
This results in a multi-scale nonlinear 
transform mapping data to a family of 
pieces of planes which approximates the 
original data to any given precision.

6 Quickly see much more data so 
mathematicians can evaluate methods during 
development.

6 Begin developing a platform onto which we 
can build more specialized applications for new 
tasks and data types. 

6 Help explain Geometric Wavelets and gain 
intuition about the representation.

Implemented in Python, using PyQt4 to glue together custom VTK views. Currently 
the representation is not computed in the GUI – Matlab output is loaded from files.

Observations & Future Directions:
6 Coarser scales contain 
generalized approximations 
of the data, with readily 
interpretable node centers and 
wavelet directions.

6 Finer scales reveal anomalous data through extreme wavelet 
coefficients or “odd” wavelet axis images.

6 Coarser-scale wavelets contain information which could be ignored for 
classifiation tasks, but finer-scale wavelets encode more specific features 
which cluster and characterize individuals.

6 Developers have changed their ideas about data encoding after 
viewing their results in the GUI.

6 We are already working on variable dimensionality, group definition & 
labeling for classification and outlier detection, views for new data types.

Exploration & Representation of Data with Geometric Wavelets
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Terms:
Dictionaries: Sets of characteristic functions or features. We use 
superpositions of these to build a “model”, or data representation.

Low-dimensional signals/functions: e.g. 1D sounds, 2D individual images.

High-dimensional data: Point clouds in D-dimensional space, where each 
point is one piece of data and D=#pixels/image, #terms/corpus or #samples/
spoken vowel.

1. Cut the data into pieces.

2. Approximate each piece as a low-dimensional plane.

3. Use these approximations as an interpretable representation or feature 
set (dictionary) for the data that can be used for compression, filtering, 
outlier detection, etc.

More Details:
1. Use a similarity measure to create a graph from the data points. Construct 

a set of multi-scale partitions of � by using recursive spectral cuts. 
(METIS uses Eigenfunctions of the Laplacian over the graph – we are also 
implementing Cover Trees. This step often involves task-specific method 
variations.).

2. Compute the SVD of the data covariance for each piece. This gives Scaling 
Functions & �jk – a manifold approximation at scale j for piece k – a 
projection onto that local approximate tangent space.

3. Higher-scale planes are small corrections to the previous parent. Efficiently 
encode the differences between �j+1 → �j by constructing Wavelet 
spanning space & “detail” operators analogous to Wavelet theory.

Problem: Feature Discovery Solution: Geometric Wavelets Experience: Interactive GUI
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j = 3Challenge:
For low-dimensional 
signals we have many 
different “general-purpose” 
dictionaries (Fourier basis, 
Wavelets, Curvelets) to model 
our data and do compression, 
de-noising, sharpening, etc.

For high-dimensional data  we would like to do the same things, but we 
do not have good, tractable models, so we must find features from 
the data itself.

Given the data (X) we want to learn a set of features (Φ) and 
coefficients (α) to build a representation such that 

X ≈ Φ∙α
Φ is “good” if α is sparse (lots of zeros or very small values).

Most methods are “black boxes” which have no guarantees, are costly 
to compute and don’t yield interpretable data features.

Daubechies: wavelets (b), scaling fncts (r) Fourier basis: sine (r), cosine (b)

Our Approach:
We do not try to solve this problem “in general”, but exploit the fact that 
often real data has lower-dimensional geometric structure, such as 
lying near a manifold (�) of dimensionality d<<D.

Geometric Wavelets is a novel construction which discovers features in 
high-dimensional data under these geometric assumptions.

It is explicit, which leads to interpretable features, and it comes 
with guarantees (as a function of an approximation error parameter) on 
computational cost, number of elements in the dictionary and 
sparsity of the representation. It is globally non-linear, but piecewise 
linear, so it is fast, but can adapt to arbitrary non-linear manifolds.
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