
Representations for Learning Control Policies

Je�rey Forbes forbes@cs.duke.edu

Department of Computer Science, Duke University, Durham, NC 27708-0129 USA

David Andre dandre@cs.berkeley.edu

Computer Science Division, University of California, Berkeley, Berkeley, CA 94720-1776

Abstract

Representing the expected reward or cost for
taking an action in a stochastic control prob-
lem, such as automated driving, is not trivial
when the state and action spaces are contin-
uous. Simple techniques can su�er from for-
getting, where the lessons learned when the
agent was doing poorly (e.g. how to recover
when the car is headed o� the road) can be
forgotten when the agent has learned a policy
that works in the majority of cases. This pa-
per presents and demonstrates a method that
e�ectively learns and maintains a Q func-
tion approximation utilizing stored instances
of past observations. This instance-based re-
inforcement learning algorithm has the nec-
essary extensions and optimizations required
to learn in complex control domains. To
make further use of the stored examples, our
method learns a model of the environment
and uses that model to improve the estimate
of the value of taking actions in states. We
explore several techniques for choosing how
to use the model to eÆciently improve the
value function, and present an original algo-
rithm based on generalized prioritized sweep-
ing that outperforms the others on two exam-
ple driving tasks.

In our experience, the task of learning to control an
autonomous vehicle is best formulated as a stochas-
tic optimal control problem. Reinforcement learning
(RL) algorithms can learn optimal behavior for such
problems from trial and error interactions with the
environment. However, reinforcement learning algo-
rithms often are unable to e�ectively learn policies for
domains with certain properties: continuous state and
action spaces, a need for real-time online operation,
and continuous long-term operation.

Driving is a particularly challenging problem, since the
task itself changes over time. A lane following agent
may become pro�cient at negotiating curved roads and
then go on a long straight stretch where it becomes
even more pro�cient on straight roads. It should not,
however, lose pro�ciency at the curved roads. The
overall goal of staying in the center of the lane re-
mains the same, but the kind of states with which the
agent is faced changes when moving from curved roads
to straight and back again. Many learning algorithms
are vulnerable to catastrophic interference where, af-
ter experiencing numerous new examples in a di�erent
part of the state space, accuracy on older examples can
decrease. This behavior is referred to as forgetting. As
in real life, forgetting is obviously inadvisable for any
learning control algorithm.

Instance-based learners are an example of non-
parametric learners and thus avoid the problem of
forgetting. Applying them directly to reinforcement
learning, however, is not entirely trivial, as the rein-
forcement learning problem is not a supervised learn-
ing problem, but a delayed reinforcement problem.
Furthermore, instance based techniques use a lot of
memory, and are susceptible to the magnitudes of the
inputs. This paper presents techniques that avoid the
above diÆculties by using a value-updating algorithm,
instance averaging, and automatic dimension scaling.

Finally, reinforcement learning can require many runs
in the environment to learn a successful policy. We
mitigate this by using memory-based reinforcement
learning, which learns a model of the environment and
uses it to improve the value function without taking
steps in the actual environment. Many methods have
been suggested for how best to use a model to update
the value function. We utilize a novel method for our
representation based on generalized prioritized sweep-
ing (Andre et al., 1997). We demonstrate our methods
on two simulated driving tasks.

The structure of this paper is as follows. Section 1

describes the instance-based representation for value
function approximation and how it can be used to
learn control policies e�ectively from experience. This
section also describes the extensions that were neces-
sary for the representation to be practical for vehicle
control. Section 2 shows how one can use a struc-
tured domain model to learn more eÆciently and han-
dle fundamental autonomous vehicle tasks. Section 3
presents some empirical results on learning to control
a simulated vehicle to steer itself in the center of the
lane. The paper ends with conclusions and acknowl-
edgments.

