
Active Learning in Small to Large Courses

Owen L. Astrachan, Robert C. Duvall, Jeff Forbes, Susan H. Rodger

Abstract — This paper presents our experiences promoting
active learning in programming courses from introductory to
advanced levels. We use a variety of techniques as our courses
vary greatly in size and our facilities vary in layout and equip-
ment. For large lectures, we present active interludes that re-
quire students to work in small groups, respond to periodic
polls, or help a professor program. For moderately sized
courses, we ask students to work in groups and share their ob-
servations with the class. Finally, in our Interactive Computer
Classroom we have almost completely departed from long lec-
tures to run the course in a workshop format, giving students
a chance to work on the computer almost everyday in a super-
vised, safe environment. In short, although these techniques of-
ten require longer preparation time, we show that active learn-
ing can be done in any classroom situation and students must be
active everyday to remain engaged in the material.

Keywords —Active learning, computer science education, co-
operative learning.

I NTRODUCTION

Students have several obstacles to overcome in their introduc-
tory programming courses: learning about computer science,
learning about program design (structured and object-oriented),
learning about programming, and, in some cases, learning to be
a student at a college/university. To help this process, we have
developed a variety of techniques that encourage students to col-
laborate in problem solving during their scheduled lecture time.
Research in cooperative and active learning literature [1], [2],
[3], [4], [5], shows that students master material to a greater de-
gree and retain more information whenactive learningis incor-
porated into the classroom. Students engaged in active learning
may write, discuss, or attempt problem-solving during class as
an alternative or in addition to lecture.

We tell students they cannot learn to program simply by read-
ing and studying the concepts; they must practice programming
as one would practice playing a sport or musical instrument.
However, traditionally, only separate closed labs [6], [7] have
been used to give students supervised, hands-on experience with
conceptual material, and the typical closed lab does not involve
any dynamic exchange among students or between teacher and
student. In contrast, interactive lectures are common in other
disciplines such as humanities. For example, in a foreign lan-
guage course, students and the instructor engage in conversation
most of the class period, either discussing exercises or acting out
real-life situations. In fine arts, studio sessions are held in which
students review their peers.

The next section describes the structure of our courses and
the facilities which support them. Then two methods of active
learning are discussed: one that closely mirrors traditional lec-
ture styles and one that reduces lecturing to a minor component.

Duke University, Durham, NC 27705, csed@cs.duke.edu

Finally, several issues specific to large courses are discussed in-
cluding ways to encourage equal student participation. In each
case several alternatives are presented, each tailored to achieve
our goals given different course environments.

STRUCTURE OF OUR COURSES

At Duke University the computer science undergraduate
courses range in size from 15 to 250 students. Currently, the
introductory sequence of Computer Science courses for majors,
CompSci 6 and CompSci 100 (ACM CS 1 and 2 [8]), are taken
by more than 500 students per year. Our non-majors courses,
CompSci 1, CompSci 4 and CompSci 49S are taken by nearly
400 students each year, with the majority of students taking
CompSci 1. CompSci 1 (ACM CS 0) is an overview of com-
puter science with a small programming component, CompSci
4 is a non-majors programming course, and CompSci 49S is a
special topics course for freshmen limited in size to 15. Our
upper-level undergraduate courses usually have between 30 and
80 students. In total more than 1,500 students take a Computer
Science course at Duke University each year.

Large introductory courses such as CompSci 1 and CompSci
6 are structured to have a lecture two to three days per week and
a small lab once a week. To alleviate the burden of such large
courses, we have sometimes been able to offer multiple sections
of the same course that have different lecture times, but share all
other out-of-class work. Some smaller courses with enrollments
less than 40 (and a few sections of CompSci 6) are taught in our
Interactive Computer Classrooms, ICCs, with computers for stu-
dents to use during class. Many of our courses with size 50 or
more either have the small lab once a week or smaller recitation
sections once a week. All computer science courses at Duke
University are taught by faculty. Graduate teaching assistants,
TAs, usually lead the recitations and undergraduate teaching as-
sistants, UTAs, lead the labs.

