on linear sketching and we use it in a

BFS-like process, we call this algorithm sketchy search.

Lemma 3.14 (Sketchy Search). There is an algorithm that prepro-

cesses (𝐺,𝑘, ℓ̃,𝑇 ) in 𝑂 (𝑚) time and guarantees the following whp.

Given a query vertex 𝑥 ∈ 𝑋 , by calling the oracle from Lemma 3.12,

return either ⊥ or the kernel graph 𝐺𝑥,𝑇 with 𝑂 (𝑘ℓ̃ log𝑛) edges to-
gether with the set 𝑍𝑥,𝑇 (defined in the beginning of Section 3.2) in

�̃� (𝑘ℓ̃) time. If𝑇𝑥 ≠ ∅ and there is a 𝑘-scratch (𝐿, 𝑆, 𝑅) where𝑇𝑥 ⊆ 𝑅,

ℓ̃ ∈ [|𝐿 |/2, |𝐿 |], and 𝑥 ∈ 𝐿, then the algorithm must return 𝐺𝑥,𝑇 and

𝑍𝑥,𝑇 .

The remaining part of this section is for proving Lemma 3.14.

In the preprocessing step, we just compute 𝑉
bad

= {𝑣 | 𝑇 ⊆ 𝑁 [𝑣]}
by trivially checking if 𝑇 ⊆ 𝑁 [𝑣] on each vertex 𝑣 using total∑

𝑣 deg(𝑣) = 𝑂 (𝑚) time. Observe that 𝑥 ∈ 𝑉
bad

iff 𝑇𝑥 = ∅.
Next, if there is a 𝑘-scratch (𝐿, 𝑆, 𝑅) where 𝑥 ∈ 𝐿 and ℓ̃ ∈

[|𝐿 |/2, |𝐿 |], then we must have |𝑁 [𝑥] | ≤ 𝑘 + |𝐿 | ≤ 𝑘 + 2ℓ̃ . So,
given a query vertex 𝑥 , if 𝑥 ∈ 𝑉

bad
or |𝑁 [𝑥] | > 𝑘 + 2ℓ̃ , we can just

return ⊥. From now, we assume that 𝑇𝑥 ≠ ∅ and |𝑁 [𝑥] | ≤ 𝑘 + 2ℓ̃ .
Before showing how to construct 𝐺𝑥,𝑇 , we recall the definitions

of 𝐺𝑥,𝑇 and 𝑍𝑥,𝑇 from Section 3.2. Equation (5) says that edges of

𝐺𝑥,𝑇 can be partitioned as

𝐸 (𝐺𝑥,𝑇 ) = 𝐸𝐺𝑥,𝑇
(𝑥, 𝑁𝑥 ) ∪ 𝐸𝐺𝑥,𝑇

(𝑁𝑥 , 𝐹 ∪ 𝑁𝑡 )
∪ 𝐸𝐺𝑥,𝑇

(𝐹, 𝐹 ∪ 𝑁𝑡 ) ∪ 𝐸𝐺𝑥,𝑇
(𝑁𝑡 , 𝑡𝑥 )

where 𝑁𝑥 = 𝑁𝐺𝑥,𝑇
(𝑥), 𝑁𝑡 = 𝑁𝐺𝑥,𝑇

(𝑡𝑥 ), and 𝐹 = 𝑉 (𝐺𝑥,𝑇 ) \ (𝑁𝑥 ∪
𝑁𝑡 ∪ {𝑥, 𝑡𝑥 }). We write 𝑍 ≜ 𝑍𝑥,𝑇 = 𝑁𝐺′

𝑥,𝑇
(𝑥) ∩ 𝑁𝐺′

𝑥,𝑇
(𝑡𝑥 ) where

𝐺 ′
𝑥,𝑇

is obtained from 𝐺 by contracting 𝑇𝑥 into a single vertex 𝑡𝑥 .

Our strategy is to exploitOutNeighbor queries fromLemma 3.12

to perform a BFS-like process on 𝐺𝑥,𝑇 that allows us to gradually

identify𝐺𝑥,𝑇 and 𝑍𝑥,𝑇 without having an explicit representation of

𝐺𝑥,𝑇 in the beginning. The algorithm initializes 𝑍, 𝑁𝑥 , 𝐸𝑁𝑥
, 𝑁𝑡 , 𝐹 ,

𝐸𝐹 = ∅. At the end of the algorithm, these sets will become 𝑍, 𝑁𝑥 ,

𝐸𝐺𝑥,𝑇
(𝑁𝑥 , 𝐹 ∪ 𝑁𝑡 ), 𝑁𝑡 , 𝐹 , 𝐸𝐺𝑥,𝑇

(𝐹, 𝐹 ∪ 𝑁𝑡 ) respectively.
Observe that once we know all these sets we can immediately

deduce 𝐸𝐺𝑥,𝑇
(𝑥, 𝑁𝑥 ) and 𝐸𝐺𝑥,𝑇

(𝑁𝑡 , 𝑡𝑥 ), and hence we obtain all

parts in 𝐸 (𝐺𝑥,𝑇 ). So we can return 𝐺𝑥,𝑇 and 𝑍𝑥,𝑇 as desired.

The algorithm has two main loops. After the first loop, 𝑍, 𝑁𝑥 ,

and 𝐸𝑁𝑥
become 𝑍, 𝑁𝑥 , and 𝐸𝐺𝑥,𝑇

(𝑁𝑥 , 𝐹 ∪ 𝑁𝑡 ) respectively. After
the second loop, 𝑁𝑡 , 𝐹 , and 𝐸𝐹 become 𝑁𝑡 , 𝐹 , and 𝐸𝐺𝑥,𝑇

(𝐹, 𝐹 ∪ 𝑁𝑡 )
respectively. Let CountList = 0 initially. We use CountList to

count the number of times that OutNeighbor(𝑥, 𝑣) lists neighbors
of 𝑣 (not just reports “too big”). In Algorithm 1, we describe this

BFS-like process in details.

Before prove the correctness of Algorithm 1, we observe the

following simple fact.

Fact 3.15. 𝑁 (𝑣) \ 𝑁 [𝑥] intersects 𝑇𝑥 iff 𝑣 is incident to 𝑇𝑥 .

Proof. As 𝑇𝑥 ∩ 𝑁 [𝑥] = ∅, we have 𝑁 (𝑣) \ 𝑁 [𝑥] intersects 𝑇𝑥
iff 𝑁 (𝑣) intersects 𝑇𝑥 iff 𝑣 ∈ 𝑁 (𝑇𝑥 ). □

That is, the condition in Steps 1(c)i and 2(c)ii is equivalent to

checking if 𝑣 is incident to 𝑇𝑥 . Now, we prove the correctness of

the first loop.

