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1 Introduction

Optimization problems arising in databases, streaming, cluster computing, and sensor network applications
often involve parameters and inputs whose values are known only with some uncertainty. In many of these
situations, the optimization can be significantly improvedby resolvingthe uncertainty in the input before
performing the optimization. For instance, a query optimizer often has the ability to observe characteristics
in the actual data set, like selectivities, either via random sampling or by performing inexpensive filters
[Babu et al. 2005; Babcock and Chaudhuri 2005]. As another example, a system like Eddies [Avnur and
Hellerstein 2000] finds the best among several competing plans which are run simultaneously. Each plan’s
running time is a distribution which is observed by executing the plan for a short amount of time. In all such
examples, the process of resolving the uncertainty also consumes resources, e.g., time, network bandwidth,
space, etc., which compete with finding the solution of the original problem.

Therefore, judiciously choosing which variables to observe, itself becomes an important problem in
this context. In this paper, we study the optimization problem of finding the minimum, when the inputs
are random variables and the values of one or more inputs can be observed and resolved by paying some
cost. We show that even for this simplest of optimization problems, this choice becomes non-trivial and
intractable, motivating the development of algorithmic techniques to address them.

We initiate the study of the following abstractly defined class of problems, that we term “model-driven
optimization”:

Problem 1. We are given the distributions of non-negative independentrandom variables{Xi}
n
i=1. Further,

these random variables areobservable: we can find the value ofXi by spending costci. Given a budget
C and an objective functionf , can we choose a subsetS of random variables to observe whose total
observation cost is at mostC, and optimize the expected value of the functionf(S)? Note that the function
f is evaluatedafter the observations, and the expectation is over the outcome ofthe observations.

In this paper, we focus on the functionf(S) = mini∈S Xi, so that the goal is to choose a subsetS whose
observation cost is at mostC, so thatE[mini∈S Xi] is minimized. We define this problem as the MINIMUM

ELEMENT problem. In Section 1.3, we present a brief survey of results[Guha and Munagala 2007; Guha
and Munagala 2008; Guhaet al.2008] on other objective functionsf .

As a motivating example, in the context of traditional and P2P networks, “multi-homing” schemes are
becoming a common method for choosing communication routesand server assignments. These schemes
[Akella et al. 2003; Gummadiet al. 2004] probe and observe the current state of multiple routesbefore
deciding the optimum (minimum latency) route to use for a specific connection. The distribution of the
latency of each route is availablea priori. The number of probes needs to be bounded since flooding the
network is undesirable. Therefore the goal is to minimize the latency of the route found by a bounded
number of probes. The mapping to our framework in this case isas follows:Xi are the distributions of route
latencies. The probing costci is a function of the delay and load incurred in detecting latency of routei. The
budgetC is the total load and processing time that can be incurred by the route choosing algorithm. Finally,
f = mini∈S Xi, whereS is the set of routes probed. This corresponds to the goal of choosing that set of
routes to probe which minimizes the expected value of the smallest latency detected.

Note that if the minimum value among the probed set is more than the expected value of a variable that
has not been probed, we would prefer to use that variable (the”backup”) as opposed to one of the probed
values. We will not take this optimization into account while analyzing our algorithm. Refer Section 6 for
the reason. We now show the benefit of probing with an example.

Example 1.1. If all variables are BernoulliB(1, p) (with anyp), the estimate of theminimum is p if only
one probe is allowed, but ispn ≪ p if all nodes are probed. Probing can therefore yield an estimate which
is exponentially smaller, which means that if there is a low utilization, we will very likely find it.
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Note that the optimization chooses the final variableafter the results of the probes are known. Therefore,
the overall optimization is to chooseS with cost at mostC, so thatE[mini∈S Xi] is minimized. This is very
different from optimizingmini∈S E[Xi], which is obtained when we choose the final variablebeforethe
results of the observations are known. The latter version isof course trivial to solve.

Consider the simple case when the probing costs of all nodes are equal. Letm denote the constraint on
the number of variables that can be probed. It would appear that the optimal strategy would be to choose the
m nodes with the smallest expected values. The example below shows that this need not be the case. Note
further that our problem is not the same as minimizing residual entropy [Krause and Guestrin 2005] which
minimizes uncertainty of the joint distribution – we are concerned with minimizing the uncertainty of an
optimization that depends on the joint distribution, the minimum value. Minimizing residual entropy will
most often involve probing a different set of variables thanthose required for estimating best the specific
function at hand (see example below); therefore, the problems are orthogonal.