1. Instance-based value reinforcement

learning

In Q-learning, the agent learns a Q-function which
gives the value of taking an action in a state (Watkins,
1989). The value of a state is the expected long term
reward from that point. Parametric function approx-
imators such as neural networks and linear combina-
tions of basis functions are susceptible to forgetting in
the presence of interference. Instance-based function
approximators are more robust to interference because
all experiences are stored and the e�ect of new ex-
periences is local. Instance-based techniques bene�t
from being a local approximation method that gives
accurate estimates of portions of the state space even
when the majority of the overall space is unvisited.
We developed a technique called instance-based rein-
forcement learning (IBRL) that is e�ective in learn-
ing control policies (Forbes & Andre, 2000a). Instead
of just updating a global parametric approximation,
IBRL records all experiences (state, action, and ob-
served value) and predicts and generalizes for new un-
seen state-action pairs. Beyond just using an instance
based function approximator, a number of extensions
are needed to the representation to make it viable for
control problems: bounding the number of stored ex-
amples using instance-averaging and automatic dimen-
sion weighting.

1.1 Value function approximation

Reinforcement learning can be applied to control by
learning the value of taking actions in particular states,
Q(s;a) ! <. Learning this function from trial and
error experience is called Q learning. We assume no
prior knowledge of the Q function, the state transition
model (8s; s0 2 S;8a 2 A; p(s;a; s0)) or the reward
model (8s; R(s)).

A learning step in the IBRL algorithm is described in
Figure 1.1.

function DoIBRLStep(state st, reward rt�1, time t)
returns action
(1) Compute policy

at �(st) =

�
argsup

a
Q(st;a) w:p:1� �(t)

random action w. p.�(t)
(2) ObservedValue rt�1 +
Q(st ;at)
(3) Compute prediction error
E Q(st�1;at�1)�ObservedValue

(5) 8 neighbors i involved in prediction of
Q(st�1;at�1)
(6) Update examples

Qi Qi + �(t) � E � rQiQ(st�1;at�1)
(7) Store new example Qt ObservedValue

(8) Store estimate Q(st;at) for next step

Figure 1. Pseudocode for the instance based learning algo-

rithm. �(t) and �(t) are the learning and exploration rates

respectively at time t.

1.2 Maintaining Q Value Estimate

For every action at time step t, we can add a new
example into the database:

Qt = rt +
Q(st+1;at+1): (1)

The algorithm then updates each Q-value Qi in our
database according to a temporal-di�erence update:

Qi Qi+�[rt+
Q(st+1;at+1)�Q(st;at)]rQiQ(st;at):
(2)

Given a distance metric and a weighting function, the
predictions in instance-based learning can be com-
puted in a number of ways. A reasonable prediction
method is kernel regression where the �t is simply a
weighted average of the outputs yi; i 2 [1; n] of the

neighbors:

P
wiyiP
wi

. The contribution of each instance

can then be computed as:

rQiQ(st;at) =
wiP
j wj

:

Instead of updating all elements, we can update only
the nearest neighbors. We want to credit those cases
in memory which may have had a signi�cant e�ect on
the Q(st; ut) that were within the kernel width (�k).
Those cases make up the nearest neighborsNN(st; ut)
of the query point. By updating only the neighbors,
we can bound the overall update time per step.

Given an accurate estimate of the Q function, one can
calculate the optimal action a in any state s accord-
ing to the policy � de�ned as �(s) = argsupaQ(s; a).

Note that we have an arg supa to compute instead of
an argmaxa, since we are dealing with a continuous
action vector. Finding the maximum value for an ar-
bitrary function can be a complex exercise in itself.
Many algorithms discretize the action space, but for
many control tasks, too coarse a discretization of ac-
tions can cause oscillations and unstable policies (Ku-
mar & Varaiya, 1986). One simplifying assumption is
that there is a unimodal distribution for the Q-values
with respect to a particular state and scalar actions.
Avoiding suboptimal actions in a continuous action
space may be impossible, but by conducting a beam
search where there are multiple parallel searches each
returning a maximum, the optimization does well. The
estimate of the global maximum is then the best of
these searches. Each beam search uses a gradient as-
cent strategy to �nd a locally optimal action for our
value function. As the number of beam searches ap-
proaches in�nity, the maximum returned approaches
the global maximum. In practice, of course, a large or
unbounded number of searches cannot be performed
on every policy lookup.

