
Aggregated Deletion Propagation for Counting Conjunctive
Query Answers∗

Xiao Hu, Shouzhuo Sun, Shweta Patwa, Debmalya Panigrahi, and Sudeepa Roy
Duke University, Durham, NC, USA

{xh102,ss1060,sjpatwa,debmalya,sudeepa}@cs.duke.edu

ABSTRACT

We investigate the computational complexity of minimizing the
source side-effect in order to remove a given number of tuples
from the output of a conjunctive query. This is a variant of the
well-studied deletion propagation problem, the difference being that
we are interested in removing the smallest subset of input tuples to
remove a given number of output tuples while deletion propagation
focuses on removing a specific output tuple. We call this the Ag-
gregated Deletion Propagation problem. We completely characterize
the poly-time solvability of this problem for arbitrary conjunctive
queries without self-joins. This includes a poly-time algorithm to
decide solvability, as well as an exact structural characterization
of NP-hard instances. We also provide a practical algorithm for
this problem (a heuristic for NP-hard instances) and evaluate its
experimental performance on real and synthetic datasets.

PVLDB Reference Format:

Xiao Hu, Shouzhuo Sun, Shweta Patwa, Debmalya Panigrahi, and Sudeepa
Roy . Aggregated Deletion Propagation for Counting Conjunctive Query
Answers. PVLDB, 14(2): 228-240, 2021.
doi:10.14778/3425879.3425892

PVLDB Availability Tag:

The source code of this research paper has been made publicly available at
https://github.com/ssz1997/GDP.git.

1 INTRODUCTION

The problem of view update (e.g., [2, 9]) – how to change the in-
put to achieve desired changes to the query output or view – is a
well-studied problem in the database literature. View update prob-
lems enable users to tune the output in order to meet their prior
expectation, satisfy external constraints, or examine and compare
multiple options. A particularly well-studied class of view update
problems is what is known as deletion propagation problems (see
Buneman, Khanna, and Tan [3]; for follow up literature, see related
work). In these problems, the goal is to remove a specific tuple from
the output of a query by removing input tuples. In this paper, we
study a natural variant of this problem where we seek to remove at
least a given number of output tuples rather than any specific output
tuple. We call this the Aggregated Deletion Propagation problem.

∗This work has been supported in part by NSF awards IIS-1552538, IIS-1703431, CCF-
1750140, IIS-1814493, CCF-1955703, CCF-2007556, and NIH award R01-EB025021.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 2 ISSN 2150-8097.
doi:10.14778/3425879.3425892

Formally, in the Aggregated Deletion Propagation (ADP), we are
given a query 𝑄 , a database 𝐷 , and a target integer 𝑘 . The goal is
to remove at least 𝑘 tuples from 𝑄 (𝐷) by removing the minimum

number of input tuples from 𝐷 (this objective is called source side-

effect in the literature). Our main motivation for the ADP problem
comes from two generic application settings. First, ADP can be used
to obtain a desired change in the output size with minimum inter-
vention on the input. As we will describe below, in many practical
situations, the goal is to create a sufficiently large impact on the
output by removing a given number of output tuples rather than re-
moving any specific tuple. Our problem applies to these situations.
Second, ADP can be used to analyze the robustness of the output
with respect to possible disruptions in the input. In other words,
if there are inadvertent changes to the input that are not within
our control, how badly can it effect the output of a query? We give
examples of these two applications below.

Example 1.1. Suppose a university wants to plan ahead in terms

of managing waitlists for its classes. This can be achieved via the

following query:

𝑄𝑊𝐿 (𝑆,𝐶) : −𝑀𝑎𝑗𝑜𝑟 (𝑆,𝑀), 𝑅𝑒𝑞(𝑀,𝐶), 𝑁𝑜𝑆𝑒𝑎𝑡 (𝐶)
The first query𝑄𝑊𝐿 says that a student S is on the waitlist for a class

C if the following happen: (1) S intends to major in M (we assume

students can have multiple majors), (2) major M requires class C, and

(3) there are no seats available in C. The university may try to figure

out the easiest alternative for reducing the size of the waitlist to some

target, which amounts to reducing the size of the output of query

𝑄𝑊𝐿 by the same amount. The waitlist entries can be removed by

steering students away from the major (or creating an entry condition),

relaxing the requirements for the major, or by increasing the number

of seats in the class; all of these options correspond to removing tuples

from the input relations of 𝑄𝑊𝐿 .

Example 1.2. We consider the same context as in the previous

example, but suppose the new task is to estimate what classes can

be reliably offered in a future semester. This can be done using the

following query

𝑄𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 (𝐶) : −𝑇𝑒𝑎𝑐ℎ𝑒𝑠 (𝑃,𝐶), 𝑁𝑜𝑡𝑂𝑛𝐿𝑒𝑎𝑣𝑒 (𝑃) .
This query lists the possible courses that can be offered in a semester.

A course C can be offered if there is a professor P who is able to teach

C and is not on leave. If all professors who are able to teach C go

to leave (removal of entries from 𝑁𝑜𝑡𝑂𝑛𝐿𝑒𝑎𝑣𝑒) or do not want to

teach C (removal of entries from𝑇𝑒𝑎𝑐ℎ𝑒𝑠), C cannot be offered. While

approving the leave requests and asking for teaching preferences, the

university may want to study the robustness of𝑄𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 with respect

to these changes: e.g., what is the minimum changes in the input

that would lead to more than 10% of the courses not being able to be

offered in that semester. If this size is small, i.e., many courses are

https://doi.org/10.14778/3425879.3425892
https://github.com/ssz1997/GDP.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3425879.3425892

critically dependent on a few professors, the university would be able

to decide whether all can be on leave or change teaching preferences

appropriately. Alternatively, this information might also inform the

decision to hire faculty in a particular area.

Example 1.3. We now turn to a third example from the area of

robustness of networks. Consider a query

𝑄3−𝑝𝑎𝑡ℎ (𝐴, 𝐵,𝐶, 𝐷) : −𝑅1 (𝐴, 𝐵), 𝑅2 (𝐵,𝐶), 𝑅3 (𝐶, 𝐷)
that stores all possible paths between two end vertices that go through

two layers of intermediate vertices in a communication or transporta-

tion network. If it were possible to disrupt (say) 80% of the paths by

only removing (say) 1% of links, then the network is clearly not ro-

bust. On the other hand, if this would require removing (say) 80%

of the links, that’s a much more robust network. This is precisely

the information the ADP can provide us on this query. Therefore, ADP
can estimate the inherent robustness of a network to either malicious

attacks or even just random failures.

Our contributions. In this paper, we propose the ADP problem
and study its complexity in depth for the class of conjunctive queries
without self-joins (CQ). Here, the results can be an arbitrary pro-
jection of the natural join of the relations appearing on the body
of the query (as illustrated in 𝑄𝑊𝐿 , 𝑄𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 , and 𝑄3−𝑝𝑎𝑡ℎ above).
Our contributions can be summarized as follows:

• Algorithmic Dichotomy: We give an algorithm that only
takes the query𝑄 as input, and decides in time that is polyno-
mial in the size of the query, whether ADP can be efficiently
solved (in polynomial time data complexity [25]) on𝑄 for all
instances𝐷 and all values of 𝑘 . The algorithm uses a few sim-
plification steps that preserve the complexity of the problem.
At the end, the query is NP-hard if the simplification steps
reduce it to a small number of ‘core’ hard queries; otherwise,
it is poly-time solvable. (Section 4)

• Structural Dichotomy: To complement our algorithmic
characterization of the complexity of the ADP problem, we
also provide a structural characterization of the complex-
ity by identifying three simple structures – triad-like, non-
hierarchical head join, and strand – whose presence exactly
captures all queries where ADP in NP-hard. (Section 5)

• Approximation:We study the approximation for the ADP
problemwhen it is NP-hard. We show that greedy and prime-
dual achieve approximation factors of𝑂 (log𝑘) and 𝑝 respec-
tively for full CQs, where 𝑝 is the number of relations in the
input query. Meanwhile, we present some inapproximability
result when projection exists, such that obtaining even sub-
polynomial approximations for the ADP problem on general
CQs is unlikely. (Section 6)

• Efficient unified algorithm: We give a poly-time (in data
complexity) algorithm for solving ADP for all CQs without
self-joins. It returns the optimal solution for queries onwhich
ADP is poly-time solvable, and provides a poly-time heuristic
for queries on which ADP is NP-hard. We also extend the
algorithm to support selection operations. (Section 7)

• Experimental evaluations:We provide experimental eval-
uation of our algorithms on synthetic and real datasets in
terms of efficiency, quality, scalability, various classes of
queries as well as data distribution. (Section 8)

2 RELATEDWORK

The classical view update problem, of which deletion propagation
is an instantiation, has been studied extensively over the last four
decades (e.g., [2, 9]). The deletion propagation problem has been
popular more recently, starting with the seminal work by Buneman,
Khanna, and Tan [3]. They studied the complexity of both the source
side-effect (objective is to delete the minimum number of input

tuples) and the view side-effect (objective is to delete the minimum

number of other output tuples) versions, in order to delete a particular
output tuple. For source side-effect and select-project-join-union
(SPJU) operators, they showed that for PJ or JU queries, finding
the optimal solution is NP-hard, while for others (e.g., SPU or SJ)
it is poly-time solvable. This work was extended to multi-tuple
deletion propagation by Cong, Fan, and Geerts [7]. They showed
that for single tuple deletion propagation, a property called key

preservation makes the problem tractable for SPJ views; however, if
multiple tuples are to be deleted, the problem becomes intractable
for SJ, PJ, and SPJ views. Kimelfeld, Vondrak, and Williams [14–
16] extensively studied the complexity of deletion propagation for
the view side-effect version and provided structural dichotomy
and trichotomy (poly-time, APX-hard/constant approximation, and
inapproximable) for single and multiple output tuple deletions.

Beyond the context of deletion propagation, several dichotomy
results have been obtained for problems motivated by data man-
agement, e.g., in the context of probabilistic databases [8], respon-
sibility [20], or database repair [19]. Another problem related to
ADP is reverse data management and how-to queries [21, 22]. Given
some desired changes in the output (e.g., modifying aggregate val-
ues, creating or removing tuples), the goal is to obtain a feasible
modification of the input that satisfies a given set of constraints
and optimizes on some criteria. In this line of research, the focus
has been on developing an end-to-end system using provenance
and mixed integer programming, and not on the complexity of
the problem. ADP is also related to explanations by intervention
[23, 24, 26], where the goal is to find a set of input tuples captured
by a predicate whose deletion changes one or more aggregate an-
swers to the maximum extent. ADP differs in that the aim is to make
a desired change in the output by removing the minimum number
of input tuples.

Finally, closely related to the ADP is the resilience problem, origi-
nally studied by Freire et al. for the class of CQs without self-joins
and functional dependencies [10] (see also [11] for an extension
to a class of queries with self-joins). The input to the resilience
problem is a Boolean CQ and a database 𝐷 such that 𝑄 (𝐷) is true,
and the goal is to remove a minimum set of tuples from 𝐷 to make
𝑄 false on 𝐷 . Observe that the resilience problem is identical to ADP
with 𝑘 = |𝑄 (𝐷) |. [10] gave a “structural dichotomy” characterizing
whether a given query is poly-time solvable or NP-hard using a
core hard structure called “triad”. The generalization to arbitrary
values of 𝑘 leads to interesting consequences, e.g., queries that are
poly-time solvable for resilience become hard for ADP), whereas
the presence of arbitrary projections in the output makes ADP even
more NP-hard for ADP. Nevertheless, we use the characterization for
resilience from [10] as a special case of our algorithmic and struc-
tural characterization for ADP and discuss the resilience problem
further in subsequent sections.

