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Abstract

In this paper, we consider the problem of designing incentive compatible auctions for multiple (ho-
mogeneous) units of a good, when bidders have private valuations and private budget constraints. When
only the valuations are private and the budgets are public, Dobzinski et al [6] show that the adaptive
clinching auction is the unique incentive-compatible auction achieving Pareto-optimality. They further
show that this auction is not truthful with private budgets, so that there is no deterministic Pareto-optimal
auction with private budgets. Our main contribution is to show the following Budget Monotonicity prop-
erty of this auction: When there is only one infinitely divisible good, a bidder cannot improve her utility
by reporting a budget smaller than the truth. This implies that the adaptive clinching auction is incentive
compatible when over-reporting the budget is not possible (for instance, when funds must be shown up-
front). We can also make reporting larger budgets suboptimal with a small randomized modification to
the auction. In either case, this makes the modified auction Pareto-optimal with private budgets. We also
show that the Budget Monotonicity property does not hold for auctioning indivisible units of the good,
showing a sharp contrast between the divisible and indivisible cases.

The Budget Monotonicity property also implies other improved results in this context. For revenue
maximization, the same auction improves the best-known competitive ratio due to Abrams [1] by a factor
of 4, and asymptotically approaches the performance of the optimal single-price auction.

Finally, we consider the problem of revenue maximization (or social welfare) in a Bayesian setting.
We allow the bidders have public size constraints (on the amount of good they are willing to buy) in ad-
dition to private budget constraints. We show a simple poly-time computable 5.83-approximation to the
optimal Bayesian incentive compatible mechanism, that is implementable in dominant strategies. Our
technique again crucially needs the ability to prevent bidders from over-reporting budgets via random-
ization. We show the approximation result via designing a rounding scheme for an LP relaxation of the
problem (related to Myerson’s LP), which may be of independent interest.
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1 Introduction

In this paper, we consider the problem of designing incentive compatible auctions for multiple homogeneous
units of a good. This problem has received significant attention in the non-Bayesian setting starting with the
work of Goldberg et al [7]. We focus on the scenario where bidders not only have a private valuation per
unit of the good, but also a private budget, that is the total amount of money they are able to pay. The budget
constraint is hard; a bidder gets a utility of negative infinity if she has to pay a total price larger than her
budget. In this model, the natural problems to consider are maximizing social welfare and the auctioneer’s
revenue. Both these aspects have been considered in previous work [1, 3, 6] in an adversarial setting.

The key difficulty with budget constraints is that the utilities are no longer quasi-linear. This makes
mechanisms such as VCG no longer applicable. Based on the random partitioning framework of Goldberg
et al [7], Borgs et al [3] present a truthful auction whose revenue is asymptotically optimal compared to that
of the optimal single-price mechanism. Using the same framework, Abrams [1] gives a different auction
that improves this result for a range of parameters (but is not asymptotically optimal).

More recently, Dobzinski et al [6] presented the adaptive clinching auction based on the clinching
auction of Ausubel [2]. This is an ascending price auction where each bidder maintains a demand, which is
the amount of item she is willing to buy given the current price and her residual budget. Initially, the demand
is larger than supply. If the total demand of the remaining bidders is less than the supply of items, the bidder
clinches the difference at the current price. The bidder drops out of the auction if the price exceeds her
valuation, and the auction stops when the total demand falls below total supply. Though the auction rules
seem simple, it still defines a differential process for auctioning an infinitely divisible good with no closed
form solution, except in special cases.

It is not difficult to show that this auction is incentive compatible when the budget constraints are public
knowledge. Dobzinski et al [6] show that in the public budget setting, it is the only such auction that is
Pareto-optimal (PO), meaning that no pair of agents (including the auctioneer) can simultaneously improve
their utilities by trading with each other1. They further show that with public budgets, this auction has better
revenue properties than the auctions in [1] and [3]: It improves the former by a factor of 4, and like the
latter, is asymptotically optimal. However, their main result is negative: This auction is not truthful when
the budgets are private knowledge, so that there is no Pareto-optimal truthful auction in this case.

Our Results. The negative result in [6] holds for any auction with private budgets that needs to satisfy three
properties ex-post2: Voluntary participation (VP), Incentive compatibility (IC), and No positive transfers
(NPT). These properties are standard, and defined in Section 2. The main result in this paper is to show
that there is indeed a Pareto-optimal randomized mechanism with private budgets. Here, the prices and
quantities are random variables; the (IC) and (VP) properties are satisfied in expectation over these random
variables; and (NPT) and (PO) are satisfied ex-post3. The key to showing this result is to develop a novel
structural characterization of the adaptive clinching auction in the case of one infinitely divisible good.

Budget Monotonicity and Randomization. We show an intuitive property of the adaptive clinching auction
in the case of divisible goods: A bidder cannot gain utility by reporting budget lower than the truth. We
term this property Budget Monotonicity. Though this property seems simple, there is no reason to assume
it holds: In fact, this property is false for the adaptive clinching auction in the case of indivisible units
(Theorem 2.2).The major difficulty in the proof is that the adaptive clinching auction continuously makes
allocations at different prices, so that the utility is a complicated function of all the budgets and valuations.

1In this setting, no truthful auction can maximize social welfare [3], hence the focus on Pareto-optimality.
2In this paper, ex-post will mean the property holds for randomized mechanisms regardless of the outcome of randomization.
3In the case of one infinitely divisible good, the auction also needs to be anonymous for the negative result in [6] to hold,

meaning that the auction is symmetric for bidders with identical types; our randomization can also easily be made anonymous.
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In fact, an analysis of this auction is left as an open question4 in [6]. We show this result by carefully
coupling the behavior of two auctions that differ only in the reported budget of one bidder. The proof also
establishes several structural results about this auction that are of independent interest.

Budget Monotonicity for an infinitely divisible good implies Pareto-optimality fairly directly, since all
we need to prevent is a bidder over-reporting her budget. We can do this in several ways, the simplest being
randomization. In the Randomized Extraction Scheme (see Section 2), the mechanism simply extracts
the whole budget or zero price so that the expected price extracted is equal to the price charged by the
deterministic auction. Therefore, if a bidder gets nonzero allocation by over-reporting her budget, then with
non-zero probability, she pays her reported budget and her expected utility is −∞. This scheme can be
applied to any deterministic auction to prevent reporting larger budgets than the truth. We show in Section 2
that the randomized version preserves Pareto-optimality ex-post, and maintains (IC) and (VP) in expectation
if the deterministic auction was monotone (and charges non-zero price for non-zero allocations).

The monotonicity result for the adaptive clinching auction holds only for one infinitely divisible good.
In the case of finitely many indivisible units, we simply run the adaptive clinching auction assuming one
infinitely divisible good, and perform a randomized allocation in the end (Corollary 2.5; also see [1, 3]).
The resulting auction is (VP) and (IC) in expectation, and is also Pareto-optimal.

Though our mechanism is randomized, the randomness introduced in the price is quite small: It affects
the price charged to only one bidder (Lemma 3.6). However, for the randomization to be (IC), we crucially
need the assumption that the utility of a bidder for paying more than her true budget is −∞. For smoother
utility functions, the Budget Monotonicity property can be used in other ways to make the deterministic
auction itself truthful and Pareto-optimal: For instance, a standard assumption in spectrum auctions [4]
is that the bidder can be forced to show “proof of funds” for her reported budget (for instance, a bank
statement), and this prevents her from over-reporting her budget regardless of her utility function.

Revenue Properties. As another consequence of Budget Monotonicity, the improved revenue properties of
the adaptive clinching auction over the auctions in [1, 3] in the case of public budgets (shown in [6]) carry
over to the randomized version of the auction even with private budgets, and hence, this auction improves
the competitive ratio in [1] by a factor of 4, and like the auction in [3], is asymptotically optimal.

Bayesian Setting. In this setting, the auctioneer maintains independent discrete distributions on the possible
valuations and budgets for each bidder, and is interested in designing a poly-time computable mechanism
for optimizing expected revenue (resp. social welfare). In this setting, we allow the bidders to have a public
size constraint on the amount of item they can buy in addition to a private valuation and private budget.

Variants of this model have been considered before [11, 12, 9, 10, 5, 8], and the optimal solution can
indeed be encoded as an (exponential size) linear program. The key challenge now becomes designing
polynomial time computable mechanisms. It is well-known [11, 12] that the optimal mechanism has a
simple structure related to the VCG mechanism in the case of i.i.d. distributions and no size constraints. It is
unlikely that such a structure holds in the general setting, and we instead consider designing approximately
optimal mechanisms. The budget constraints however make a poly-time relaxation of the problem non-
linear. However, if we only encode that utility decreases for under-reporting budgets, the program becomes
linear; we again use randomization to prevent over-reporting budgets. Using this, we show a poly-size
linear program relaxation with a rounding scheme that yields a 5.83 approximation to the optimal Bayesian
IC mechanism when the type space is discrete; this mechanism is implementable in dominant strategies.
This rounding technique may be applicable in other related scenarios.

Organization of the Paper. In Section 2, we define the notions of truthfulness and Budget Monotonicity.
In Section 3, we describe the adaptive clinching auction and show some basic properties in the infinitely

4Since the focus of [6] is to prove uniqueness and impossibility, they mainly analyze the auction for two bidders with carefully
chosen valuations and budgets. In contrast, we need to develop characterizations for the general case.
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divisible good case. In Section 4, we sketch the proof of Budget Monotonicity of this auction, which
implies that the randomized version satisfies Pareto-optimality with private budgets. The proof of this claim
very technical, and is hence presented in its entirety in Appendix A. In Section 5, we consider the Bayesian
setting and show an LP rounding scheme that achieves a 5.83 approximation to the expected revenue (resp.
social welfare) even when bidders have public size constraints.

2 Preliminaries

We will mainly consider the case when there is one unit of infinitely divisible good and n bidders. Bidder
i has a private valuation ηi per unit quantity, and private budget βi. Suppose bidder i reports valuation and
budget (vi, Bi). The auction is a (randomized) mechanism that (probabilistically) maps the (~v, ~B) into a
quantity Xi the bidder obtains and a total price Pi the bidder pays; note that these quantities are allowed to
be random variables in this paper. Since there is one unit of the good, we have

∑
iXi ≤ 1.

