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Abstract

In several systems applications, parameters such as ledchawn only with some associated un-
certainty, which is specified, or modeled, as a distributiger values. The performance of the system
optimization and monitoring schemes can be improved bydipgmesources such as time or bandwidth
in observingor resolvingthe values of these parameters. In a resource-constratoatdan, deciding
which parameters to observe in order to best optimize theated system performance (or in general,
optimize the expected value of a certain objective fungtitself becomes an interesting optimization
problem.

In this paper, we initiate the study of such problems thatevent‘model-driven optimization”. In
particular, we study the problem of optimizing the minimuatue in the presence of observable distri-
butions. We show that this problem is NPaRID, and present greedy algorithms with good performance
bounds. The proof of the performance bounds are via novehsadularity arguments and connections
to covering integer programs.
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1 Introduction

Optimization problems arising in databases, streamingtet computing, and sensor network applications
often involve parameters and inputs whose values are knolyrwath some uncertainty. In many of these
situations, the optimization can be significantly improvsdresolvingthe uncertainty in the input before
performing the optimization. For instance, a query opteniaften has the ability to observe characteristics
in the actual data set, like selectivities, either via randeampling or by performing inexpensive filters
[Babu et al. 2005; Babcock and Chaudhuri 2005]. As another example, taraylke Eddies [Avnur and
Hellerstein 2000] finds the best among several competimgsphdich are run simultaneously. Each plan’s
running time is a distribution which is observed by exeaytime plan for a short amount of time. In all such
examples, the process of resolving the uncertainty alsswroas resources, e.g., time, network bandwidth,
space, etc., which compete with finding the solution of thegioal problem.

Therefore, judiciously choosing which variables to obserftself becomes an important problem in
this context. In this paper, we study the optimization peablof finding the minimum, when the inputs
are random variables and the values of one or more inputs eafderved and resolved by paying some
cost. We show that even for this simplest of optimizationbpems, this choice becomes non-trivial and
intractable, motivating the development of algorithmichieiques to address them.

We initiate the study of the following abstractly definedsslaf problems, that we term “model-driven
optimization”:

Problem 1. We are given the distributions of non-negative independerdom variableg X} ,. Further,
these random variables a@bservable we can find the value aok; by spending cost;. Given a budget
C and an objective functiorf, can we choose a subssgtof random variables to observe whose total
observation cost is at moét, and optimize the expected value of the funcfiof)? Note that the function
f is evaluatedafterthe observations, and the expectation is over the outcortieeabservations.

In this paper, we focus on the functigiiS) = min;cs X;, so that the goal is to choose a subSethose
observation cost is at moét, so thatE[min;cg X;] is minimized. We define this problem as theNwmum
ELEMENT problem. In Section 1.3, we present a brief survey of reg@tsha and Munagala 2007; Guha
and Munagala 2008; Gule al. 2008] on other objective functiong

As a motivating example, in the context of traditional andPR&tworks, “multi-homing” schemes are
becoming a common method for choosing communication raanesserver assignments. These schemes
[Akella et al. 2003; Gummadet al. 2004] probe and observe the current state of multiple rooéésre
deciding the optimum (minimum latency) route to use for ac8meconnection. The distribution of the
latency of each route is availabtepriori. The number of probes needs to be bounded since flooding the
network is undesirable. Therefore the goal is to minimize ldtency of the route found by a bounded
number of probes. The mapping to our framewaork in this caas fellows: X; are the distributions of route
latencies. The probing costis a function of the delay and load incurred in detectingrieyeof routei. The
budgetC is the total load and processing time that can be incurretidydute choosing algorithm. Finally,

f = min;cg X;, whereS is the set of routes probed. This corresponds to the goalasihg that set of
routes to probe which minimizes the expected value of thdlegidatency detected.

Note that if the minimum value among the probed set is mone tha expected value of a variable that
has not been probed, we would prefer to use that variable'lfdekup”) as opposed to one of the probed
values. We will not take this optimization into account vehilnalyzing our algorithm. Refer Section 6 for
the reason. We now show the benefit of probing with an example.

Example 1.1. If all variables are BernoulliB(1, p) (with anyp), the estimate of theinimum is p if only
one probe is allowed, but i < p if all nodes are probed. Probing can therefore yield an eatemwhich
is exponentially smaller, which means that if there is a low utilization, wél wery likely find it.



Note that the optimization chooses the final variaditer the results of the probes are known. Therefore,
the overall optimization is to choosewith cost at most’, so thatE[min;cg X;] is minimized. This is very
different from optimizingmin;cs E[X;], which is obtained when we choose the final varididéorethe
results of the observations are known. The latter versiof ¢é®urse trivial to solve.

Consider the simple case when the probing costs of all nagescaial. Letn denote the constraint on
the number of variables that can be probed. It would appaa&thl optimal strategy would be to choose the
m nodes with the smallest expected values. The example bélowssthat this need not be the case. Note
further that our problem is not the same as minimizing rediémtropy [Krause and Guestrin 2005] which
minimizes uncertainty of the joint distribution — we are cemed with minimizing the uncertainty of an
optimization that depends on the joint distribution, thenimium value. Minimizing residual entropy will
most often involve probing a different set of variables thlaose required for estimating best the specific
function at hand (see example below); therefore, the pnoblare orthogonal.