𝑅1
A B
a1 b1
a2 b2
a3 b3

𝑅2
B C
b1 c1
b2 c2
b2 c3
b3 c3

𝑅3
C E
c1 e1
c2 e3
c3 e3

𝑄1 (𝐷)
A B C E
a1 b1 c1 e1
a2 b2 c2 e3
a2 b2 c3 e3
a3 b3 c3 e3

𝑄2 (𝐷)
A E
a1 e1
a2 e3
a3 e3

Figure 1: An example of database schema R = {𝑅1, 𝑅2, 𝑅3}
with A = {𝐴, 𝐵,𝐶, 𝐸}, attr(𝑅1) = {𝐴, 𝐵}, attr(𝑅2) = {𝐵,𝐶}, and
attr(𝑅3) = {𝐶, 𝐸}. An instance𝐷 with 10 tuples is also shown.

The results for 𝑄1 (𝐴, 𝐵,𝐶, 𝐸) : −𝑅1 (𝐴, 𝐵), 𝑅2 (𝐵,𝐶), 𝑅3 (𝐶, 𝐸) and
𝑄2 (𝐴, 𝐸) : −𝑅1 (𝐴, 𝐵), 𝑅2 (𝐵,𝐶), 𝑅3 (𝐶, 𝐸) are 𝑄1 (𝐷) and 𝑄2 (𝐷).

3 PRELIMINARIES

In this section, we start with some basic definitions in relational
databases. Then, we formally define the ADP problem and discuss
some special cases that will motivate our general technique.

3.1 Background

We consider the standard setting of multi-relational data-bases and
conjunctive queries. Let R be a database schema that contains 𝑝
tables 𝑅1, · · · , 𝑅𝑝 . LetA be the set of all attributes in the database R.
Each relation 𝑅𝑖 is defined on a subset of attributes attr(𝑅𝑖) ⊆ A. A
relation 𝑅𝑖 is vacuum if attr(𝑅𝑖) = ∅, and non-vacuum otherwise.
We use 𝐴, 𝐵,𝐶,𝐴1, 𝐴2, · · · etc. to denote the attributes in A and
𝑎, 𝑏, 𝑐, · · · etc. to denote their values. For each attribute 𝐴 ∈ A,
rels(𝐴) denotes the set of relations that 𝐴 appears, i.e., rels(𝐴) =
{𝑅𝑖 : 𝐴 ∈ attr(𝑅𝑖)}.

Given the database schema R, let 𝐷 be a given instance of R, and
the corresponding instances of 𝑅1, · · · , 𝑅𝑝 be 𝑅𝐷1 , · · · , 𝑅

𝐷
𝑝 . Where

𝐷 is clear from the context, we will drop the superscript and use
𝑅1, · · · , 𝑅𝑝 for both the schema and instances. Any tuple 𝑡 ∈ 𝑅𝑖 is
defined on attr(𝑅𝑖). For any attribute𝐴 ∈ attr(𝑅𝑖), 𝜋𝐴𝑡 ∈ dom(𝐴)
denotes the value of attribute 𝐴 in tuple 𝑡 . Similarly, for a set of
attributes B ⊆ attr(𝑅𝑖), 𝜋B𝑡 denotes the values of attributes in
B for 𝑡 with an implicit ordering on the attributes. It should be
noted that for a vacuum relation 𝑅𝑖 , either 𝑅𝑖 = {∅} or 𝑅𝑖 = ∅
(respectively interpreted as “true” and “false”).

We consider the class of conjunctive queries without self-joins,
formally defined as

𝑄 (𝑨) : −𝑅1 (A1), 𝑅2 (A2), · · · , 𝑅𝑝 (A𝑝)
where𝑨 ⊆ A denotes the output attributes andA−𝑨 the non-output
attributes (also called the existential variables). Note that we do not
have any projection in the body. Each 𝑅𝑖 in𝑄 is distinct, i.e., the CQ
does not have a self-join. If 𝑨 = A, such a CQ query is known as
full CQwhich represents the natural join among the given relations.
If𝑨 = ∅, such a CQ is booleanwhich indicates whether the result of
natural join among the given relations is empty or not; otherwise,
it is non-boolean.

Extending the notation, we use rels(𝑄) to denote all the rela-
tions that appear in the body of 𝑄 , attr(𝑄) to denote all the at-
tributes that appear in the body of𝑄 , and head(𝑄) ⊆ attr(𝑄) to de-
note all the attributes that appear in the head of𝑄 (so, head(𝑄) = A
in the previous paragraph). When a full CQ query 𝑄 is evaluated
on an instance 𝐷 , if 𝑅𝑖 = ∅ for some vacuum relation 𝑅𝑖 ∈ rels(𝑄),

A
B

C

I

E

F K

H

J

attributes

R1

R2

R3

R4

R5

R6

relations

Figure 2: Hypergraph (left) and graph (right) representa-

tion for an example CQ 𝑄 (𝐴,𝐶, 𝐹, 𝐾) : − 𝑅1 (𝐴, 𝐵,𝐶), 𝑅2 (𝐴,𝐻),
𝑅3 (𝐵, 𝐸, 𝐹), 𝑅4 (𝐸, 𝐾), 𝑅5 (𝐾, 𝐼), 𝑅6 (𝐶, 𝐼, 𝐽).

then 𝑄 (𝐷) is also empty; otherwise, the result 𝑄 (𝐷) is evaluated
on non-vacuum relations. When a CQ query 𝑄 is evaluated on an
instance 𝐷 , the result is exactly the projection of the full join result
on attributes in head(𝑄) (after removing duplicates). We give an
example in Figure 1.

A classical representation of a CQ 𝑄 is to model it as a hyper-
graph, where each attribute in attr(𝑄) is a vertex and each relation
in rels(𝑄) is a hyperedge. In this work, we use a simpler repre-
sentation for capturing the connectivity of queries and model it
as a graph 𝐺𝑄 , where each relation is a vertex and there is an
edge between 𝑅𝑖 , 𝑅 𝑗 ∈ rels(𝑄) if attr(𝑅𝑖) ∩ attr(𝑅 𝑗) ≠ ∅. This
graph is denoted 𝐺𝑄 . A CQ 𝑄 is connected if 𝐺𝑄 is connected, and
disconnected otherwise. An example is illustrated in Figure 2.

3.2 Problem Definition

Below, we formally define the ADP problem in terms of the count
of output tuples of a CQ:

Definition 3.1. Given a CQ𝑄 on R, an instance𝐷 , and a positive
integer 𝑘 ≥ 1, the aggregated deletion propagation (ADP) problem
aims to remove at least𝑘 results from𝑄 (𝐷) by removing theminimum

number of input tuples from 𝐷 .

Given 𝑄 , 𝑘 , and 𝐷 , we denote the above problem by ADP(𝑄, 𝐷,
𝑘). Note that an implicit constraint on the input parameter 𝑘 is
1 ≤ 𝑘 ≤ |𝑄 (𝐷) |. For instance, in Figure 1, ADP(𝑄1, 𝐷, 2) will re-
turn a single tuple 𝑅3 (𝑐3, 𝑒3) since removing it would remove the
last two output tuples in 𝑄1 (𝐷). In this paper, we study the data
complexity [25] of the ADP problem, i.e., the size of the query and
schema are fixed, and the complexity is in terms of the size of the
database 𝐷 . More precisely, we say that ADP(𝑄, 𝐷, 𝑘) is polynomial-

time solvable for a query𝑄 if, for an arbitrary instance𝐷 and integer
𝑘 , the solution of ADP(𝑄, 𝐷, 𝑘) can be computed in polynomial time
in the size of 𝐷 ; otherwise, it is NP-hard.

For simplicity, we assume that all relations have distinct set of
attributes in an input CQ 𝑄 , i.e., attr(𝑅𝑖) ≠ attr(𝑅 𝑗) for every
pair of relations 𝑅𝑖 , 𝑅 𝑗 ∈ rels(𝑄). The rationale is that removing
duplicated relations won’t change the poly-time solvability of the
original CQ. The formal proof is given in the full version [13].

3.3 Special Cases

Before we discuss the complexity of the ADP problem in general,
we note the following special cases:

ADP onbooleanCQ.The ADP problem on boolean CQ is also known
as the resilience problem, i.e., removing the minimum number of

input tuples to make the true query become false. The next theorem
gives a decidability result of the ADP problem on boolean CQ:

Theorem 3.2 ([10]). On a boolean CQ𝑄 , the poly-time solvability

(in data complexity) of the ADP(𝑄, 𝐷, 1) problem can be decided in

polynomial time (in query complexity).

ADP on CQ with vacuum relations. The ADP problem becomes
easy when 𝑄 contains a vacuum relation. Consider an arbitrary
input instance 𝐷 for𝑄 and integer 𝑘 . If every vacuum relation in𝑄
has instance {∅}, we can remove query results in𝑄 (𝐷) by removing
the tuple {∅} in any one vacuum relation; otherwise, 𝑄 (𝐷) = ∅ by
definition, and there is no need to remove anything. Therefore:

Lemma 3.3. For a CQ 𝑄 , if there exists some vacuum relation, the

ADP(𝑄, 𝐷, 𝑘) problem is poly-time solvable (in data complexity).

ADP with different choices of 𝑘: When 𝑘 = |𝑄 (𝐷) | or 𝑘 = 1, the
ADP problem is equivalent to the resilience problem, which implies
that ADP(𝑄, 𝐷, 𝑘) is NP-hard even for a constant 𝑘 for general CQs.
In contrast, ADP can be shown to be poly-time solvable (in data
complexity) for any fixed 𝑘 if the query 𝑄 is a full CQ [13].

4 POLY-TIME DECIDABILITY

In this section, we are giving an algorithm that can decide poly-time
solvability of the ADP problem on general CQs.

Theorem 4.1. On a CQ 𝑄 , IsPtime(𝑄) can decide poly-time solv-

ability of the ADP(𝑄, 𝐷, 𝑘) problem, which runs in polynomial time.

The procedure IsPtime(𝑄) is illustrated in Figure 3. Note that
when IsPtime(𝑄) returns true, the ADP(𝑄,𝐷, 𝑘) problem is poly-
time solvable, and NP-hard otherwise. The algorithmic description
of IsPtime is given in full version [13]. IsPtime(𝑄) runs in polyno-
mial time in the query size.

The high-level idea is to alternately apply two simplifications
steps on the input query, until a “base case” is arrived at. The first
simplification step is that of removing all universal attributes in
the input query. An attribute is universal if it is an output attribute
appearing in all relations. After applying this step, if 𝑄 becomes
boolean or contains a vacuum relation (two of the base cases), it is
decidable in polynomial time by Theorem 3.2 and Lemma 3.3.