The only difference in the case of auctioning m indivisible copies of the good is that in this case,
Xi ∈ {0, 1, 2, . . . ,m} and

∑
iXi = m. (The infinitely divisible good case is the limit when m → ∞.) In

the subsequent discussion we will assume one infinitely divisible good unless otherwise stated.
Let v−i, B−i denote the reported valuations and budgets of bidders other than i.
Bidder i has the following utility function: If Pi > βi, then his utility is −∞: this corresponds to the

total price exceeding his budget. If Pi ≤ βi, then his utility is ui = ηiXi − Pi.
The goal is to design a randomized auction that satisfies the following four properties. Note that in the

(VP) and (IC) conditions, the expectation is over the randomness introduced by the mechanism.

Voluntary Participation (VP): If vi = ηi and Bi = βi, then regardless of v−i, B−i, we have E[ui] ≥ 0.

Incentive Compatibility (IC): Regardless of v−i, B−i, E[ui] is maximized when vi = ηi and Bi = βi.

No Positive Transfers (NPT): Regardless of ~v, ~B, for any bidder i, we have Pi ≥ 0.

Pareto-optimality (PO): We must have (i)
∑

iXi = 1, i.e., the good is completely sold; and (ii) If Xi > 0
and vj > vi, then Pj = Bj , i.e., if a bidder gets non-zero quantity then all bidders with higher
valuations have exhausted their budgets. This property holds ex-post (regardless of randomization).

In the case of m indivisible units, the only difference is in the (PO) condition. This gets modified as:∑
iXi = m; further, if Xi > 0 and vj > vi, then vi > Bj − Pj . In both cases, this corresponds to the fact

that no pair of agents can improve their utility by trading.

The main focus of this paper is to understand the behavior of the adaptive clinching auction, which is
described in Section 3. For a more detailed description (especially for the indivisible units case), please see
Dobzinski et al [6]. Their main result is the following:

Theorem 2.1 (Dobzinski et al [6]). The adaptive clinching auction satisfies (VP), (NPT), and (PO) with
private budgets and valuations. When the budgets are public knowledge, the auction also satisfies (IC), and
it is the unique auction satisfying (VP), (NPT), (PO), and (IC) ex-post. Furthermore, there is no auction
satisfying these four properties ex-post when the budgets are private.

Our main goal is to show several structural results about this auction, which will culminate in showing
that there is indeed a randomized mechanism that is (VP) and (IC) in expectation, and also satisfies (NPT)
and Pareto-optimality ex-post (regardless of the outcome of randomization), even with private budgets.
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2.1 Budget Monotonicity and its Consequences

We will show that the adaptive clincing auction with one infinitely divisible good satsifies Budget Mono-
tonicity, which states that a bidder cannot gain by reporting a lower budget.

Definition 1. A deterministic auction is Budget Monotone if the following conditions hold for every bidder
i regardless of v−i, B−i. For reported budget Bi ∈ [0, βi], where βi is the true budget:

1. The bidder always maximizes utility by reporting vi = ηi, where ηi is the true valuation.

2. When vi = ηi, the utility of the bidder is monotonically non-decreasing in Bi ∈ [0, βi].

The more interesting condition in the above definition is the second one (the first one following from [6]).
Though Budget Monotonicity is an intuitive property, there is no guarantee that it is satisfied even by rea-
sonable auctions. In fact, quite surprisingly, it does not always hold for the adaptive clinching auction!

Theorem 2.2. In the case of m = 4 indivisible units of a good and n = 3 bidders, the adaptive clinching
auction described in [6] does not satisfy Budget Monotonicity.

Proof. Consider n = 3 bidders with the following (Bi, vi) values: (B1, v1) = (6, 3), (B2, v2) = (5, 3), and
(B3, v3) = (4, 3), and suppose these are the true budgets and valuations. It is easy to show that bidders 1
and 2 clinch one unit each at price 2. Bidder 3 obtains zero utility since she can only clinch when price is
3. However, if bidder 3 reports (3, 3), she clinches one unit at price 17/6 and obtains strictly positive utility.
Therefore, the auction is not monotone. The details are easy to fill in using the description in [6].

In sharp contrast, our main result is to show that the adaptive clinching auction indeed satisfies the
Budget Monotonicity property when there is one infinitely divisible good (which is the limiting case of m
indivisible goods). In particular, our main theorem is the following:

Theorem 2.3 (Budget Monotonicity Theorem). The adaptive clinching auction satisfies Budget Mono-
tonicity for one infinitely divisible good.

The key intuitive difference between the divisible and indivisible cases is that in the former case, there
is a nice characterization of bidders receiving non-zero allocations as those with highest remaining budgets
(refer Lemma 3.3). Budget Monotonicity is equivalent to saying that a bidder cannot gain by under-reporting
her budget, i.e., reporting Bi < βi. We now show a simple way to remove the incentive to report Bi > βi.

Randomized Extraction: We run the deterministic adaptive clinching auction as in [6]. The allocation
remains the same. However, the price extraction scheme is randomized as follows. If a bidder reports budget
Bi and is supposed to pay Pi ∈ [0, Bi] according to the deterministic mechanism, then with probability
Pi/Bi, we extract her reported budget Bi, and with probability (1− Pi/Bi), we charge her zero price. Note
that this randomization can be applied to any deterministic auction where Xi > 0 implies Pi > 0; the
adaptive clinching auction [6] does satisfy this property. It is now easy to show:

Theorem 2.4. For the case of one infinitely divisible good, the randomized adaptive clinching auction
satisfies (NPT) always, (VP) and (IC) in expectation, and is Pareto-optimal ex-post.

Proof. Clearly, (NPT) is always satisfied. The expected payment after randomization is precisely Pi, which
preserves (VP). To see (PO), observe that if Pj = Bj before the randomization, the same is true after the
randomization. To show (IC), note that the auction satisfies Budget Monotonicity by Theorem 2.3, so that
for any bidder i, we have vi = ηi and Bi ≥ βi. Furthermore, if bidder i reports a budget Bi > β and
recevies nonzero allocation, then the deterministic adaptive clinching auction charges her a price Pi > 0.
The randomized auction extracts Bi w.p. Pi/Bi > 0 and in this scenario, the utility of the bidder is −∞.
Therefore, the bidder will not report Bi > βi.
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If the allocations generated by the auction for the infinitely divisible case are treated as probabilities of
allocation instead (similar to [1, 3]), the same auction works for the case of indivisible units of the good.

Corollary 2.5. There is a randomized auction satisfying (NPT) always, (VP) and (IC) in expectation, and
is Pareto-optimal ex-post for m indivisible units of the good.

Proof. Run the randomized adaptive clinching auction assuming one infinitely divisible good, with the
valuations scaled up by factor of m. Modify the allocation step as follows. Suppose the auction should
allocate xi ∈ [0, 1] to bidder i. Choose bidder i with probability xi and allocate all m units to this bidder.
The resulting auction always satisfies (NPT). Also note that the expected utility of a bidder is the same as
the utility in the indivisible auction; further, the auction is (IC) by Theorem 2.4. To show (PO), note that
the items are completely allocated by the auction. Next, since the infinitely divisible auction satisfies (PO),
if the m units are allocated to bidder i, this bidder must have had Xi > 0 in the infinitely divisible auction,
so that for all j with vj > vi, we must have Pj = Bj , so that vi > Bj − Pj = 0. Therefore, the auction
satisfies (PO) regardless of the outcome of randomization.

3 The Adaptive Clinching Auction: Infinitely Divisible Case

We now describe the adaptive clinching auction in [6, 2] in the context of one infinitely divisible good, and
show in the next section that it satisfies Budget Monotonicity (Theorem 2.3).

Intuitively, the auction is an ascending price auction. As the price per unit quantity is raised, bidders
become inactive because the price has exceeded their valuation. For the remaining (active) bidders, the
demand is the amount they are willing to buy given their remaining budget and the current price. Similarly,
the supply is the amount of item remaining. For an active bidder, when the supply exceeds the total demand
of the other bidders, this bidder clinches the difference at the current price. Since the price is increased
continuously and the good is infinitely divisible, the auction defines a differential process.

We describe the clinching auction as a differential process indexed by time t, where the price charged
per unit quantity increases as time progresses, and the auction continuously allocates (part of) the item and
extracts budget. We note that the traditional method is to describe it as a process indexed by the price;
however, indexing by time lends itself to an easier analysis. After describing the auction, we present some
new observations that characterize its behavior; these will be useful in later sections.

Formally, let p(t) denote the price per unit quantity at time t ≥ 0. For bidder i, let xi(t) denote the
quantity of the item allocated so far to i, let Pi(t) denote the price extracted so far from i, and let bi(t)
denote the effective budget of the bidder (defined later). Let S(t) = 1−

∑
i xi(t) denote the supply of item

left with the auctioneer. Initially, p(0) = Pi(0) = xi(0) = 0, bi(0) = Bi, and S(0) = 1. In this section, we
will denote the derivative of function g(t) w.r.t. t as g′(t).

Denote the demand of the bidder as Di(t) = bi(t)
pi(t)

. If p(t) < vi, this represents the amount of the item
bidder i is willing to buy at price p(t). Let D−i(t) =

∑
j 6=iDj(t), i.e., the total demand excluding bidder i.

Invariants. Denote the stopping time of the auction by f . The adaptive clinching auction is defined by the
following invariants for all t < f :

Supply Invariant: For all bidders i, we have S(t) ≤ D−i(t) =
∑

j 6=iDj(t).

Clinching Invariant: x′i(t) > 0 iff both p(t) < vi (the bidder is active) and S(t) = D−i(t).

Budget Invariant: If p(t) < vi, bi(t) = Bi − Pi(t), the true residual budget of the bidder. If p(t) > vi,
bi(t) = 0. When p(t) = vi, bi(t) ∈ [0, Bi − Pi(t)], and though the demand Di(t) is well-defined, it
will not correspond to any “real” demand, since the bidder will drop out of the auction.
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We note that for all t < f , we have S′(t) = −
∑

i x
′
i(t). Furthermore, we also have x′i(t) = − b′i(t)

p(t) ,
since the bidder is being charged price p(t) per unit quantity. The only exception to these conditions is at
time f when the auction makes some one-shot allocations; we will define S(f) = limt→f S(t).

3.1 Auction

In view of the above invariants, we partition the bidders into the following groups.

Definition 2. Define active bidders as A(t) = {j|vj > p(t) and bi(t) > 0}; exiting bidders as E(t) =
{j|vj = p(t) and bi(t) > 0}; and clinching bidders as C(t) = {j|j ∈ A(t) and S(t) = D−i(t)}.

The adaptive clinching auction is now simple to describe, and is described in Figure 1. We specify it in
terms of the derivatives of the budget, allocation, and prices.