The basic idea of using instance-based methods for
value function approximation is critical to being able
to e�ectively learn controllers, but extensions are nec-
essary to maintain a value function estimate in con-
tinual operation in domains. Simple instance-based
learning alone will not be practical for the control of
autonomous vehicles because the number of stored ex-
amples would become unmanageable as the agent con-
tinued to learn. Also, nearest neighbor techniques are
sensitive to the relative values and variances of the
di�erent state vector dimensions. For proper general-
ization, extensions have to be be made to adapt to the
relative importance and range of the di�erent features.

1.3 Managing the number of stored examples

For the applications that have been discussed, the sys-
tem may need to continue to operate and learn for an
arbitrary length of time. While there do exist some
well-practiced techniques for pruning \useless" exam-
ples in training (Bradshaw, 1985; Kibler & Aha, 1988;
Kohonen, 1990), learning in this setting poses a few
more diÆculties. One method of editing the set of ex-
amples is to determine if an example contributes to a
decision boundary. If one of its neighbors has a dif-
ferent value then it remains in the set, otherwise it is
removed. This algorithm can reduce the number of
examples with no e�ect on the algorithm's accuracy.
However, for a number of reasons, this method does
not work for value function approximation. First, this
task is not one of classi�cation but of regression, so
there are no decision boundaries. Instead, there are

gradations of value in regions, and it is unknown how
�nely-grained those gradations may be. Also this edit-
ing method requires knowledge of all the training data
ahead of time. Once all examples have been seen, it is
possible to rule out that a particular region, no mat-
ter how small, could have a completely di�erent value
than the points around it. An online algorithm has to
determine the complexity of value space as new states
and rewards are experienced.

Finally, the stored examples are only estimates, so it
is not possible to know whether an example is an im-
portant outlier or just wrong. If the example bound
is set too low, the estimates may not be good enough
to warrant trying to determine which ones are most
essential. Premature pruning is particularly harmful
for reinforcement learning where it may take a number
of trials before a goal is even reached and any useful
feedback is gained. While it may not be possible to
�nd a pruning algorithm that reduces space and time
requirements without compromising accuracy, we can
pick examples to prune that appear to have the least
e�ect on the estimate.

A �rst step in managing the size of the examples set
is to limits its growth; redundant examples should not
be added. There is a density parameter, �d, that lim-
its the density of examples stored. For every new
example, xq , and given a distance metric, D(�; �), if
8xD(xq ;x) > �d, then xq is added to the set of ex-
amples. Since the neighboring examples will be up-
dated, the e�ect of the new experience will still be
incorporated into the overall estimate. Another op-
timization is to add only those examples that cannot
be predicted within some parameter �. Both �d and
� can be adjusted down to increase accuracy or up
to decrease memory requirements. While these op-
timizations can have both direct and indirect e�ects
on the learning process, they are useful in practice
in limiting the growth of the example set. Being se-
lective in adding examples may slow growth; when
the number of examples is greater than the maximum
number allowed, some example must be removed. A
�rst approach would be to remove the oldest exam-
ple. Another possibility would be to remove the least
recently \used" example, the example that has not
been a neighbor in a query for the longest time. There
are problems encountered with these methods that are
similar to those using a parametric function approxi-
mator, namely in the forgetting experiences from the
past. This forgetting can be particularly problematic if
some important experiences only occur rarely, though,
in some cases, forgetting early experiences can be ben-
e�cial, since early estimates often provide no useful in-
formation and can be misleading. Forgetting the most

temporally distant examples does not di�erentiate be-
tween incorrect examples and relevant old examples.

Instead of removing old examples, the examples that
should be removed are those that contribute the least
to the overall approximation. The example that is clas-
si�ed the best by its neighbors, and where the neigh-
bors can still be classi�ed well or possibly better with-
out the example, should be chosen for averaging. The
score for each exemplar, Qi can be computed as fol-
lows:

scorei = jQi�Q
�i(si; ai)j+

1

K

X
j 6=i

jQ(sj ; aj)�Q
�i(sj ; aj)j

where Q�i(si;ai) is the the evaluation of the Q func-
tion at (si;ai) while not using Qi in the evaluation.
The scores can be updated incrementally in the time
it takes for a Q evaluation. Instead of removing the
example with lowest score, a better method is instance-
averaging { where two neighbors are reduced into one
exemplar, which is located at the midpoint of the
two inputs and its value is the mean of the two val-
ues. Averaging reduces the bias in comparison to
just removing an example. A similar approach was
proposed by Salzberg where instead of averaging in-
stances, he generalizes instances into nested hyperrect-
angles (Salzberg, 1991). While partitioning the space
into hyperrectangles can work well for discrete classi-
�cation tasks, it has
aws for regression. Most impor-
tantly, all of the points within a region almost never
have the exact same value.