Next, we checkwhether𝑄 is connected or not. For a disconnected
query 𝑄 , we can decompose it into multiple connected subqueries as
follows: apply breadth-first search or depth-first search algorithm
on the graph 𝐺𝑄 , and find all connected components for 𝐺𝑄 . The
set of relations corresponding to the set of vertices in one connected
component of𝐺𝑄 form a connected subquery of𝑄 . In this case, we
perform the second simplification step of decomposing 𝑄 into mul-
tiple connected subqueries, followed by calling IsPtime recursively
on each connected subquery. More specifically, let 𝑄1, 𝑄2, · · · , 𝑄𝑠
be the connected subqueries of 𝑄 ; then, IsPtime(𝑄) will return⋀︁𝑠
𝑖=1 IsPtime(𝑄𝑖). Otherwise, 𝑄 ends up in “Others” (the third

base case). In this case, 𝑄 is connected, non-boolean, and does not
contain either a vacuum relation or a universal attribute. For all
queries in “Others”, IsPtime returns false.

Example 4.2. Consider an example CQ𝑄 (𝐴, 𝐹,𝐺, 𝐻) : −𝑅1 (𝐴, 𝐵),
𝑅2 (𝐹,𝐺), 𝑅3 (𝐵,𝐶), 𝑅4 (𝐶), 𝑅5 (𝐺,𝐻). Observe that 𝑄 is non-boolean

Remove all

Boolean
Non-boolean

vacuum relation: true Disconnected: Others: false

universal attributes

(Lemma 4.3)

(Lemma 4.4)

(Theorem 3.2)

(Lemma 4.5)(Lemma 3.3)

There exists a

Q

IsPtime(Q) =
∧

i IsPtime(Qi)

Figure 3: Procedure IsPtime(𝑄).

without any universal attribute and vacuum relations. The simplifica-

tion step applied to𝑄 is to decompose it into two connected subqueries,

𝑄1 (with 𝑅1, 𝑅3, 𝑅4) and 𝑄2 (with 𝑅2, 𝑅5). For 𝑄2, after removing

the universal attribute 𝐺 , it becomes disconnected. On applying the

simplification step again to𝑄2, it decomposes into two connected sub-

queries,𝑄21 (with 𝑅2) and𝑄22 (with 𝑅5). After removing the universal

attribute 𝐹 in 𝑄21, relation 𝑅2 becomes vacuum and IsPtime(𝑄21)
returns true. Similarly, IsPtime(𝑄22) returns true. However, 𝑄1 is
non-boolean and contains no vacuum relation. Both simplifications

fail on 𝑄1, so IsPtime(𝑄1) returns false. Therefore, IsPtime(𝑄) re-
turns false and ADP(𝑄, 𝐷, 𝑘) is NP-hard.

The essence of IsPtime is in the two simplifications steps: re-
moving universal attributes and decomposing a disconnected query.
Both these steps preserve the complexity of the problem as formally
stated in Lemma 4.3 and Lemma 4.4. Intuitively, for any universal
attribute, we can partition the query results by the value of the
universal attribute, and interpret each class in the partition as the
result of the same query over a distinct sub-instance. Moreover, the
deletion of any input tuple 𝑡 can only affect a single sub-instance
that shares the value of the universal attribute with 𝑡 . The original
ADP instance now degenerates to finding an optimal combination of
solutions to the ADP problem defined over each of the sub-instances,
after removing the universal attribute. Similarly, if the query is dis-
connected, the results of all connected subqueries will join by cross
product. Then, the original ADP instance also degenerates to finding
an optimal combination of solutions to the ADP problem defined
for each connected subqueries. Finding the optimal combination
is polynomial-time solvable since the size of the query as well as
the query result is polynomial. Thus, the complexity of the original
query can be deduced from that of the simplified queries.

Our proof of Theorem 4.1 also follows the logical diagram of
IsPtime(𝑄), which is divided into two parts. First, we show that
these two simplification steps preserve the complexity of the prob-
lem, as described above. Then, we deal with the base cases. Note
that the correctness for boolean queries and vacuum relations are
implied by Theorem 3.2 and Lemma 3.3. Therefore, it suffices to
show the NP-hardness of the ADP problem on 𝑄 , when 𝑄 is non-
boolean, connected, and contains no universal attribute or vacuum
relation; we show this in Lemma 4.5. Putting everything together,
the correctness for Theorem 4.1 then follows from induction over
the size of the query.

Remove all

vacuum relation No vacuum

non-output attributes

(Case 1)

Connected
(Case 3)

Disonnected
(Case 2)

relation

There is a

Q

Figure 4: Proof plan of Lemma 4.5.

4.1 Hardness Preservation in Simplifications

In the first part, we show that when the simplifications are applied
to the input query, the complexity of the ADP problem is preserved.

Lemma 4.3. Let𝐴 be a universal attribute in𝑄 . Then, ADP(𝑄,𝐷, 𝑘)
is NP-hard if and only if ADP(𝑄−𝐴, 𝐷, 𝑘) is NP-hard, where 𝑄−𝐴 is

the residual query after removing attribute 𝐴 from all relations in 𝑄 .

Lemma 4.4. Let 𝑄1, 𝑄2, · · · , 𝑄𝑠 be the connected subqueries of 𝑄
for 𝑠 ≥ 2. The ADP(𝑄, 𝐷, 𝑘) problem is NP-hard if and only if there

exists some 𝑄𝑖 for which the ADP(𝑄𝑖 , 𝐷, 𝑘) problem is NP-hard.

The proofs of these lemmas are similar in spirit. Namely, we
have two parts corresponding to the “if” and “only if” directions.
To prove the “if” direction, we show that if ADP is NP-hard for𝑄−𝐴
(resp., there exists some 𝑄𝑖 for which ADP is NP-hard), then the
ADP problem on 𝑄 is also NP-hard. To prove the “only-if” direction,
we show that if ADP is poly-time solvable for 𝑄−𝐴 (resp., ADP is
poly-time solvable for each connected subquery 𝑄𝑖), then ADP is
also poly-time solvable for 𝑄 as well. More specifically, given a
poly-time algorithm for solving ADP on𝑄−𝐴 (resp., given poly-time
algorithms for solving ADP on each 𝑄𝑖), we design a poly-time
algorithm for solving ADP problem on 𝑄 . The detailed proofs of
these lemmas are deferred to the full version [13].

4.2 NP-Hardness for “Others”

In this part, we prove the hardness of the class of queries charac-
terized by “others” bracket in Figure 3, as stated in Lemma 4.5.

Lemma 4.5. For a CQ𝑄 , if IsPtime(𝑄) goes to “others” in Figure 3,

i.e., if (1) 𝑄 contains no universal attributes; (2) 𝑄 is non-boolean;

(3) 𝑄 contains no vacuum relations; and (4) 𝑄 is connected, then

ADP(𝑄, 𝐷, 𝑘) is NP-hard.
We start by identifying three simple butNP-hard queries for the

ADP problem that will be at the core of showing the above lemma.
Then we present a general framework of proving the hardness for a
given CQ bymapping it to another query on which the ADP problem
is known (or has been proven) to be NP-hard. Finally, we classify
all queries in Lemma 4.5 into three groups using the flowchart in
Figure 4, and give a mapping from queries ending up in each leaf
of the flowchart to a core query identified at the beginning.

4.2.1 Core Queries. The three queries we focus on are as follows:
𝑄cover (𝐴, 𝐵) : −𝑅1 (𝐴), 𝑅2 (𝐴, 𝐵), 𝑅3 (𝐵).
𝑄swing (𝐴) : −𝑅2 (𝐴, 𝐵), 𝑅3 (𝐵).
𝑄seesaw (𝐴) : −𝑅1 (𝐴), 𝑅2 (𝐴, 𝐵), 𝑅3 (𝐵).

Careful inspection reveals that these queries have a common prop-
erty: w.l.o.g., we can assume that an optimal solution of ADP(𝑄,𝐷, 𝑘)
won’t remove any tuples from relation 𝑅2 (𝐴, 𝐵). The effect of the
removal of any tuple (𝑎, 𝑏) ∈ 𝑅2 can also be achieved by removing
tuple (𝑎) ∈ 𝑅1 or (𝑏) ∈ 𝑅3, which follows immediately from the no-
tion of “domination” in [10]. Therefore, an optimal solution for ADP
on any one of these three queries could be restricted to removing
tuples only from 𝑅1 (𝐴) and 𝑅3 (𝐵). In this way, the ADP problem
on these queries can be interpreted as optimization problems on
bipartite graphs, which turn out to be NP-hard (Lemma 4.6).

Lemma 4.6. Given an undirected bipartite graph𝐺 (𝐴∪𝐵, 𝐸) where
𝐸 is the set of edges between two sets of vertices𝐴 and 𝐵, and an integer

𝑘 , each of the following problems is NP-hard:

(1) Remove the minimum number of vertices in 𝐴 ∪ 𝐵 such that

at least 𝑘 edges in 𝐸 are removed.
1

(2) Remove the minimum number of vertices in 𝐵 such that at

least 𝑘 vertices in 𝐴 are removed;

(3) Remove the minimum number of vertices in 𝐴 ∪ 𝐵 such that

at least 𝑘 vertices in 𝐴 are removed;

Problem (1) is exactly partial vertex cover for bipartite graphs,
which is known to be NP-hard [4]. The hardness of problem (2) and
(3) is established from the k-minimum coverage (KMC) problem and
the clique in regular graph problem, with detailed proofs in [13].

4.2.2 Hardness Preserving Mapping. The high-level idea of relating
an arbitrary query𝑄 characterized by Lemma 4.5 to the core queries
is to divide the attributes in attr(𝑄) into two groups, one mapped
to 𝐴 and the other mapped to 𝐵. In this way, each relation in 𝑄
plays the role of 𝑅1 (𝐴), 𝑅2 (𝐴, 𝐵) or 𝑅3 (𝐵) in the core queries. The
notion of “query mapping” is formally defined below:

Definition 4.7 (Query Mapping). Suppose we are given a func-

tion 𝑓 : attr(𝑄1) → attr(𝑄2) ∪ {∗}. Let

𝑔(𝑅𝑖) = {𝑌 ∈ attr(𝑄2) : ∃𝑋 ∈ attr(𝑅𝑖) s.t. 𝑓 (𝑋) = 𝑌 }.

𝑓 is said to be a query mapping if the following properties hold:

(i) for every relation 𝑅𝑖 ∈ rels(𝑄1), there is a (unique) relation

𝑅 𝑗 ∈ rels(𝑄2) such that 𝑔(𝑅𝑖) = attr(𝑅 𝑗); (ii) for every relation

𝑅 𝑗 ∈ rels(𝑄2), there exists at least one relation 𝑅𝑖 ∈ rels(𝑄1) such
that 𝑔(𝑅𝑖) = attr(𝑅 𝑗).

In the definition above, if 𝑔(𝑅𝑖) = attr(𝑅 𝑗) for relations 𝑅𝑖 ∈
rels(𝑄1) and 𝑅 𝑗 ∈ rels(𝑄2), then 𝑅𝑖 ∈ rels(𝑄1) is said to be
mapped to relation 𝑅 𝑗 ∈ rels(𝑄2). The next lemma, whose proof
is deferred to the full version [13], shows that query mappings
preserve hardness of the ADP problem.

Lemma 4.8. If there is a mapping from a CQ𝑄1 to another CQ𝑄2,
and ADP(𝑄2, 𝐷, 𝑘) is NP-hard, then ADP(𝑄1, 𝐷, 𝑘) is also NP-hard.