Example 1.2. There are3 distributions X7, X, and X3 andm = 2. Distribution X is 0 with probability

% and 1 with probability 1. Distribution X is 1 with probability 2 and 2 with probability . Distribution
X is 0 with probability  and2 with probability . Clearly, E[X;] < E[X,] < E[X3]. However, probing
X1, X, yields an expected minimum valueOds, while probing X, X yields an expected minimum value
of 0.4. Minimizing residual entropy [Krause and Guestrin 2005] i@ also choose the sub-optimal set
{X1, X5},

The simple strategy does not take into accountsthapeof the distributions. In fact, the MIMUM —
ELEMENT problem becomes NP-4RD for arbitrary distributions even with uniform costs. In fawe
show a stronger hardness result: it is NPxRi to approximate the minimum value up to polynomial
factors without exceeding the observation bud@et Hence the natural model to study this problem is
from the perspective aksource augmentatiorcan we guarantee that we achieve the same solution as the
optimum, while we pay a larger observation cost?

1.1 Results

We introduce the problem of model driven optimization in firesence of observations, and particularly
consider the NNIMUM —ELEMENT problem. We present natural algorithms that are easy toeimght and
provide strong evidence that these algorithms are likelyetdhe best possible. We note that naive greedy
algorithms do not work and extra algorithmic techniquesraggiired to augment the greedy algorithm.

Our first result shows a deep connection between threiluM —ELEMENT problem and a certain type
of covering integer program. We use this connection to shmat it is NP—HFARD to approximate the
objective up to any polynomial factor without augmenting tost budget. Consequently, we design algo-
rithms that approximate the cost while achieving nearlyrogk objective value. The algorithms we design
yield a(1 + €) approximation to the optimal value by increasing the cosigiet by a factor that looks like
O (n + ), wherey, = log m is a constant independent of the input. Our results showréifit values
of n for different types of distributions.

In the most general case, we show that the funcfi@) = E[min,;cg X;] islog-concavei.e, log 1/f(S)

is sub-modular. (Simply showing(.S) is submodular, yields a approximation ratio polynomiakir) Con-
sequently a greedy algorithm gives= log log %557;% whereS* is the optimal solution.
We then show approximation algorithms whose bounds deperehtirely different parameters of the

problem, as well as improved results for special cases.elaessummarized below.

1. If the distributions are discrete over a domainmefarbitrary values, them = logm. This uses
the connection with covering programs mentioned above,paodeeds by using the approximately
optimal solution to a covering integer program as the stdriti®n to the greedy scheme.
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2. If the distributions are over the domajn, 1,2, ..., M}, thenn = loglog M. This uses a scaling
argument combined with the covering program.

3. For arbitrary log-concave distributions,= O(1). To show this, we develop a truncation result for
log-concave distributions. We show that a modified greedprhm that tries different truncated
distributions in turn yields the desired result. Log-corecdistributions capture uniform, Gaussian,
and Beta densities among others [6].

In terms of techniques, we combine an involved sub-modylargument along with the analysis of the
bestfractional solutions of covering problems. Although the analyses arepiicated, the algorithms are
natural.

1.2 Related Work

The notion of refining uncertainty has been considered iradversarial settingoy several researchers
[Olston 2003; Fedeet al. 2003; Khanna and Tan 2001; Chariledral. 2002]. In the adversarial model, the
only prior information about an input is the lower and uppeufids on its value. The goal is to minimize
the observations needed to estimate some function over ilygstsexactly and often negative results arise.
The use of lower and upper bounds do not exploit the full paienodels/samples/stochasticity of the data,
i.e., thedistributionsof inputs. However to use the distributional information mvast optimize the&xpected
valueof the function, which is also referred to as stochasticrojttion.

More recently, significant attention has been devoted tdsvdeveloping and using models and estimates
of data based on prior knowledge, e.g., [Gtwal. 1999; Chuet al. 2002; Deshpandet al. 2004; Babcock
and Olston 2003; Babat al. 2005; Babcock and Chaudhuri 2005; Silbersteiral. 2006] among many
others. Our work complements the body of research on maintenof samples and estimates, and we show
that judicious probing may yield exponentially better msties.

Another line of work [Dearet al. 2004] considers knapsack problem in the model that the pdssi
are revealed only after the job hasevocably placed in the knapsack. In the settings we described, this
would imply that the decision to refine our estimate, i.eobjmg, is equivalent to selecting the item in the
final solution. This effectively disallows probing. In ourogtel the choice of which variables to pack in
the knapsack would be maddter the observations. There also has been ongoing researchltirstage
stochastic optimization [Kleinbergt al. 2000; Goel and Indyk 1999; Immorlicet al. 2004; Gupteet al.
2004; Gupta, Ravi, and Sinha 2004; Shmoys and Swamy 2004gJes most of this literature also involves
making irrevocable commitments.

