Real-time reinforcement learning in continuous domains

Jeffrey Forbes and David Andre
Computer Science Division, University of California, Berkeley
387 Soda Hall # 1776, Berkeley, CA 94720-1776
{jforbes,dandre}@cs.berkeley.edu

Introduction

In domains such as driving, there is rarely a known opti-
mal trajectory. Instead the goal is to maximize general
performance according to a given set of factors. Re-
inforcement learning (RL) is one method whereby the
agent successively improves its control strategy through
experience and feedback (reward) from the system.
Reinforcement learning techniques have shown some
promise in solving complex control problems. However,
RL algorithms often do not scale well to nonuniform
problems with large or infinite state and action spaces.
We propose an architecture for making RL tractable
on these realistic control problems with real time con-
straints. Our work has two main contributions. First,
we present a method for maintaining an accurate con-
tinually updated estimate of our value function while
keeping the update and query time bounded. Second,
we show how to make the most of our time in the
world by extending model-based methods with prior-
itized sweeping for continuous domains.

RL in continuous domains

The reinforcement learning framework that we assume
in this paper is the standard Markov Decision Process
(MDP) setup for reinforcement learning (Kaelbling &
Moore 1996). We assume that at each point in time
the environment is in some state s. At each step, the
agent selects an action a, which causes the agent to
transition to some new state ¢. Furthermore, the agent
can receive some reward r(s) that depends only on the
state s and not on the past. We assume that the sys-
tem is Markovian; i.e. that the probability p(s'|s,a) of
reaching state s’ from state s by executing a does not
depend on how the system arrived at state s. In this
setting, the agent’s objective is to maximize its ezpected
discounted accumulated reward.

In reinforcement learning, the optimal mapping from
states to optimal behavior (policy) is determined en-
tirely by the expected long-term return from each state,
which is called its walue. Optimal decisions can be
made in RL by learning the value of each state. The

Copyright (© 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Q-function, Q(s,a), is defined as the estimate of the
expected long-term return of taking action a in state s,
and taking the best known possible actions thereafter.
Given a continuous state space, some sort of function
approximation is necessary, since it would be impossible
to represent the value function using a table. Generally,
a parametric function approximator, such as a neural
network, is used: Q(s,a) & Qu(s,a) = F(s,a,w) where
w is a parameter vector with k elements.

In our preliminary experiments in applying this
method to the task of lane following with the BAT
(Forbes et al. 1997) simulator, we found that the tech-
nique had reasonable success for the task of lane fol-
lowing, quickly learning to stay centered in the lane
with a simple reward function. Unfortunately, the RL
controlled car was never able to stay entirely centered
within the lane and after driving near the center of the
lane for a period of time, it would “unlearn” and exhibit
bad behavior. We suspect that the unlearning occurred
because the distribution of states tends to focus more
and more in the states just around the center of the
lane, so there is forgetting of the other states. The
intuition behind the forgetting problem is as follows.
For a particular distribution of examples, the network
weights will converge to a particular value in the steady
state. If that input distribution shifts, the parameters
will once again shift again. It can be shown that after
this shift, the error on the previous examples increases.

An alternative approach is instance-based learning
(Atkeson, Schaal, & Moore 1997) (also known as
memory-based or lazy learning) that does not have
this problem of forgetting because all examples are
kept in memory. For every experience, the example is
recorded and predictions and generalizations are gen-
erated in real-time in response to query. Unlike para-
metric models such as neural networks, lazy modeling
techniques are insensitive to nonstationary data distri-
butions. Generally, instance-based learning techniques
are used in supervised learning where the true inputs
and outputs are given throughout the training process.
In reinforcement learning, the examples are only esti-
mates of the value that may be very inaccurate ini-
tially. So while we improve our Q-estimates, we must
update the out- of-date values in the database. Locally

weighted regression can then can be used to represent
the Q-function. Here, we perform what is known as a
SARSA (state, action, reward, state, action) backup.
We are in state s¢, perform action u;, and we are given
a immediate reward of r;;1 as we arrive in state s;y1,
and from there we will choose, according to our policy,
action u;y1. For every action, we can add a new exam-
ple into the database: Q; = ri41 + YQ(St+1,Utt1)-
We update each Q-value @; in our database according
to a temporal-difference update.