Algorithm 1: An algorithm for building 𝐺𝑥,𝑇

(1) For each 𝑣 ∈ 𝑁 (𝑥),
(a) Set visit(𝑣) = true.

(b) If OutNeighbor(𝑥, 𝑣) returns “too big”, add 𝑣 to 𝑍 .

(c) Else, OutNeighbor(𝑥, 𝑣) returns the set 𝑁 (𝑣) \ 𝑁 [𝑥].
(i) If 𝑁 (𝑣) \ 𝑁 [𝑥] intersects 𝑇𝑥 , add 𝑣 to 𝑍 .
(ii) Else, (1) add 𝑣 to 𝑁𝑥 and edges between 𝑣 and

𝑁 (𝑣) \ 𝑁 [𝑥] to 𝐸𝑁𝑥
, and (2) add

{𝑤 ∈ 𝑁 (𝑣) \ 𝑁 [𝑥] | visit(𝑤) ≠ true} toQueue.

(2) While ∃𝑣 ∈Queue,

(a) Remove 𝑣 from Queue. Set visit(𝑣) = true.

(b) If OutNeighbor(𝑥, 𝑣) returns “too big”, add 𝑣 to 𝑁𝑡 .

(c) Else, OutNeighbor(𝑥, 𝑣) returns the set 𝑁 (𝑣) \ 𝑁 [𝑥].
(i) CountList← CountList + 1.
(ii) If 𝑁 (𝑣) \ 𝑁 [𝑥] intersects 𝑇𝑥 , then add 𝑣 to 𝑁𝑡 .

(iii) Else, (1) add 𝑣 to 𝐹 and edges between 𝑣 and

𝑁 (𝑣) \ 𝑁 [𝑥] to 𝐸𝐹 , and (2) add

{𝑤 ∈ 𝑁 (𝑣) \ 𝑁 [𝑥] | visit(𝑤) ≠ true} toQueue.

(iv) If CountList > 16𝑘 , return ⊥ and terminate.

Proposition 3.16. After the for loop in Step 1, 𝑍 , 𝑁𝑥 , and 𝐸𝑁𝑥

become 𝑍 , 𝑁𝑥 , and 𝐸𝐺𝑥,𝑇
(𝑁𝑥 , 𝐹 ∪ 𝑁𝑡 ), respectively.

Proof. By Lemma 3.9(1), 𝑁 (𝑥) = 𝑍 ¤∪𝑁𝑥 where 𝑍 = 𝑁 (𝑥) ∩
𝑁 (𝑇𝑥 ) and 𝑁𝑥 = 𝑁 (𝑥) \ 𝑁 (𝑇𝑥 ). After the for loop, every 𝑣 ∈ 𝑁 (𝑥)
is added to either 𝑍 or 𝑁𝑥 . If 𝑣 is added to 𝑍 in Step 1(c)i, then

Lemma 3.12 implies that |𝑁 (𝑣) \𝑁 [𝑥] | > 40ℓ̃ ln𝑛 and so 𝑣 ∈ 𝑁 (𝑇𝑥 )
by Equation (4), which means 𝑣 ∈ 𝑍 . If 𝑣 is added to 𝑍 in Step

1(c)i, then we directly verify that 𝑣 ∈ 𝑁 (𝑇𝑥 ) (see Fact 3.15) and

so 𝑣 ∈ 𝑍 again. Lastly, if 𝑣 is added to 𝑁𝑥 in Step Item 1(c)ii, then

𝑣 ∉ 𝑁 (𝑇𝑥 ) and so 𝑣 ∈ 𝑁𝑥 . This means that indeed 𝑍 = 𝑍 and

𝑁𝑥 = 𝑁𝑥 after the for loop. Lastly, every time 𝑣 is added to 𝑁𝑥 ,

we add 𝐸𝐺 (𝑣,𝑉 \ 𝑁 [𝑥]) = 𝐸𝐺𝑥,𝑇
(𝑣, 𝐹 ∪ 𝑁𝑥 ) into 𝐸𝑁𝑥

. So 𝐸𝑁𝑥
also

collects all edges in 𝐸𝐺𝑥,𝑇
(𝑁𝑥 , 𝐹 ∪ 𝑁𝑡 ) after the for loop. □

Next, we prove the correctness of the second loop. The proof is

similar to the first one but more complicated.

Proposition 3.17. Suppose ⊥ is not returned by Algorithm 1. Then,

at end of the while loop in Step 2, 𝑁𝑡 , 𝐹 and 𝐸𝐹 become 𝑁𝑡 , 𝐹 and

𝐸𝐺𝑥,𝑇
(𝐹, 𝐹 ∪ 𝑁𝑡 ) respectively.

Proof. We will prove by induction on time that (1) 𝑁𝑡 ⊆ 𝑁𝑡 , (2)

𝐹 ⊆ 𝐹 , and (3) if𝑤 ∈Queue at some point of time, then𝑤 ∈ 𝑁𝑡 ∪𝐹 .
For the base case, consider the time before the while loop is

executed. We have 𝑁𝑡 = ∅ and 𝐹 = ∅. If 𝑤 ∈ Queue, then 𝑤 ∈
𝑁 (𝑣) \ 𝑁 [𝑥] for some 𝑣 ∈ 𝑁𝑥 . There are two cases: if 𝑤 ∈ 𝑁 (𝑇𝑥 ),
then𝑤 ∈ 𝑁 (𝑇𝑥 ) \ 𝑁 [𝑥] and𝑤 is incident to 𝑣 ∈ 𝑁𝑥 , which means

that 𝑤 ∈ 𝑁𝑡 by Lemma 3.9(3). Otherwise, if 𝑤 ∉ 𝑁 (𝑇𝑥 ), then
𝑤 ∉ 𝑁 [𝑥] ∪ 𝑁 (𝑇𝑥 ) and (𝑣,𝑤) is a path from 𝑁𝑥 to𝑤 in𝐺 \ 𝑁 [𝑇𝑥 ],
which means that𝑤 ∈ 𝐹 by Lemma 3.9(2).

For the inductive step, consider that iteration where we visit 𝑣 .

We prove the three statements below one by one.

(1) Suppose 𝑣 is added to 𝑁𝑡 . If 𝑣 is added at Step 2b, then

Lemma 3.12 implies that |𝑁 (𝑣) \ 𝑁 [𝑥] | > 40ℓ̃ ln𝑛 and so

𝑣 ∈ 𝑁 (𝑇𝑥 ) by Equation (4). If 𝑣 is added at Step 2(c)ii, then
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we directly verify that 𝑣 ∈ 𝑁 (𝑇𝑥 ) (see Fact 3.15). In both

cases, 𝑣 ∈ 𝑁 (𝑇𝑥 ). As 𝑣 ∈ 𝑁𝑡 ∪ 𝐹 by induction, 𝑣 must be in

𝑁𝑡 . So 𝑁𝑡 ⊆ 𝑁𝑡 holds.