1.3 Subsequent Results

The model-driven optimization framework can be defined theoobjective functiong. Though this paper
presents the best results known forNvMuM —ELEMENT other work has considered different objective
functions. First, wherf is a single constraint packing problem such as knapsackrasttiom profits which
are observable, Guha and Munagala [Guha and Munagala 200#]a8 approximation based on rounding
the solution of a natural linear program. The approximatatio holds even when the optimal solution is
allowed adaptivei(e., can be based on the results of previous observations)tthieiuholds even when the
hidden quantity is a distribution (instead of a single valrad a prior on this distribution is specified as input.
A special case of this result is wheiiS) = max;cg X;, or the Maximum ELEMENT problem. Since the
MINIMUM and MaxIMUM element problems are equivalent from the point of view ofcesalution, the
NP-HARDNESS result we present below also shows thatdMMvum ELEMENT is NP-HARD. However,
from the point of view of approximation, the techniques aeduits for the MNIMuUM and MAXIMUM
element problems are very different.



In [Guhaet al. 2008], Guha, Munagala, and Sarkar consider the Lagrangaaion of the MaXIMUM
ELEMENT problem, where the observations are adaptive and the gmatiaximize the expected difference
between the maximum value and the observation cost. Notéhée is no budget on this cost, instead it
is part of the objective function. If the maximum value netalbe chosen from the observed distributions,
this problem has an optimal solution. The same triviallydisdbr optimizing the sum of the minimum value
and the observation cost. When an unobserved distribuaoratso be chosen as the maximum value, the
Lagrangean version is shown to havé.25 approximation via a greedy algorithm that is analyzed by a
non-trivial structural characterization of the optimallgimn.

Finally, whenf is geometric problem, such ds-median clustering or spanning tree construction, on
independent (and observable) point clouds, Guha and Milanf@aha and Munagala 2007] show constant
factor approximation algorithms when the observationsaalaptive. These algorithms are based on con-
verting the observation problem into antlier version of the problem. Similar results are also shown for
the average completion time scheduling problem.

2 Minimum—Element; Preliminaries

We are givem independent non-negative random variabtgs Xs, . .., X,,. Assume thafX; has observa-
tion costc;. There is a budget’ on the total cost. The goal is to choose a sulssef distributions with
total cost at most' which minimizesE[min;cs X;|. Without loss of generality, we can assume the that
¢; < C for all i. We further assume the distributions are specified as disdistributions overn values,
0<a <ay <--- <ay < M. Letp;; = Pr[X; > a;]. The input is specified as the; anda; values.
Note thatm is not very large since frequently the distribution is leatrirom a histogram/quantile.

Some Notation: Letay = 0 anda,,+1 = M. Forj = 0,1,...,m, letl; = a;41 —a;. We calll; =
[a;,a;4+1) the j®" interval This is illustrated in Figure 1. Recall that; = Pr[X; > a;]. We have
E[X;| = Z;”Z_Ol pijlj. We definef (S) = E[min;cs X;] for each subse$ of variables. All logarithms are
to basee. Let f(®) = M.

Interval I1

Pr(Xi>r]

Figure 1: Notation used in MiiIMUM —ELEMENT.

3 NP-Hardness

We begin with a hardness result: It is NPARD to obtain a polym) approximation on the objective for
MINIMUM —ELEMENT while respecting the cost budget, even for uniform costs. théeefore focus on
approximation algorithms for this problem which achieve dptimal objective while augmenting the cost
budget. Thus the approximation results are onctbetin this paper.



Definition 3.1. A Covering Integer Program (CIP) over variablesxy, zs, ..., z,, (indexed byi) and m
constraints (indexed by) has the form

min E CiT;
7

subjectto: A7 > b
7 e {0,1}"

wherec; € RT and A € Z™*", i.e., the elementd ;; of the constraint matrix are non-negative integers.
This is a generalization dbBeT-COVER where the matrix4 is {0,1} and¢; = 1. A CIP is defined to be
column-monotone ifl;; < A(;41); for all < and for all j < m. Without loss of generality, we can assume
thatbj € Z" and bj+1 > bj.

We start with the following decision problem: Given a columonotone CIP, determine whether the
optimum objective value is less thahor more than-C; if the optimum value lies betweed andrC then
either of the two answers is considered valid. We will rethie hardness of this decision problem (which
we callr-GAP-CIP) to the hardness of approximating thesMiuMm —ELEMENT problem.

An (r, s)-approximation for the MNiMum —ELEMENT problem violates the cost budget by at mest
and obtains an objective function value (i.e. the expemtatif the minimum) that is at mosttimes the
optimum objective function value with the original cost et

Lemma 3.2. Ther-GAP-CIP problem with polynomially bounded (irandm) coefficientsA;; reduces, in
poly-time, to the problem of obtaining &n poly(m))-approximation forMINIMUM —ELEMENT.