ADAPTIVE CLINCHING Auction

(I) (STOPPING CONDITIONa) If
∑

i∈A(t)Di(t) ≤ S(t) then:
At unit price p(t), preserving the budget constraints allocate:

1. Amount
∑

i∈A(t)Di(t) to bidders in A(t).
2. Amount S(t)−

∑
i∈A(t)Di(t) to bidders in E(t).

(II) else if E(t) = ∅ and A(t) 6= ∅ then:
1. p′(t) = 1;
2. For each i ∈ C(t) set: b′i(t) = −S(t); P ′i (t) = S(t); and x′i(t) = − b′i(t)

p(t) = S(t)
p(t) .

(III) else if E(t) 6= ∅ and A(t) 6= ∅:
1. p′(t) = 0.
2. For smallest indexb j ∈ E(t) set: b′j(t) = −1; and P ′j(t) = x′j(t) = 0.

3. For each i ∈ C(t) set: b′i(t) = −1; P ′j(t) = 1; and x′i(t) = − b′i(t)
p(t) = 1

p(t) .

aWe show in Lemma 3.4 that the stopping condition is well-defined.
bFix any ordering of bidders that is independent of the reported ~v and ~B.

Figure 1: The adaptive clinching auction for one infinitely divisible good.

The total allocation Xi and the total price Pi can easily be derived from the description of the auction;
we omit the details. Note that a bidder clinches items only when the allocation is made and he is in A(t).
Though the bidder may get some items in Step (I) when he is in E(t), we do not consider this clinching,
since the bidder gets utility zero from these items (assuming she reports the true valuation).

The key difference between the way we have described the auction and that in [6] is in Step (III). Here,
we have chosen to gradually reduce the budgets of the bidders in E(t), while if the auction were indexed
by price, this step would lead to one-shot allocations. Our method makes the supply S(t) and the effective
budgets bi(t) continuous functions. The equivalent formulation of Step (III) in terms of price follows from
maintaining the Supply Invariant and stopping condition of the auction (see also [6]), and is presented below.

Lemma 3.1. If t < f and i ∈ A(t), suppose
∑

j∈A(t),j 6=iDj(t) < S(t), then bidder i clinches S(t) −∑
j∈A(t),j 6=iDj(t) quantity at price p(t) in Step (III). When t = f and A(f) 6= ∅, bidder i ∈ A(f) clinches

a quantity at price p(f) that exhausts her remaining budget in Step (I).

The above lemma will be critically used in the proof of Budget Monotonicity later. The next theorem
simply re-states the positive result in Theorem 2.1.
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Theorem 3.2 (Dobzinski et al [6]). The adaptive clinching auction satisfies (NPT), (VP), (PO). Further-
more, for reported budget Bi ≤ βi where βi is the true budget, the bidder always maximizes utility by
reporting the true valuation, vi = ηi.

3.2 Properties

We will now show some properties of this auction that will be useful later.

Definition 3. Define bmax(t) = maxi∈A(t) bi(t). Recall that f as the stopping time of the auction.

We first show that the auction satisfies the invariants. The last two invariants are easy to check: Whenever
a bidder i clinches the item at price p(t) < vi, we have b′i(t) = −p(t)x′i(t) = −P ′i (t), so that bi(t) =
Bi − Pi(t). Further, note that if i ∈ E(t), the effective budget bi(t) of this bidder reduces, so if the price
increases beyond vi, the effective budget must be identically 0. Therefore, the budget invariant holds. The
clinching invariant holds trivially by the description of the auction.

The next result shows the supply invariant, and characterizes the set of bidders that are clinching at any
point in time, and a consequent stopping condition based on these bidders.

Lemma 3.3. The following hold for the adaptive clinching auction: (1) If C(t) 6= ∅, then C(t) = {j ∈
A(t)|bj(t) = bmax(t)}; (2) the supply invariant holds for all t < f ; and (3) when a bidder i drops from
C(t), the auction stops at that time.

Proof. First note that for t < f , the functions S(t) and D−i(t) for any i ∈ A(t) are continuous. At
t = 0, the former is smaller than the latter. If for all t < f , S(t) < D−i(t), then there is nothing to
prove. Suppose t < f be the first time instant when S(t) becomes equal to D−i(t). If i /∈ A(t), then∑

j∈A(t)Dj(t) ≤ D−i(t) = S(t), the auction necessarily stops at time t, that is, t = f , a contradiction.
Thus, bidder i ∈ A(t). Furthermore, i has the largest budget in the setA(t), since for all j 6= i, we must have
had D−j(t) ≥ D−i(t) = S(t) by the definition of time t. Therefore, bi(t) = bmax(t) Since D−i(t) = S(t),
we have i ∈ C(t). For all t′ < t, the set C(t) is empty by the clinching invariant. We now show that for all
subsequent t, as long as i has not dropped out, we have S′(t) = D′−i(t); bi(t) = bmax(t); and when i drops
out of the auction, the auction stops. This will show all parts of the lemma.

First note that ifC(t) is non-empty, it necessarily has the bidders with highest budget inA(t). Therefore,
if i ∈ C(t), then bi(t) is necessarily the same as bmax(t). To show i clinches continuously, we will show
S′(t) = D′−i(t) when i ∈ C(t), so that for all t as long as bidder i has not dropped out, S(t) = D−i(t), and
hence bidder i clinches continuously until she drops out.

Suppose i ∈ C(t) at some point t and p(t) < vi. We therefore must have bi(t) = bmax(t) and S(t) =
D−i(t). Note that S(t) decreases at the rate of precisely −

∑
j∈C(t) x

′
j(t) = c b

′
max(t)
p(t) if there are c clinching

bidders at time t.
There are two cases depending on whether E(t) = ∅ or not. If E(t) = ∅, then for all j ∈ C(t):

D′j(t) =
p(t)b′j(t)− bmax(t)p′(t)

p(t)2
= −S(t)

p(t)
− bmax(t)

p(t)2

Similarly, for j ∈ A(t) \ C(t), we have:

D′j(t) = − bj(t)
p(t)2

Note that S′(t) = c b
′
max(t)
p(t) = −cS(t)

p(t) . Since i ∈ C(t), we have:

d

dt
(D−i(t)) = −(c− 1)

S(t)
p(t)

− D−i(t)
p(t)

= −(c− 1)
S(t)
p(t)

− S(t)
p(t)

= −cS(t)
p(t)

= S′(t)
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Suppose now that E(t) 6= ∅ and A(t) 6= ∅. Note that b′k(t) = −1 for some k ∈ E(t). We have:
D′j(t) = 0 for j /∈ C(t) ∪ {k}. For j ∈ C(t) ∪ {k} we have:

D′j(t) =
p(t)b′j(t)− bmax(t)p′(t)

p(t)2
= − 1

p(t)

⇒ d

dt
(D−i(t)) = − c

p(t)
= −cb

′
max(t)
p(t)

= S′(t)

Therefore, S′(t) = D′−i(t) if i ∈ C(t), which shows bidder i clinches continuously unless bi(t) = 0 or
p(t) = vi. In both cases,

∑
j∈A(t)Dj(t) ≤ S(t) so that Step (I) kicks in and the auction stops.

The above characterization ofC(t) holds only for infinitely divisible goods, and is the key reason Budget
Monotonicity holds in this case and not in the case of indivisible units. Also note that the auction could stop
even if no bidders drop from C(t), but instead, some other set of bidders drop out; therefore, part (3) in the
above lemma is a sufficient but not necessary condition for stopping.

The above lemma establishes that for t < f , the function bmax(t) is continuous; further, the set C(t), if
non-empty, is composed of active bidders i ∈ A(t) with bi(t) = bmax(t). We now show that the stopping
condition (Step (I)) is well-defined, and relate the prices charged to the stopping condition.

Lemma 3.4. When the auction stops, the bidders inA(f)∪E(f) have sufficient budget to clinch the quantity
S(f) at price p(f).

Proof. By defintion of the stopping time, for time t approaching f from below, we have
∑

i∈A(t)Di(t) ≥
S(f). Note that A(f) ∪ E(f) ⊆ A(t). The lemma follows.

Lemma 3.5. If i /∈ A(t) ∪ E(t), then bi(t) = 0. If i ∈ A(t) \ C(t), then bi(t) = Bi. Furthermore, if
p(f) < vi, then Pi = Bi and bi(f) = 0.

The following lemma shows that the amount of randomness we need to add is small. In particular, we
need to randomize the price charged to at most one bidder.

Lemma 3.6. The allocations in Step (I) can be done in a fashion so that when the auction stops, there is at
most one bidder i with allocation Xi > 0 and price Pi < Bi.

Proof. At time f the only bidders who can have Pi ∈ (0, Bi) are bidders in E(f). As t approaches f from
below, suppose some bidder in C(t) dropped out causing the auction to stop. At time t, the supply invariant
holds from the perspective of this bidder who drops out, so that if this bidder is given lowest priority in
allocating the remaining supply, the supply exhausts the budget of all bidders except this bidder. If no
clinching bidder drops out or if C(t) = ∅, then all i ∈ E(f) had Xi = 0, so that the budget can be extracted
sequentially from bidders in E(f). This satisfies the lemma.

4 The Budget Monotonicity Theorem

In this section, we will provide a proof sketch of Theorem 2.3 for a canonical special case of budgets
and valuations; the entire proof is complicated with many cases, and is presented in Appendix A. The
observation that the bidder will always report vi = ηi follows from [6], re-stated in Theorem 3.2. We will
now show that when vi = ηi, a bidder does not gain utility by reporting budget Bi < βi, where βi is the true
budget. This will complete the proof of Theorem 2.3, and hence all the results in Section 2.1.
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4.1 Notation

We fix a specific bidder, say Alice, and show monotonicity of her utility with reported budget. We will use
sub-script ∗ to denote quantities for this bidder. Let b∗(t) and v∗ respectively denote her effective budget at
time t, and her valuation. Let P∗(t) represent the price extracted from her so far.

For convenience, we will use t− to denote the limit as x approaches time t from below. Since price
increases continuously with time, we can easily replace p(t−) by p(t) in any algebraic expression. How-
ever, if t is the first time instant when the price becomes equal to the valuation of some bidder, then
{i | vi > p(t)} ⊂ {i | vi > p(t−)}, and so on.