Structure of our Classrooms

Three different types of facilities are used for Computer Sci-
ence courses. An auditorium is the largest size room with maxi-
mum seating from 100 to 300 seats. The design of an auditorium
is usually many long rows of fixed seats that are progressively
more elevated from the front to the rear. A regular classroom has
maximum seating size of 20 to 80 seats and usually has a grid of
fixed or movable seats that are not elevated. These classrooms
may have long tables or desks on which the students can work.
Our third type of room, an ICC, is a room with many comput-
ers designed for students to use the computer during class. All
classrooms have Internet connections and one computer in each
classroom can be projected on a large screen.

There are three ICCs at Duke University, one large and two
small. The large ICC has 20 computers and 40 seats for stu-
dents, while the smaller ICCs are have only 8 computers with
16 seats. Roughly half of the ICC is designed for using the

Session XXX

computers (for the large classroom, either 20 students working
alone or 40 students working in pairs) and half the room is de-
signed for working in small groups at movable tables. Figure 1
shows a layout of the large ICC. There are 20 rectangular ta-
bles, each with one computer (shown as a square) and two seats
(shown as circles). In addition there is a printer table (labeled
P), a teacher’s console (labeled TC) and 4 movable work tables.
The work tables can be spread apart for group work.

FIGURE 1
LARGE ICC LAYOUT

The ICCs are designed to help instructors control the room
by arranging the computers in a U-shape around the sides and
back of the room. From the front of the room, the instructor can
view all monitor screens and can see quickly if anyone is falling
behind or having difficulty. The students face the front of the
room for discussion and rotate (facing the back or sides of the
room) to use the computer. Since the students must turn 90 or
180 degrees to face the front for a discussion, the instructor can
easily tell if anyone is not paying attention.

Several computer science courses have been taught in an ICC,
CompSci 4 and CompSci 49S, and sections of CompSci 6 and
CompSci 100. Other disciplines also teach in the large ICC
including mathematics, statistics, biology, sociology, religion,
economics, film and video, cultural anthropology, and French.
The writing program for first-year students is the department
primarily using one of the small ICCs.

ACTIVE L EARNING TECHNIQUES IN CLASS

Two styles of using standard lecture time designed to achieve
more student involvement are presented: active lectures giving
students a chance to check their understanding during the lec-
ture by working on short exercises; whereas workshops allow
students to work in a supervised, safe lab setting where the in-
structor lectures only briefly. However, the styles presented be-
low can be used in traditional or ICCs.

Active Lectures

The termactive lecturein this paper refers to a simple use of
active learning similar to the lecture style used by most univer-
sity educators modified to include other recent attempts to bring
active learning to science classes [9], [10], [11].

An active lecture begins with a story that relates the day’s
topics to a real-world/industrial experience that will be familiar
to students. For example, in discussing compression and Huff-
man coding in CompSci 100, the introduction discusses Napster,
MP3, and lossy/lossless JPEG/GIF compression. These discus-
sions focus not only on technical content, but on ethical and
pragmatic concerns in using Napster. After the opening story,
material is presented in a traditional lecture format.

The key element of an active lecture is areflective pauseor in-
terlude. Stopping a lecture after 15 minutes, pausing a minute,
and then proceeding increases student comprehension [12]. A
reflective pause is directly related to the part of the lecture just
given, but engages students in answering a question or solving
a problem related to the lecture. For example, in the lecture on
Huffman coding students are shown how an optimal tree/trie is
constructed for encoding characters. The lecture discusses the
greedy algorithm used for the construction, properties of greedy
algorithms in general, and the specific code used in generating a
tree from a sequence of characters. During the reflective pause
students are asked two questions to test mastery and compre-
hension: uncompress a sequence of 30 bits given a diagram of a
tree storing 8 characters; and think about creating change using
a minimal number of coins when there are no nickels. The first
problem tests basic understanding of how information is stored
in a Huffman tree. The second requires students to think about
possible alternatives when a greedy algorithm does not work in
certain situations. Both questions can be answered by students
individually in one or two minutes per question. Some profes-
sors have students discuss the answers, but this is not an integral
part of an active lecture or a reflective pause.