(2) Suppose 𝑣 is added to 𝐹 , which only happens at Step 2(c)iii.

We directly verify that 𝑣 ∉ 𝑁 (𝑇𝑥 ). As 𝑣 ∈ 𝑁𝑡∪𝐹 by induction,

𝑣 must be in 𝐹 and so 𝐹 ⊆ 𝐹 holds.

(3) Suppose 𝑤 is added into Queue at Step 2(c)iii. There are

two cases. If 𝑤 ∈ 𝑁 (𝑇𝑥 ), then 𝑤 ∈ 𝑁 (𝑇𝑥 ) \ 𝑁 [𝑥] and 𝑤 is

incident to 𝑣 ∈ 𝐹 , which means that𝑤 ∈ 𝑁𝑡 by Lemma 3.9(3).

Otherwise, if𝑤 ∉ 𝑁 (𝑇𝑥 ), then𝑤 ∉ 𝑁 [𝑥] ∪ 𝑁 (𝑇𝑥 ). As 𝑣 ∈ 𝐹 ,
there exists a path 𝑝𝑣 from𝑁𝑥 to 𝑣 in𝐺\𝑁 [𝑇𝑥 ]. Now, observe
that the concatenated path 𝑝𝑤 = 𝑝𝑣 ◦ (𝑣,𝑤) is a path from

𝑁𝑥 to𝑤 in 𝐺 \ 𝑁 [𝑇𝑥 ]. So,𝑤 ∈ 𝐹 by Lemma 3.9(2). In either

case, we have𝑤 ∈ 𝑁𝑡 ∪ 𝐹 .
To show that 𝑁𝑡 = 𝑁𝑡 and 𝐹 = 𝐹 at the end, we argue that all

vertices in 𝑁𝑡 ∪ 𝐹 must be visited at some point. Observe that our

algorithm simulate a BFS algorithm on 𝐺 \ 𝑍 when we start the

search from vertices in 𝑁𝑥 . Moreover, it never continues the search

once it reaches vertices in 𝑁𝑡 . By Lemma 3.9(2), vertices in 𝐹 are

reachable from 𝑁𝑥 in 𝐺 \ 𝑁 [𝑇𝑥 ] ⊆ 𝐺 \ 𝑍 . So all vertices from 𝐹

must be visited. Also, because 𝑁𝑡 ⊆ 𝑁 (𝑇𝑥 ) \𝑁 [𝑥] and every vertex
in 𝑁𝑡 is incident to 𝐹 or 𝑁𝑥 , all vertices from 𝑁𝑡 must be visited as

well. This completes the proof that 𝑁𝑡 = 𝑁𝑡 and 𝐹 = 𝐹 at the end

of the while loop.

Finally, every time 𝑣 is added to 𝐹 , we add 𝐸𝐺 (𝑣,𝑉 \ 𝑁 [𝑥]) =
𝐸𝐺𝑥,𝑇

(𝑣, 𝐹 ∪𝑁𝑡 ) into 𝐸𝐹 . So 𝐸𝐹 collects all edges in 𝐸𝐺𝑥,𝑇
(𝐹, 𝐹 ∪𝑁𝑡 )

after the while loop. □

Let 𝑣 be a visited vertex in some iteration of the for loop or the

while loop. We say that 𝑣 ’s iteration is fast if OutNeighbor(𝑥, 𝑣)
returns “too big”, otherwise we say that 𝑣 ’s iteration is slow.

Proposition 3.18. Algorithm 1 takes �̃� (𝑘ℓ̃) time.

Proof. By Lemma 3.12, each fast iteration takes 𝑂 (log𝑛) time.

For each slow iteration, the bottle necks are (i) listing vertices

in 𝑁 (𝑣) \ 𝑁 [𝑥], and (ii) checking if 𝑁 (𝑣) \ 𝑁 [𝑥] intersects 𝑇𝑥 .
The former takes �̃� (ℓ̃) time by Lemma 3.12. The latter also takes

|𝑁 (𝑣) \ 𝑁 [𝑥] | = 𝑂 (ℓ̃) time because we can simply check, for every

𝑤 ∈ 𝑁 (𝑣) \ 𝑁 [𝑥], if𝑤 ∈ 𝑇𝑥 which happens iff𝑤 ∈ 𝑇 .
Observe the number of slow iterations is at most

|𝑁 (𝑥) | + CountList ≤ 2𝑘 + 16𝑘
by the condition in Item 2(c)iv. So the total time on slow iterations

is at most �̃� (𝑘ℓ̃). We claim the number of fast iterations is most

CountList · 100ℓ̃ ln𝑛, which would imply that the total running

time is �̃� (𝑘ℓ̃).
To prove that claim, we say that 𝑤 is a child of 𝑣 if 𝑤 is added

to Queue at 𝑣 ’s iteration. If 𝑣 ’s iteration is fast, then 𝑣 ∈ 𝑍 ∪ 𝑁𝑡

and so 𝑣 has no child. If 𝑣 ’s iteration is slow, then 𝑣 has at most

|𝑁 (𝑣) \𝑁 [𝑥] | ≤ 100ℓ̃ ln𝑛 children by Lemma 3.12. This implies that

there are at mostCountList·100ℓ̃ ln𝑛 fast iterations as desired. □

Proposition 3.19. If Algorithm 1 returns ⊥, then there is no 𝑘-

scratch (𝐿, 𝑆, 𝑅) where ∅ ≠ 𝑇𝑥 ⊆ 𝑅, ℓ̃ ∈ [|𝐿 |/2, |𝐿 |], and 𝑥 ∈ 𝐿.

Proof. Recall 𝐹 ′
relax

= {𝑣 ∈ 𝑉 \ 𝑁 [𝑥] | |𝑁 (𝑣) \ 𝑁 [𝑥] | ≤
100ℓ̃ log𝑛} defined above Lemma 3.11. Observe that if CountList

is incremented in 𝑣 ’s iteration, then |𝑁 (𝑣) \ 𝑁 [𝑥] | ≤ 100ℓ̃ log𝑛

by Lemma 3.12. As 𝑣 ∈ 𝑉 \ 𝑁 [𝑥], we have 𝑣 ∈ 𝐹 ′
relax

. So, if

CountList > 16𝑘 , then |𝐹 ′
relax
| > 16𝑘 . As we assume that Equa-

tion (4) holds, Lemma 3.11 implies that there is no 𝑘-scratch (𝐿, 𝑆, 𝑅)
where ∅ ≠ 𝑇𝑥 ⊆ 𝑅, ℓ̃ ∈ [|𝐿 |/2, |𝐿 |], and 𝑥 ∈ 𝐿. □

Now, we conclude with the proof of Lemma 3.14.