1.4 Optimizations

Each estimate is computed from the values of its neigh-
bors. The estimate is sensitive to distances between
examples in the input space and to how much each
of the examples is weighted. The kernel size and the
number of neighbors determine the size of the relevant
neighborhood. The di�erent dimensions in a input vec-
tor tend to have di�erent levels of importance. It is
often desirable to scale and skew the input space so
that more attention is paid to certain dimensions in
the distance metric. This e�ect is achieved by adding
a covariance matrix to the Gaussian weighting func-
tion. This e�ect is achieved by adding a covariance
matrix to the Gaussian weighting function. Thus, for
two points x; y in hstate,actioni space, we use

w(x; y) = e
�[x�y]T�[x�y]

��1 is a matrix that is essentially the inverse covari-
ance matrix of the Gaussian. Note that a single ��1 is
used for all the data. Thus, when Q is updated, ��1

must also be updated. This update is shown below:

��1
i;j+ = �[rt+1 +
Q(s0; a0)�Q(s; a)]r��1

i
jQ(s; a)

Beyond dimension weighting, some dimensions may be
irrelevant altogether.

As this work is motivated by working on autonomous
vehicles, the instance-based reinforcement learning al-
gorithm must be as eÆcient as possible. Furthermore,
it is important that the learning steps can be done in
close to real time. A previous paper discusses the re-
inforcement learning system in terms of its abilities to
be a real-time autonomous system (Forbes & Andre,
2000b). As with most learning tasks, the goal is to
reach a certain level of performance in as few training
steps as possible. I have already mentioned in Sec-
tion 1.3 that bounding the number of examples limits
the time of the value computation and updating steps
will take. However, eÆciency of the system allows for
maximization of the number of examples that can be
stored and the speed with which the system learns.
Determining the k nearest neighbors of an example
can be achieved more eÆciently using kd-trees (Moore,
1991).

1.5 Related Work

There has been signi�cant research in using instance-
based learning for control. Most of the work focuses
on learning direct input-output mappings for control
tasks. Moore, Atkeson, and Schaal and show that
techniques that store examples are ideally suited for
control (Moore et al., 1997).

Instance-based learning was used for function approx-
imation in reinforcement learning by Santamaria, Sut-
ton, and Ram (Santamaria et al., 1998). The con-
tribution this paper makes is in presenting the gen-
eral update rule for instance-based approximators pre-
sented in Equation 2. Furthermore, this paper ad-
dresses many of the practical problems that come up
when applying reinforcement learning to more com-
plex problems such as vehicle control. In particu-
lar, our work addresses limited space and time re-
sources Another similar line of research is that of Or-
moneit and Sen (Ormoneit & Sen, 1999). They present
an algorithm called kernel-based reinforcement learn-
ing which has both practical and theoretical promise.
An interesting result is that kernel regression when
used as function approximation technique performs
like an averager which does converge to a unique �xed
point (Gordon, 1995). The algorithm relies on there
being a �nite number of actions in order for it to be
feasible, since the value is estimated by averaging the
values of estimates of previous times when the action

was executed in similar states. In control domains,
there is an in�nite number of actions that necessitate
an incremental approach. A similar method to the one
in this paper is that of Smart and Kaelbling (Smart &
Kaelbling, 2000). Our approaches were developed in-
dependently, and both approaches were motivated by
the goal of making reinforcement learning practical for
dynamic control tasks.