A typical lecture is 50-75 minutes. This leads to dividing a
lecture topic into two or three 15-20 minute chunks with each
chunk followed by a reflective pause. Each pause requires a
follow-up to discuss the answers and to ensure students have a
basic understanding of materials before proceeding.

In the beginning programming courses, simply coding in front
of the students can be very beneficial and leads to quality dis-
cussions. It helps students better understand the programming
process because they see typos, compiler errors, and other prob-
lems encountered when programming; it makes them more at-
tentive because they try to find our mistakes before the compiler
does and it seems to make them more experimental and willing
to ask “what happens when if”. Using this technique, we have
created a didactic form of pair programming in our large lecture
courses. The instructor is the driver while the class as a whole
(from 40 to 180 students) works together as the navigator of the
pair-programming team [13], [14].

Workshops, not just Labs

Another type of active learning uses the workshop format and
can be done in large or small courses during lecture or in an ICC.
Each workshop period consists of a sequence of modules. Each
module contains a mini-lecture (5-15 minutes) followed by an
exercise to be performed by the students in groups, followed by
a wrap-up discussing the different approaches students explored.
The format also allows forjust-in-time teaching[10] where the
lecture is changed to address concerns that arise as a result of
each workshop experience.

0-7803-7444-4/02/$17.00c©2002 IEEE November 6 - 9, 2002 Boston, MA
32nd ASEE/IEEE Frontiers in Education Conference

XXX-2

Session XXX

While students are working in class, it is important to give
them as much quality feedback as possible. The most effec-
tive way we have found to do this is to move throughout the
classroom visiting with each group or even just observing their
discussions. However, as the class size increases, it becomes
less practical for one person to reach every group. To alleviate
this problem, UTAs are used during class to help visit groups
and answer questions. Many UTAs are not prepared to support
students well in these situations [15], so UTAs attend weekly
meetings to discuss teaching techniques and to outline impor-
tant issues to be covered in future classes. Additionally, UTAs
provide exercises and bring up issues that are meaningful from
their experience taking the class previously.

For example, for CompSci 6 in the ICC, we use the work-
shop format with one module per meeting. Class begins with
a short review of the last module and an overview of the new
activities for that day. The students work in pairs (one computer
per pair) on the discovery exercises for most of the class period.
The instructor and teaching assistants actively monitor the room
helping out and offering advice. If many students are having the
same problem, all students are asked to stop working and a short
discussion is held. At the end of class, a wrapup discussion is
always held.

Here is an example of a CompSci 6 lecture using C++. In
the third lecture, students are given a 10-15 minute lecture on
parameters, function signatures and input. They are then given
the following program.

void Sweeps (string city)
{

cout << "Amanda Harris, you’ve won TEN "
<< "million dollars!"
<< endl;

cout << "Amanda, that’s what you will hear "
<< "if you have the winning ticket."
<< endl;

cout << "Imagine, Amanda, you could be "
<< "cruising in a Porsche down Main "
<< "Street in " << city << "."
<< endl;

}

int main ()
{

Sweeps("Georgetown");
return 0;

}

There are several modifications students are asked to make.
The first one adds two more string parameters for first name and
last name to theSweeps function. Next they call theSweeps
function twice, once with each of their names and home towns.
Next they do several exercises intended to cause errors, change
one of the calls to pass just one parameter, and pass the param-
eters in a different order. Then they add a string variable to
main for the first name and input the name. Next they add
statements to read in the last name and city. That ends the first
exercise. There are two more exercises of modifying programs
and a fourth optional exercise for those students who complete

the earlier exercises more quickly. Work is checked off by the
instructor or UTAs either at the end of class or at the beginning
of the next class to allow those students who do not finish during
class to finish outside of class.

For classes not run in an ICC, many of these exercises are sim-
ulated using pencil and paper. Students are given a worksheet
with code and modifications to be done and give them time to
work on these problems during lecture. These exercises are dif-
ferent from typical closed lab sessions in a number of ways that
help encourage a more collaborative atmosphere: often students
are working in pairs to complete the exercises; the course staff
is actively moving around the classroom eavesdropping and giv-
ing timely feedback; and often, student solutions are presented
to the class for discussion.