Proof. Fix any constant, and letg = m**!. Definen distributions over valuegy, j1, . . ., jtm Where
o = 0 andp; — pj—1 = ¢%. Distribution X; has observation cosf, andPr[X; > u;_1] = ¢~“4i. Further,
let Pr[X; > p,,] = 0. Note that these definitions impBr[X; = 0] = 1 — ¢~ 4oi,

Observe that column-monotonicity is crucial for this ddfom to correspond to a valid probability dis-
tribution; the requirement that;;'s be polynomially bounded is crucial for the reduction togdadynomial
time. Let the cost budget for theIMiMuM —ELEMENT problem beC'.

First assume that the original CIP has a solutignzs, ..., x,, with cost at mostC. Let .S be the set
{i : x; = 1}. For the MNIMUM —ELEMENT problem, probe the variables;,: € S. For anyy,

PI‘[HHDXZ > ,Uj—l] = HPI'[XZ > ,uj—l] = q_ZieSAji < q—bj'
s i€s

Therefore,

m m

Elmin X;| — 1) Prlmin X < big=bi = m.
[min X} ;(#g pj-1) Primin X; > p;] _;q q m

Now suppose that the original CIP has no solution of ¢65br less. Then for any index sgtsuch that
> ics ¢ < rC, there must be at least one constrgisuch thad ;¢ A;; < b; — 1. Thus,Pr[min;cs X; >
pi—1] =q"~ Lies Aji > ¢~ . Now,

E[min X;] > (1; — ptj—1) Prmin X; > pi;_1] > ¢"¢" % = q.
ies €S

Thus, the problem of distinguishing whether the optimunuegadf the original CIP was less th&hor
more than-C' has been reduced to the problem of deciding whethenium —ELEMENT has an optimum
objective value< m with cost budget” or an optimum value> ¢ with cost budget-C'.

Sinceq/m = m*, we have obtained a polynomial time reduction frer6AP-CIP to the problem of
obtaining an(r, m*)-approximation of the MNIMUM —ELEMENT problem. O
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Theorem 3.3. It is NP—HARD to obtain any polym) approximation on the objective fdvliINIMUM —
ELEMENT while respecting the cost budget.

Proof. We reduce from the well-known NP A#RD problem of deciding if a set cover instance has a solution
of valuek. TheseT coveRproblem is the following: given a ground sEtwith m elements ana sets
S1,5s,...,5, C U over these elements, decide if there e these sets whose unionlis

Write this set cover instance as a CIP as follows. There iosanfor each element and a column for
each setA;; = 1 if element; is present in se$; and0 otherwise. Allb; = 1 and allc; = 1. To make this
column-monotone, set;; < Aj;; + j for eachj, i and seb; < 1+ jk. Clearly, if there is a solution to this
monotone instance of value this solution has to be feasible for the set cover instandesa.composed of
k sets. Conversely, if the set cover instance has a solutiiningets, the monotone CIP has a solution of
valuek. Since deciding if a set cover instance has a solution ussgjs is NP-HARD, solving this class of
1-GAP-CIP instances is NP-ARD. By the proof of Lemma 3.2, this implies(a, poly(m))-approximation
to the MINIMUM —ELEMENT problem is NP—HARD. O

We have only been able to prove NP-Hardness of column-mpad@®Ps, and so have not been able to
fully exploit the approximation preserving reduction inmima 3.2. A hardness of approximating column-
monotone CIPs will immediately lead to a stronger hardnesslt for the MNIMUM —ELEMENT problem
via Lemma 3.2.

MINIMUM —ELEMENT(C)
* C' = Relaxed cost bound{ > C). */
S «— o,
While (3;cg¢i < C)
X, « argmay 2/ (S)-lee S(SU{Xi))
S —SU{X,} L
endwhile
OutputS

Figure 2: Greedy Algorithm for MN\IMUM —ELEMENT.

4 Greedy Algorithm

The algorithm is described in Figure 2 and takes a relaxethmsdC > C as parameter, and outputs
a solution of costC. As we discuss later, the paramet@rtrades-off in a provable fashion with value of
the solution found. The algorithm uses the slightly unretéunctionlog f(.5) instead of the more natural
function f(S). As our analysis shows, this modification provably improwasapproximation bound. The
analysis of this algorithm uses the theory of submoduldhNtymhauseeet al. 1978]. Sub-modularityis a
discrete analogue of convexity which is the basis of mangdyepproximation algorithms. We formally
define sub-modularity next.

Definition 4.1. A functiong(.S) defined on subsets C U of a universal set’ is said to be sub-modular if
for any two setsA € B C U and an element ¢ B, we haveg(A U {z}) — g(4) > g(BU {z}) — g(B).

The key result in this section shows that the funcﬁj@gl% used by the greedy algorithm is sub-modular.