4.2.3 Mapping to the core. To prove the NP-hardness of the ADP
problem on a query 𝑄 , it suffices to show a mapping to any core
query, implied by Lemma 4.8. The high-level idea is that for any
query characterized by Lemma 4.5, we find a partition of attributes

1A remove procedure on a graph is defined as: (1) when a vertex is removed, all
the incident edges are also removed; (2) when all the incident edges on a vertex are
removed, this vertex is also removed.

in𝑄 as (I, J, attr(𝑄) −I−J) where I∩J = ∅ and define the mapping
function 𝑓 : 𝑋 → {𝐴, 𝐵, ∗} as follows:

𝑓 (𝑋) =
⎧⎪⎪⎨⎪⎪⎩
𝐴 if 𝑋 ∈ I
𝐵 if 𝑋 ∈ J
∗ otherwise

Then it remains to show that 𝑓 is a mapping from 𝑄 to one of the
three core queries. As mentioned, we distinguish𝑄 into three cases
in Figure 4, and identify the mapping for each case separately. The
mapping constructed for each case with examples are given in [13].

5 STRUCTURAL CHARACTERIZATION

In the last section, we provided a simple poly-time algorithm IsP-
time to decide the poly-time solvability of the ADP problem for
CQs without self-join. However, this algorithm does not provide
structural insight into what makes the ADP problem NP-hard or
poly-time solvable for individual queries. Namely, it does not pro-
vide a structural characterization for solvability of the ADP problem,
such as the one shown for the special case of the resilience problem
in [10]. To rectify this shortcoming and complement the procedural
dichotomy established in the last section, we provide, in this section,
a structural dichotomy of the ADP problem for CQs. Interestingly,
it turns out that the procedural and structural dichotomies do not
have a one-one mapping; namely, distinct cases of the IsPtime
procedure map to same case in the structural characterization, and
vice-versa. Our main theorem in this section is the following:

Theorem 5.1. For a CQ 𝑄 , ADP(𝑄,𝑘, 𝐷) is NP-hard if and only if

one of the following happens:

• 𝑄 contains a “triad-like” structure,

• 𝑄 contains a “strand” structure, or

• the head join of non-dominated relations is non-hierarchical.

In the rest of this section, we explain the the three “hard struc-
tures” in Theorem 5.1 and give some intuition for why they make
the ADP problem NP-hard. The proof of Theorem 5.1 is given in [13].

5.1 Boolean CQ Revisited

As mentioned earlier, a complete characterization of boolean CQs
for the ADP problem is known from previous work:

Theorem 5.2 ([10]). On a boolean CQ 𝑄 without self-joins, the

problem ADP(𝑄, 𝐷, 1) is poly-time solvable if there is no triad structure,

and NP-hard otherwise.

To explain this result, we introduce some new terminology. In a
CQ 𝑄 , a relation 𝑅 𝑗 ∈ rels(𝑄) is exogenous if there exists another
relation 𝑅𝑖 ≠ 𝑅 𝑗 ∈ rels(𝑄) such that attr(𝑅𝑖) ⊊ attr(𝑅 𝑗), and
endogenous otherwise. If there is more than one relation defined
on the same set of attributes, we just consider any one of them as
endogenous and the remaining ones as exogenous. For example, in
the boolean CQ 𝑄 : −𝑅1 (𝐴), 𝑅2 (𝐴, 𝐵), 𝑅3 (𝐵,𝐶), 𝑅4 (𝐵,𝐶), 𝑅5 (𝐵,𝐶),
there are two endogenous relations: 𝑅1 and any one of 𝑅3, 𝑅4, 𝑅5.
Next, we define a path between a pair of relations 𝑅𝑖 , 𝑅 𝑗 ∈ rels(𝑄)
as a path between any pair of attributes 𝐴, 𝐵 for 𝐴 ∈ attr(𝑅𝑖) and
𝐵 ∈ attr(𝑅 𝑗). This brings us to the definition of the triad structure:

Definition 5.3 (triad). A triad is a triple of endogenous relations

𝑅1, 𝑅2, 𝑅3 such that for each pair of relations, say 𝑅1, 𝑅2, there is a
path from 𝑅1 to 𝑅2 only using any attributes in attr(𝑄) − attr(𝑅3).

A

B

C F

E

H

(R1) (R2) (R4)

(R3) B

C F

E

H

(R1) (R2) (R4)

(R3)

(R1) (R2)

(R4)

C

H

(R3)F

(R1) (R2)

Figure 5: An example of hierarchical join 𝑄 (𝐴, 𝐵,𝐶, 𝐸, 𝐹, 𝐻) :
−𝑅1 (𝐴, 𝐵,𝐶), 𝑅2 (𝐴, 𝐵, 𝐹), 𝑅3 (𝐴, 𝐸), 𝑅4 (𝐴, 𝐸, 𝐻), and an illustra-

tion of applying procedure IsPtime on it.

Two examples of boolean CQs containing a triad structure are
𝑄△ : −𝑅1 (𝐴, 𝐵), 𝑅2 (𝐵,𝐶), 𝑅3 (𝐶,𝐴) and 𝑄𝑇 : −𝑅1 (𝐴, 𝐵,𝐶), 𝑅2 (𝐴),
𝑅3 (𝐵), 𝑅4 (𝐶), on which the ADP problem is NP-hard.

5.2 Hard Structures for General CQs

A natural question for general CQs is how the existence of output
attributes changes the hardness of ADP problem. We will explore
this question starting with three hard structures.

5.2.1 Triad-like. We first observe that adding output attributes to a
hard boolean CQmaintains the NP-hardness of the ADP problem. For
example, the CQ 𝑄 (𝐸, 𝐹,𝐺) : −𝑅1 (𝐴, 𝐵, 𝐸), 𝑅2 (𝐵,𝐶, 𝐹), 𝑅3 (𝐶,𝐴,𝐺)
is NP-hard (since IsPtime returns false), which contains the 𝑄△ .
We extend the notion of triad to capture this class of hard queries:

Definition 5.4 (triad-like). A triad-like structure is a triple of

endogenous relations 𝑅1, 𝑅2, 𝑅3 such that for each pair of relations,

say 𝑅1, 𝑅2, there is a path from 𝑅1 to 𝑅2 only using attributes in

attr(𝑄) − (head(𝑄) ∪ attr(𝑅3)).

This takes care of our first case: if there is a triad-like structure
(in the non-output attributes), the CQ is NP-hard.

5.2.2 Non-hierarchical Join. The situation becomes more compli-
cated whenwe add output attributes to a poly-time solvable boolean
CQ. For example, on a boolean CQ𝑄 : −𝑅1 (𝐶, 𝐸), 𝑅2 (𝐸, 𝐹), 𝑅3 (𝐹, 𝐻),
adding a universal attribute 𝐴 leads to a poly-time solvable query
𝑄 (𝐴) : −𝑅1 (𝐴,𝐶, 𝐸), 𝑅2 (𝐴, 𝐸, 𝐹), 𝑅3 (𝐴, 𝐹, 𝐻), but adding attributes
𝐴, 𝐵 selectively to some of the relations (e.g.,𝑄 (𝐴, 𝐵) : −𝑅1 (𝐴,𝐶, 𝐸),
𝑅2 (𝐴, 𝐵, 𝐸, 𝐹), 𝑅3 (𝐵, 𝐹, 𝐻)) can result in an NP-hard query. So, our
goal is to understand how the addition of output attributes changes
the complexity of the ADP problem. For simplicity, the head join for
a CQ 𝑄 denotes the residual query after removing all non-output
attributes from all relations in 𝑄 . We start with the class of full
CQs, i.e., without non-output attributes. A nice connection between
hierarchical join and our previously defined procedure IsPtime can
be observed.

Definition 5.5 (Hierarchical Join). A full CQ 𝑄 is hierar-

chical if for each pair of attributes 𝐴, 𝐵 ∈ attr(𝑄), rels(𝐴) ⊆
rels(𝐵), rels(𝐵) ⊆ rels(𝐴), or rels(𝐴) ∩ rels(𝐵) = ∅, and
non-hierarchical otherwise.

Note that a hierarchical CQ can be organized into a tree struc-
ture, where each relation is a root-to-node path. An example is

given in Figure 5. Moreover, each relation ends up vacuum by
alternately applying the two simplification steps in IsPtime on
this tree. In this way, if 𝑄 is hierarchical, IsPtime(𝑄) always re-
turns true. However, the converse is not necessarily true. For ex-
ample, 𝑄 (𝐴, 𝐵, 𝐸) : −𝑅1 (𝐴, 𝐸), 𝑅2 (𝐴, 𝐵, 𝐸), 𝑅3 (𝐵, 𝐸), 𝑅4 (𝐸) is non-
hierarchical but IsPtime(𝑄) returns true (after removing the uni-
versal attribute 𝐸, relation 𝑅4 becomes vacuum). We focus on non-
hierarchical CQs in the rest of this discussion.

The previous result on boolean CQs only considers endogenous
relations. Unfortunately, this is insufficient for a full CQ in gen-
eral; for example, removing the exogenous relation 𝑅2 would make
𝑄path (𝐴, 𝐵) : −𝑅1 (𝐴), 𝑅2 (𝐴, 𝐵), 𝑅3 (𝐵) poly-time solvable. So, we
need a more fine-grained notion than exogenous/endogenous rela-
tions in characterizing the complexity of non-boolean CQs.

Definition 5.6 (Dominated Relation in Full CQs). In a full

CQ 𝑄 , relation 𝑅 𝑗 is dominated by relation 𝑅𝑖 if (1) attr(𝑅𝑖) ⊆
attr(𝑅 𝑗); and (2) for any relation 𝑅𝑘 with attr(𝑅𝑖) −attr(𝑅𝑘) ≠ ∅,
attr(𝑅 𝑗) ∩ attr(𝑅𝑘) ⊆ attr(𝑅𝑖).

We say that a relation is dominated if it is dominated by any
other relation, and non-dominated otherwise. Note that a dominated
relation must be exogenous, but all exogenous relations may not be
dominated. A structural dichotomy for full CQs based on dominated
relations is given by:

Lemma 5.7. For a full CQ 𝑄 , the ADP(𝑄, 𝐷, 𝑘) problem is NP-hard

if and only if the non-dominated relations are non-hierarchical.

Note that full CQs do not have any non-output attributes. But,
fortunately, the above hardness continues to hold even on adding
output attributes. To make this formal, we need to extend the notion
of dominated relations to general CQs.

Definition 5.8 (Dominated Relation in CQs). In a CQ 𝑄 , re-

lation 𝑅 𝑗 is dominated by relation 𝑅𝑖 if (1) attr(𝑅𝑖) ⊆ attr(𝑅 𝑗); (2)
for any relation 𝑅𝑘 with attr(𝑅𝑖) − attr(𝑅𝑘) ≠ ∅, attr(𝑅 𝑗) ∩
attr(𝑅𝑘) ⊆ attr(𝑅𝑖) ∩ head(𝑄); (3) attr(𝑅𝑖) ⊆ head(𝑄) or

head(𝑄) ⊆ attr(𝑅𝑖).

If there is more than one relation defined on the same attributes,
i.e., attr(𝑅𝑖) = attr(𝑅 𝑗), then we just consider any one of them
as non-dominated and the remaining ones as dominated. We can
now use this extended definition to claim our second hard case: if
the head join of non-dominated relations is non-hierarchical, then
the CQ is NP-hard. Note that these definitions of “domination” are
different from [10], as we need a more fine-grained characterization
of exogenous relations for ADP. Moreover, Lemma 3.3 can be easily
interpreted as follows: If there is a vacuum relation 𝑅𝑖 in a CQ 𝑄 ,
then every remaining relation must be dominated by 𝑅𝑖 , therefore
ADP(𝑄, 𝐷, 𝑘) is poly-time solvable by Theorem 5.1.