We have found the last technique better than traditional tech-
niques for engaging students attention by giving them invest-
ment in the material presented. In the past, even when group
activities were used there was little feedback provided to stu-
dents about their solutions nor was there any way for them to
test their solutions. In general, there may be several solutions
to a given problem, but the instructor only had time to present
one or two solutions. Students were frustrated if their solution
was different because they have no method for determining if
their solution is correct. Now, more time is devoted to showing
student solutions which usually vary more than the instructor’s
examples. And, the process of viewing multiple solutions in-
variably provides an easy way to discuss all of the pedagogical
points we would have wanted to show.

Students show their work in a number of ways: write their
solutions on an overhead transparency with the pens provided,
write their solutions on ordinary notebook paper which is dis-
played using a document viewer, or simply call out the next line
of code for the instructor to type.

M AKING L ARGE L ECTURES M ORE ACTIVE

In teaching a large introductory computer science class, it is
especially hard to make lectures more active and create a better
learning experience [16]. Among the main problems with large
lectures are: gauging how well the course material is being un-
derstood; creating a more engaging and enjoyable learning en-
vironment; and encouraging students to come to class on time
and rewarding those that do come and participate.

Encouraging Participation

One step towards addressing these issues we have developed
is the pick-a-student system. An important part of asking a ques-
tion is to get everyones’ attention and not have a dialogue with
only the few students who always volunteer. At any point in lec-
ture, if there is a question to be asked about the material or if a
student’s work is to be selected to be displayed on the screen,
the pick-a-student system randomly selects a student and dis-
plays their picture and name on the screen. If the selected stu-
dent answers the question, they receive credit and their picture
and name are removed from the pool. The pick-a-student must
be sufficiently employed through the semester to cycle through
all of the students in the course at least once. This requirement
should encourage the instructor to ask many questions and re-
ceive feedback from a wide cross-section of the students.

0-7803-7444-4/02/$17.00c©2002 IEEE November 6 - 9, 2002 Boston, MA
32nd ASEE/IEEE Frontiers in Education Conference

XXX-3

Session XXX

It is vitally important students know it is reasonable not to
know the answer and that any attempt is worthwhile. When stu-
dents have no idea whatsoever, they have several options: sim-
ply say “I don’t know”; ask a question back to the instructor that
may help elucidate the problem; or call upon another student in
the class, or even their entire row, to help them.

There are a number of added benefits to the pick-a-student
system. It makes it much easier for the instructor to learn stu-
dents’ names and that in turn seems to make students more com-
fortable interacting with the instructor both during and outside
of class. Students also seem to enjoy the process of seeing their
faces appear on the big screen and wondering if their name will
be chosen. Presumably, it has a similar draw as games of chance.
We have even used the pick-a-student system as a later assign-
ment in our CompSci 1 course that allows students to experi-
ment with randomness and arrays.

The pick-a-student system is fairly easy to create if you can
get pictures of the students along with their names. For a yearly
cost, the university can provide ID pictures for each student. In-
stead, we have tried a more playful approach by passing around
a digital camera and sheet of paper on the first day of class. The
instructor takes a picture of the first student, and each student
subsequently takes a picture of another student, with the last
student taking a picture of the instructor. Students sign the pa-
per in the order their pictures are taken. Once the images have
been saved with the students names, there are several ways to
display them: we have written a simple program that reads in
the directory of pictures and flips through the pictures, randomly
stopping on a student; or on Windows and Macintosh comput-
ers, standard slide show software can be used to flip through a
folder of images.

Group Activities

Organizing students into groups can lead to a more productive
use of class time and can be beneficial to students in many ways.
We assign pairs of students in small courses and assign groups of
size 3 to 5 students in larger courses. Students receive a seating
chart with their name and their assigned seat and are expected to
sit there. Groups are changed about once a month, or about 4-6
times during the semester.

There are several advantages for instructors to assign students
seating. For large courses, having assigned seats makes it possi-
ble to hand out homework during class. The homework is sorted
by seating and can be passed out quickly. This task would take
a very long time in a course of 200 students if each student’s
name was called out and they had to walk up to the front to pick
up their work. Having assigned seats also makes it easier for
the instructor to get to know the students because they sit in the
same place and he/she can look up their name.