Lemma 4.2. Let f(S) = E[mines X;]. Then, the functiofvg + is sub-modular.
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Proof. Consider two sets of variabled and B = A U C, and a variableX ¢ B. In order to prove
the theorem, we need to show thﬁ% < %. We first define the following terms for each
7=0,1,...,m—1:

1. a;j = Pr[(minyea Y) > a;] = Illyca Pr[Y > qj].
2. B = Pr[(minyec Y) > a;] = llyec Pr[Y > ay].
3. 75 =Pr[X > qj].

First note that they;, 3; and~; values are non-negative and monotonically non-increasitigincreasing
4. Next, by the independence of the variables, we have:

—_

fFLAV{XY) = D LPrl(X 2 ¢) A(minY > aj)]

3

S
Il
— o

m—1
= [; Pr[X > aj]Pr[({/nemY ) > aj] = Zl a4
7=0

3

.
o

Similarly, f(B) = Z;n:_ol ljajﬁj andf(B U {X}) = z;n:—ol ljozjﬁjvj.
Using the above, it follows that:

FAU{X)) X by ang TBULXD > LB
f(4) >l f(B) >l B

Therefore, we have:

FAU{XHF(B) = F(BU{XNF(A) =) Lilyajay(v; — 1) By — ) <

J<j’

The final inequality follows due to the monotonicity of botiety; and 3; values. The above implies
f(f%{‘f}) < f('%g(}) , which showsog } is a sub-modular function. O

The connection between sub-modular functions and the gralgarithm is captured by the following
theorem:

Theorem 4.3((Nemhauseet al. 1978)) Given a non-decreasing submodular functigf) on a univer-
sal setU, where each elemerit € U has a cosic;, and given a cost bound > max;¢;, let §* =
argmaxg(S)|>_,cgci < C}. Consider the greedy algorithm that, having chosen alsef elements,

chooses the next one elemerihat maximizes the rati¢"1")=91) " | et () denote the initial solu-
tion. Then, for any, the greedy algorithm using cost budg@ﬂog # finds a setl, such that

9(Te) > g(S™) —e.

Intuitively, sub-modularity ensures that current greeldgice has cost per unit increase in valugOfat
most the corresponding value for the optimal solution. FoxMum —ELEMENT, let S* denote the optimal
solution using cosf’.

Theorem 4.4. LetV = E[mini_; X;]. The greedy algorithm fomiNIMUM ELEMENT achieves g1 + )
approximation tof (S*) with costC = C (log log % + ’ye), wherevy, = log m is independent of the
input parameters.



Proof. In the above theorem, sgt= log % Sincef(®) = M, we haveg(®) = log % Let S denote the
greedy set. SuppoggsS) > g(S*) — log(1 + €). Then,f(S) < (1 +€)f(S™).

Therefore, in the above theorem, we hdyg ;.. = S, which implies the cost i€ < C(loglog %—
loglog(1 + €)). Sincef(®) = M and f(S*) >V, we haveC' < C (loglog 4% + 7). O

Note: If instead oflog % we had used- f (which is submodular) as suggested by a naive greedy digorit

then we would have needed a significantly worse coét(@bg % +log %) to achieve g1+¢) approximation
to f(S*). Thus the improved analysis (and algorithm) was neces&&eynext prove the following lower
bound.

Theorem 4.5. The analysis of the greedy algorithm is tight on the cost.

Proof. There arek = loglog M intervals of formI; = [2%,22""| fori = 1,2,..., K. There arek
distributions X1, Xo, ..., X . Distribution X; (i = 1,2,..., K) takes value2? with probability (1 —
9-2"'+1) and takes valu@? w.p. 272"+ Here,r = K + 1, andK = w(1). Note that2?" =
92" s s M _ 112 s the range of the distributions. _ .

There are two special distribution§ and Y such thatPr[y; > 2%] = 272't! for j = 1,2, and
i=1,2,...,K. We also havér[Y; > 0] = 1 andPr[Y; > 2%'] = 0. All distributions have unit cost. Let
C = 2. The optimal solution chooses the distributidrisandY>. We have:

Emin(Y1,Y3)] = 4+ i (2_2i+1)2 (22i+1 B 22i>
i=1

K
S 4 <1 + Z 2_22+1222+1>

i=1
< 4(1+K) = O(K)

We claim thatGREEDY first choosesX . If GREEDY chose any other distributiaf, then the expectation
can be lower bounded using just the contribution from theitdsrval I

E[Z] > (2% — 22T71)Pr[Z > 22”1] > (2% — 22“1)2—2T*1+1 —9 (22“1 B 1)
Further, noting thalk = » — 1 and that = w(1), we have:
E[Xg] =27 (127241 4 2% 2721 = 927" 1 949,972 <9 (22“1 - 1>

This impliesGREEDY choosesX g first. At this point, the contribution from the intervak to GREEDY is
(22" — 227 1)2-2"+1 < 2. However,E[Xk] > 22" = w(K).