Formula for Utility. For times t′ ≤ t′′ ≤ f , let u(t′, t′′) denote the utility gained by Alice as time increased
from t′ to t′′. In the computation of utility, we can ignore the contribution from allocation made in Fig. 1
when Alice is in E(f), since the allocation is obtained at a price equal to her valuation. If x∗(t) is the
fraction of the item clinched by Alice until time t, then, for t′′ < f in Steps (II) and (III) of the auction:

u(t′, t′′) =
∫ t′′

t′
(v∗ − p(t))

d

dt
(x∗(t)) dt =

∫ t′′

t′
−(v∗ − p(t))

p(t)
d

dt
(b∗(t)) dt (1)

Moreover, when t′′ = f , the formula gets modified by the one-shot allocation in Step (I):

u(t′, f) =
(v∗ − p(f))

p(f)
b∗(f−) +

∫ f−

t′

(v∗ − p(t))
p(t)

d

dt
(b∗(t)) dt

Define u as the the total utility gained by Alice from the auction.

Two Auctions. We let Alice increase her reported budget by an amount ∆ > 0, the budgets and valuations
of other bidders and Alice’s valuation and true budget remaining the same. Suppose her original reported
budget is B0

∗ ≤ β∗, and her new reported budget is B1
∗ = B0

∗ + ∆ ≤ β∗. Denote the former auction (with
Alice’s reported budget being B0

∗) by LOW and the latter auction by HIGH. We will use superscripts 0 and
1 to denote quantities in these two auctions respectively. Note that for i 6= Alice, we have B1

i = B0
i .

We will show the following theorem (proved in Appendix A), which will imply the proof of Theorem 2.3.
This will also imply all results in Section 2.1.

Theorem 4.1. u0 ≤ u1, i.e., Alice’s utility from auction HIGH is at least her utility from auction LOW.

4.2 Proof Sketch

The proof of Theorem 4.1 is very technical and is hence relegated to Appendix A. We outline the basic
argument for a special case where the valuations are sufficiently large so that Alice clinches for a finite
amount of time in both the auctions. The following definition describes the times at which Alice starts and
stops clinching, and the time at which the clinching set becomes nonempty.

Definition 4. Let y0 (resp. y1) denote the first time instant at which some bidder enters the clinching set in
auction LOW (resp. HIGH), that is, C0(t) (resp. C1(t)) becomes nonempty. Similarly, define q0 (resp. q1)
to be the first time when Alice enters the clinching set in auction LOW (resp. HIGH).

Simplifying Assumptions. The valuations of the bidders are sufficiently large so that Alice clinches in both
auctions, i.e., y0 ≤ q0 < f0 and y1 ≤ q1 < f1. Alice has the minimum valuation amongst all the bidders,
so that no other bidder drops out before Alice, and by Lemma 3.3, the auction stops when Alice drops out,
so that f0 = f1 = f and p(f) = v∗. Moreover, the highest budgeted bidder (say bidder 1) has larger budget
than Alice in both the auctions LOW and HIGH, that is, B1 > B1

∗ = B0
∗ + ∆.
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We now track the two auctions simultaneously as time increases from zero. First note that since Step
(III) in Figure 1 is never executed, and price increases at rate 1 in Step (II), as long as both auctions run, the
prices in the two auctions are coupled as time progresses, and further, the set A(t) is the set of all bidders.
Therefore, we can use price and time interchangeably. Since Alice cannot gain any utility after dropping
out, we have the following for the utilities of Alice in either auction: u0 = u0(q0, f−) and u1 = u1(q1, f−).
The main ingredient in the proof is to show the following relation, which implies that though LOW starts
clinching before HIGH, Alice starts clinching in HIGH earlier than when she starts clinching in LOW:

Lemma 4.2. y0 < y1 ≤ q1 ≤ q0 < f .

Proof. First note that since bidder 1 has the maximum initial budgets in both the auctions, by Lemma 3.3,
it must be the case that bidder 1 starts clinching in LOW at time y0, and in HIGH at time y1. Beyond time
y0 in LOW, the quantity b0max(t) decreases with time at rate equal to the supply, S0(t). Since S0(t) ≤ 1, the
rate of decrease is at most 1, which easily implies:

b0max(t) ≥ b0max(y0) + (y0 − t) (2)

Next note that b0max(y0) = B1 > B1
∗ = B0

∗ + ∆. Combining the above relations, we have b0max(y0 +
∆) > B0

∗ and hence, by the Clinching Invariant, Alice is not clinching at time y0 + ∆, so that by definition,
q0 > y0+∆. It is straightforward to see that y1 = y0+∆, since the total of the budgets of bidders 2, 3, . . . , n
differs by exactly ∆, and hence the Clinching Invariant kicks in ∆ time later. Therefore, q0 > y0 + ∆ = y1.

We will next show that q1 ∈ [y1, q0]. Note that both auctions are clinching beyond y1. Using Equation
(2) at t = y1, we must have B1 = b1max(y1) = b0max(y0) ≤ b0max(y1) + ∆. Next, we use the observation
(Lemma 3.3) that the clinching setsC(t) in the two auctions are related to the value bmax(t), which decreases
at rate S(t). The clinching set if non-empty is precisely {i|bi(t) = bmax(t)}. Therefore the auction with
the larger bmax(t) has a smaller clinching set. Using this, we show that in the auction with larger bmax(t),
this value decreases at a faster rate. Specifically, if b1max(t) ≥ b0max(t) for t ≥ y1, then for all bidders i,
b1i (t) ≥ b0i (t), and hence, the demands are larger in auction HIGH. By the Clinching Invariant, this implies
the supply S(t) is larger in auction HIGH, and hence, the rate of decrease of bmax(t) is larger.

b1max(t) ≥ b0max(t) ⇒ d

dt

(
b1max(t)

)
≤ d

dt

(
b0max(t)

)
≤ 0 ∀ t ≥ y1

Since b1max(y1) ≤ b0max(y1) + ∆, we must have for all t < f : b1max(t) ≤ b0max(t) + ∆. Specifically,
b1max(q0) ≤ b0max(q0) + ∆ = B0

∗ + ∆ = B1
∗ . Thus, q1 ≤ q0, which completes the proof.

This shows Alice is clinching in both auctions beyond q0, which helps us relate her utilities. Observe by
Eq. (1) that the utilities are related to the rate of decrease of bmax(t). Using a similar argument to the above:

b1max(t) ≥ b0max(t) ⇔ d

dt
b1max(t) ≤ d

dt
b0max(t) ≤ 0 ∀t ≥ q0

We consider two cases. First, if b1max(q0) ≥ b0max(q0), then we have d
dt

(
b1max(t)

)
≤ d

dt

(
b0max(t)

)
, and

b1max(t) ≥ b0max(t) for all t ≥ q0. Applying Equation 1, we have:

u1 ≥
∫ f−

q0
−(v∗ − p(t))

p(t)
d

dt

(
b1max(t)

)
≥
∫ f−

q0
−(v∗ − p(t))

p(t)
d

dt

(
b0max(t)

)
= u0

If b1max(q0) < b0max(q0), then we need to take into account the utility gained by Alice in HIGH during the
time interval q1 ≤ t ≤ q0 to complete the proof; details are in Appendix A.

The reason the general case is complicated is that we need to take care of two tricky issues: (1) One of
the auctions can stop due to bidders dropping out. We need to account for this event in several of the proofs.
(2) If q0 = f0, then Alice obtains only a one-shot allocation in Step (I) of the auction. In this case, we have
an explicit formula for the utility of Alice in auction LOW, and we essentially argue that the auction HIGH

derives at least that much utility at price p(q0). This shows Theorem 4.1 already holds in this case.
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5 Bayesian Setting and Size Constraints

We now consider the case where the bidders have a public size constraint on the amount of item they want
to buy in addition to a private valuation and private budget. In this setting, we consider optimizing social
welfare and revenue. Performing this optimization in the adversarial setting is difficult: For instance, it is no
longer true that the optimal single price auction yields a constant factor approximation to the revenue [7];
and further, the adaptive clinching auction could in fact yield zero revenue if the sum of the size constraints
is less than one. Instead, we consider the Bayesian setting and assume the auctioneer maintains independent
discrete distributions on the possible valuations and budgets for each bidder, and is interested in designing a
(randomized) mechanism for optimizing the expected revenue (respectively social welfare).

Variants of this model have been considered before [11, 12, 9, 10, 5, 8], and the optimal solution can
indeed be encoded as an (exponential size) linear program. The key challenge now becomes designing
polynomial time computable mechanisms. It is well-known [11, 12] that the optimal mechanism has a
simple structure related to the VCG mechanism in the case of i.i.d. distributions and no size constraints. It is
unlikely that such a structure holds in the general setting, and we instead consider designing approximately
optimal mechanisms. The budget constraints however make a poly-time relaxation of the problem non-
linear. However, if we only encode that utility decreases for under-reporting budgets, the program becomes
linear; we again use randomization to prevent over-reporting budgets. Using this, we show a poly-size
linear program relaxation with a rounding scheme that yields a 5.83 approximation to the optimal Bayesian
IC mechanism when the type space is discrete; this mechanism is implementable in dominant strategies.
This rounding technique may be applicable in other related scenarios.

We consider mechanisms that are implementable in dominant strategies, meaning that the bidders may
or may not be aware of these densities, and are simply interested in maximizing utility, where the utility is
in expectation over the randomness introduced by the mechanism. Note that while the auctioneer optimizes
over the densities, the bidders simply optimize over the randomness introduced by the mechanism and not
over the densities themselves.

Problem Statement. Formally, there are n bidders, and one unit of an infinitely divisible good. Bidder i has
private valuation vi per unit for the good, which can take on values 0 = s0 ≤ s1 < s2 < · · · < sK . Further,
the bidder has a private budget bi and the budgets can take on values 0 = β0 ≤ β1 < β2 < · · · < βM . The
bidder is interested in acquiring a maximum κi amount of the item, and this value is public knowledge. The
auctioneer maintains an independent discrete distribution over possible (valuation, budget) pairs of bidder
i. Let fikm = Pr[vi = sk and bi = βm]. The type space of a bidder is discrete and we will be interested in
mechanisms that can be computed in time polynomial in the input size, i.e., in the quantities n,K,M .

For reported bid vector ~v,~b, the auctioneer computes allocations xi(~v,~b) and prices Pi(~v,~b) so that
the resulting auction satisfies (VP), (NPT), and (IC). Since we will use randomness to force a bidder to
not over-report the budget, these properties will be in expectation over the randomness introduced by the
auction. In addition, the allocation satisfies the size constraints: xi(~v,~b) ≤ κi. Subject to these constraints,
the auctioneer is interested in maximizing either: (1) Revenue, E[

∑
i Pi(~v,~b)], where the expectation is

over the distributions fikm from which the ~v,~b are drawn; or (2) Social welfare, E[
∑

i vixi(~v,~b)], where the
expectation is as before.