Proof of Lemma 3.14. Let (𝐺,𝑘, ℓ̃,𝑇 ) be given. In the preprocess-

ing step, we compute 𝑉
bad

which takes 𝑂 (𝑚) time. Given a query

𝑥 ∈ 𝑉 , if 𝑥 ∈ 𝑉
bad

or |𝑁 [𝑥] | > 𝑘 + 2ℓ̃ , we return ⊥ and we are

done. Otherwise, we execute Algorithm 1 which takes �̃� (𝑘ℓ̃) time

by Proposition 3.18. The algorithm either returns ⊥ and otherwise

correctly constructs all parts of 𝐺𝑥,𝑇 by Propositions 3.16 and 3.17

whp. Using these sets, we can build𝐺𝑥,𝑇 via Equation (5) and obtain

𝑍𝑥,𝑇 = 𝑍 in �̃� (𝑘ℓ̃) time. Note that |𝐹 | = |𝐹 | ≤ 16𝑘 by the condition

in Step 2(c)iv. So |𝐸 (𝐺𝑥,𝑇 ) | = 𝑂 (𝑘ℓ̃ log𝑛) by Lemma 3.10.

Finally, if 𝑇𝑥 ≠ ∅ and there is a 𝑘-scratch (𝐿, 𝑆, 𝑅) where ∅ ≠

𝑇𝑥 ⊆ 𝑅, ℓ̃ ∈ [|𝐿 |/2, |𝐿 |], and 𝑥 ∈ 𝐿, then we have 𝑥 ∉ 𝑉
bad

and

𝑁 [𝑥] ≤ 𝑘 + 2ℓ̃ , so ⊥ is not returned before running Algorithm 1.

By Proposition 3.19, Algorithm 1 cannot return ⊥ as well. So 𝐺𝑥,𝑇

and 𝑍𝑥,𝑇 must be returned.

3.4 Proof of Lemma 3.5 (Sublinear-Time
Kernelization)

Let (𝐺,𝑘, ℓ̃,𝑇 , 𝑋 ) be given as input. We first initialize the oracle

from Lemma 3.12 and the BFS-like process from Lemma 3.14. This

takes �̃� (𝑚) time. For each 𝑥 ∈ 𝑋 , we query 𝑥 to the algorithm

from Lemma 3.14. Lemma 3.14 guarantees that each query takes

�̃� (𝑘ℓ̃) time and returns either⊥ or (𝐺𝑥,𝑇 , 𝑍𝑥,𝑇 ). Therefore, the total
running time is �̃� (𝑚 + |𝑋 |𝑘ℓ̃).

For each query 𝑥 ∈ 𝑋 , Equation (4) holds whp by Proposi-

tion 3.3. So we will assume it and conclude the following whp.

By Lemma 3.14, if ⊥ is returned, then we can correctly certify

that 𝑇𝑥 = ∅ or there is no 𝑘-scratch (𝐿, 𝑆, 𝑅) where ∅ ≠ 𝑇𝑥 ⊆ 𝑅,

ℓ̃ ∈ [|𝐿 |/2, |𝐿 |], and 𝑥 ∈ 𝐿. If (𝐺𝑥,𝑇 , 𝑍𝑥,𝑇 ) is returned, then we have

that |𝐸 (𝐺𝑥,𝑇 ) | = 𝑂 (𝑘ℓ̃ log𝑛). By Lemma 3.8, any set 𝑌 is a (𝑥, 𝑡𝑥 )-
min-separator in 𝐺𝑥,𝑇 iff 𝑌 ∪ 𝑍𝑥,𝑇 is a (𝑥,𝑇𝑥 )-min-separator in 𝐺 .

as desired.

4 USING ISOLATING CUTS LEMMA
We say that a vertex cut (𝐿, 𝑆, 𝑅) is a 𝑘-non-scratch if it has size

less than 𝑘 but it is not a 𝑘-scratch. That is, (𝐿, 𝑆, 𝑅) is such that

(1) |𝑆 | < 𝑘 and |𝐿 | > 𝑘/100 log𝑛, or (2) |𝑆 | < 𝑘 , |𝐿 | ≤ 𝑘/100 log𝑛,
and |𝑆

low
| < 300|𝐿 | ln𝑛. Recall that 𝑆

low
= 𝑆 ∩𝑉

low
and𝑉

low
= {𝑣 |

deg(𝑣) ≤ 8𝑘}. In the previous section, we can report that a mincut

has size less than 𝑘 if a graph contains a 𝑘-scratch. In this section,

we solves the opposite case; we will report that a mincut has size

less than 𝑘 if a graph contains a 𝑘-non-scratch. More formally, we

prove the following.

Lemma 4.1. There is an algorithm that, given an undirected graph𝐺

with 𝑛 vertices and𝑚 edges and a parameter 𝑘 where𝑚 ≤ 𝑛𝑘 , returns

a vertex cut (𝐿, 𝑆, 𝑅) in 𝐺 . If 𝐺 has a 𝑘-non-scratch, then |𝑆 | < 𝑘

w.h.p. The algorithm makes 𝑠-𝑡 maxflow calls on unit-vertex-capacity

graphs with𝑂 (𝑚 log
5 𝑛) total number of vertices and edges and takes

�̃� (𝑚) additional time.
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Note that the lemma above only applies on graphs with at most

𝑛𝑘 edges, but we can easily and will ensure this when we use the

lemma in Section 5. The rest of this section is for proving Lemma 4.1.

The key tool in this section is the isolating cuts lemma which was

introduced in [19]. We show how to adapt it for vertex connectivity

as follows.

Lemma 4.2 (Isolating Cuts Lemma). There exists an algorithm that

takes as inputs 𝐺 = (𝑉 , 𝐸) and an independent set 𝐼 ⊂ 𝑉 of size at

least 2, and outputs, for each vertex 𝑣 ∈ 𝐼 , a (𝑣, 𝐼 \ 𝑣)-min-separator

𝐶𝑣 . The algorithm makes 𝑠-𝑡 maxflow calls on unit-vertex-capacity

graphs with𝑂 (𝑚 log |𝐼 |) total number of vertices and edges and takes

𝑂 (𝑚) additional time.