We now repeat the whole argument using inteifjal ;, and show thaGREEDY choosesX i _; next.
We lower bound the contribution &[min(Z, X )| for every distributionZ # X, Xx_1 on the interval
Ix_1, and argue that this is at leaB{min(Xx_1, Xx)]. However, E[min(Xx_1, Xx)] > 22" =
w(K). Continuing the same argument @R _o, I3, ..., it can now be shown thatREEDY chooses
XK, XK-1,...,Xloglog ik IN Order to achieve objective valu@(k’). In other words, greedy spends cost
Q(K) in order to achieve minimum value @(K). The rangeM? of the distributions satisfie& =
loglog M, and further,V = E[min(minZ, X;,Y7,¥5)] = Q(1). Therefore,GREEDY needs to exceed
the cost budget by a factor 6f (log log %) in order to achieve any constant factor approximation to the
minimum value. O



5 Improved Approximation Algorithms

The GREEDY algorithm has approximation ratio which depends (inve)seh the value of the optimal solu-
tion on that instance (a lower bound on whichHis= E[min!_; X;], which could be exponentially small).
The approximation ratio increases as the value of the opswilation reduces. However, the algorithm is
desirable since the dependence is of the farglog V.

We now present an algorithm CIPRGEDY whose approximation ratio (on the cost)@flog m + ~.)
depends just omn, the number of possible values that can be taken by the inpatete distributions.
(Recall the notation from Theorem 4.4.) This algorithm isdzhon computing a good start solution for
GREEDY using linear program rounding. This also has the advantagelding an algorithm for the case
when the input distributions are integer valued over a smaalfe — the approximation ratio in this case
depends only on the range and not on the valué/e finally show that if each distribution is log-concave,
the approximation on the costd(~.) in order to obtain &1 + ¢) approximation on the minimum value.
The approximation factor therefore beconiedependenbf the parameters of the distribution.

5.1 CIP-GREEDY Algorithm

We first consider the case where the are discrete distributions over values. We present @(logm)
approximation (on the cost) by combining the greedy alporitvith column monotone CIPs. Let the num-
ber of distinct values taken by the discrete distributioasnh corresponding to the intervals, I, . . ., I,.
Let /; denote the length of the interva). Let X* denote the value of the optimal solution taMMuMm —
ELEMENT Letaj; = log —. The CIP-GREEDY algorithm runs in the following three steps.

Pij

Step 1: The first step of the algorithm defines the following integergoam:

Minimize =z
Yoiiviay; > logly—z Vi={1,2,...,m}
Yoijay < C
y, € {0,1} Vie{l,2,...,n}

Claim 5.1. z = log X* is feasible for the above IP.

Proof. Consider the optimal solutiof to MINIMUM —ELEMENT and sety; = 1 if ¢ € S and0 otherwise.
Clearly, we have) _, ¢;y; < C. Furthermore, the IP constraints together with the dediniof X* implies
the following:

m

X* — mmX Zl Hp” = Zl < sz';) > max (l <H2p”))

j=1 €S

Taking logs, we have
log X* > mjax <log l; — Zi:yiaﬂ>

Rearranging, this implies:

Zy,—aji >logl; —log X* Vj ={1,2,...,m}
i=1

Thereforez = log X* satisfies all the constraints of the LP. O



The next claim follows using the same proof argument as teeiqus claim.

Claim 5.2. Consider any feasible solution to the above IP with cost btd and objectivez. Then the
subsetS corresponding ta s.t.y; = 1 satisfies:) ", ¢ ¢; < €', andE[min;cs X;] < me”®.

Proof. Clearly, we havey", c;y; = >,cq ¢i < C'. Further, we have:

z > logl; Zyzaﬂ = alyZ<e Vi=1,2,.

We finally have:

Elgélg}X Z Hp”_z Hp < me”®

j=1 €S = [
|

Step 2: Solve the linear relaxation of the IP presented in Step (ith @ost budget”. Suppose the optimal
solution has value*. From Claim 5.1z* < log X*. Re-write the LP relaxation as follows:

Minimize Z Civi
7

n
Zyiaji > loglj—z* \V/j:{l,Q,...,m}

yi € [0,1 Vie{l,2,....n}

It is clear by the choice of* that there exists a solution to the above LP with objectivaerat most'.
Note further that the above is the LP relaxation of a coveirtgger program (CIP). This CIP 8OLUMN-
MONOTONE, but we do not use that fact below. We now use the followingppsition proved in [Caret al.
2000; Kolliopoulos and Young 2001].

Proposition 5.3. Given a CIP withm constraints whose LP relaxation has a feasible solutioncarefind
an integral solution (ally; either 0 or 1) in poly-time with approximation rati@(log m) against the LP
solution.

The above implies that there is a solution to the above LP evakyy; are eithei0 or 1; that respects all
the constraints; and that has objective value (or d@@$€) logm). Using Claim 5.2 withC’ = O(C'log m)
andz < log X*, this integer solution corresponds to a subSesuch thatE[min;c g0 X;] < mX*, and

Y icgo ¢i = O(Clogm).

Step 3: Run the greedy algorithm in Figure 2 with initial soluti6f and with cost budgef’ = C' (log log m + ),
wherey, = log m. Let the final solution bes/.