Preventing Over-reporting Budgets. We will again construct a deterministic auction that assumes bidders
cannot over-report budgets, and introduce randomness so that (VP), (NPT), and (IC) hold in expectation
over the randomness introduced. Since we can no longer guarantee that non-zero allocation implies non-
zero price, the randomization is slightly different from the Randomized Extraction Scheme: Suppose the
deterministic auction makes non-zero allocation Xi and charges price Pi (which could be zero). Then,
extract price Pi initially; then, with some probability δ ∈ (0, 1), extract additional price Bi − Pi, and
independently with probability δ, give the bidder amount Bi − Pi. This makes the expected price charged
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exactly Pi; however, since there is a non-zero probability of extracting Bi, this prevents the bidder from
reporting Bi larger than the true budget constraint as this would make the expected utility −∞. This also
preserves (VP), (IC), and (NPT) in expectation over the randomness. We term this the THREAT; the key
difference from the randomized extraction scheme is that the THREAT preserves (NPT) only in expectation.

Therefore, we can now restrict the bidder to not over-report her budget constraint and consider deter-
ministic mechanisms that are ex-post (IC) subject to this restriction. The optimal mechanism maximizing
expected revenue (resp. socially welfare) and satisfying the above constraints can be encoded as an LP of
exponential size. We note that the optimal solution to the restricted mechanism design problem is also an
upper bound on the revenue (resp. social welfare) that can be obtained for mechanisms that do not explicitly
restrict bidders to not over-report budgets.

We now show a 5.83-approximation mechanism whose computation time is polynomial in the input size,
i.e., in the quantities n,K,M . In the rest of the discussion, we focus on revenue maximization; the results
for social welfare are almost identical to derive.

5.1 Linear Programming Formulation

Let xikm = E
~v−i,~b−i

[xi(sk, bm, ~v−i,~b−i)], and let Pikm = E
~v−i,~b−i

[Pi(sk, bm, ~v−i,~b−i)]. These are respec-
tively the expected allocation and price charged for bidder i if she reports (sk, bm), where the expectation is
over the values revealed by the other bidders according to the distributions fj , j 6= i. Consider the following
linear program, essentially due to Myerson [11].

Maximize
∑
i,k,m

fikmPikm

∑
i,k,m fikmxikm ≤ 1
skxikm − Pikm ≥ skxilt − Pilt ∀i, k, l, and ∀t < m
skxikm − Pikm ≥ 0 ∀i, k,m

Pikm ∈ [0, bm] ∀i, k,m
xikm ∈ [0, κi] ∀i, k,m

We note that the above program linearizes the utility constraint by only encoding that the utility of
under-reporting the budget is at most that of reporting the true budget. (The auction will finally introduce
the THREAT to prevent lying in the other direction.) Attempting to encode lying in both directions in the
above program (as done by Pai and Vohra [12]) makes it non-linear.

Lemma 5.1. The truthful deterministic auction maximizing revenue is feasible for the above constraints.
Therefore, the LP value is an upper bound on the expected revenue

Proof. Consider the optimal truthful auction. Since (VP), (NPT), (IC), and the budget and size constraints
hold ex-post, they hold in expectation over any independent densities fikm. The first, third, fourth, and
fifth constraint simply encode feasibility and (VP). The second constraint maintains (IC), since otherwise, a
bidder gains in utility by lying either on her valuation, or downward on her budget. Therefore, the optimal
deterministic auction is feasible for the constraints of the LP.

5.2 The Auction

The first step is to solve the linear program, which can be done in time polynomial in n,K,M . The linear
program does not directly yield a feasible auction. Consider any realization ~v,~b of the bids where bidder i
reports (ski

, bmi). The linear program indicates that xikimi
amount of the item should be alloted to agent

i. However, it can happen that
∑

i xikimi
> 1 in this realization. Note that the LP only enforces the
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constraint
∑

i xikimi
≤ 1 in expectation over the reported ~v,~b, where the expectation is over the densities

fikm; enforcing it for all ~v,~b would need exponentially many variables and constraints. We note that in the
absence of budget constraints or in the presence of i.i.d. distributions with no size constraints, the optimal
solution to the above LP has a very simple structure [11, 12] related to the VCG mechanism. It is not clear
if the structure holds in the presence of budget and size constraints.

We now convert the LP solution into a feasible mechanism by losing a factor 5.83 in the worst case. For
any α > 1 consider the following mechanism:

1. Scale down all variables in the LP by a factor of α. Let x̂ikm = xikm
α and P̂ikm = Pikm

α .

2. Consider the bidders in a fixed but arbitrary order 1, 2, 3, . . . , n. Suppose bidder i reports (ski
, bmi):

3. Let zi = 1−
∑

j<i x̃j . If zi < 1
α then allocate 0 and charge 0 to bidder i; if zi ≥ 1

α then:

(a) Allocate x̃i = x̂ikimi
units to bidder i.

(b) Charge price P̃i = P̂ikimi
.

Theorem 5.2. Let yikm and qikm denote the expected allocation and price in the above auction when agent
i bids (sk, bm), where the expectation is over the densities fjkm for j 6= i. We have the following:

1. x̃i ≤ xikm ≤ κi; P̃i ≤ Pikm ≤ bm; and
∑

i x̃i ≤ 1.

2. yikm ≥ xikm α−2
α(α−1) and qikm ≥ Pikm α−2

α(α−1) .

3. The auction satisfies (VP), (IC), and (NPT) ex-post assuming bidders cannot over-report budgets.

Therefore, when the above auction is randomized via the THREAT, it is a 5.83 approximation to the optimal
expected revenue, implementable in dominant strategies, and satisfies (VP), (IC), and (NPT) in expectation
over the randomness introduced by the THREAT.

Proof. The first part is straightforward from the description of the auction. To see the third part, note that
the allocation and price for bidder i are either both zero, or are x̂ikm = xikm

α and P̂ikm = Pikm
α . The

choice between zero and the latter cannot be affected by i by changing its bid. Since x̂ikm, P̂ikm satisfy the
constraints of the LP, this shows the third part of the theorem.

We now show the second part. From the perspective of the auctioneer, the auction has a random outcome
that depends on the densities fikm. LetWi denote the random variable which is 1 if zi ≥ 1

α , and 0 otherwise.
Let wi = E[Wi]. We first show that wi ≥ α−2

α−1 . We have E
~v−i,~b−i

[
∑

j 6=i x̂jkjmj
] ≤ 1

α . By Markov’s

inequality, Pr
~v−i,~b−i

[∑
j 6=i x̂jkjmj

≥ 1− 1
α

]
≤ 1

α−1 . If this does not happen, we must have the event

Wi = 1. Therefore, wi ≥ α−2
α−1 .

Note that in the event Wi = 1, the allocation to i is x̂ikm ≤ 1
α ≤ zi. Next note that Wi is independent of

the bid reported by i. Therefore, yikm = x̂ikmwi ≥ xikm
α−2

α(α−1) and qikm = p̂ikmwi ≥ pikm
α−2

α(α−1) , which
shows the second part.

Note that the revenue generated is
∑

ikm fikmqikm, which is a α(α−1)
α−2 approximation by the above

theorem. If we set α = 2 +
√

2, we obtain a α(α−1)
α−2 = 3 + 2

√
2 = 5.83 approximation to the optimal

expected revenue.
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A Proof of Budget Monotonicity: Theorem 4.1

This section is devoted to the proof of Theorem 4.1. We note that by Theorem 3.2, the reported valuations
are always the truth, meaning that vi = ηi for all bidders i.

Recall that bidder Alice increases her budget by a quantity ∆ in auction HIGH as compared to auction
LOW. Also recall that the subscript ∗ is used to denote quantities for Alice, and the superscripts 1, 0 to denote
quantities in auctions HIGH and LOW respectively. We will define the following starting and stopping times.

Definition 5. Let y0 (resp. y1) denote the first time instant at which some bidder enters the clinching set in
auction LOW (resp. HIGH), that is C0(t) (resp. C1(t)) becomes nonempty. Similarly, define q0 (resp. q1)
to be the first time instant when Alice enters the clinching set in auction LOW (resp. HIGH). If the required
event does not happen, define these as f0 (resp. f1).
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Recall that we will use t− to denote the limit as x approaches time t from below. Since price increases
continuously with time, we can easily replace p(t−) by p(t) in any algebraic expression. However, if t is
the first time instant when the price becomes equal to the valuation of some bidder, then {i | vi > p(t)} ⊂
{i | vi > p(t−)}, and so on.

A.1 Assumptions

We now show that the theorem is straightforward if some assumptions do not hold. First, note that if
p0(q0) = v∗, Alice receives zero utility in LOW, and Theorem 4.1 is trivially true. Thus, we must have:

Assumption 1. Alice receives non-zero utility in auction LOW. In other words, u0 > 0 and
p0(q0) < v∗.

Using this assumption, we show that the prices in the two auctions are coupled. Let p0(t) and p1(t)
denote the prices at time t in LOW, HIGH respectively.

Claim A.1. For all t ≤ min(f0, f1), p0(t) = p1(t)

Proof. At the beginning, p0(0) = p1(0) = 0. Simultaneously follow auction LOW and HIGH as time
increases from zero. When the price is not equal to the valuation of any bidder, both p0(t) and p1(t) are
increasing at unit rate. When the price p hits the valuation of some bidder(s), two cases may occur. If the
set {i | vi = p} has nonempty intersection with C0(t−) (resp. C1(t−)), then auction LOW (resp. HIGH)
necessarily stops at that time t = min(f0, f1). Otherwise, if none of the bidders with valuation equal to p
belonged to C0(t−) ∪ C1(t−), then price remains equal to p in both the auctions for exactly

∑
i : vi=p

Bi
amount of time. Note that in the later case, Alice cannot have a valuation equal to p, else she receives zero
utility in both the auctions and Theorem 4.1 is trivially true.

From now on, we will use p(t) to denote both p1(t) and p0(t). A direct consequence of the above proof
is the following, whose proof is simple and omitted. Note that E(t) are coupled since the auctions do not
stop (so that all bidders in E(t) could not have been clinching), and Step (III) reduces the budgets of these
bidders in a fixed order.

Corollary A.2. For all t < min(f0, f1), A0(t) = A1(t). Further, E0(t) = E1(t).