We will prove Lemma 4.2 at the end of this section in Section 4.1.

Below, we set up the stage so that we can use it to prove Lemma 4.1.

First, we need the following concept:

Definition 4.3. For any vertex set 𝑇 , a vertex cut (𝐿, 𝑆, 𝑅) isolates
a vertex 𝑥 in 𝑇 if

𝐿 ∩𝑇 = {𝑥}, 𝑆 ∩𝑇 = ∅, and 𝑅 ∩𝑇 ≠ ∅.

For any 𝑝 ∈ [0, 1], we let 𝑉 (𝑝) be obtained by sampling each

vertex in 𝑉 with probability 𝑝 . Similarly, let 𝑉
low
(𝑝) be obtained

by sampling each vertex in 𝑉
low

with probability 𝑝 . The following

observation says that, for any a 𝑘-non-scratch (𝐿, 𝑆, 𝑅), we can

obtain a random set that (𝐿, 𝑆, 𝑅) isolates a vertex in it with good

probability.

Proposition 4.4. Suppose that 𝐺 has a 𝑘-non-scratch (𝐿, 𝑆, 𝑅).
Then, with probability Ω(1/log2 𝑛), there is 𝑖 ∈ {1, . . . , log𝑛} where
(𝐿, 𝑆, 𝑅) isolates a vertex in 𝑉 ( 1

2
𝑖 ) or isolates a vertex in 𝑉low ( 1

2
𝑖 ).

Proof. There are two cases. Suppose that |𝑆 | < 𝑘 and |𝐿 | >
𝑘/100 log𝑛. Consider 𝑝 = 1/2𝑖 such that 1 ≤ 𝑝 (2|𝐿 | + |𝑆 |) ≤ 2. As

|𝑆 | < 100|𝐿 | log𝑛, we have |𝐿 |𝑝 = Ω(1/log𝑛). Therefore, (𝐿, 𝑆, 𝑅)
isolates a vertex in 𝑉 (𝑝) with probability

P[|𝐿 ∩𝑉 (𝑝) | = 1] · P[|𝑆 ∩𝑉 (𝑝) | = 0] · P[|𝑅 ∩𝑉 (𝑝) | ≥ 1]
≥ P[|𝐿 ∩𝑉 (𝑝) | = 1]2 · P[|𝑆 ∩𝑉 (𝑝) | = 0]

= ( |𝐿 |𝑝 · (1 − 𝑝) |𝐿 |−1)2 (1 − 𝑝) |𝑆 |

≥ (|𝐿 |𝑝)2 (1 − 𝑝)2 |𝐿 |+ |𝑆 | = Ω(1/log2 𝑛)

where the first inequality is because |𝑅 | ≥ |𝐿 | and the last inequality
follows because 𝑝 (2|𝐿 | + |𝑆 |) = Θ(1) and |𝐿 |𝑝 = Ω(1/log𝑛).

Consider another case where |𝑆 | < 𝑘 , |𝐿 | ≤ 𝑘/100 log𝑛, and
|𝑆
low
| ≤ 300|𝐿 | ln𝑛. The argument is similar to the previous case,

but we first need this claim:

Claim 4.5. Let 𝐿
low

= 𝐿 ∩ 𝑉
low

and 𝑅
low

= 𝑅 ∩ 𝑉
low

. We have

𝐿
low

= 𝐿 and |𝑅
low
| ≥ |𝐿

low
|.

Proof. For each 𝑥 ∈ 𝐿, 𝑁 [𝑥] ⊆ 𝐿 ∪ 𝑆 . So deg(𝑥) ≤ |𝐿 | + |𝑆 | ≤
2𝑘 and thus 𝑥 ∈ 𝐿

low
. So 𝐿

low
= 𝐿. To see why |𝑅

low
| ≥ |𝐿

low
|,

if 𝑘 ≥ 𝑛/8, then 𝑉
low

= 𝑉 and so |𝑅
low
| = |𝑅 | ≥ |𝐿 | = |𝐿

low
|.

Otherwise, 𝑘 < 𝑛/8. So |𝐿 ∪ 𝑆 | ≤ 2𝑘 ≤ 𝑛/4 and then |𝑅 | ≥ 3𝑛/4. As
8𝑘 |𝑉 \𝑉

low
| ≤ ∑

𝑣 deg(𝑣) ≤ 2𝑛𝑘 , we have |𝑉 \𝑉
low
| ≤ 𝑛/4 and so

|𝑉
low
| ≥ 3𝑛/4. Therefore, |𝑅

low
| = |𝑅 ∩𝑉

low
| ≥ 𝑛/2 ≥ |𝐿

low
|. □

Consider 𝑝 = 1/2𝑖 such that 1 ≤ 𝑝 (2|𝐿 | + |𝑆
low
|) ≤ 2. As |𝑆

low
| <

300|𝐿 | ln𝑛, we have |𝐿 |𝑝 = Ω(1/log𝑛). Therefore, (𝐿, 𝑆, 𝑅) isolates
a vertex in 𝑉

low
(𝑝) with probability

P[|𝐿 ∩𝑉
low
(𝑝) | = 1] · P[|𝑆 ∩𝑉

low
(𝑝) | = 0] · P[|𝑅 ∩𝑉

low
(𝑝) | ≥ 1]

=

P[|𝐿
low
∩𝑉 (𝑝) | = 1] · P[|𝑆

low
∩𝑉 (𝑝) | = 0] · P[|𝑅

low
∩𝑉 (𝑝) | ≥ 1]

≥ P[|𝐿 ∩𝑉 (𝑝) | = 1]2 · P[|𝑆
low
∩𝑉 (𝑝) | = 0]

= ( |𝐿 |𝑝 · (1 − 𝑝) |𝐿 |−1)2 (1 − 𝑝) |𝑆low |

≥ (|𝐿 |𝑝)2 (1 − 𝑝)2 |𝐿 |+ |𝑆low | = Ω(1/log2 𝑛)
where the first inequality by Claim 4.5 and the last inequality fol-

lows because 𝑝 (2|𝐿 | + |𝑆
low
|) = Θ(1) and |𝐿 |𝑝 = Ω(1/log𝑛). □

The last observation we need is about maximal independent sets

of an isolated set.

Proposition 4.6. Suppose that a vertex cut (𝐿, 𝑆, 𝑅) isolates a vertex
𝑥 in a set 𝑇 . Let 𝐼 be an maximal independent set of 𝑇 . Then (𝐿, 𝑆, 𝑅)
also isolates 𝑥 in 𝐼 .