5.2.3 Strand. The remaining case is one where on the output at-
tributes, the non-dominated relations are hierarchical and on the
non-output attributes, there is no triad-like structure. These two
conditions guarantee poly-time solvability for full and boolean CQs
respectively. But, interestingly, when appearing together in a gen-
eral CQ, they no longer guarantee poly-time solvability. For exam-
ple, the CQ 𝑄 (𝐴, 𝐵,𝐶) : − 𝑅1 (𝐴, 𝐵, 𝐸), 𝑅2 (𝐴,𝐶, 𝐸) is NP-hard while
both 𝑄 (𝐴, 𝐵,𝐶) : − 𝑅1 (𝐴, 𝐵), 𝑅2 (𝐴,𝐶) and 𝑄 () : −𝑅1 (𝐸), 𝑅2 (𝐸) are

poly-time solvable. To characterize this class of queries, we intro-
duce our third hard structure that we call a strand:

Definition 5.9 (strand). A strand is a pair of non-dominated

relations 𝑅𝑖 , 𝑅 𝑗 ∈ rels(𝑄) such that (1) head(𝑄) ∩ attr(𝑅𝑖) ≠

head(𝑄) ∩ attr(𝑅 𝑗); (2) (attr(𝑅𝑖) ∩ attr(𝑅 𝑗)) − head(𝑄) ≠ ∅.

The reasonwhy the strand structure makes the ADP problem hard
can be explained by the procedure IsPtime. Consider any CQ with
such a strand structure with 𝑅𝑖 , 𝑅 𝑗 . After applying two simplifica-
tion steps, 𝑅𝑖 , 𝑅 𝑗 will be in the same connected subquery 𝑄0, since
attributes in (attr(𝑅𝑖)∩attr(𝑅 𝑗))−head(𝑄) are not universal and
therefore couldn’t have been removed by IsPtime. Moreover, 𝑄0
is non-boolean, since attr(𝑅𝑖) ∩ head(𝑄) ≠ attr(𝑅 𝑗) ∩ head(𝑄)
and therefore, there is at least one non-universal output attribute.
Next, we prove that there is no vacuum relation in 𝑄0. Suppose
𝑅ℓ becomes vacuum in 𝑄0. Observe that attr(𝑅ℓ) ⊆ head(𝑄)
and attr(𝑅ℓ) ⊆ attr(𝑅ℎ) for every relation 𝑅ℎ ∈ attr(𝑄0).
Since 𝑅𝑖 is not dominated by 𝑅ℓ , there must exist another rela-
tion 𝑅𝑘 ∈ rels(𝑄) − {𝑅𝑖 , 𝑅 𝑗 } such that attr(𝑅ℓ) − attr(𝑅𝑘) ≠ ∅
and (attr(𝑅𝑖) ∩ attr(𝑅𝑘)) − attr(𝑅ℓ) ≠ ∅. Note that 𝑅𝑘 is not in
𝑄0; otherwise, attr(𝑅ℓ) − attr(𝑅𝑘) = ∅. In this case, (attr(𝑅𝑖) ∩
attr(𝑅𝑘)) − attr(𝑅ℓ) = ∅, coming to a contradiction. Therefore,
the IsPtime algorithm will go to “others”, and return false for 𝑄0,
as well as for 𝑄 . This allows us to claim our third hard case: if a
strand exists, then CQ is NP-hard.

5.3 Sketch of Proof of Theorem 5.1

So far, we have defined three hard structures for general CQs, any
one of which makes the ADP problem NP-hard. We now sketch the
main ideas in the proof of Theorem 5.1; the detailed proof is in the
full version [13]. This proof uses Theorem 4.1 by mapping each of
the NP-hard cases in Theorem 4.1 to the existence of a hard struc-
ture as defined by Theorem 5.1, and vice-versa. But, interestingly,
this mapping is not one-one in the sense that multiple cases in the
procedural dichotomy established by Theorem 4.1 map to same
case in the structural dichotomy of Theorem 5.1, and vice-versa.
This lends further credence to our assertion that the procedural
dichotomy of the previous section is not sufficient by itself to ex-
plain the structural reasons behind the NP-hardness or poly-time
solvability of the ADP problem for individual CQs.

We first point out that the two simplification steps in the IsPtime
procedure preserve the existence of hard structures.

Lemma 5.10. Let 𝐴 be a universal attribute in 𝑄 . Then, there is a

hard structure in 𝑄 if and only if there is a hard structure in 𝑄−𝐴 .

Lemma 5.11. Let 𝑄1, 𝑄2, · · · , 𝑄𝑠 be the connected subqueries of

𝑄 . Then, there is a hard structure in 𝑄 if and only if there is a hard

structure in 𝑄𝑖 for some 𝑖 ∈ {1, 2, · · · , 𝑠}.

When neither of the simplification steps can be applied, IsP-
time(𝑄) ends up with three cases. If there is a vacuum relation
in 𝑄 , say 𝑅𝑖 , IsPtime(𝑄) returns true. In this case, 𝑄 does not
contain any hard structure as 𝑅𝑖 is the only endogenous and non-
dominated relation. If 𝑄 is boolean, IsPtime(𝑄) returns false if
and only if it contains a triad. Then, we are left with the case when
IsPtime(𝑄) goes into the “Others” bucket. Each core query shown
in Section 4.2.1 contains hard structure; more specifically, the head

Strand

head join of non-
dominated relations

Non-hierarchical

Mapping Hard Structure

Qpath

Qswing

Qseesaw

Case 1

Case 2

Case 3

Figure 6: Correspondence between the three cases of hard

query on which IsPtime falling into “other” bucket in Fig-

ure 4, the core query it maps to (the left) and the hard struc-

ture it contains (the right).

join of non-dominated relations in 𝑄path is non-hierarchical, and
both 𝑄swing and 𝑄seesaw contain a strand. In general, we can show
the existence of hard structures for 𝑄 falling into one of the three
cases in Figure 4. The correspondence between different cases of the
procedural and structural characterizations are shown in Figure 6.

6 APPROXIMATIONS

In this section, we discuss approximations for the ADP(𝑄,𝐷, 𝑘)
problem when it is NP-hard.

6.1 Full CQs

We first consider full CQs, on which ADP problem can be related to
the Partial Set Cover problem (PSC).

Definition 6.1. Given a set of elements U, a family of subsets

S ⊆ 2𝑈 , and a positive integer 𝑘 ′, the goal of the Partial Set Cover
problem is to pick a minimum collection of sets from S that covers at

least 𝑘 ′ elements inU.

Observe that ADP(𝑄,𝐷, 𝑘), where the goal is to pick the smallest
number of input tuples that intervene on at least 𝑘 output tuples,
can be modeled as a PSC problem as follows. Sets correspond to
input tuples from relations in the body of𝑄 and elements to output
tuples in 𝑄 (𝐷). The set corresponding to an input tuple comprises
all elements corresponding to output tuples that are deleted on
the deletion of the input tuple. Also, 𝑘 ′ = 𝑘 . Additionally, if there
are 𝑝 relations in the ADP(𝑄,𝐷, 𝑘) instance, then every element
belongs to at most 𝑝 sets. (A formal description of this reduction and
approximation-preserving property are left to the full version [13].)

It is known that the PSC problem admits greedy and primal-dual
algorithms with approximation factors of 𝑂 (log𝑘) and 𝑝 respec-
tively [12]. Hence, we get the same results for the ADP problem.

Theorem 6.2. For a full CQ 𝑄 with 𝑝 relations, any instance 𝐷

and integer 𝑘 , ADP(𝑄,𝑘, 𝐷) admits 𝑂 (log𝑘) and 𝑝-approximations.

This implies that if the query has constant size, i.e., 𝑝 is a constant,
full CQs admit a constant-factor approximation for the ADP problem.

6.2 Inapproximability of General CQs

The situation, however, is quite different for general CQs. We first
observe that obtaining even sub-polynomial approximations for
the ADP problem in general is unlikely. In particular, on𝑄swing (𝐴) :
𝑅2 (𝐴, 𝐵), 𝑅3 (𝐵), which is the core hard query in Section 4.2.1, we
show the following hardness:

Algorithm 1: ComputeADP(𝑄, 𝐷, 𝑘)
1 If 𝑄 is Boolean return Boolean(𝑄,𝐷, 𝑘);
2 ElseIf 𝑄 is a singleton return Singleton(𝑄, 𝐷, 𝑘);
3 ElseIf 𝑄 has universal attribute then Universe(𝑄,𝐷, 𝑘);
4 ElseIf 𝑄 is disconnected then Decompose(𝑄, 𝐷, 𝑘);
5 Else return GreedyForCQ(𝑄, 𝐷, 𝑘);

Lemma 6.3. Under some mild cryptographic assumptions, the

ADP(𝑄swing, 𝐷, 𝑘) problemwith |𝐷 | = 𝑛 is hard to approximate within

Ω(𝑛𝜖) factor for some constant 𝜖 > 0.

Recall that we established NP-hardness of ADP(𝑄swing, 𝐷, 𝑘) via a
reduction from the k-minimum coverage (KMC) problem. As shown in
the full version [13], this reduction is also approximation-preserving,
which implies the above lemma via known hardness results for the
KMC problem [1, 5, 6]. While this rules out the possibility of approx-
imation algorithms in general for the ADP problem, there are several
query classes on which we had shown NP-hardness of the problem
but their approximability is still open. This includes simple CQs
such as 𝑄seesaw (𝐴) : 𝑅1 (𝐴), 𝑅2 (𝐴, 𝐵), 𝑅3 (𝐵). We leave the precise
classification of query classes according to approximability of the
ADP problem as an interesting direction for future work.

7 ALGORITHMS AND OPTIMIZATIONS

The framework of our poly-time algorithm, which returns the ex-
act solution for “easy” queries and a heuristic for hard queries, is
described as ComputeADP in Algorithm 1. It builds upon the algo-
rithm for the Resilience problem [10], which is a special case of the
ADP problem. Our algorithm recursively calls itself through Uni-
versal and Decompose procedures. For poly-time solvable CQs, it
only uses the first four cases: this follows the proof of Theorem 4.1
by applying the two simplifications repeatedly until it becomes a
boolean query or contains a vacuum relation. Our first optimization
is to include a new base case that we call singleton. If the conditions
of this case (we describe them below) are satisfied, then a simple
algorithm Singleton is directly applied instead of continuing to
apply the two simplification steps. In addition to computing the
optimal solution for poly-time solvable CQs, Algorithm 1 also gen-
erates a feasible solution for NP-hard CQs. In this case, it alternately
applies these two simplification steps until it becomes boolean or
goes to the “others” category in Figure 3. We eventually invoke
an approximate procedure GreedyForCQ on the non-boolean CQ
when neither simplification step can be applied any more. Our sec-
ond optimization is a smarter way of solving the recurrent formula
for these two simplification steps, as shown in Universe(𝑄,𝐷, 𝑘)
and Decompose(𝑄, 𝐷, 𝑘). Note that the simplification steps involve
large dynamic programs; so, this optimization provides significant
scalability in practice. Both poly-time solvable and NP-hard queries
benefit from the improvement of two simplification steps.