Example 1.2. There are3 distributionsX1, X2 andX3 andm = 2. Distribution X1 is 0 with probability
1
2 and1 with probability 1

2 . Distribution X2 is 1 with probability 1
2 and2 with probability 1

2 . Distribution
X3 is 0 with probability 1

5 and2 with probability 4
5 . Clearly,E[X1] < E[X2] < E[X3]. However, probing

X1,X2 yields an expected minimum value of0.5, while probingX1,X3 yields an expected minimum value
of 0.4. Minimizing residual entropy [Krause and Guestrin 2005] would also choose the sub-optimal set
{X1,X2}.

The simple strategy does not take into account theshapeof the distributions. In fact, the MINIMUM –
ELEMENT problem becomes NP–HARD for arbitrary distributions even with uniform costs. In fact, we
show a stronger hardness result: it is NP–HARD to approximate the minimum value up to polynomial
factors without exceeding the observation budgetC. Hence the natural model to study this problem is
from the perspective ofresource augmentation: can we guarantee that we achieve the same solution as the
optimum, while we pay a larger observation cost?

1.1 Results

We introduce the problem of model driven optimization in thepresence of observations, and particularly
consider the MINIMUM –ELEMENT problem. We present natural algorithms that are easy to implement and
provide strong evidence that these algorithms are likely tobe the best possible. We note that naive greedy
algorithms do not work and extra algorithmic techniques arerequired to augment the greedy algorithm.

Our first result shows a deep connection between the MINIMUM –ELEMENT problem and a certain type
of covering integer program. We use this connection to show that it is NP–HARD to approximate the
objective up to any polynomial factor without augmenting the cost budget. Consequently, we design algo-
rithms that approximate the cost while achieving nearly optimal objective value. The algorithms we design
yield a(1 + ǫ) approximation to the optimal value by increasing the cost budget by a factor that looks like
O (η + γǫ), whereγǫ = log 1

log(1+ǫ) is a constant independent of the input. Our results show different values
of η for different types of distributions.

In the most general case, we show that the functionf(S) = E[mini∈S Xi] is log-concave, i.e., log 1/f(S)
is sub-modular. (Simply showingf(S) is submodular, yields a approximation ratio polynomial inm.) Con-

sequently a greedy algorithm givesη = log log
mini∈S∗ E[Xi]
E[mini∈S∗ Xi]

whereS∗ is the optimal solution.
We then show approximation algorithms whose bounds depend on entirely different parameters of the

problem, as well as improved results for special cases. These are summarized below.

1. If the distributions are discrete over a domain ofm arbitrary values, thenη = log m. This uses
the connection with covering programs mentioned above, andproceeds by using the approximately
optimal solution to a covering integer program as the start solution to the greedy scheme.

2



2. If the distributions are over the domain{0, 1, 2, . . . ,M}, thenη = log log M . This uses a scaling
argument combined with the covering program.

3. For arbitrary log-concave distributions,η = O(1). To show this, we develop a truncation result for
log-concave distributions. We show that a modified greedy algorithm that tries different truncated
distributions in turn yields the desired result. Log-concave distributions capture uniform, Gaussian,
and Beta densities among others [6].

In terms of techniques, we combine an involved sub-modularity argument along with the analysis of the
bestfractional solutions of covering problems. Although the analyses are complicated, the algorithms are
natural.

1.2 Related Work

The notion of refining uncertainty has been considered in anadversarial settingby several researchers
[Olston 2003; Federet al.2003; Khanna and Tan 2001; Charikaret al.2002]. In the adversarial model, the
only prior information about an input is the lower and upper bounds on its value. The goal is to minimize
the observations needed to estimate some function over these inputsexactly, and often negative results arise.
The use of lower and upper bounds do not exploit the full powerof models/samples/stochasticity of the data,
i.e., thedistributionsof inputs. However to use the distributional information wemust optimize theexpected
valueof the function, which is also referred to as stochastic optimization.

More recently, significant attention has been devoted towards developing and using models and estimates
of data based on prior knowledge, e.g., [Chuet al.1999; Chuet al.2002; Deshpandeet al.2004; Babcock
and Olston 2003; Babuet al. 2005; Babcock and Chaudhuri 2005; Silbersteinet al. 2006] among many
others. Our work complements the body of research on maintenance of samples and estimates, and we show
that judicious probing may yield exponentially better estimates.