Proof. Note that |𝑇 | ≥ 2 because 𝐿 ∩ 𝑇 = {𝑥} and 𝑅 ∩ 𝑇 ≠ ∅.
As 𝑥 is not incident to any other vertex in 𝑇 , we have 𝑥 ∈ 𝐼 . So

𝐿 ∩ 𝐼 = {𝑥}. Also some vertex in 𝑅 ∩𝑇 must remain in 𝐼 because

𝑆 ∩𝑇 = ∅. So 𝑅 ∩ 𝐼 ≠ ∅. This means that (𝐿, 𝑆, 𝑅) isolates 𝑥 in 𝐼 . □

Now, we are ready to prove Lemma 4.1.

Proof of Lemma 4.1. The algorithm for Lemma 4.1 is as follows.

For each 𝑖 ∈ {1, . . . , log𝑛} and 𝑗 ∈ {1, . . . ,𝑂 (log3 𝑛)}, we indepen-
dently sample 𝑇 (𝑖, 𝑗) = 𝑉 ( 1

2
𝑖 ) and 𝑇

(𝑖, 𝑗)
low

= 𝑉
low
( 1
2
𝑖 ) and compute

maximal independent sets 𝐼 (𝑖, 𝑗) of 𝑇 (𝑖, 𝑗) and 𝐼 (𝑖, 𝑗)
low

of 𝑇
(𝑖, 𝑗)
low

respec-

tively. Next, we invoke Lemma 4.2 on (𝐺, 𝐼 (𝑖, 𝑗) ) if |𝐼 (𝑖, 𝑗) | ≥ 2 and

on (𝐺, 𝐼 (𝑖, 𝑗)
low
) if |𝐼 (𝑖, 𝑗)

low
| ≥ 2. Among all separators that Lemma 4.2 re-

turns, we return the one with minimum size and its corresponding

vertex cut. If |𝐼 (𝑖, 𝑗) |, |𝐼 (𝑖, 𝑗)
low
| < 2 for all 𝑖, 𝑗 , we return an arbitrary

vertex cut.

It is clear the algorithm makes 𝑠-𝑡 maxflow calls on unit-vertex-

capacity graphswith𝑂 (𝑚 log
5 𝑛) total number of vertices and edges

and takes �̃� (𝑚) additional time because we invoke Lemma 4.2

𝑂 (log4 𝑛) times.

To see the correctness, suppose there is a 𝑘-non-scratch (𝐿, 𝑆, 𝑅),
then by Proposition 4.4, there exist 𝑖 and 𝑗 such that (𝐿, 𝑆, 𝑅) isolates
a vertex in either 𝑇 (𝑖, 𝑗) or 𝑇 (𝑖, 𝑗)

low
whp. By Proposition 4.6, (𝐿, 𝑆, 𝑅)

must also isolate a vertex in either 𝐼 (𝑖, 𝑗) or 𝐼 (𝑖, 𝑗)
low

whp. Suppose that

(𝐿, 𝑆, 𝑅) isolates a vertex 𝑥 in 𝐼 (𝑖, 𝑗) . Then, (𝐿, 𝑆, 𝑅) is a (𝑥, 𝐼 (𝑖, 𝑗) \𝑥)-
separator. So the call of Lemma 4.2 on (𝐺, 𝐼 (𝑖, 𝑗) ) must return a

separator of size at most |𝑆 | < 𝑘 . The argument is the same if

(𝐿, 𝑆, 𝑅) isolates a vertex 𝑥 in 𝐼
(𝑖, 𝑗)
low

.

4.1 Proof of Lemma 4.2 (Isolating Cuts Lemma)
The goal of this section is to prove Lemma 4.2. We follow the proof

of Theorem II.2 of [19]. Order the vertices in 𝐼 arbitrarily from 1

to |𝐼 |, and let the label of each 𝑣 ∈ 𝐼 be its position in the ordering,

a number from 1 to |𝐼 | that is denoted by a unique binary string

of length ⌈lg |𝐼 |⌉. Let us repeat the following procedure for each
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𝑖 = 1, 2, . . . , ⌈lg |𝐼 |⌉. Let 𝐴𝑖 ⊆ 𝐼 be the vertices in 𝐼 whose label’s

𝑖’th bit is 0, and let 𝐵𝑖 ⊆ 𝐼 be the vertices whose label’s 𝑖’th bit is

1. Compute a (𝐴𝑖 , 𝐵𝑖 )-min-separator 𝐶𝑖 ⊆ 𝑉 (for iteration 𝑖). Note

that since 𝐼 = 𝐴𝑖 ∪𝐵𝑖 is an independent set in𝐺 , the set𝑉 \ (𝐴𝑖 ∪𝐵𝑖 )
is an (𝐴𝑖 , 𝐵𝑖 )-separator, so an (𝐴𝑖 , 𝐵𝑖 )-min-separator exists.

First, we show that 𝐺 \⋃𝑖 𝐶𝑖 partitions the set of vertices into

connected components each of which contains at most one vertex

of 𝐼 . Let 𝑈𝑣 be the connected component in 𝐺 \⋃𝑖 𝐶𝑖 containing

𝑣 ∈ 𝐼 . Then:

Claim 4.7. 𝑈𝑣 ∩ 𝐼 = {𝑣} for all 𝑣 ∈ 𝐼 .

Proof. By definition, 𝑣 ∈ 𝑈𝑣 ∩ 𝐼 . Suppose for contradiction that

𝑈𝑣 ∩ 𝐼 contains another vertex 𝑢 ≠ 𝑣 . Since the binary strings

assigned to 𝑢 and 𝑣 are distinct, they differ in their 𝑗 ’th bit for

some 𝑗 . Assume without loss of generality that 𝑢 ∈ 𝐴 𝑗 and 𝑏 ∈
𝐵 𝑗 . Since 𝐶 𝑗 ⊆ 𝑉 is a (𝐴 𝑗 , 𝐵 𝑗 )-min-separator, there cannot be a

𝑢-𝑣 path whose vertices are disjoint from 𝐶 𝑗 , contradicting the

assumption that 𝑢 and 𝑣 belong in the same connected component

of 𝐺 \⋃𝑖 𝐶𝑖 . □

Claim 4.8 (Submodularity of vertex cuts). For any subsets𝐴, 𝐵 ⊆ 𝑉 ,

we have

|𝑁 (𝐴) | + |𝑁 (𝐵) | ≥ |𝑁 (𝐴 ∪ 𝐵) | + |𝑁 (𝐴 ∩ 𝐵) |.