In the recursion tree of ComputeADP, each leaf node (Boolean,
Singleton and GreedyForCQ) can be computed in poly-time and
internal node (Universe and Decompose) can be built upon its
children in poly-time. Also, there are 𝑂 (1) nodes in this recursion

tree, since the query size (in terms of number of attributes and
relations) is constant and each recursive call decreases the query
by at least one relation or attribute. Hence, we get an poly-time
algorithm overall. All omitted proofs and pseudocodes are in [13].

7.1 Singleton

We first lay out the conditions of this new base case for a poly-time
solvable CQ:

Definition 7.1 (Singleton). A CQ 𝑄 is singleton, if there exists

a relation 𝑅𝑖 ∈ rels(𝑄) such that (1) attr(𝑅𝑖) ⊆ attr(𝑅 𝑗) holds
for every other relation 𝑅 𝑗 ∈ rels(𝑄); and (2) either attr(𝑅𝑖) ⊆
head(𝑄) or head(𝑄) ⊆ attr(𝑅𝑖).

Note that the execution of IsPtime can also be modeled as recur-
sion tree, where each leaf node is either a boolean CQ or contains
vacuum relation, and each internal node corresponds to one simpli-
fication step. On this recursion tree, we observe that for a poly-time
solvable CQ 𝑄 , each leaf (not root) node containing a vacuum rela-
tion must have an ancestor that is a singleton query. So, it suffices
to replace the vacuum relation base case with the singleton. The
detailed proof, algorithm, and pseudocode are given in [13].

7.2 Universe and Decompose

Decompose(𝑄,𝐷, 𝑘). Assume 𝑄 is disconnected, with𝑠 connected
subqueries 𝑄1, 𝑄2, · · · , 𝑄𝑠 . The divide-and-conquer strategy will
first compute a subproblem ADP(𝑄𝑖 , 𝐷, 𝑘𝑖) for each subquery 𝑄𝑖
over 𝑘𝑖 , and then find an optimal combination of 𝑘1, 𝑘2, · · · , 𝑘𝑠 by
enumeration over Θ(𝑘𝑠) solutions, which becomes expensive for
large 𝑠 . We give an optimized algorithm.

Let Opt[𝑖] [𝑗] denote the minimum number of input tuples that
can remove at least 𝑗 output tuples from subquery ×𝑖

𝑗=1𝑄 𝑗 (𝐷),
which can be computed using the following dynamic program:

Opt[𝑖] [𝑗] = min
𝑘1,𝑘2∈𝐾 (𝑖, 𝑗)

Opt[𝑖 − 1] [𝑘1] + ComputeADP(𝑄𝑖 , 𝐷, 𝑘2)

where 𝐾 (𝑖, 𝑗) = {𝑘1, 𝑘2 : 𝑘1 |𝑄𝑖 (𝐷) | + 𝑘2
∏︁𝑖−1
ℓ=1 |𝑄ℓ (𝐷) | − 𝑘1𝑘2 ≥

𝑗, 𝑘1, 𝑘2 ∈ Z+} andAlgorithm 1 is invoked for solving ADP(𝑄𝑖 , 𝐷, 𝑘2).
To remove at least 𝑗 output tuples from ×𝑖

𝑗=1𝑄 𝑗 (𝐷), we remove
𝑘1 output tuples from first 𝑖 − 1 queries and 𝑘2 output tuples
from 𝑄𝑖 (𝐷), the total number of results removed is 𝑘1 |𝑄𝑖 (𝐷) | +
𝑘2

∏︁𝑖−1
ℓ=1 |𝑄ℓ (𝐷) |−𝑘1𝑘2 since results across subqueries are joined by

Cartesian product. Thus, after recursively computing the solution
to ADP(𝑄𝑖 , 𝐷, 𝑘2) for each subquery 𝑄𝑖 over all values of 𝑘2, the
recurrence formula can be solved in 𝑂 (𝑠 · 𝑘3) = 𝑂 (|𝑄 | · 𝑘3) time
since there are 𝑂 (𝑠𝑘) cells in the two-dimensional data structure
Opt[𝑖] [𝑗] and each can be computed in 𝑂 (𝑘2) time.

Universe(𝑄,𝐷, 𝑘). Let 𝐴 be an universal attribute in 𝑄 . The in-
put instance 𝐷 is partitioned into 𝐷1, 𝐷2, · · · , 𝐷𝑔 corresponding to
possible combinations of values 𝑎1, 𝑎2, · · · , 𝑎𝑔 over 𝐴. In 𝐷𝑖 , each
tuple 𝑡 has 𝜋𝐴𝑡 = 𝑎𝑖 . Note that the query result 𝑄 (𝐷) is a disjoint
union of the subquery results 𝑄 (𝐷1), 𝑄 (𝐷2), · · · , 𝑄 (𝐷𝑖).

Let Opt[𝑖] [𝑠] denote the minimum number of input tuples that
can remove at least 𝑠 output tuples from𝑄 (𝐷), under the constraint
that the input tuples can only be chosen from 𝐷1 to 𝐷𝑖 . Using this
notation, we can now write the following dynamic program:

Opt[𝑖] [𝑠] =
𝑠

min
𝑚=0

{︂
Opt[𝑖 − 1] [𝑠 −𝑚] + ComputeADP(𝑄,𝐷𝑖 ,𝑚)

}︂
,

where Algorithm 1 is revoked for solving the ADP(𝑄,𝐷𝑖 ,𝑚) over
1 ≤ 𝑖 ≤ 𝑔 and 0 ≤ 𝑚 ≤ 𝑠 .

When there are more than one universal attributes, they should
be removed as one “combined” attribute, instead of one by one.
Let 𝐴1, 𝐴2, · · · , 𝐴ℎ be the universal attributes in 𝑄 . Assume all
subproblems ADP(𝑄,𝐷𝑖 , 𝑗) over 1 ≤ 𝑖 ≤ 𝑔 and 1 ≤ 𝑗 ≤ 𝑘 have
been computed. Then, removing 𝐴1, 𝐴2, · · · , 𝐴ℎ one by one takes
𝑂 (𝑘 · |𝜋𝐴1,𝐴2, · · · ,𝐴ℎ

𝑄 (𝐷) |) time while removing them as whole (say
in index ordering) takes 𝑂 (𝑘 ·∑︁ℎℓ=1 |𝜋𝐴1, · · · ,𝐴ℓ

𝑄 (𝐷) |) time.

7.3 Greedy Heuristics

GreedyForCQ(𝑄, 𝐷, 𝑘): For many simple queries, the ADP problem
is NP-hard, and even hard to approximate implied by the results
in Section 6. The prime-dual approximation algorithm [12] for full
CQs mentioned in Section 6.1 is not scalable since the size of lin-
ear programming would become very large, and not applicable to
CQs with projections. So, we give a greedy heuristic for handling
all NP-hard CQs when neither simplification steps can be applied
(pseudocode is in [13]). It greedily chooses a tuple which removes
the maximum number of output tuples among the remaining ones
in every step (like the approximation algorithm for the set cover
problem). Moreover, we can narrow our scope to tuples in endoge-
nous relations in the greedy algorithm. Note that GreedyForCQ
achieves 𝑂 (log𝑘)-approximation for full CQs, but no theoretical
guarantees on the approximation ratio when projection exists.

DrasticGreedyForFullCQ(𝑄, 𝐷, 𝑘): In the heuristic above, how-
ever, computing the “profit” for all input tuples from endogenous
relations after every one input tuple is removed is expensive in prac-
tice. For full CQs, we propose a more ‘drastic’ greedy solution where
we remove input tuples only from one endogenous relation (goes
over all endogenous relations and picks the one giving smallest
cost, pseudocode in [13]). This significantly improves the efficiency
in our experiments, since the profits are computed for all input
tuples only once (since different tuples in the same relation remove
disjoint full join results), but theoretically the approximation ratio
is no longer guaranteed. Moreover, this strategy fails on CQs with
projection. The reason is that input tuples from the same relation
do not necessarily remove distinct query results, thus adding their
individual profits is not equivalent to the profit of their union.

7.4 Supporting Selection Operator

So far, we focused on the class of CQs only with project and join

operators. In fact, our algorithm also supports a larger class of
CQs involving selection operator (when the domain of some of
the attributes is restricted to be constant). The class of conjunctive
queries with selections can be described as

𝑄 (𝑨) : −𝜎𝜃1𝑅1 (A1), 𝜎𝜃2𝑅2 (A2), · · · , 𝜎𝜃𝑝𝑅𝑝 (A𝑝)

where 𝜃𝑖 is a set of predicates each in form of 𝐴 = 𝑎 for some
attribute 𝐴 ∈ A and value 𝑎. The result of 𝜎𝜃𝑖𝑅𝑖 (A𝑖) is the set of
tuples in 𝑅𝑖 satisfying all predicates in 𝜃𝑖 . Note that we do not have
any selection in the head, since any selection in the head can be
pushed down to relations in the query body. An attribute is selected
if it appears in any selection; and unselected otherwise. Let A𝜃 ⊆ A
be the set of selected attributes in 𝑄 . Here, we also don’t include
any self-joins, i.e., each 𝑅𝑖 in 𝑄 is distinct.

Interestingly, for the ADP problem, the polynomial solvability
of a CQ with selections is equivalent to that of the residual query
on the unselected attributes. This is formally stated in Lemma 7.2,
whose proof is in [13].

Lemma 7.2. For a CQ𝑄 and selection predicates 𝜃 , the ADP(𝑄,𝐷, 𝑘)
is NP-hard if and only if ADP(𝑄−A𝜃 , 𝐷, 𝑘) is NP-hard, where 𝑄−A𝜃 is

the residual query after removing selected attributes A𝜃 from 𝑄 .

8 EXPERIMENTS

In this section, we evaluate the running time, scalability, and quality
of ComputeADP algorithm, and compare it with other baselines.

Algorithms: In our plots, we call the exact algorithm usingCom-
puteADP for easy (poly-time) queries as “Exact”. For hard queries,
and also for easy queries for scalability, we have implemented
two versions of ComputeADP embedded with GreedyForCQ and
DrasticGreedyForFullCQ separately, shorted as “Greedy” and
“Drastic”. We also implemented a baseline brute-force algorithm
called “BruteForce”, which enumerates all subsets of input tuples,
computes the number of query results that can be removed by each
subset (by invoking a SQL query), and finds the minimum one
among which removes at least 𝑘 results.

Reporting vs. counting versions: Wherever applicable and
feasible, we report the running time for both counting version, when
the goal is to only count the minimum number of input tuples to
remove to achieve the desired effect, and the reporting version,
which reports the actual input tuples in one such solution. Note
that for some of our motivating examples, e.g., for understanding
robustness, the counting version suffices.

Setup: We implemented our algorithms in JavaSE-1.8 with the
database stored in PostgreSQL 10.12. The experiments were per-
formed on MacOS, with 16GB of RAM and Intel Core i7 2.9 GHz
processor. We run the experiment 10 times and present the average
results (metric) of the 10 runs.

8.1 Datasets and Queries

TPC-H dataset and queries: The TPC-H dataset has three rela-
tions: Supplier(S:NK, SK), PartSupp(PS:SK, PK), LineItem(L:OK, SK,
PK). Consider the following two queries: (1) Remove least number of

orders or suppliers so that at least 𝜌% trading records can be restricted.