Another line of work [Deanet al. 2004] considers knapsack problem in the model that the job sizes
are revealed only after the job hasirrevocably placed in the knapsack. In the settings we described, this
would imply that the decision to refine our estimate, i.e., probing, is equivalent to selecting the item in the
final solution. This effectively disallows probing. In our model the choice of which variables to pack in
the knapsack would be madeafter the observations. There also has been ongoing research in multi-stage
stochastic optimization [Kleinberget al. 2000; Goel and Indyk 1999; Immorlicaet al. 2004; Guptaet al.
2004; Gupta, Ravi, and Sinha 2004; Shmoys and Swamy 2004], however most of this literature also involves
making irrevocable commitments.

1.3 Subsequent Results

The model-driven optimization framework can be defined for other objective functionsf . Though this paper
presents the best results known for MINIMUM –ELEMENT other work has considered different objective
functions. First, whenf is a single constraint packing problem such as knapsack withrandom profits which
are observable, Guha and Munagala [Guha and Munagala 2007] show a8 approximation based on rounding
the solution of a natural linear program. The approximationratio holds even when the optimal solution is
allowed adaptive (i.e., can be based on the results of previous observations). It further holds even when the
hidden quantity is a distribution (instead of a single value) and a prior on this distribution is specified as input.
A special case of this result is whenf(S) = maxi∈S Xi, or the MAXIMUM ELEMENT problem. Since the
M INIMUM and MAXIMUM element problems are equivalent from the point of view of exact solution, the
NP-HARDNESS result we present below also shows that MAXIMUM ELEMENT is NP-HARD. However,
from the point of view of approximation, the techniques and results for the MINIMUM and MAXIMUM

element problems are very different.
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In [Guhaet al.2008], Guha, Munagala, and Sarkar consider the Lagrangean version of the MAXIMUM

ELEMENT problem, where the observations are adaptive and the goal isto maximize the expected difference
between the maximum value and the observation cost. Note that there is no budget on this cost, instead it
is part of the objective function. If the maximum value needsto be chosen from the observed distributions,
this problem has an optimal solution. The same trivially holds for optimizing the sum of the minimum value
and the observation cost. When an unobserved distribution can also be chosen as the maximum value, the
Lagrangean version is shown to have a1.25 approximation via a greedy algorithm that is analyzed by a
non-trivial structural characterization of the optimal solution.

Finally, whenf is geometric problem, such asK-median clustering or spanning tree construction, on
independent (and observable) point clouds, Guha and Munagala [Guha and Munagala 2007] show constant
factor approximation algorithms when the observations areadaptive. These algorithms are based on con-
verting the observation problem into anoutlier version of the problem. Similar results are also shown for
the average completion time scheduling problem.

2 Minimum–Element: Preliminaries

We are givenn independent non-negative random variablesX1,X2, . . . ,Xn. Assume thatXi has observa-
tion costci. There is a budgetC on the total cost. The goal is to choose a subsetS of distributions with
total cost at mostC which minimizesE[mini∈S Xi]. Without loss of generality, we can assume the that
ci ≤ C for all i. We further assume the distributions are specified as discrete distributions overm values,
0 ≤ a1 ≤ a2 ≤ · · · ≤ am ≤ M . Let pij = Pr[Xi ≥ aj ]. The input is specified as thepij andaj values.
Note thatm is not very large since frequently the distribution is learned from a histogram/quantile.

Some Notation: Let a0 = 0 andam+1 = M . For j = 0, 1, . . . ,m, let lj = aj+1 − aj . We call Ij =
[aj , aj+1] the jth interval. This is illustrated in Figure 1. Recall thatpij = Pr[Xi ≥ aj]. We have
E[Xi] =

∑m−1
j=0 pijlj . We definef(S) = E[mini∈S Xi] for each subsetS of variables. All logarithms are

to basee. Let f(Φ) = M .

Figure 1: Notation used in MINIMUM –ELEMENT.

3 NP–Hardness

We begin with a hardness result: It is NP–HARD to obtain a poly(m) approximation on the objective for
M INIMUM –ELEMENT while respecting the cost budget, even for uniform costs. Wetherefore focus on
approximation algorithms for this problem which achieve the optimal objective while augmenting the cost
budget. Thus the approximation results are on thecostin this paper.
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Definition 3.1. A Covering Integer Program (CIP) overn variablesx1, x2, ..., xn (indexed byi) and m
constraints (indexed byj) has the form

min
∑

i

cixi

subject to: A~x ≥ ~b

~x ∈ {0, 1}n

whereci ∈ ℜ
+ and A ∈ Z

m×n, i.e., the elementsAji of the constraint matrix are non-negative integers.
This is a generalization ofSET–COVER where the matrixA is {0, 1} and ci = 1. A CIP is defined to be
column-monotone ifAji ≤ A(j+1)i for all i and for all j < m. Without loss of generality, we can assume
that bj ∈ Z

+ andbj+1 ≥ bj .