Proof. We consider the contribution of each vertex 𝑣 ∈ 𝑉 to the

LHS |𝑁 (𝐴) |+ |𝑁 (𝐵) | and the RHS |𝑁 (𝐴∪𝐵) |+ |𝑁 (𝐴∩𝐵) | separately.
Each vertex 𝑣 ∈ 𝑁 (𝐴) ∩𝑁 (𝐵) contributes 2 to the LHS and at most

2 to the RHS. Each vertex 𝑣 ∈ 𝑁 (𝐴) \ 𝑁 (𝐵) contributes 1 to the

LHS, and 1 to the RHS because 𝑣 ∈ 𝑁 (𝐴 ∪ 𝐵) and 𝑣 ∉ 𝑁 (𝐴 ∩ 𝐵). A
symmetric case covers each vertex 𝑣 ∈ 𝑁 (𝐵) \ 𝑁 (𝐴). Finally, each
vertex 𝑣 ∉ 𝑁 (𝐴) ∪ 𝑁 (𝐵) contributes 0 to both sides. □

Now, for each vertex 𝑣 ∈ 𝐼 , let _𝑣 be the size of a (𝑣, 𝐼 \ 𝑣)-min-

separator. For each (𝑣, 𝐼 \ 𝑣)-min-separator 𝐶 , we can consider the

set 𝑆 ⊆ 𝑉 of vertices in the connected component of𝐺\𝐶 containing

𝑣 , which necessarily satisfies 𝑁 (𝑆) = 𝐶 . Let 𝑆∗𝑣 ⊆ 𝑉 be an inclusion-

wise minimal set such that 𝑁 (𝑆∗𝑣 ) is a (𝑣, 𝐼 \ 𝑣)-separator. Then, we
claim the following:

Claim 4.9. 𝑈𝑣 ⊇ 𝑆∗𝑣 for all 𝑣 ∈ 𝐼 .

Proof. Fix a vertex 𝑣 ∈ 𝐼 and an iteration 𝑖 . Let 𝑇 𝑖
𝑣 ⊆ 𝑉 be the

vertices in the connected components of𝐺 \𝐶𝑖 that contain at least

one vertex the same color as 𝑣 (on iteration 𝑖). By construction of

𝐶𝑖 , the set 𝑇
𝑖
𝑣 does not contain any vertex of the opposite color. We

now claim that 𝑆∗𝑣 ⊆ 𝑇 𝑖
𝑣 . Suppose for contradiction that 𝑆∗𝑣 \𝑇 𝑖

𝑣 ≠ ∅.
Note that (𝑆∗𝑣 ∩𝑇 𝑖

𝑣 ) ∩ 𝐼 = {𝑣} and

𝑁 (𝑆∗𝑣 ∩𝑇 𝑖
𝑣 ) ∩ 𝐼 ⊆ (𝑁 (𝑆∗𝑣 ) ∪ 𝑁 (𝑇 𝑖

𝑣 )) ∩ 𝐼 ⊆ (𝑁 (𝑆∗𝑣 ) ∪𝐶𝑖 ) ∩ 𝐼 = ∅,

where the first inclusion holds because 𝑁 (𝑆∩𝑇 ) ⊆ 𝑁 (𝑆)∪𝑁 (𝑇 ) for
any 𝑆,𝑇 ⊆ 𝑉 , and the second inclusion holds because 𝑁 (𝑇 𝑖

𝑣 ) ⊆ 𝐶𝑖
by construction of 𝑇 𝑖

𝑣 . Therefore,

|𝑁 (𝑆∗𝑣 ∩𝑇 𝑖
𝑣 ) | ≥ _𝑣 = |𝑁 (𝑆∗𝑣 ) |.

Indeed, by our choice of 𝑆∗𝑣 to be inclusion-wise minimal, we can

claim the strict inequality:

|𝑁 (𝑆∗𝑣 ∩𝑇 𝑖
𝑣 ) | > _𝑣 = |𝑁 (𝑆∗𝑣 ) |.

But, by Claim 4.8 we have:

|𝑁 (𝑆∗𝑣 ∪𝑇 𝑖
𝑣 ) | + |𝑁 (𝑆∗𝑣 ∩𝑇 𝑖

𝑣 ) | ≤ |𝑁 (𝑆∗𝑣 ) | + |𝑁 (𝑇 𝑖
𝑣 ) |.

Therefore, we get:

|𝑁 (𝑆∗𝑣 ∪𝑇 𝑖
𝑣 ) | < |𝑁 (𝑇 𝑖

𝑣 ) |.
Now observe that (𝑆∗𝑣 ∪ 𝑇 𝑖

𝑣 ) ∩ 𝐼 = 𝑇 𝑖
𝑣 ∩ 𝐼 since (𝑆∗𝑣 \ 𝑇 𝑖

𝑣 ) ∩ 𝐼 = ∅.
In particular, 𝑆∗𝑣 ∪𝑇 𝑖

𝑣 contains all vertices in 𝐴𝑖 and no vertices in

𝐵𝑖 . Also, since 𝑁 (𝑆∗𝑣 ) ∩ 𝐼 = ∅ and 𝑁 (𝑇 𝑖
𝑣 ) ∩ 𝐼 = ∅, we also have

𝑁 (𝑆∗𝑣 ∪𝑇 𝑖
𝑣 ) ∩ 𝐼 = ∅. Then,

|𝑁 (𝑆∗𝑣 ∪𝑇 𝑖
𝑣 ) | < |𝑁 (𝑇 𝑖

𝑣 ) | ≤ |𝐶𝑖 |,
so𝑁 (𝑆∗𝑣∪𝑇 𝑖

𝑣 ) is a smaller (𝐴𝑖 , 𝐵𝑖 )-separator than𝐶𝑖 , a contradiction.
For each iteration 𝑖 , since 𝑆∗𝑣 ⊆ 𝑇 𝑖

𝑣 , none of the vertices in 𝑆∗𝑣 are

present in𝐶𝑖 . Note that𝐺 [𝑆∗𝑣 ] is a connected subgraph; therefore, it
is a subgraph of the connected component𝑈𝑣 of𝐺\

⋃
𝑖 𝐶𝑖 containing

𝑣 . This concludes the proof of Claim 4.9. □

Fact 4.10. Given a graph 𝐺 = (𝑉 , 𝐸) and distinct vertices 𝑠, 𝑡 ∈ 𝑉 ,
and given a 𝑠-𝑡 vertex maxflow, we can compute in 𝑂 ( |𝑉 | + |𝐸 |) time

a set 𝑆 ⊆ 𝑉 with 𝑆 ∩ {𝑠, 𝑡} = {𝑠} such that 𝑁 (𝑆) is a (𝑠, 𝑡)-min-

separator.