(2) The same query but for the specific PartKey = 13370. They can be
characterized by two problems ADP(𝑄1, 𝐷, 𝑘) and ADP(𝜎𝜃𝑄1, 𝐷, 𝑘𝜃)
respectively, where

• 𝑄1(NK, SK, PK, OK):-Supplier(S: NK, SK), PartSupp(PS: SK,
PK), LineItem(L: OK, PK), 𝜃 : 𝑃𝐾 = 13370, 𝑘𝜃 = 𝜌 · |𝜎𝜃𝑄 (𝐷) |
and 𝑘 = 𝜌 · |𝑄 (𝐷) |, where 𝜌 fraction of outputs are removed.

As shown in Lemma 7.2, the ADP(𝜎𝜃𝑄1, 𝐷, 𝑘) is poly-time solvable
with exact optimal solution returned, while the ADP(𝑄1, 𝐷, 𝑘) is
NP-hard with only heuristic solution returned, by ComputeADP.

SNAP dataset and queries:We use the common ego-networks
from SNAP (Stanford Network Analysis Project) [17] for Facebook,
where an ego-network of a user is a set of “social circles” formed
by this user’s friends [18]. This dataset consists 10 ego-networks,
4233 circles, 4039 nodes, and 88234 edges. We choose the network
around user 414 which consists of 7 circles, 150 nodes and 3386
edges. We further create tables 𝑅𝑖 (𝐴, 𝐵) for 𝑖 ∈ [4] and insert 𝐸 𝑗

into 𝑅𝑖 if the rank of 𝐸 𝑗 mod 4 = 𝑖 . All edges are bi-directed. We
evaluate three different queries on this dataset as below:

• 𝑄2 (𝐴, 𝐵,𝐶, 𝐷) : −𝑅1 (𝐴, 𝐵), 𝑅2 (𝐵,𝐶), 𝑅3 (𝐶, 𝐷)
• 𝑄3 (𝐴, 𝐵,𝐶) : −𝑅1 (𝐴, 𝐵), 𝑅2 (𝐵,𝐶), 𝑅3 (𝐶,𝐴)
• 𝑄4 (𝐴,𝐶, 𝐸,𝐺) : −𝑅1 (𝐴, 𝐵), 𝑅2 (𝐵,𝐶), 𝑅3 (𝐸, 𝐹), 𝑅4 (𝐹,𝐺).
• 𝑄5 (𝐴, 𝐵,𝐶) : −𝑅1 (𝐴, 𝐸), 𝑅2 (𝐵, 𝐸), 𝑅3 (𝐶, 𝐸)

which are commonly used in community detection or friend rec-
ommendation over social networks. For instance,𝑄2 finds a path of
length three,𝑄3 finds a triangle,𝑄4 finds a pair of length-2 connec-
tion, and 𝑄5 captures a common friend. All of them are NP-hard,
so ComputeADP only returns heuristic results for them.

8.2 Scalability

Poly-time query: We evaluate ADP(𝜎𝜃𝑄1, 𝐷, 𝑘𝜃) on the TPC-H
dataset with different input sizes 𝑁 =1k, 10k, 100k, 1M, 10M, which
denotes the number of survived tuples after selection. We use differ-
ent fractions 𝜌 = 0.1, 0.25, 0.5, 0.75. Figure 7 display the results for
both reporting and counting versions. The running time increases
with increase of input data size and the 𝜌 . Since the counting version
only performs computation on numbers in dynamic programming,
it uses much less memory and behaves much more scalable than
the reporting version does. Moreover, as a remedy for reporting
results when the data size becomes large, we also test the Greedy
and Drastic on 𝜎𝜃𝑄1 (by directly invoking Line 5 in Algorithm 1),
whose running time is much smaller than the exact algorithm as
shown in Figure 8. Meanwhile, we also show the quality of these
three techniques in Figure 9. All of them coincide due to the data
distribution for 𝜎𝜃𝑄1, which implies that Greedy and Drastic also
find optimal solutions. But Greedy is not as scalable as Drastic to
larger dataset with input size 100K or more.

Hard query: We next evaluate ADP(𝑄1, 𝐷, 𝑘𝜃) on the TPC-H
dataset with different input sizes 𝑁 =1k, 10k, 100k, 1M, 10M and
𝜌 = 0.1, 0.25, 0.5, 0.75 using Greedy and Drastic separately. Since
Drastic only computes the “profit” for all input tuples through
a SQL query once, while Greedy needs to update these statistics
once an input tuple is removed. Thus,Drastic takes much less time
than Greedy, as shown in Figure 10. We also compare the quality
of solutions returned by these two heuristics, as shown in Figure 11.
Due to the data distribution (which is varied in Section 8.4), Greedy
and Drastic have the same quality when data size is smaller than
100K. However, Greedy is not scalable to larger dataset and quality
results are only shown for Drastic in Figure 11.

Comparison with brute-force: Next, we evaluate the Brute-
Force algorithm on the TPC-H dataset for the NP-hard query
ADP(𝑄1, 𝐷, 𝑘) with input size 𝑁 = 500 and 𝜌 = 0.1. The straightfor-
ward brute-force implementation does not work even on such a
small dataset, since it iterates over all subsets of input tuples and
issues as many as 2500 SQL queries in total. We use an optimization
here by iterating all subsets in increasing order of their sizes, until
a feasible solution (removing at least 𝑘 query results) is found.

We compare the optimized BruteForce with two heuristics. All
three algorithms have their quality coinciding for this small dataset,
as shown in Figure 13. But heuristics significantly improve the run-
ning time of BruteForce, as shown in Figure 12. The BruteForce
did not stop in several hours for 𝑁 = 1000 or 𝜌 = 0.2.

103 104 105 106 107

Input size

101

102

103

104

105

106

R
un

ni
ng

tim
e

(m
s)

Remove at least ratio output results
Reporting, ρ=10%
Reporting, ρ=25%
Reporting, ρ=50%
Reporting, rho=75%

Counting, ho=10%
Counting, ho=25%
Counting, ho=50%
Counting, ho=75%

Figure 7: Running Time: 𝜎𝜃𝑄1 (easy) ex-

actly (count/report).

103 104 105 106 107

Input size

102

103

104

105

106

R
un

ni
ng

tim
e

(m
s)

Remove at least ratio output results
Greedy, ρ=10%
Greedy, ρ=25%
Greedy, ρ=50%
Greedy, ρ=75%

Drastic, ρ=10%
Drastic, ρ=25%
Drastic, ρ=50%
Drastic, ρ=75%

Exact, ρ=10%
Exact, ρ=25%
Exact, ρ=50%
Exact, ρ=75%

Figure 8: Running Time: reporting 𝜎𝜃𝑄1
(easy) by heuristics.

103 104 105 106 107

Input size

102

103

104

105

106

N
um

be
ro

ft
up

le
s

to
re

m
ov

e

Remove at least ratio output results
Greedy, ρ=10%
Greedy, ρ=25%
Greedy, ρ=50%
Greedy, ρ=75%

Drastic and exact, ρ=10%
Drastic and exact, ρ=25%
Drastic and exact, ρ=50%
Drastic and exact, ρ=75%

Figure 9: Quality: 𝜎𝜃𝑄1 (easy) by heuris-

tics.

103 104 105 106 107

Input size

101

102

103

104

105

106

R
un

ni
ng

tim
e

(m
s)

Remove at least ratio output results
Greedy, ρ=10%
Greedy, ρ=25%
Greedy, ρ=50%
Greedy, ρ=75%

Drastic, ρ=10%
Drastic, ρ=25%
Drastic, ρ=50%
Drastic, ρ=75%

Figure 10: Running Time: reporting 𝑄1
(hard) by heuristics.

103 104 105 106 107

Input size

101

102

103

104

105

N
um

be
ro

ft
up

le
s

to
re

m
ov

e

Remove at least ratio output results
Greedy, ρ=10
Greedy, ρ=25
Greedy, ρ=50
Greedy, ρ=75

Drastic, ρ=10
Drastic, ρ=25
Drastic, ρ=50
Drastic, ρ=75

Figure 11: Quality: 𝑄1 (hard) by heuris-

tics.

100 200 300 400 500
Input size

101

102

103

104

105

106

R
un

ni
ng

tim
e

(m
s)

Remove at least 10% ratio output results

BruteForce
Greedy
Drastic

Figure 12: Running Time: brute-force v.s.

heuristics for 𝑄1 (hard).

100 200 300 400 500
Input size

100

2× 100

3× 100

N
um

be
ro

ft
up

le
s

re
m

ov
ed

Remove at least 10% ratio output results

BruteForce
Greedy
Drastic

Figure 13: Quality: brute-force v.s. heuris-

tics for 𝑄1 (hard).

0.2 0.4 0.6 0.8

Ratio

102

103

104

105

R
un

ni
ng

tim
e

(m
s)

Remove at least ratio output results
Greedy, Q2
Greedy, Q3
Greedy, Q4
Greedy, Q5
Drastic, Q2
Drastic, Q3

Figure 14: Running Time: 𝑄2, 𝑄3, 𝑄4, 𝑄5
(hard) by heuristics.

0.2 0.4 0.6 0.8

Ratio

100

101

102

N
um

be
ro

ft
up

le
s

to
re

m
ov

e

Remove at least ratio output results
Greedy, Q2
Greedy, Q3
Greedy, Q4
Greedy, Q5
Drastic, Q2
Drastic, Q3

Figure 15: Quality: 𝑄2, 𝑄3, 𝑄4, 𝑄5 (hard)

by heuristics.

8.3 Complexity of Queries

For each of 𝑄2, 𝑄3, 𝑄4, 𝑄5, we ran our experiments on the SNAP
dataset and varied the fraction of query results to be removed (de-
noted as 𝜌) over {0.1, 0.25, 0.5, 0.75}. We evaluated Greedy and
Drastic as follows. First, we invoked GreedyForCQ directly on
𝑄2, 𝑄3, 𝑄5 since neither of the simplification steps can be applied

to these queries. For 𝑄4, Greedy first decomposes it into two sub-
queries as𝑄41 (𝐴,𝐶) : −𝑅1 (𝐴, 𝐵), 𝑅2 (𝐵,𝐶) and𝑄42 (𝐸,𝐺) : −𝑅3 (𝐸, 𝐹),
𝑅4 (𝐹,𝐺) using Decompose, and handles them using GreedyForCQ
separately. Next, we invokedDrasticGreedyForFullCQ on𝑄2, 𝑄3
directly. All running times are displayed in Figure 14. As Drastic
cannot be applied to 𝑄4, 𝑄5 with projection, these are not in Fig-
ure 14. The quality of these heuristics is displayed in Figure 15.