Qi — Qit+alri 1 +7Q(se41, 1) —Q(s¢, 1)V, Qst, ur)

As the agent spends more time in the world, the num-
ber of potential stored examples increases. The space
required will increase linearly with the number of exam-
ples. The computation costs are even more limiting as
we could potentially have to iterate through all stored
examples on a query. We can speed up lookup time
by using kd-trees. Lookup of the nearest neighbors can
then be done in average-case O(logn) time where n is
the number of examples. In order to operate continu-
ally in bounded time, the number of stored examples
must be bounded.

Given a bound of K on stored examples, we can
bound the amount of time for a query or an update. For
problems with nonlinear, high-dimensional Q-functions,
the performance will suffer if K is not set sufficiently
high. Instance-based methods tend to break down in
domains with high dimensions because of an exponen-
tial dependence of needed training data on the number
of input dimensions: the curse of dimensionality. Luck-
ily, most tasks only require high accuracy in small slices
of the input space. For a robot with more than 8 de-
grees of freedom, it would be impossible for the robot
to experience all significantly different configurations in
a lifetime. The instance averaging or deletion scheme
itself also needs to be efficient. We will need to reduce
our example database regularly if not on every step.

We have two schemes for keeping the number of
stored examples bounded. First, we do incremental
instance-deletion by not adding any point whose value
can already be predicted within some small e. The sec-
ond technique is instance-averaging — where we scan
and reduce two neighbors into one exemplar. We chose
the pair that is classified the best by their neighbors
and where the neighbors can still be classified well or
possibly better without the pair. The new exemplar has
double the weight of the previous two examples. The
score for each exemplar, (); can be computed as follows:

Z |Q s],a]

J#z

score; = |Qi—Q (54, ai)|+— Q '(sj,a;)|

A similar approach was proposed in (Salzberg 1991)
where instead of averaging instances, he generalizes in-
stances into nested hyperrectangles. While partitioning
the space into hyperrectangles can work well for discrete
classification tasks, it has flaws for regression. Most im-
portantly, all of the points within a region almost never

have the exact same value. In general, we only care
about the highest Q-value for a particular state and
thus we can give up precision for the values of subop-
timal actions. An interesting future direction would be
to design a heuristic for instance-averaging which takes
into account the reduced utility of suboptimal Q values
for a particular state.

Prioritized sweeping

For many real-time autonomous agents, although com-
putation is cheaper than action, the time costs of com-
putation must be taken into account. However, we do
want to take advantage of any time available for compu-
tation, as actions in the environment may be expensive
or even dangerous. By using a model of its actions, an
agent can make the most of its actual experiences in
the environment by doing simulated planning steps to
determine the effects of a perceived change in the value
of a state on the policy. For example, if the agent learns
through experience that some state is painful or dan-
gerous, this information can be computationally propa-
gated back to the states leading to the painful state so
that future painful episodes are avoided.

In the ideal case, the agent would compute the opti-
mal value function for its model of the environment each
time it updates it. This scheme is unrealistic since find-
ing the optimal policy for a given model is intractable.
Fortunately, we can approximate this scheme, if the
approximate model changes only slightly at each step.
This approach was pursued in DYNA (Sutton 1990),
where after the execution of an action, the agent up-
dates its model of the environment, and then performs
some bounded number of value propagation steps to
update its approximation of the value function.

In a small state-space, it is possible to store the model
simply as a table of transition probabilities. Clearly,
in a large or continuous domain, other forms of repre-
sentation are required. In order to keep the amount
of required learning as low as possible, we use a fac-
tored probabilistic model that takes advantage of lo-
cal structure and is based on dynamic Bayes networks
(DBNs)(Binder et al. 1997). In the full paper, we will
give a more detailed treatment of the models.

Given that we can only do so much computa-
tion(planning) after each step in the world, the general
model-based algorithm used by the model-based agent
is as follows:

procedure DoModelBasedRL ()
(1) loop
(2) perform an action a in the environment from
state s, end up in state ¢
(3) update the model
(4) perform value-propagation for (s,a)
(5) while there is available computation time
(6) choose a state/action pair, (s',a’)
(7) perform value-propagation for (s',a’),

There are several different methods of choosing the
state and action pairs for which to perform simulations.