It remains to compute the desired set 𝑆𝑣 given the property

that 𝑈𝑣 ⊇ 𝑆𝑣 . Construct the graph 𝐺𝑣 as follows. Start from the

induced graph 𝐺 [𝑈𝑣 ∪ 𝑁𝐺 (𝑈𝑣)], remove all edges with both end-

points in 𝑁𝐺 (𝑈𝑣), and then add a vertex 𝑡 connected to all vertices

in 𝑁𝐺 (𝑈𝑣). We compute a 𝑣-𝑡 vertex maxflow in 𝐺𝑣 and then ap-

ply Fact 4.10, obtaining a set 𝑆𝑣 such that 𝑁𝐺𝑣
(𝑆𝑣) is a (𝑣, 𝑡)-min-

separator. Since 𝑡 ∉ 𝑁𝐺𝑣
(𝑆𝑣), we must have 𝑆𝑣 ∩ 𝑁𝐺𝑣

(𝑈𝑣) = ∅, so
by construction of 𝐺𝑣 , we have 𝑁𝐺𝑣

(𝑆𝑣) = 𝑁𝐺 (𝑆𝑣). In particular,

𝑁𝐺 (𝑆𝑣) = 𝑁𝐺𝑣
(𝑆𝑣) ⊆ 𝑈𝑣 ∪ 𝑁𝐺 (𝑈𝑣), and along with 𝑣 ∈ 𝑆𝑣 , we

obtain 𝑁𝐺 (𝑆𝑣) ∩ 𝐼 = ∅.
Claim 4.9 implies that 𝑁𝐺𝑣

(𝑆∗𝑣 ) ⊆ 𝑈𝑣 ∪ 𝑁𝐺𝑣
(𝑈𝑣), so 𝑁𝐺𝑣

(𝑆∗𝑣 ) =
𝑁𝐺 (𝑆∗𝑣 ) and 𝑡 ∉ 𝑁𝐺𝑣

(𝑆∗𝑣 ). Therefore, 𝑁𝐺𝑣
(𝑆∗𝑣 ) is a (𝑣, 𝑡)-separator

in 𝐺𝑣 of size _𝑣 . Since 𝑁𝐺𝑣
(𝑆𝑣) is a (𝑣, 𝑡)-min-separator in 𝐺𝑣 , we

have |𝑁𝐺 (𝑆𝑣) | = |𝑁𝐺𝑣
(𝑆𝑣) | ≤ |𝑁𝐺𝑣

(𝑆∗𝑣 ) | = _𝑣 . Define 𝐶𝑣 = 𝑁 (𝑆𝑣),
which satisfies the desired properties in the statement of the lemma.

We now bound the total size of the graphs 𝐺𝑣 over all 𝑣 ∈ 𝐼 . By
construction of the graphs 𝐺𝑣 , each edge in 𝐸 joins at most one

graph 𝐺𝑣 . Each graph 𝐺𝑣 has |𝑁𝐺 (𝑈𝑣) | additional edges adjacent
to 𝑡 , but since each vertex in 𝑁𝐺 (𝑈𝑣) is adjacent to some vertex

in 𝑈𝑣 via an edge originally in 𝐸, we can charge the edges in 𝐺𝑣

adjacent to 𝑡 to the edges originating from 𝐸. Therefore, the total

number of edges over all graphs𝐺𝑣 is𝑂 (𝑚). Each of the graphs𝐺𝑣

is connected, so the total number of vertices is also 𝑂 (𝑚). Finally,
to compute (𝐴𝑖 , 𝐵𝑖 )-min-separator for all 𝑖 , the total size of the

maxflow instances is𝑂 (𝑚 log |𝐼 |). To bound the additional time, by

Fact 4.10, recovering the sets 𝑆𝑣 and the values |𝑁 (𝑆𝑣) | takes time

linear in the number of edges of 𝐺𝑣 , which is 𝑂 (𝑚) time over all

𝑣 ∈ 𝐼 . This completes the proof of Lemma 4.2.

5 PUTTING EVERYTHING TOGETHER
For any 𝑘 , we can detect if 𝐺 has vertex mincut of size less than 𝑘

as follows. First, compute a 𝑘-connectivity certificate 𝐻 of𝐺 which

preserves all vertex cuts of size less than 𝑘 and 𝐻 has at most 𝑛𝑘

edges (so 𝐻 is applicable for Lemma 4.1). This can be done in linear

time using the algorithm by Nagamochi and Ibaraki [21]. Then,
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we apply Lemmas 3.1 and 4.1 on 𝐻 with parameter 𝑘 . If 𝐻 has a

vertex cut of size less than 𝑘 , that cut is either a 𝑘-scratch or 𝑘-non-

scratch, and so one of the algorithms of Lemmas 3.1 or 4.1 must

return a vertex cut of size less than 𝑘 whp. If vertex mincut of 𝐺 is

at least 𝑘 , then any of the algorithms in Lemma 3.1 and Lemma 4.1

always returns a vertex cut of size at least 𝑘 . Theorem 1.1 follows

immediately by a binary search on 𝑘 .
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A PROOFS OF LINEAR SKETCHING
Proof of Theorem 2.1. We can use 𝐹2-moment frequency estima-

tion by [2]. Although their work focus on estimating on positive

entries, their algorithm is linear, and thus it is possible to estimate

norm of the difference between two vectors 𝑥,𝑦: ∥𝑥 − 𝑦∥
2
.

Given a vector 𝑣 ∈ R𝑛 , we compute sketch of 𝑣 by viewing it in

a streaming setting as follows. We start with a zero vector 𝑥 = 0,

and feed a sequence of update (𝑖, 𝑣𝑖 ) for each non-empty entry in 𝑣

of total ∥𝑣 ∥
0
updates. Each update can be performed in log

𝑂 (1) (𝑛)
time.

Proof of Theorem 2.2. The sparse recovery algorithm is described

in Section 2.3 in [6] (Section 2.3.1 and Section 2.3.2 in particular).

In order for their algorithm to work efficiently, we need a standard

assumption that the vector 𝑥 that we compute the sketch from

satisfies 𝑥𝑖 ∈ Z∩[−𝑛𝑂 (1) , 𝑛𝑂 (1) ] for all 𝑖 ∈ [𝑛] so that all arithmetic

operations in this algorithm can be computed in 𝑂 (log𝑛) time.

Given a vector 𝑣 ∈ {−1, 0, 1}𝑛 , we compute sketch of 𝑣 by viewing

it in a streaming setting as follows.We start with a zero vector 𝑥 = 0,

and feed a sequence of update (𝑖, 𝑣𝑖 ) for each non-zero entry in 𝑣

of total ∥𝑣 ∥
0
updates. Each update can be performed in log

𝑂 (1) (𝑛)
time according to their sparse recovery algorithm.
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