2. Model-based reinforcement learning

Despite signi�cant progress in theoretical and practi-
cal results for reinforcement learning, RL algorithms
have not been applied on-line to solve many com-
plex problems. One reason is that the algorithms are
weak learning algorithms in an AI sense. They use
a tabula rasa approach with little or no prior domain
knowledge and will generally scale poorly to complex
tasks (Mataric, 1991). However, there are model-based
approaches which can incorporate domain knowledge
into directing the search of a RL agent. The algorithms
use experience to build a model, use the experience to
adjust the estimated utility of states, and then use that
model and the utility function to update the policy.

As is well known in the reinforcement learning com-
munity, a model of the environment can be used to
perform extra simulated steps in the environment, al-
lowing for additional planning steps (Sutton, 1990). In
the extreme, the MDP in question could be solved as
well as possible given the current model at each step.
For the problems of interest here, this approach is in-
tractable, and certainly undesirable when the model
is not very accurate. Thus, most applications bene�t
from a middle ground of doing some extra planning
steps after each actual step in the environment.

There are several di�erent methods of choosing the
state and action pairs for which to perform simula-
tions. One possibility is to take actions from ran-
domly selected states. This was the approach pursued
in the DYNA (Sutton, 1990) framework. A second
possibility is to search forward from the current state-
action pair x, doing simulations of the N next steps
in the world. Values can then be backed up along the
trajectory, with those Q-values furthest from x being
backed up �rst. This form of lookahead search is po-
tentially useful as it focuses attention on those states
of the world that are likely to be encountered in the
agent's near future. A third possibility is to search
backwards from the current state �nding the likely pre-
decessors and updating those states. Since one of the
challenges in reinforcement learning is that of delayed
reward, updating previous steps can more quickly up-
date those states that may have been responsible for

a later penalty or reward.

The technique of Prioritized Sweeping (Moore & Atke-
son, 1993) chooses the states to update based on a
priority metric that approximates the expected size of
the update for each state. Those state-action pairs
expected to have the highest changes in value, i.e.
the priorities, should be updated. The motivation for
this idea is straightforward. Those Q-values that are
the most incorrect are exactly those that contribute
the most to the policy loss. To implement prioritized
sweeping, there must be an eÆcient estimate of the
amount that the value of a state-action pair will change
given an other update. When will updating a state-
action pair make a di�erence? When the value of the
likely outcome states has changed, and when the tran-
sition model has changed, changing the likely output
states.

In this work, the principles of generalized prioritized
sweeping (Andre et al., 1997) are applied to a con-
tinuous state and action space using an instance-
based value-function and a dynamic Bayesian network
(DBN) representation of the model. A potential dis-
advantage of using a model is that it must be learned,
which can be diÆcult in a complex environment. In a
discrete state space, it is possible to store the model
simply as a table of transition probabilities. Clearly,
in a continuous domain, other forms of representation
are required. By using a simple DBN for the model,
one can take advantage of prior knowledge about the
structure of the environment, and is left only with the
problem of learning the parameters of the DBN (Rus-
sell et al., 1994). For our linear models, learning is
then an application of multivariate linear regression.

The general model-based algorithm is described in Fig-
ure 2. The algorithm for prioritized sweeping is similar
to the general model-based case. The key di�erence is
that priorities are used to determine which simulations
are performed. After each change to the model or the
value function, update-priorities is called. The state-
action pair with the highest priority is chosen to be
simulated at each iteration of the \while time is avail-
able" loop.

3. Results

The vehicle control algorithms were tested in the
BAT project simulator which is a two-dimensional mi-
croscopic highway traÆc simulator. Individual vehi-
cles are simulated traveling along networks that may
include highways with varying numbers of lanes as
well as highways interconnected with onramps and of-
framps. The simulation proceeds according to a sim-

procedure DoModelBasedRL ()
(1) loop
(2) perform an action a in the

environment from state s,
end up in state s0

(3) update the model;
let ��M be the change in the model

(4) perform value-propagation for x = hs; ai,
let ��V be the change in the Q function

(5) while there is available computation time
(6) choose a state-action pair, xi

(7) perform value-propagation for xi,
update ��V

Figure 2. Model-based reinforcement learning algorithm

Figure 3. Two highway networks for training: a �gure-

eight network and a winding highway with a number of

tight curves

ulated clock. At every time step, each vehicle receives
sensor information about its environment and chooses
steering, throttle, and braking actions based on its
control strategy.