One possibility is to take actions from randomly se-
lected states. This was the approach pursued in the
DYNA (Sutton 1990) framework. Another is to search
forward from the current state/action pair (s,a), doing
simulations of the N next steps in the world. Values
can then be backed up along the trajectory, with those
g-values furthest from (s, a) being backed up first. This
form of lookahead search is potentially quite useful as it
focuses attention on those states of the world that are
likely to be encountered in the very near future.
However, there is another possibility. We can at-
tempt to update those states where an update will cause
the largest change in the value function. This idea
has been expressed previously as prioritized sweeping
(Moore & Atkeson 1993). In (Andre, Friedman, & Parr
1997), the idea was motivated and generalized by not-
ing that the expected size of the update is well approx-
imated by the gradient of the update rule for Q values.
In our system we want to update those state/action
pairs expected to have the highest changes in their
value. We do this by calculating the gradient of the up-
date rule error at a large sample of states (themselves
chosen to be likely to be relevant either by lookahead
search, backward search, or by choosing states likely to
be affect by changes in the transition model). Then,
we rank the states, and only do value-propagations for
those states at the top of the queue — those with the
highest expected change in value. By doing this, we
take maximum advantage of possibly limited time for
planning after each action in the real world. Also, note
that because the number of examples we are storing is
limited, the prioritized sweeping phase of learning has
a bounded time as well, regardless of the length of time
the agent is running in the world. In the longer version
of the paper, we explain in detail both the calculation of
the gradient of the update rule for our function approx-
imator and parametric model and a novel algorithm for
sampling states on which to calculate the priority.

Preliminary results

Our preliminary results have been promising. The
instance-based RL methods have been able to learn
good policies without forgetting. In order to test
our instance-based Q-learning algorithm, we evaluated
three function approximation algorithms in the cart
centering domain. In order to simulate the effects of
a changing task, we moved the start point closer to the
goal as the agents completed the trials. We show the
performance of the controllers in comparison the the op-
timal policy derived with a Linear Quadratic Regulator
in Figure 1. The neural network performs relatively
well, but when the start state is moved back to the ini-
tial starting position, the neural network controller has
to relearn the value function for the outer states. The
instance-based methods, locally weighted and kernel re-
gression, had very little drop off in performance. LWR
was slightly closer to optimal. Nevertheless, we gen-
erally use kernel regression in our subsequent problems
because it is somewhat faster and more straightforward.

Accumulated reward

Cart centering performance

20 F

B0 F]

50 | i |
! Optimal
Locally Weighted Regression -------
Kernel regression --------

Neural Net‘

60 I I I I I I I
10 20 30 40 50 60 70 80 90 100
Trials

Figure 1: Q-learning with different types of function approximators
The cart
was started at various positions with 0 velocity. The first 20 trials at
+/ —1, the next 10 trials at +/ — 0.5, the next 10 trials at +/ — 0.25,
and the final 10 trials at +/ —0.125. At that point, the sequence was
repeated again.

versus the optimal policy on the cart-centering domain.

In the full paper, all of our new algorithms will be
evaluated in the common domains of cart centering and
pole balancing. We will also further test the methods’
ability to learn acceptable policies for driving tasks such
as lane following, lane changing, and car following all
within the Bayesian Automated Taxi project simula-
tor (Forbes et al. 1997).

References

Andre, D.; Friedman, N.; and Parr, R. 1997. Generalized
prioritized sweeping. In Advances in Neural Information
Processing Systems, volume 10.

Atkeson, C. G.; Schaal, S. A.; and Moore, A. W. 1997.
Locally weighted learning. AI Review 11:11-73.

Binder, J.; Koller, D.; Russell, S.; and Kanazawa, K.
1997. Adaptive probabilistic networks with hidden vari-
ables. Machine Learning 29:213-244.

Forbes, J.; Oza, N.; Parr, R.; and Russell, S. 1997. Fea-
sibility study of fully automated vehicles using decision-
theoretic control. Technical Report UCB-ITS-PRR-97-18,
PATH/UC Berkeley.

Kaelbling, Leslie P. an Littman, M. L., and Moore, A. W.
1996. Reinforcement learning: A survey. Journal of Arti-
ficial Intelligence Research 4:237-285.

Moore, A. W., and Atkeson, C. G. 1993. Prioritized
sweeping-reinforcement learning with less data and less
time. Machine Learning 13:103-130.

Salzberg, S. 1991. A nearest hyperrectangle learning
method. Machine Learning 6(3):251-276.

Sutton, R. S. 1990. Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. In Machine Learning: Proceedings of the
Seventh International Conference. Austin, Texas: Morgan
Kaufmann.