We will now show another assumption whose violation easily implies Theorem 4.1.

Assumption 2. Auction HIGH stops at a time that is strictly greater than the price at which Alice
starts to clinch in auction LOW, that is f1 > q0.

Claim A.3. If Assumption 2 is violated, Theorem 4.1 is true.

Proof. Suppose f1 ≤ q0. Clearly, q0 ≤ f0. From Assumption 1, p(f1) ≤ p(q0) < v∗. From the
Lemma 3.5, P 1

∗ = B1
∗ . In auction HIGH, Alice receives at least B1

∗
p(f1)

fraction of the item at an average unit
price that is at most p(f1). That is,

u1 ≥ v∗ − p(f1)
p(f1)

B1
∗
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However, in auction LOW, she can receive at most B0
∗

p(q0)
fraction of the item at an average unit price that is

at least p(q0). That is,

u0 ≤ v∗ − p(q0)
p(q0)

B0
∗

Since p(f1) ≤ p(q0) and B1
∗ > B0

∗ , we get u1 ≥ u0. This implies Theorem 4.1.

We will use Assumptions 1 and 2 several times throughout the rest of Appendix A.

A.2 The Canonical Case: Alice Enters Set C(t) in Auction LOW, that is q0 < f 0

The argument consists of two stages. First we relate the times at which Alice starts to clinch in either auction,
in particular, we show that Alice starts clinching in HIGH no later than in LOW. This statement is critically
used in the next stage of our proof, where we compare the utilities gained by Alice in the two auctions, and
show that her utility from LOW is at most her utility from HIGH.

Lemma A.4 (Structure Lemma). The starting and stopping times in HIGH and LOW are related as:

y0 ≤ y1 ≤ q1 ≤ q0 < min(f0, f1)

Since q0 < f0, Assumption 2 immediately implies the last inequality. Most important part of the above
lemma is the claim that q1 ≤ q0, i.e., Alice joins the clinching set no later in HIGH than in LOW.

A.2.1 Proof of the Structure Lemma

Let bidder 1 have the largest budget among all active bidders excluding Alice at the time when auction LOW

starts clinching. We first present a high-level idea of the proof. At any point in time, the set of clinching
bidders, if non-empty, is the set of active bidders i with bi(t) = bmax(t); furthermore, once the auction starts
clinching, bmax(t) decreases continuously. We therefore relate the evolution of bmax(t) in the two auctions,
and show the time t at which bmax(t) = B0

∗ in auction LOW is at least the time t at which bmax(t) = B1
∗

in auction HIGH. We use the following observations about the curves b0max(t) and b1max(t) in auctions LOW

and HIGH respectively:

1. The curves have downward slope at most 1, and are parallel.

2. Auction HIGH starts clinching at most γ time after LOW starts clinching, where γ = min(B1, B
∗
1)−

B0
∗ . In particular, HIGH starts clinching before time q0; and

3. If b0max(t) ≤ b1max(t), then b1max(t) decreases at a faster rate once both auctions are clinching.

Using these observations, the proof is simple geometry with two cases depending on whether B1 ≤ B1
∗

or B1 ≥ B1
∗ , i.e, whether or not Alice has the highest budget in auction HIGH. We now present the proof in

the following sequence of claims.

Claim A.5. y0 ≤ y1. Furthermore, for all t ≤ y0, we have the following: If bidder i is not Alice, then
b0i (t) = b1i (t). In particular, b0i (t) = b1i (t) = Bi when p(t) < vi. For Alice, b0∗(t) = B0

∗ < b1∗(t) = B1
∗ .

Proof. As time t increases gradually from t = 0, as long as no bidder is clinching in either auction (i.e.,
C0(t) = C1(t) = ∅), the current budget bi(t) of every active bidder i equals her original budget Bi.
Furthermore, Step (III) reduces the budgets of exiting bidders in a fixed order. We conclude that the current
budget of every bidder other than Alice remains the same across the two auctions, and the current budget of
Alice is greater in auction HIGH than in LOW. Thus, from the perspective of any bidder (including Alice),
the total demand of the other bidders is no less in auction HIGH than in auction LOW. In particular, it implies
LOW starts clinching no later than HIGH, that is, y0 ≤ y1.
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Lemma A.6. If Alice is the first bidder to join the clinching set C0(t) in auction LOW, i.e., if y0 = q0, then
the Structure Lemma holds.

Proof. Suppose y0 = q0. From Alice’s perspective, in both the auctions, total demand of other bidders is
exactly equal to the initial supply at time t = y0 (Claim A.5). Thus, Alice joins the clinching set in HIGH at
the same time instant as in LOW. Hence y0 = y1 = q1 = q0 and the Structure Lemma holds.

For the rest of Section A.2.1, we assume that Alice is not the first bidder to start clinching in LOW, so
that y0 < q0. Therefore bidder 1 with B1 > B0

∗ starts clinching in LOW at time y0. So far, we have the
following inequalities:

y0 < q0 < min
(
f0, f1

)
and y0 ≤ y1 and B1 > B0

∗ (3)

The above implies b0max(y0) = B1 = B0
∗ + δ for some δ > 0. Note that the active sets A(t) in the

two auctions are identical at any point in time (Corollary A.2). Applying Lemma 3.3 and Assumption 1,
we have that both Alice and bidder 1 are active during the time interval y0 ≤ t ≤ q0. Furthermore, for all
t ∈

[
y0, q0

]
, bidder 1 belongs to the clinching set in LOW, and has the maximum budget amongst all the

active bidders, that is, b0max(t) = b01(t).

Claim A.7. In auctions LOW and HIGH, bmax(t) decreases at a rate at most one, i.e., d
dt (bmax(t)) ∈ [−1, 0].

Proof. If the clinching setC(t) is empty, then d
dt (bmax(t)) = 0. Otherwise, by Lemma 3.3, either d

dt (bmax(t)) =
−1 in Step (III), or d

dt (bmax(t)) = −S(t) in Step (II). Since S(t) ≤ 1, the claim follows.

Claim A.8. Recall δ = B1−B0
∗ . In auction LOW, Alice starts clinching at least δ later than the time instant

at which bidder 1 starts clinching, i.e., q0 ≥ y0 + δ.

Proof. As time increases beyond y0, by Lemma 3.3, Alice starts clinching in LOW when b0max(t) becomes
equal to Alice’s reported budget B0

∗ . Since b0max(y0) = B1 = B0
∗ + δ, and since b0max(t) decreases at a rate

at most one, we have the claim.

Claim A.9. Suppose bidder 1 has higher initial budget than Alice in HIGH i.e., B1 > B1
∗ , then we have

y1 = y0 + ∆ < q0.

Proof. SinceB0
∗+δ = B1 > B1

∗ = B0
∗+∆, we have ∆ < δ = B1−B0

∗ . Thus, the inequality y0 +∆ < q0

follows from Claim A.8. Applying the Clinching Invariant and Claim A.5 in HIGH, we have at t = y0:

p(t) = p(t)S0(t) = b0−1(t) = b1−1(t)−∆

As time increases beyond y0, as long as there is no clinching in HIGH, either the LHS increases at rate 1
in Step (II) or the RHS decreases at rate one in Step (III). In either case, at time t = y0 + ∆, we must have
p(t) = b1−1(t), which implies y1 = y0 + ∆.

Claim A.10. Suppose bidder 1 has higher initial budget than Alice in auction HIGH i.e., B1 > B1
∗ . If

b1max(t) ≥ b0max(t) at some time instant t ∈
[
y1, q0

)
, then d

dt

(
b1max(t)

)
≤ d

dt

(
b0max(t)

)
≤ 0.

Proof. Note that clinching set is nonempty in both auctions in this time range. The active and exiting sets,
A(t) and E(t), in the two auctions are coupled (Corollary A.2). If the existing set E(t) is nonempty, then
b0max(t) and b1max(t) are each decreasing at rate one in Step (III), and the claim is true. For rest of the proof,
assume E(t) is empty.

We first show that compared to auction LOW, every active bidder has larger remaining budget in auction
HIGH, i.e., b1i (t) ≥ b0i (t). Since b1max(t) ≥ b0max(t), the statement is clearly true for all bidders who are
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clinching either in HIGH or in LOW. For all other active bidders, the current budget bi(t) equals the reported
budget Bi. Since Alice reports a higher budget in HIGH and every other bidder reports the same budget in
the two auctions, the statement is valid even for active bidders who are not clinching in both auctions.

Since Alice reports a lower budget than bidder 1 in HIGH, bidder 1 is clinching in HIGH the time range[
y1, q0

)
. Considering the Supply Invariant from the perspective of bidder 1, we conclude that

S1(t)− S0(t) =
∑
i 6=1

b1i (t)
p(t)

−
∑
i 6=1

b0i (t)
p(t)

=
∑

i : i∈A(t),i 6=1

b1i (t)− b0i (t)
p(t)

≥ 0 (4)

The above holds since the exiting setE(t) is empty and since all active bidders have larger remaining budget
bi(t) in HIGH. The claim follows immediately from Step (II) of Figure 1.

Lemma A.11 (Lemma A.4). The starting and stopping times in HIGH and LOW are related as:

y0 ≤ y1 ≤ q1 ≤ q0 < min(f0, f1)

Proof. All we need to show is q1 ≤ q0. We split the proof into cases depending on whether Alice has the
highest budget in HIGH or not.

Case 1. B1
∗ ≥ B1: At time t = y0, in both auctions the current budget of every active bidder equals her

initial budget (Claim A.5). Since Alice reports a higher budget than bidder 1 in HIGH, Alice has the highest
budget amongst all the active bidders in HIGH at time t = y0. By Assumption 1 and Claim A.8, Alice
is active during the time interval

[
y0, q0

]
⊇
[
y0, y0 + δ

]
. As time increases beyond y0, as long as Alice

is active, no other bidder can start clinching before Alice in auction HIGH (Lemma 3.3). Considering the
Clinching Invariant for auction LOW, at time t = y0,

p(t) = p(t)S0(t) = b0−1(t) = b1−Alice(t)− δ

The last equality follows from Claim A.5. In auction HIGH, in the time range [y0, y0 + δ], either the LHS
increases at rate 1 in Step (II) or the RHS decreases at rate 1 in Step (III), so that Alice must start clinching
at y1 = q1 = y0 + δ. Combining this with Claim A.8, we have the proof.