The controller controls the acceleration a and the
steering angle �. where W is the wheelbase or length
of the vehicle. In lane following, the object is to have
the vehicle to control the steering so that the vehi-
cle follows the center of a predetermined as closely
as possible. Speed and highway networks are varied.
The evaluation highway networks consisted of a �gure-
eight track, an oval, and a road with a variety of sharp
curves (see Figure 3).

The vehicle dynamics for the simple idealized case are:

_Va = a

_ =
Va sin�

W

where W is the wheelbase or the length of the vehicle
and is the change in the vehicle's heading. For this
model, one can derive near-optimal hand-coded con-

trollers. For a curve with a radius of curvature �, the
correct tire angle � = arcsin�W=� and a PD con-
troller can be used to correct the vehicle within the
lane. Maintaining the speed can be done by simply
setting a to zero. Tracking a vehicle is done by using
a PD controller where the gains have been �ne tuned
by hill climbing.

The results for lane following with simple dynamics are
in Figure 4. Model-free IBRL and prioritized sweeping
are compared to a derived controller for lane follow-
ing. The speeds were varied between 15 and 35 m=s.
Neither of the learned controllers exceeded the per-
formance of the analytically-derived control, but they
did both come rather close. Both the model-free and
model-based methods were able to successfully navi-
gate all of the tracks at all of the various speeds.

-1200

-1000

-800

-600

-400

-200

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
cc

 r
ew

ar
d

pe
r

tr
ia

l

Trial

Hand coded
Model-free

Prioritized sweeping

Figure 4. Lane following (Q, PS, Control-theoretic): This

�gure shows the results for lane following with simple ve-

hicle dynamics. The analytically-derived hand-coded con-

troller performance is -0.72 reward/trial, while the prior-

itized sweeping and model-free controllers reached -2 and

-8 respectively after 2500 trials. The learning controller

only controls the steering angle. Each controller was run

on three highway networks for a maximum of 200 seconds.

A more realistic set of vehicle dynamics is the com-
bined lateral and longitudinal model developed by
PATH researchers (Tomizuka et al., 1995; Hedrick
et al., 1993). It models the longitudinal dynamics of a
Lincoln Town Car and the lateral dynamics of a Toy-
ota Celica. This model is among the most accurate
vehicle models available, although even this incredi-
bly detailed system does not perfectly represent the
complexity of a real vehicle. For example, the model
assumes that there is no slip at the wheels and that
there are no time delays in combustion dynamics. Nev-
ertheless, the system is decidedly diÆcult to control.
As shown in Table 1, the learned actions do signif-
icantly outperform a painstakingly developed hand-
coded policy. Moreover, the learned controllers were

able to achieve greater functionality. On the test track
with curves, the hand-coded controller was not able to
navigate the entire route at 45m=s without driving o�
the road. The learned controller was able to make it
through the entire track. The same structure was used
for models as in the simple dynamics. In the case of
the complex dynamics, it was not possible to learn the
model exactly since it no longer exactly �t the true sys-
tem, but using the mean of the various state variables
from the model was still quite e�ective.

Algorithm Reward/Trial Trials required

Hand-coded -126.44 n/a

Prioritized Sweeping -9.24 21k

Table 1. Lane following performance with complex vehicle

dynamics (PS, Hand-coded). The hand-coded controller

always failed at high speeds on the curves highway.

4. Conclusion

Motivated by the need to learn controllers for au-
tonomous vehicles, we found that some of the crucial
design decisions and contributions involved choosing
the proper representation. Using instance-based func-
tion approximation and a structured model yielded
very good results. We were able to learn controllers for
a number of driving tasks and other control domains
achieving better performance in many cases than the
explicit hand-crafted controllers.

For the details of these algorithms and their re-
sults please see the �rst author's doctoral disserta-
tion (Forbes, 2002).