Claim 5.4. E[min;cgr X;] < (1 +¢)X™.
Proof. Asin the proof of Theorem 4.4, we start with the statementwdrem 4.3. Usg(S) = — log E[min;cg X;].

Since the greedy algorithm starts wifi¥, we haveg(®) = ¢(S°) = —log(mX*). Further,g(S*) =
—log X*. Our choice of cost budget impli€d’ = T, (1), S0 thatg(S/) > —log((1+€)X*). Therefore,
E[min;cgr X;] < (14 €)X™. O

We finally have the following theorem:

Theorem 5.5. For discrete distributions om values, theCIP-GREEDY algorithm achieves & (log m + )
approximation on the cost in order to find a solution of valtenast(1 + ¢) X *.
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5.2 Algorithm for Polynomial Input Domain

We now improve the above result when the domain of the didtdbs is the sef0,1,..., M —1}. Assume
w.l.0.g. thatM is a power o2. We first group the intervals so that the lengths are incngasi powers of,
and the first interval has lengih For each distributiorX;, construct a new distributio; over the domain
R =1{0,1,2,4,...,2°sM} as follows: Set;y = pig, and fork € R\ {0}, setp;, = Z?:(k/z] pij. Let
X* denote the value of MiiMuM —ELEMENT for the distributionsX; and letY™* denote the corresponding
value for the distributions;. It is easy to show thak* < Y* < 2.X*.

The algorithm is as follows: Run Steps (1) and (2) of the CIREEDY algorithm using the distribu-
tions X;. Settingm = log M, it is easy to see that this produces a solutinso thatE[min;c g0 X;] <
2X*log M using costO(C loglog M). Now run the greedy algorithm in Figure 2 using starting solu
tion S, and using the original distribution¥;, with budget set t&” = C (logloglog(2M) + ~.), where
Y. = log m. Using the same proof as Theorem 4.4, this yields a solutforalae (1 + ¢) X*. We
therefore have the following theorem:

Theorem 5.6.In theMINIMUM —ELEMENT problem, when the domain of value§is 1,..., M — 1}, then
the approximation ratio (on the cost) of the modifetP-GREEDY is O (loglog M + ~.), and this achieves
a solution of valug1 + ¢) X*.

Remarks. An interesting open question is to improve the above appration factor taO(1) on the cost.
The super-constant approximation ratio is in sharp conwés the lack of even a NP-BRDNESS result
for the case wherg/ is polynomially bounded. (Note that the NPARDNESSproof required exponentially
large values in the domain.)

Next, note that in both the cases discussed in this sectiehattieneck in the approximation ratio is
in solving the covering program. In particular, replacihg GREEDY algorithm in each case by thmive
greedy algorithm that adds the variable arggﬁM at each step, would also yield the same
approximation ratio. This strongly suggests thatitheonstraint ®LUMN-MONOTONE CIPs that arise in
these settings have a better approximation ratio thélng m). Note that we have only been able to show
NP-HARDNESsfor these problems, and the hardness of approximation pfoofyeneral CIPs do not carry
over to @MLUMN-MONOTONE CIPs.

5.3 Log-concave Distributions

We now show that a slightly modified greedy algorithm actupkrforms much better when each distribu-
tion X; is a log-concave distribution. Ldf;(r) = Pr[X; > r]. A distribution is said to béog-concavef
log F;(r) is a concave function of. We note that several common distributions such as unif@aussian,
and Beta densitiésare known to be log-concave [6].

The problem with using the greedy algorithm directly is timatially, the algorithm could make a se-
guence of wrong choices which are costly to rectify. We shioat if the distributions are truncated near
the optimal solution value, such a problem cannot arise tlag@fore the greedy algorithm performs much
better. To get around the issue of not knowing the optimaltsmi value, we try all possible truncations in
powers of2. In order to describe the new algorithm, we first definettbhacationof a distribution:

Definition 5.7. X is atruncationof X at pointt if Pr[X! = ¢] = Pr[X > t], andPr[X! = r| = Pr[X = 7]
forr < t.
The algorithm is presented in Figure 3. It clearly has poigi@ running time since it tries values of

in powers of2, so that the number of tries is polynomial in the bit comglexrif the input. As before, let*
denote the optimal solution and* = E[min;cg+ X;].

'Betda, b) is log-concave when, b > 1.
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MODIFIED GREEDY (C, €) *e<0.2*

C — 2C,

t «— mini E[XZ]/E

While ¢ > E[mlnl Xz] do:
St « GREEDY solution onX?, ..., X! with cost bound.
t «— t/2.

endwhile

OutputS* with minimum E[min;¢c g: X;].

Figure 3: Modified Greedy Algorithm for Log-Concave Distrilons.

We will use the following lemma about the log-concave deesif6].
Lemma 5.8. Consider any distributionX with F'(r) = Pr[X > r]. If log F'(r) is concave, then
_ fzo; F(z)dz
g(r) = T
is monotonically non-decreasing.