Case 2. B1 > B1
∗: Since Alice’s reported budget in HIGH is less than that of bidder 1, bidder 1 has the

maximum budget amongst active bidders in HIGH at time t = y0 (Claim A.5). By Lemma 3.3, at every
time instant t ∈

[
y0, q0

]
, we have b1max(t) = b11(t). Therefore, during the interval

[
y0, q0

]
, in both auctions,

bmax(t) is equal to the current budget of bidder 1. We simultaneously track bmax(t) of the two auctions in
this time range (see Figure 2). At time t = y0, both b0max(t) and b1max(t) are equal to B1 (initial budget
of bidder 1). Bidder 1 starts clinching in LOW at the same time instant. Thus, b0max(t) starts decreasing
continuously as t increases beyond y0. However, b1max(t) decreases below B1 only after t goes past the
value y1 (note that y1 ≥ y0 by Claim A.5). Claim A.9 shows that y1 and y0 differs by exactly ∆ = B1

∗−B0
∗

amount. In particular, since y1 ≤ q0, b1max(t) starts decreasing before Alice enters the clinching set in LOW.
Applying Claim A.7, at time time t = y1, the vertical distance between the curves b0max(t) and b1max(t) is no
more than ∆. Claim A.10 implies that in the time range y1 ≤ t < q0, whenever the curve b1max(t) lies above
b0max(t), the former reduces at a larger rate. We thus have b1max(q0) ≤ b0max(q0) + ∆. Since Alice starts
clinching in LOW at time q0, b0max(t) equals her reported budget B0

∗ at that time instant. In other words,
b1max(q0) ≤ B0

∗ + ∆ = B1
∗ , and Alice must have joined the clinching set in HIGH no later than q0. This

completes the proof.

Figure 2 illustrates the geometric intuition behind the above proof in the case B1 > B1
∗ .
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  Figure 2: Proof of the Structure Lemma for the case B1 > B1
∗ . Note that HIGH starts clinching at most

∆ = B1
∗ −B0

∗ time later, and beyond this point, for any t, b1max(t) decreases at least as fast as b0max(t).

A.2.2 Relating the Utilities in Auctions LOW and HIGH

By Lemma 3.3, Alice clinches in LOW (resp. HIGH) throughout the time interval q0 ≤ t < f0 (resp.
q1 ≤ t < f1). During the next phase of our proof, we simultaneously track the two auctions as time increases
from q0 to min(f0, f1) and show that bmax(t) of one of the auctions dominates the other. This helps us
compare the utilities gained by Alice during this phase, including the utilities from one-shot allocations at
the stopping times.

Define fmin = min(f0, f1). Note that the Structure Lemma implies max(y0, y1) < fmin. In particular,
by Lemma 3.3, Alice clinches in auction HIGH (resp. LOW) during the time interval q1 ≤ t < fmin (resp.
q0 ≤ t < fmin). We will need the following two claims. The proofs are similar to that of Claim A.10. By
the Structure Lemma, Alice is clinching in both auctions when q0 ≤ t < fmin, and we only need to replace
bidder 1 by Alice in Equation 4.

Claim A.12. If b1max(t) ≥ b0max(t) at some time q0 ≤ t < fmin, then d
dt

(
b1max(t)

)
≤ d

dt

(
b0max(t)

)
≤ 0.

Therefore, if b1max(q0) < b0max(q0), then for all t ∈ [q0, fmin), b1max(t) ≤ b0max(t).

Claim A.13. If b1max(t) ≤ b0max(t) at some time q0 ≤ t < fmin, then d
dt

(
b0max(t)

)
≤ d

dt

(
b1max(t)

)
≤ 0.

Therefore, if b1max(q0) ≥ b0max(q0), then for all t ∈ [q0, fmin), we have b1max(t) ≥ b0max(t).

A.2.3 Case 1: b1max(q0) ≥ b0max(q0)

We will now prove Theorem 4.1 in two cases. We will first prove Theorem 4.1 under the assumption that
b1max(q0) ≥ b0max(q0).

Lemma A.14. If b0max(q0) ≤ b1max(q0), then u0 ≤ u1.

Proof. We first show f0 ≤ f1. Suppose f0 > f1. If some bidder i other than Alice is clinching in HIGH

just before time f1, then Bi ≥ b1i (f
1
−) = b1max(f1

−) ≥ b0max(f1
−). Thus, i ∈ C0(f1

−). Also note that Alice
∈ C0(f1

−) ∩ C1(f1
−). Thus, C1(f1

−) ⊆ C0(f1
−). If auction HIGH stops at time f1 because some bidder in

C0(f1
−) drops out, then LOW will also stop at f1, a contradiction. Thus, assume none of the bidders with

valuation equal to p(f1) is in the set C0(f1
−). All those bidders will retain their initial budgets in both the

auctions till time f1
−. Therefore the excess-demand (that is,

∑
k : vk>p(t)

Dk(t) − S(t)) will reduce by the

19



same quantity in both the auctions at time t = f1. Now, by the clinching invariant, the difference between

the excess demands between auctions HIGH and LOW at time f1
− is precisely

b1max(f1
−)−b0max(f0

−)

p(f1)
, so that

since b0max(f1
−) ≤ b1max(f1

−), the excess-demand in LOW is less than that of HIGH. Since the excess demand
in HIGH becomes non-positive at t = f1 (stopping condition), we conclude that excess-demand in LOW will
become non-positive at time t = f1 so that LOW will stop at that time, again a contradiction.

We thus have q1 ≤ q0 < f0 ≤ f1 and b0∗(t) = b0max(t) ≤ b1∗(t) = b1max(t) in the interval q0 ≤ t < f0.
Applying Claim A.12 and Equation 1,

u0(q0, f0
−) =

∫ f0
−

q0
−(v∗ − p(t))

p(t)
d

dt

(
b0∗(t)

)
dt ≤

∫ f0
−

q0
−(v∗ − p(t))

p(t)
d

dt

(
b1∗(t)

)
dt = u1(q0, f0

−)

Since auction LOW stops at time f0 and Alice ∈ C0(f0
−), we can bound the utility of Alice from the

final one shot allocation in LOW as

u0(f0) ≤ (v∗ − p(f0))
p(f0)

b0∗(f
0
−)

Assume v∗ > p(f0), else we are already done. In this case, since Alice ∈ C0(f0
−) ∩ C1(f0

−), we have

S0(f0
−)−

∑
i 6=Alice

D0
i (f

0
−) = S1(f0

−)−
∑

i 6=Alice
D1
i (f

0
−) = 0

Following the proof of Claim A.10, we have b0i (f
0
−) ≤ b1i (f0

−) for all bidders i with vi = p(f0). Therefore,

S0(f0
−)−

∑
i 6=Alice,vi>p(f0)

D0
i (f

0
−) ≤ S1(f0

−)−
∑

i 6=Alice,vi>p(f0)

D1
i (f

0
−)

Since auction LOW stops at time f0, we have:

b0∗(f
0
−))

p(f0
−)
≤ S0(f0

−)−
∑

i 6=Alice,vi>p(f0)

D0
i (f

0
−) ≤ S1(f0

−)−
∑

i 6=Alice,vi>p(f0)

D1
i (f

0
−)

Thus, by Lemma 3.1, in auction HIGH, Alice gets at least
b0∗(f

0
−)

p(f0)
fraction of the item at price p(f0), and

hence:

u1(f0, f1) ≥ (v∗ − p(f0))
p(f0)

b0∗(f
0
−) ≥ u0(f0)

Therefore, u0 = u0(q0, f0
−) + u(f0) ≤ u1(q0, f0

−) + u1(f0, f1) = u1. This completes the proof.

A.2.4 Case 2: b1max(q0) < b0max(q0)

We will now prove Theorem 4.1 for the case when b1max(q0) < b0max(q0); this will complete its proof
assuming q0 < f0.

We now show a sequence of claims bounding the utility obtained in various phases of the auction.

Claim A.15. If b1max(q0) < b0max(q0), then for all t ∈ [q0, fmin):

u0(q0, t) ≤ u1(q0, t) +

(
v∗ − p(q0)

)
p(q0)

{(
b0max(q0)− b1max(q0)

)
−
(
b0max(t)− b1max(t)

)}
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Proof. By Claim A.13 and Claim A.12, d
dt

(
b1max(t)− b0max(t)

)
≥ 0. Now applying Equation 1,

u0(q0, t)− u1(q0, t) =
∫ t

q0
−(v∗ − p(t))

p(t)
d

dt

(
b0max(t)

)
dt+

∫ t

q0

(v∗ − p(t))
p(t)

d

dt

(
b1max(t)

)
dt

=
∫ t

q0

(v∗ − p(t))
p(t)

d

dt

(
b1max(t)− b0max(t)

)
dt

≤
(
v∗ − p(q0)

)
p(q0)

∫ t

q0

d

dt

(
b1max(t)− b0max(t)

)
dt

=

(
v∗ − p(q0)

)
p(q0)

[
b1max(t)− b0max(t)

]t
q0

The claim follows.

Claim A.16. If b1max(q0) < b0max(q0), then:

u1(q1, q0) ≥
(
v∗ − p(q0)

)
p(q0)

(
b0max(q0)− b1max(q0)

)
Proof. Consider auction HIGH. Alice starts to clinch at time q1. As the price increased from p(q1) to p(q0),
her budget decreased by an amount b1max(q1)− b1max(q0). The price was always less than p(q0) during this
interval; thus she gets at least (1/p(q0))

(
b1max(q1)− b1max(q0)

)
fraction of the item at an average unit price

that is at most p(q0). We get

u1(q1, q0) ≥
(
v∗ − p(q0)

)
p(q0)

(
b1max(q1)− b1max(q0)

)
By definition, b1max(q1) = B1

∗ > B0
∗ = b0max(q0), and the claim is proved.

Claim A.17. If b1max(q0) < b0max(q0), then for all t ∈ [q0, fmin):

u0(q0, t) ≤ u1(q1, t)− (v∗ − p(t))
p(t)

(
b0max(t)− b1max(t)

)
Proof. Applying Claim A.15, A.16, we get

u0(q0, t) ≤ u1(q0, t) + u1(q1, q0)−
(
v∗ − p(q0)

)
p(q0)

(
b0max(t)− b1max(t)

)
= u1(q1, t)−

(
v∗ − p(q0)

)
p(q0)

(
b0max(t)− b1max(t)

)
≤ u1(q1, t)− (v∗ − p(t))

p(t)
(
b0max(t)− b1max(t)

)

Lemma A.18. If b1max(q0) < b0max(q0), then u0 ≤ u1.