Assigned seating and groups and changing them often has
benefits to students as well. Students will get to know more peo-
ple in the course as they are forced to meet people they might not
otherwise meet. Students are more likely to volunteer to answer
a question if they feel they are part of a group and the group has
had a chance to discuss the answer. The student is comfortable
because the group agreed on the answer. Some groups have be-
come very competitive, such as bringing in their group number
on a fancy sign and holding it up high whenever they answered

a question.

SUPPORTING ACTIVE L EARNING

There are several impediments to wide-spread adoption of ac-
tive learning techniques by educators [17]: the time and prepara-
tion required to develop materials; the disparity between active
learning and the educational experience of most academics some
of which is tied to ceding some control in the classroom if lec-
tures are abandoned; the perception that active lectures are too
slow compared to standard lectures, making it harder to cover as
much material; and the difficulty of ensuring students come to
class prepared. Since we believe students must be active every-
day to remain engaged in the material, we have developed a few
techniques to help address these issues.

There is no doubt preparing for active learning takes more
time from both instructors and students. Instructors must be bet-
ter prepared because the material needed in class may be more
varied as students bring up issues from the reading or problems
they are asked to solve. Students, as well, must prepare before
class by doing the assigned reading or preparatory work or they
will be unable to participate in class. When students are unable
to be actively involved in the material the class typically reverts
back to a lecture format.

One step towards ensuring students are prepared is pre-class
quizzes, available before each lecture that must be completed
by the time students enter the class. These quizzes are meant
to be fairly simple if the student has read the reading material
and difficult for students to do correctly by simply guessing.
This forces students to read or skim reading material, making
them better prepared to answer questions during class. An ad-
ditional feature is that the instructor can look over a summary
of the answers to quizzes before heading to class and can see
which topics students understand and which ones students need
further explanation, allowing the instructor to adjust the focus
of the lecture and, perhaps, skip or skim material that has been
mastered

Currently, we use the Blackboard CourseInfo system [18]
to administer online multiple choice quizzes. An advantage
of this system is that one can designate a specific time range
during which the quiz can be taken. Previously, paper quizzes
were given that were due when the students walked in the door.
A database of collected quiz questions is available from Ed
Gehringer [19].

CONCLUSIONS

Collaborative learning in small groups increases interest and
participation in class. We have observed that giving students
time to think during class results in more student participa-
tion in discussions, and that discussions are more meaningful,
especially in uncovering misconceptions and misunderstand-
ings. This approach also increases student confidence and self-
esteem. We have observed that students who were reluctant
to speak out in class are now eager to volunteer and discuss
a solution that their group developed. In evaluations of our
classes using collaborative learning, students overwhelmingly
stated that they preferred the group problem solving format to
the lecture format. In addition, female students (most classes

0-7803-7444-4/02/$17.00c©2002 IEEE November 6 - 9, 2002 Boston, MA
32nd ASEE/IEEE Frontiers in Education Conference

XXX-4

Session XXX

contain 25-30% women) made comments that rotating assigned
groups gave them a chance to meet other students in the class
that they would not have approached otherwise, making them
feel more comfortable in the classroom. These findings reflect
those of other researchers [20].

Although less material may be presented during class, we find
that students understand the material more thoroughly. We make
up for our decreased pace by placing more responsibility on stu-
dents to work outside of lecture to prepare for class. We ensure
that they are not missing the basics by keeping tabs on their
progress and adjusting our presentations to match their progress
and not going over material it is clear they have mastered.

We continue to make our courses more active. In the past
we have integrated visual and interactive computer tools into the
classroom [21] and toys into lecture [22]. More recently we have
found more effective ways to use computers in the classroom to
change the way in which we present material to the students.
However, almost surprisingly, we have also found parallel ac-
tivities that do not use computers directly but achieve similar
advantages.

REFERENCES

[1] David Johnson, Rodger T. Johnson, and Karl A. Smith,Cooperative learn-
ing: Increasing College Faculty Instructional Productivity, Volum 20,
Number 4, ED347871. ASHE/ERIC Higher Education, 1991.