103 104 105 106

Input size

101

102

103

104

105

106

R
un

ni
ng

tim
e

(m
s)

Remove at least ratio output results
Greedy, ρ=10%
Greedy, ρ=25%
Greedy, ρ=50%
Greedy, ρ=75%

Drastic, ρ=10
Drastic, ρ=25%
Drastic, ρ=50%
Drastic, ρ=75%

Figure 16: 𝛼 = 0 (hard)

103 104 105 106

Input size

101

102

103

104

105

N
um

be
ro

ft
up

le
s

to
re

m
ov

e

Remove at least ratio output results
Greedy, ρ=10%
Greedy, ρ=25%
Greedy, ρ=50%
Greedy, ρ=75%

Drastic, ρ=10%
Drastic, ρ=25%
Drastic, ρ=50%
Drastic, ρ=75%

Figure 17: 𝛼 = 0 (hard)

103 104 105 106

Input size

101

102

103

104

105

106

R
un

ni
ng

tim
e

(m
s)

Remove at least ratio output results
Greedy, ρ=10%
Greedy, ρ=25%
Greedy, ρ=50%
Greedy, ρ=75%

Drastic, ρ=10%
Drastic, ρ=25%
Drastic, ρ=50%
Drastic, ρ=75%

Figure 18: 𝛼 = 1 (hard)

103 104 105 106

Input size

100

101

102

103

N
um

be
ro

ft
up

le
s

to
re

m
ov

e

Remove at least ratio output results
Greedy, ρ=10%
Greedy, ρ=25%
Greedy, ρ=50%
Greedy, ρ=75%

Drastic, ρ=10%
Drastic, ρ=25%
Drastic, ρ=50%
Drastic, ρ=75%

Figure 19: 𝛼 = 1 (hard)

103 104 105 106

Input size

101

102

103

R
un

ni
ng

tim
e

(m
s)

Remove at least ratio output results
ρ=10%
ρ=25%
ρ=50%
ρ=75%

ρ=10%
ρ=25%
ρ=50%
ρ=75%

Figure 20: 𝛼 = 0 (easy)

103 104 105 106

Input size

101

102

103

104

105

N
um

be
ro

ft
up

le
s

to
re

m
ov

e

Remove at least ratio output results
Exact, ρ=10%
Exact, ρ=25%
Exact, ρ=50%
Exact, ρ=75%

Figure 21: 𝛼 = 0 (easy)

103 104 105 106

Input size

101

102

R
un

ni
ng

tim
e

(m
s)

Remove at least ratio output results
Exact, ρ=10%
Exact, ρ=25%
Exact, ρ=50%
Exact, ρ=75%

Figure 22: 𝛼 = 1 (easy)

103 104 105 106

Input size

100

101

102

103

104

N
um

be
ro

ft
up

le
s

to
re

m
ov

e

Remove at least ratio output results
Exact, ρ=10%
Exact, ρ=25%
Exact, ρ=50%
Exact, ρ=75%

Figure 23: 𝛼 = 1 (easy)

The running time of Drastic depends on (i) the number of
endogenous relations, (ii) computing the profits for all tuples in
an endogenous relation by SQL queries, (iii) sorting the tuples by
profit, and (iv) finding tuples with largest profits whose profits add
up to at least 𝑘 . Note that 𝑄2, 𝑄3 are executed on the same dataset
and the number of input tuples to be removed are almost the same
(see Figure 15). So Figure 14 displays the difference in runtimes for
executing the SQL queries for 𝑄2, 𝑄3.

The running time of Greedy depends on (i) the number of itera-
tions of the while loop, which is equal to the number of input tuples
to be removed, (ii) the number of SQL queries for each iteration of
the while loop, which is the number of endogenous relations, and
(iii) the time for executing one SQL query. On 𝑄2, 𝑄3, 𝑄5, Greedy
removes almost the same number of tuples as shown in Figure 15.
So, Figure 14 displays the difference in running time for executing
SQL queries for 𝑄2, 𝑄3, 𝑄5 respectively. Note that Greedy needs
to solve a dynamic program in Decompose as well as a large num-
ber of sub-problems for both 𝑄41, 𝑄42, which is only relevant to
the sizes of their own query results, so 𝑄4 has a larger and stable
running time even though it removes much fewer input tuples.

8.4 Data Distribution

We study the performance of ComputeADP for a poly-time solv-
able singleton query 𝑄6 (𝐴, 𝐵) : −𝑅1 (𝐴), 𝑅2 (𝐴, 𝐵) and an NP-hard
query 𝑄path (𝐴, 𝐵) : −𝑅1 (𝐴), 𝑅2 (𝐴, 𝐵), 𝑅3 (𝐵) on various data dis-
tributions, where the degrees of values from 𝐴 or 𝐵 in relation
𝑅2 (𝐴, 𝐵) is varied according to to obtain the different distributions.
We used the Zipfian distribution, where the frequency of the 𝑖-th
distinct key is proportional to 𝑖−𝛼 . The parameter 𝛼 ≥ 0 controls
the skewness of the distribution: larger 𝛼 means larger skew. We
fix the distribution of degrees for values in 𝐵 as uniform and vary
the skewness of degrees of values in 𝐴 by varying 𝛼 . We evaluate
both 𝑄6 and 𝑄path on our synthetic dataset with different input

sizes 𝑁 = 1𝑘, 10𝑘, 100𝑘, 1𝑀 and 0.2𝑁 distinct values in 𝐴 and 𝐵
separately. The results for 𝑄path are shown in Figure 16–19, and
those for𝑄6 are shown in Figure 20–23. We also tested other values
of 𝛼 , which are reported in the full version [13].

For every fixed value of 𝛼 , the running time as well as the size
of solutions returned by any algorithm increase with the input size
and the value of 𝜌 . If both the input size and 𝜌 are fixed, the size
of the solution decreases with increasing 𝛼 . This is because on a
skewed instance, the same number of output tuples can be removed
by removing fewer input tuples. The running time for Drastic
and Exact stays almost the same since computing the profits for
input tuples is the most costly step, independent of the size of the
solution. However, the running time of Greedy decreases with the
size of the solution, which is affected by 𝛼 .

9 FUTUREWORK

Several open questions remain. First, it would be interesting to
study the ADP problem beyond CQs. In particular, many natural
queries involve self-joins and/or aggregates like sum, for which the
observations of this paper do not apply. It is also natural to consider
scenarios where all input tuples are not equivalent in terms of the
cost of removing them. As a first step, one might want to consider
a scenario where only a subset of input tuples can be removed, and
the remaining input tuples cannot be deleted. Investigating the
approximability of the ADP problem is another interesting research
direction. Although we showed some preliminary results in this
context, obtaining an exact characterization of the approximability
of this problem for individual queries, even for the special case of
the Resilience problem, remains open. A related question is that of
the parameterized complexity of ADP with respect to 𝑘 for full CQs.
While we showed that ADP admits a poly-time algorithm for fixed
𝑘 , obtaining an FPT algorithm for the problem remains open.

REFERENCES

[1] B. Applebaum. Pseudorandom generators with long stretch and low locality from
random local one-way functions. SIAM Journal on Computing, 42(5):2008–2037,
2013.

[2] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans.

Database Syst., 6(4):557–575, Dec. 1981.
[3] P. Buneman, S. Khanna, and W.-C. Tan. On propagation of deletions and annota-

tions through views. In Proceedings of the Twenty-first ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, PODS ’02, pages 150–158,
2002.

[4] B. Caskurlu, V. Mkrtchyan, O. Parekh, and K. Subramani. Partial vertex cover
and budgeted maximum coverage in bipartite graphs. SIAM J. Discrete Math.,
31(3):2172–2184, 2017.

[5] E. Chlamtác, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca. The densest k-
subhypergraph problem. SIAM Journal on Discrete Mathematics, 32(2):1458–1477,
2018.

[6] E. Chlamtáč, M. Dinitz, and Y. Makarychev. Minimizing the union: Tight ap-
proximations for small set bipartite vertex expansion. In Proceedings of the

Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 881–
899. SIAM, 2017.

[7] G. Cong, W. Fan, and F. Geerts. Annotation propagation revisited for key preserv-
ing views. In Proceedings of the 15th ACM International Conference on Information

and Knowledge Management, CIKM ’06, pages 632–641, 2006.
[8] N. N. Dalvi and D. Suciu. The dichotomy of probabilistic inference for unions of

conjunctive queries. J. ACM, 59(6):30:1–30:87, 2012.
[9] U. Dayal and P. A. Bernstein. On the correct translation of update operations on

relational views. ACM Trans. Database Syst., 7(3):381–416, Sept. 1982.
[10] C. Freire, W. Gatterbauer, N. Immerman, and A. Meliou. The complexity of re-

silience and responsibility for self-join-free conjunctive queries. PVLDB, 9(3):180–
191, 2015.

[11] C. Freire, W. Gatterbauer, N. Immerman, and A. Meliou. New results for the
complexity of resilience for binary conjunctive queries with self-joins. arXiv
preprint arXiv:1907.01129, 2019.

[12] R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial
covering problems. Journal of Algorithms, 53(1):55–84, 2004.

[13] X. Hu, S. Patwa, S. Sun, D. Panigrahi, and S. Roy. Aggregated deletion propagation
for counting conjunctive query answers. https://arxiv.org/pdf/2010.08694.pdf ,
2020.

[14] B. Kimelfeld. A dichotomy in the complexity of deletion propagation with
functional dependencies. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA,

May 20-24, 2012, pages 191–202, 2012.
[15] B. Kimelfeld, J. Vondrák, and R. Williams. Maximizing conjunctive views in

deletion propagation. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, PODS 2011, June 12-16, 2011, Athens,

Greece, pages 187–198, 2011.
[16] B. Kimelfeld, J. Vondrák, and D. P. Woodruff. Multi-tuple deletion propagation:

Approximations and complexity. PVLDB, 6(13):1558–1569, 2013.
[17] J. Leskovec and A. Krevl. Snap datasets: Stanford large network dataset collection.

http:// snap.stanford.edu/data/ , June 2014.
[18] J. Leskovec and J. J. Mcauley. Learning to discover social circles in ego networks.

In Advances in neural information processing systems, pages 539–547, 2012.
[19] E. Livshits, B. Kimelfeld, and S. Roy. Computing optimal repairs for functional

dependencies. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium

on Principles of Database Systems, Houston, TX, USA, June 10-15, 2018, pages 225–
237, 2018.

[20] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The complexity of causality
and responsibility for query answers and non-answers. PVLDB, 4(1):34–45, 2010.

[21] A. Meliou, W. Gatterbauer, and D. Suciu. Reverse data management. PVLDB,
4(12):1490–1493, 2011.

[22] A. Meliou and D. Suciu. Tiresias: the database oracle for how-to queries. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,

SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 337–348, 2012.
[23] S. Roy, L. Orr, and D. Suciu. Explaining query answers with explanation-ready

databases. PVLDB, 9(4):348–359, 2015.
[24] S. Roy and D. Suciu. A formal approach to finding explanations for database

queries. In International Conference on Management of Data, SIGMOD 2014,

Snowbird, UT, USA, June 22-27, 2014, pages 1579–1590, 2014.
[25] M. Y. Vardi. The complexity of relational query languages. In STOC, pages

137–146, 1982.
[26] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries.

PVLDB, 6(8):553–564, 2013.

https://arxiv.org/pdf/2010.08694.pdf
http://snap.stanford.edu/data/

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Background
	3.2 Problem Definition
	3.3 Special Cases

	4 Poly-time Decidability
	4.1 Hardness Preservation in Simplifications
	4.2 NP-Hardness for ``Others''

	5 Structural Characterization
	5.1 Boolean CQ Revisited
	5.2 Hard Structures for General CQs
	5.3 Sketch of Proof of Theorem 5.1

	6 Approximations
	6.1 Full CQs
	6.2 Inapproximability of General CQs

	7 Algorithms and Optimizations
	7.1 Singleton
	7.2 Universe and Decompose
	7.3 Greedy Heuristics
	7.4 Supporting Selection Operator

	8 Experiments
	8.1 black Datasets and Queries
	8.2 Scalability
	8.3 Complexity of Queries
	8.4 Data Distribution

	9 Future Work
	References