Proof. Similar to the proof of Lemma A.14, it can be shown that f1 ≤ f0. Putting t = f1
− in Claim A.17,

u0(q0, f1
−) +

(
v∗ − p(f1)

)
p(f1)

b0max(f1
−) ≤ u1(q1, f1

−) +

(
v∗ − p(f1)

)
p(f1)

b1max(f1
−) (5)
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If p(f1) = v∗, then f0 = f1 and Alice receives zero utility from the final one-shot allocations in both the
auctions. Note that by Claim A.12, we have b1max(f1

−) ≤ b0max(f1
−). Thus, u0 = u0(q0, f1

−) ≤ u1(q1, f1
−) =

u1 and the lemma is true.

Now suppose p(f1) < v∗. Alice’s utility from the final one-shot allocation in HIGH is given by:

u1(f1) =

(
v∗ − p(f1)

)
p(f1)

b1max(f1
−)

On the other hand, in LOW, during the time interval f1 ≤ t ≤ f0, Alice can get at most
b0max(f1

−)

p(f1)
fraction of

the item at an average unit price that is at least p(f1). Thus,

u0(f1, f0) ≤
(
v∗ − p(f1)

)
p(f1)

b0max(f1
−)

Adding this to Equation 5, we get

u0 = u0(q0, f1
−) + u0(f1, f0) ≤ u1(q1, f1

−) + u1(f1) = u1

This completes the proof.

The proof of Theorem 4.1 for the case when q0 < f0 now follows from Lemmas A.4, A.14 and A.18.

A.3 The Special Case: Alice Never Enters C(t) in Auction LOW, that is q0 = f 0

In this section, we prove Theorem 4.1 when q0 = f0, that is, in auction LOW, Alice receives all her utility
from the final one shot allocation in Step (I) of Figure 1. We will consider three mutually exclusive and
exhaustive cases corresponding respectively to LOW stopping: (i) before any bidder starts clinching; (ii)
after some bidder starts clinching, but before any bidder starts clinching in HIGH; and (iii) after some bidder
starts clinching in HIGH. We first show the following claim which gives a closed form expression for the
utility gained by Alice in LOW.

Claim A.19. In auction LOW, Alice only receives a one shot allocation of B0
∗

p(q0)
at price p(q0), and her

utility is given by u0 = (v∗−p(q0))
p(q0)

B0
∗ . Furthermore, in this case,∑

i : vi=p(q0)

b0i (q
0
−) ≥ b0max(q0−)

.

Proof. Consider auction LOW. Since q0 = f0, Assumption 1 implies p(f0) < v∗, so that by Lemma 3.5,
Alice’s budget is extracted completely at price p(q0). The first part of the claim follows.

To see the second part, first note that Supply Invariant holds just before the auction stops. At time q0−,
from the perspective of the active bidder with highest remaining budget (b0max(q0−)), total demand of other
active bidders is no less than the available supply (S0(q0−)). In other words:∑

i∈A(q0−)

b0i (q
0
−)

p(q0)
≥ S0(q0−) +

b0max(q0−)
p(q0)

At time q0, the auction stops because total demand of all the active bidders is no more than available supply,

so that
∑

i∈A(q0)
b0i (q0−)

p(q0)
≤ S0(q0−). Thus, total demand of active bidders drop by at least

b0max(q0−)

p(q0)
as time

changes from q0− to q0. This abrupt decrease in total demand is caused by the set of exiting bidders (that is,
bidders with vi = p(q0)). Therefore, we get:

∑
i : vi=p(q0) b

0
i (q

0
−) ≥ b0max(q0−), completing the proof.
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A.3.1 Case 1: y0 = q0

We first consider the case where LOW stops before any bidder starts clinching. We have y0 = q0 = f0.
Using an argument similar to the proof of Claim A.5, it can be shown that LOW starts clinching no later than
HIGH, that is, y0 ≤ y1. Furthermore, just before LOW starts clinching (at time y0

−), the remaining budget
of every active bidder equals her reported budget. In particular, every bidder i other than Alice has the same
remaining budget across the two auctions, that is, b0i (y

0
−) = b1i (y

0
−). For Alice, b1∗(y

0
−) = b0∗(y

0
−) + ∆. Also

note that S0(y0
−) = S1(y0

−) = 1. Since auction LOW stops at time y0, we must have:

∑
i : vi>p(y0)

b1i (y
0
−)

p(y0)
=

∆
p(y0)

+
∑

i : vi>p(y0)

b0i (y
0
−)

p(y0)
≤ ∆
p(y0)

+ S0(y0
−) =

∆
p(y0)

+ S1(y0
−)

Comparing the LHS and the RHS, we see that in auction HIGH,

B0
∗

p(y0)
+

∑
i : vi>p(y0),i 6=Alice

b1i (y
0
−)

p(y0)
≤ S1(y0

−)

Thus, Alice receives at least B0
∗

p(y0)
fraction of the item at unit price p(y0) in auction HIGH. Since y0 = q0,

Claim A.19 implies her utility from HIGH is no less than her utility from LOW.

A.3.2 Case 2: y0 < q0 ≤ y1

We next consider the case where LOW stops after some bidder starts clinching, but before any bidder starts
clinching in HIGH. Let A stands for “Alice”. Suppose y0 < q0 ≤ y1. Since LOW stops at q0,

∑
i : vi>p(q0),i 6=A

b0i (p(q
0
−))

p(q0)
+

B0
∗

p(q0)
≤ S0(q0−)

For all bidders i with vi > p(q0), i 6= A, we have b1i (q
0
−) = Bi, otherwise y1 < q0. Since in LOW, clinching

bidders clinched at price at most p(q0), we have

∑
i : i∈C0(q0−),vi>p(q0)

Bi − b0i (q0−)
p(q0)

≤ 1− S0(q0−)

⇒
∑

i : i∈C0(q0−),vi>p(q0)

b1i (q
0
−)

p(q0)
=

∑
i : i∈C0(q0−),vi>p(q0)

Bi
p(q0)

≤ 1 +
∑

i : i∈C0(q0−),vi>p(q0)

b0i (q
0
−)

p(q0)
− S0(q0−)

For all bidders i with vi > p(q0), i 6= A, i /∈ C0(q0−), we have b1i (q
0
−) = b0i (q

0
−) = Bi. It follows that

∑
i : vi>p(q0),i 6=A

b1i (q
0
−)

p(q0)
+

B0
∗

p(q0)
≤ 1 +

∑
i : vi>p(q0),i 6=A

b0i (q
0
−)

p(q0)
+

B0
∗

p(q0)
− S0(q0−) ≤ 1 = S1(q0−)

Therefore, by Lemma 3.1, Alice clinches at least B0
∗/p(q

0) quantity in HIGH at price p(q0), so that Theo-
rem 4.1 holds.
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A.3.3 Case 3: y0 ≤ y1 < q0

We finally consider the case where LOW stops after some bidder starts clinching in both auctions. We
have y0 ≤ y1 < q0 = f0 < f1 (see Assumption 2). Since the second inequality is strict, we get
C0(q0−), C1(q0−) 6= ∅.

Following an argument exactly similar to the one outlined in Section A.2.1, we have b1max(y1) ≤
b0max(y1) + ∆, and whenever b1max(t) ≥ b0max(t), the former reduces at a larger rate. Therefore:

b1max(q0) ≤ b0max(q0−) + ∆ (6)

We will first show that q1 < q0, else Theorem 4.1 is true. Suppose q1 ≥ q0. By Claim A.19, Alice
gets a one shot allocation of B0

∗/p(q
0) at stopping price p(q0). We will show that Alice will also get at least

B0
∗/p(q

0) at the same price in HIGH. Now, since q0 ≤ q1 and q0 < f1, we must have:

D1
−Alice(q0) +

B1
∗

p(q0)
=
∑
k

D1
k(q

0) = S1(q0) +
b1max(q0)
p(q0)

⇒ S1(q0)−D1
−Alice(q0) = −b

1
max(q0)
p(q0)

+
B1
∗

p(q0)

Since auction LOW stops at time q0, by Claim A.19, we must have∑
i : vi=p(q0)

b0i (q
0
−) ≥ b0max(q0−)

Note that a bidder with valuation equal to p(q0) can never be in C1(q0), otherwise we will have q0 = f1,
a contradiction. Also note by Claim A.19 that Alice does not have valuation equal to p(q0). Thus, for all
bidders i, if vi = p(q0), then b1i (q

0) = B1
i = B0

i ≥ b0i (q0−). That is,∑
i : vi=p(q0)

b1i (q
0) ≥

∑
i : vi=p(q0)

b0i (q
0
−) ≥ b0max(q0−)

It follows that

S1(q0)−
∑

j∈A(q0),j 6=Alice
D1
j (q

0) ≥ −
b1max(q0−)
p(q0)

+
B1
∗

p(q0)
+
b0max(q0−)
p(q0)

≥ B1
∗ −∆
p(q0)

=
B0
∗

p(q0)

The final inequality follows from Equation (6). Therefore, by Lemma 3.1, Alice clinches at least B0
∗/p(q

0)
at price p(q0) in HIGH to maintain the Supply Invariant, and Theorem 4.1 is true.

Therefore, if Theorem 4.1 is not already true, we must have: y0 ≤ y1 ≤ q1 < q0 = f0 < f1.
In particular, Alice is clinching in HIGH during the time interval q1 ≤ t < f1. Furthermore, we have
C0(q0−), C1(q0) 6= ∅ and Alice ∈ C1(q0). Similar to the argument above, we must have:∑

i : vi=p(q0)

b1i (q
0) ≥

∑
i : vi=p(q0)

b0i (q
0
−) ≥ b0max(q0−)

Since Alice ∈ C1(q0), we have:

S1(q0)−D1
−Alice(q0) = 0

⇒ S1(q0)−
∑

j∈A(q0),j 6=Alice
D1
j (q

0) ≥
b0max(q0−)
p(q0)
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Therefore, in HIGH, by Lemma 3.1, Alice gets at least
b0max(q0−)

p(q0)
fraction at unit price p(q0). Also note

that Alice reduced her budget from B1
∗ to b1max(q0) during the time interval q1 ≤ t < q0. Thus, in this

time interval, she clinched at least (B1
∗−b1max(q0))
p(q0)

at an average unit price that is at most p(q0). Thus, we
conclude:

u1 ≥ v∗ − p(q0)
p(q0)

(
B1
∗ − b1max(q0) + b0max(q0−)

)
≥ v∗ − p(q0)

p(q0)
(
B1
∗ −∆

)
= u0

The final inequality follows from Equation (6). This implies Theorem 4.1.
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