[2] Robert E. Slavin,Cooperative Learning: Theory, Research, and Practice,
Allyn and Bacon, second edition, 1995.

[3] Charles C. Bonwell and James A. Eison,Active Learning: Creating Ex-
citement in the Classroom, ED336049. ASHE-ERIC Higher Education
Reports, 1991, http://ericae.net/db/edo/ED34027.htm.

[4] J. G. Penner,Why Many College Teachers Cannot Lecture, Charles C.
Thomas, 1984.

[5] Tom Drummond, “A brief summary of the best practices in college teach-
ing,” http://nsccux.sccd.ctc.edu/∼eceprog/bstprac.html, 1995.

[6] Deborah Knox, Ursula Wolz, Daniel Joyce, Elliot Koffman, and Joan
Krone, “Use of laboratories in computer science education: Guidelines for
good practice: Report of the working group on computing laboratories,”
Proceedings of the Conference On Integrating Technology Into Computer
Science Education, pp. 167–181, 1996.

[7] Alan Fekete and Antony Greening, “Designing closed laboratories for a
computer science course,”Twenty-Seventh SIGCSE Technical Symposium
on Computer Science Education, pp. 295–299, 1996.

[8] ACM Curriculum Committee on Computer Science, “Curriculum ’78:
Recommendations for the undergraduate program in computer science,”
Communications of the ACM, vol. 22, no. 3, pp. 147–166, 1979.

[9] Eric Mazur, Peer Instruction: A User’s Manual, Prentice Hall, 1996.
[10] Gregor M. Novak, Evelyn T. Patterson, Andrew D. Gavrin, and Wolfgang

Christian, Just-In-Time Teaching : Blending Active Learning With Web
Technology, Prentice Hall College Division, 1999.

[11] Pedagogical Patterns, ,” http://www.pedagogicalpatterns.org/.
[12] Kathy L. Ruhl, Charles A. Hughes, and Patrick J. Schloss, “Using the

pause procedure to enhance lecture recall,”Teacher Education and Special
Education, vol. 10, pp. 14–18, 1987.

[13] Owen L. Astrachan, Robert C. Duvall, and Eugene Wallingford, “Bringing
extreme programming to the classroom,”2001 XP Universe Conference
Proceedings, 2001, http://www.xpuniverse.com/.

[14] Laurie Williams and Robert R. Kessler, “Experimenting with industry’s
pair-programming model in the computer science classroom,”Journal on
Computer Science Education, 2001.

[15] Dale Winter, Paula Lemons, Jack Bookman, and William Hoese, “Novice
instructors and student-centered instruction: Identifying and address-
ing obstacles to learning in the college science laboratory,”Jour-
nal of Scholarship of Teaching and Learning, vol. 2, no. 1, 2001,
http://www.iusb.edu/∼josotl/.

[16] S. Wolfman, “Making lemonade: Exploring the bright side of large lecture
classes,”Thirty-third SIGCSE Technical Symposium on Computer Science
Education, pp. 257–261, 2002.

[17] Joseph Lowman,Mastering the Techiques of Teaching, Jossey-Bass, 1984.
[18] Blackboard, ,” http://www.blackboard.com/.

[19] Edward F. Gehringer and Tony M. Louca, “A web-based object tech-
nology course database,”2000 OOPSLA Conference Proceedings, 2001,
http://www.xpuniverse.com/.

[20] J. D. Chase and Edward G. Okie, “Combining cooperative learning and
peer instruction in introductory computer science,”Thirty-First SIGCSE
Technical Symposium on Computer Science Education, pp. 372–376,
2000.

[21] Susan H. Rodger, “An interactive lecture approach to teaching computer
science,” Twenty-Sixth SIGCSE Technical Symposium on Computer Sci-
ence Education, pp. 278–282, 1995.

[22] Owen L. Astrachan, “Concrete teaching: Hooks and props as instructional
technology,”Proceedings of the Third Annual Conference On Integrating
Technology Into Computer Science Education, pp. 21–24, 1998.

0-7803-7444-4/02/$17.00c©2002 IEEE November 6 - 9, 2002 Boston, MA
32nd ASEE/IEEE Frontiers in Education Conference

XXX-5