We start with the following decision problem: Given a column-monotone CIP, determine whether the
optimum objective value is less thanC or more thanrC; if the optimum value lies betweenC andrC then
either of the two answers is considered valid. We will relatethe hardness of this decision problem (which
we callr-GAP-CIP) to the hardness of approximating the MINIMUM –ELEMENT problem.

An (r, s)-approximation for the MINIMUM –ELEMENT problem violates the cost budget by at mostr
and obtains an objective function value (i.e. the expectation of the minimum) that is at mosts times the
optimum objective function value with the original cost budget.

Lemma 3.2. Ther-GAP-CIP problem with polynomially bounded (inn andm) coefficientsAji reduces, in
poly-time, to the problem of obtaining an(r, poly(m))-approximation forM INIMUM –ELEMENT.

Proof. Fix any constantk, and letq = mk+1. Definen distributions over valuesµ0, µ1, . . . , µm where
µ0 = 0 andµj−µj−1 = qbj . DistributionXi has observation costci, andPr[Xi > µj−1] = q−Aji . Further,
let Pr[Xi > µm] = 0. Note that these definitions implyPr[Xi = 0] = 1− q−A0i .

Observe that column-monotonicity is crucial for this definition to correspond to a valid probability dis-
tribution; the requirement thatAji’s be polynomially bounded is crucial for the reduction to bepolynomial
time. Let the cost budget for the MINIMUM –ELEMENT problem beC.

First assume that the original CIP has a solutionx1, x2, ..., xn with cost at mostC. Let S be the set
{i : xi = 1}. For the MINIMUM –ELEMENT problem, probe the variablesXi, i ∈ S. For anyj,

Pr[min
i∈S

Xi ≥ µj−1] =
∏

i∈S

Pr[Xi > µj−1] = q−
P

i∈S Aji ≤ q−bj .

Therefore,

E[min
i∈S

Xi] =

m
∑

j=1

(µj − µj−1) Pr[min
i∈S

Xi > µj−1] ≤

m
∑

j=1

qbjq−bj = m.

Now suppose that the original CIP has no solution of costrC or less. Then for any index setS such that
∑

i∈S ci ≤ rC, there must be at least one constraintj such that
∑

i∈S Aji ≤ bj − 1. Thus,Pr[mini∈S Xi >

µj−1] = q−
P

i∈S Aji ≥ q1−bj . Now,

E[min
i∈S

Xi] ≥ (µj − µj−1) Pr[min
i∈S

Xi > µj−1] ≥ qbjq1−bj = q.

Thus, the problem of distinguishing whether the optimum value of the original CIP was less thanC or
more thanrC has been reduced to the problem of deciding whether MINIMUM –ELEMENT has an optimum
objective value≤ m with cost budgetC or an optimum value≥ q with cost budgetrC.

Sinceq/m = mk, we have obtained a polynomial time reduction fromr-GAP-CIP to the problem of
obtaining an(r,mk)-approximation of the MINIMUM –ELEMENT problem.
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Theorem 3.3. It is NP–HARD to obtain any poly(m) approximation on the objective forM INIMUM –
ELEMENT while respecting the cost budget.

Proof. We reduce from the well-known NP-HARD problem of deciding if a set cover instance has a solution
of valuek. The SET COVERproblem is the following: given a ground setU with m elements andn sets
S1, S2, . . . , Sn ⊆ U over these elements, decide if there arek of these sets whose union isU .

Write this set cover instance as a CIP as follows. There is an row for each element and a column for
each set.Aji = 1 if elementj is present in setSi and0 otherwise. Allbj = 1 and allci = 1. To make this
column-monotone, setAji ← Aji + j for eachj, i and setbj ← 1 + jk. Clearly, if there is a solution to this
monotone instance of valuek, this solution has to be feasible for the set cover instance and is composed of
k sets. Conversely, if the set cover instance has a solution with k sets, the monotone CIP has a solution of
valuek. Since deciding if a set cover instance has a solution usingk sets is NP-HARD, solving this class of
1-GAP-CIP instances is NP–HARD. By the proof of Lemma 3.2, this implies a(1, poly(m))-approximation
to the MINIMUM –ELEMENT problem is NP–HARD.

We have only been able to prove NP–Hardness of column-monotone CIPs, and so have not been able to
fully exploit the approximation preserving reduction in Lemma 3.2. A hardness of approximating column-
monotone CIPs will immediately lead to a stronger hardness result for the MINIMUM –ELEMENT problem
via Lemma 3.2.