The crux of the proof is the following lemma, which in effetates that truncation arounti* /e pre-
serves the expected minimum of all solutions whose origimaimum was close t&*.

Lemma 5.9. Lett = aX= for a € [1/2,1]. For any setS with E[min;es X;] = ¢ > X*, either
E[min;egs X!] > 1.2X* or E[min;es X!] > (1 — 5e)q.

Proof. Consider any sef andg = E[min;eg X;] > X*. Lett = a£= for a € [1/2,1]. Define the
following:
Fs(t) = Pr[miél X; > t] = s Fi(t)
1€

Since eachX; is log-concave, we have thaig F;(r) is concave. By linearity, this implielg Fs(t) is
concave as well. Therefore, from the previous lemma, we tieate

_ f;it Fs(z)dx

- Fs(t)

is a monotonically non-increasing functioniofWe split the analysis into two cases:

Case 1:If Fs(t) > 2.4¢, then,

gs(t)

*

2.4e > 1.2X*

t
X

E[min X}] = / Fs(x)dx > tFs(t) > «
€S =0 €

where we have used > 1/2.
Case 2:If Fs(t) < 2.4¢, sincegg(0) = E[min;es X;| > gs(t), we have:

o0
/ Fs(z)dr < E[min X;|Fs(t) < 5eq

ot i€S
Therefore,

t 0o
E[min X!] = / Fg(z)dx = E[min X;]| — / Fg(z)dx > q(1 — be)
1€S =0 €S r=t

12



Theorem 5.10. Let v, = log m. For e < 0.2, the modifiedsREEDY algorithm yields a solution of
value(1 + 7e) X* for log-concave distributions using ca&t'y..

Proof. During some point in the execution of the algorithm, we wilivet = a%- for o € [1/2,1].
Consider this value of. For any setS with cost at most, we haveE[min;cs X;] > X*. Applying the
previous lemma, it is clear th#[min;cs X!] > (1 — 5¢) X*.

Note now thatE[X!] < X*/e for all . Therefore, using/(S) = — log E[min;eg X/] (with g(®) =
—log(X*/e), g(S*) = —log((1 — 5e)X*), andg(S?) = —log((1 + €)X*)), and repeating the proof of
Theorem 4.4 yields (fot < 0.2):

+ be

~ 1
c<cC <log log + %) < 2C,

€
This yields a seb" such thatE[min;cg: X!] < (14 €)X* < 1.2X*.

Now, eitherE[min,cg: X;] < X*, in which case we are done; or we apply the previous lemmade sh
thatE[min;cgt X;] < (1 + 5€)E[min;cg X! < (14 5€)(1 4 €)X* < (1 + 7€) X* for e < 0.2. O

6 The Mixed Model

So far the only variables we were allowed to use in our salutiere the ones that we observed. In general,
our solution can use both probed and unprobed variableselfitinimum value among the probed set is
larger than the expected value of a variable that has notfreded, we would prefer to use that variable as
opposed to one of the probed values.

We show that the restriction of using only the probed set doésignificantly alter the problem:

Theorem 6.1. In order to achieve the same (or better) objective KbmiMuM —ELEMENT, the solution
that uses only probed variables probes at most one more aritnan the solution that is allowed to use
unprobed variables.

Proof. Consider the optimal solution in the mixed model. Suppogwadbes setS* and let X* denote
the variable not in5* with the smallest expectation. The strategy is to prSband if the minimum value
observed is larger thaf[ X *], outputX *. The value of the solution is given B{min(miny g+ Y, E[X*])].
Consider now the solution that prob&suU { X*}. The value of this solution [E[min(miny g« Y, X*)]. It
is easy to see that this value is smaller than the value ofgtimal strategy for the mixed model. O

7 Conclusions

We have presented a framework (along with simple greedyrighhgas) for studying the cost-value trade-off
in resolving uncertainty based on the objective functiomdp®ptimized. This paradigm will increasingly
play a role in model-driven optimization in sensor netwasksl other complex distributed systems.

In the context of MNIMUM —ELEMENT our work presents interesting open questions. First, ttsere
a huge gap between the lower bounds and approximation natoshow. Can this gap be closed? In
particular, can logarithmic hardness be shown for the ggmase, and NP-ERDNESSfor the case where
the domain is restricted to be poly-bounded. Furthermaoag, tbe algorithms be extended to the case
where the observations are adaptiie, based on the results of previous observations? In subseque
work [Guhaet al. 2008], a poly-time optimal algorithm is presented for thelpem of adaptively probing
for the maximum value, with the objective being to maximinge adaptive choices &), the quantity
E[max;es X;] — o) ,cg¢;- The same algorithm also optimiz€8min;es X;] + a ) ;g ¢; over adaptive
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choices ofS. However, these techniques do not extend to the non-aéaldiniMuM —ELEMENT problem
with cost budgets considered in this paper. We leave thiscags a challenging open question.

Acknowledgments: We thank Shivnath Babu, Utkarsh Srivastava, Sampath Kaamamrian Babcock for
helpful discussions.
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