5. Acknowledgments

This work was supported in part by the following two
grants: ONRMURI N00014-00-1-0637\Decision Mak-
ing Under Uncertainty" and NSF ECS-9873474 \Com-
plex Motor Learning." The second author was sup-
ported by the generosity of the Fannie and John Hertz
Foundation. We would also like to thank Stuart Rus-
sell, Ron Parr, Dirk Ormoneit, and Chris Atkeson for
their ideas and useful conversations on this work.

References

Andre, D., Friedman, N., & Parr, R. (1997). Gen-
eralized prioritized sweeping. Advances in Neural

Information Processing Systems.

Bradshaw, G. (1985). Learning to recognize speech

sounds: A theory and model. Doctoral dissertation,
Carnegie Mellon University.

Forbes, J., & Andre, D. (2000a). Practical reinforce-

ment learning in continuous domains (Technical Re-
port UCB/CSD-00-1109). UC Berkeley Computer
Science Division, Berkeley, California.

Forbes, J., & Andre, D. (2000b). Real-time reinforce-
ment learning in continuous domains. AAAI Spring
Symposium on Real-Time Autonomous Systems.

Forbes, J. R. N. (2002). Reinforcement learning for

vehicle control. Doctoral dissertation, University of
California, Berkeley.

Gordon, G. J. (1995). Stable function approxima-
tion in dynamic programming. Twelth International

Conference on Machine Learning (pp. 290{299). San
Francisco: Morgan Kaufmann.

Hedrick, J., McMahon, D., & Swaroop, D. (1993). Ve-
hicle modeling and control for automated highway

systems (Technical Report UCB-ITS-PRR-93-24).
California PATH/UC Berkeley.

Kibler, D., & Aha, D. W. (1988). Comparing instance-
averaging with instance-�ltering algorithms. Third

European Working Session on Learning (pp. 63{80).
Glasgow, Scotland: Pitman.

Kohonen, T. (1990). The self-organizing map. Pro-

ceedings of the IEEE, 78, 1464{1480.

Kumar, P., & Varaiya, P. (1986). Stochastic systems:

Estimation, identi�cation, and adaptive control. En-
glewood Cli�s, New Jersey: Prentice-Hall.

Mataric, M. J. (1991). A comparative analysis of

reinforcement learning methods (Technical Report
1322). M.I.T. AI Lab.

Moore, A. W. (1991). An introductory tutorial on

kd-trees (Technical Report 209). Computer Labora-
tory, University of Cambridge. Extract from A. W.
Moore's Phd. thesis: EÆcient Memory-based Learn-
ing for Robot Control.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized
sweeping{reinforcement learning with less data and
less time. Machine Learning, 13, 103{130.

Moore, A. W., Atkeson, C. G., & Schaal, S. A. (1997).
Locally weighted learning for control. AI Review,
11, 75{113.

Ormoneit, D., & Sen, S. (1999). Kernel-based rein-

forcement learning (Technical Report 1999-8). De-
partment of Statistics, Stanford University.

Russell, S. J., Binder, J., & Koller, D. (1994). Adaptive
probablistic networks (Technical Report UCB/CSD-
94-824). Computer Science Division, University of
California, Berkeley.

Salzberg, S. (1991). A nearest hyperrectangle learning
method. Machine Learning, 6, 251{276.

Santamaria, J. C., Sutton, R. C., & Ram, A. (1998).
Experiments with reinforcement learning in prob-
lems with continuous state and action spaces. Adap-
tive Behavior, 6.

Smart, W. D., & Kaelbling, L. P. (2000). Practical
reinforcement learning in continuous spaces. Seven-
teenth International Conference on Machine Learn-

ing.

Sutton, R. S. (1990). First results with DYNA, an
integrated architecture for learning, planning, and
reacting. Proceedings of the Eighth National Confer-
ence on Arti�cial Intelligence (AAAI-90). Boston,
Massachusetts: MIT Press.

Tomizuka, M., Hedrick, J., & Pham, H. (1995). Inte-
grated manuevering control for automated highway

system based on a magnetic reference/sensing sys-

tem (Technical Report UCB-ITS-PRR-95-12). Cal-
ifornia PATH/UC Berkeley.

Watkins, C. J. C. H. (1989). Learning from delayed re-

wards. Doctoral dissertation, King's College, Cam-
bridge, UK.