M INIMUM –ELEMENT(C̃ )
/* C̃ = Relaxed cost bound (̃C ≥ C). */
S ← Φ.
While (

∑

i∈S ci ≤ C̃)

Xq ← argmaxi
log f(S)−log f(S∪{Xi})

ci
.

S ← S ∪ {Xq}
endwhile
OutputS

Figure 2: Greedy Algorithm for MINIMUM –ELEMENT.

4 Greedy Algorithm

The algorithm is described in Figure 2 and takes a relaxed cost boundC̃ ≥ C as parameter, and outputs
a solution of costC̃. As we discuss later, the parameterC̃ trades-off in a provable fashion with value of
the solution found. The algorithm uses the slightly unnatural functionlog f(S) instead of the more natural
functionf(S). As our analysis shows, this modification provably improvesour approximation bound. The
analysis of this algorithm uses the theory of submodularity[Nemhauseret al. 1978]. Sub-modularityis a
discrete analogue of convexity which is the basis of many greedy approximation algorithms. We formally
define sub-modularity next.

Definition 4.1. A functiong(S) defined on subsetsS ⊆ U of a universal setU is said to be sub-modular if
for any two setsA ⊂ B ⊆ U and an elementx /∈ B, we haveg(A ∪ {x}) − g(A) ≥ g(B ∪ {x})− g(B).

The key result in this section shows that the functionlog 1
f used by the greedy algorithm is sub-modular.

Lemma 4.2. Letf(S) = E[mini∈S Xi]. Then, the functionlog 1
f is sub-modular.
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Proof. Consider two sets of variablesA and B = A ∪ C, and a variableX /∈ B. In order to prove
the theorem, we need to show thatf(A∪{X})

f(A) ≤ f(B∪{X})
f(B) . We first define the following terms for each

j = 0, 1, . . . ,m− 1:

1. αj = Pr[(minY ∈A Y ) ≥ aj ] = ΠY ∈A Pr[Y ≥ aj ].

2. βj = Pr[(minY ∈C Y ) ≥ aj ] = ΠY ∈C Pr[Y ≥ aj].

3. γj = Pr[X ≥ aj ].

First note that theαj , βj andγj values are non-negative and monotonically non-increasingwith increasing
j. Next, by the independence of the variables, we have:

f(A ∪ {X}) =

m−1
∑

j=0

lj Pr[(X ≥ aj) ∧ (min
Y ∈A

Y ≥ aj)]

=

m−1
∑

j=0

lj Pr[X ≥ aj ] Pr[(min
Y ∈A

Y ) ≥ aj ] =

m−1
∑

j=0

ljαjγj

Similarly, f(B) =
∑m−1

j=0 ljαjβj andf(B ∪ {X}) =
∑m−1

j=0 ljαjβjγj.
Using the above, it follows that:

f(A ∪ {X})

f(A)
=

∑

j ljαjγj
∑

j ljαj
and

f(B ∪ {X})

f(B)
=

∑

j ljαjβjγj
∑

j ljαjβj

Therefore, we have:

f(A ∪ {X})f(B) − f(B ∪ {X})f(A) =
∑

j<j′

lj lj′αjαj′(γj − γj′)(βj′ − βj) ≤ 0

The final inequality follows due to the monotonicity of both the γj and βj values. The above implies
f(A∪{X})

f(A) ≤ f(B∪{X})
f(B) , which showslog 1

f is a sub-modular function.

The connection between sub-modular functions and the greedy algorithm is captured by the following
theorem:

Theorem 4.3 ((Nemhauseret al. 1978)). Given a non-decreasing submodular functiong() on a univer-
sal setU , where each elementi ∈ U has a costci, and given a cost boundC ≥ maxi ci, let S∗ =
argmax{g(S)|

∑

i∈S ci ≤ C}. Consider the greedy algorithm that, having chosen a setT of elements,

chooses the next one elementi that maximizes the ratiog(T∪{i})−g(T )
ci

. Let g(Φ) denote the initial solu-

tion. Then, for anyǫ, the greedy algorithm using cost budgetC log g(S∗)−g(Φ)
ǫ finds a setTǫ such that

g(Tǫ) ≥ g(S∗)− ǫ.

Intuitively, sub-modularity ensures that current greedy choice has cost per unit increase in value ofg() at
most the corresponding value for the optimal solution. For MINIMUM –ELEMENT, letS∗ denote the optimal
solution using costC.

Theorem 4.4. Let V = E[minn
i=1 Xi]. The greedy algorithm forMINIMUM ELEMENT achieves a(1 + ǫ)

approximation tof(S∗) with costC̃ = C
(

log log M
V + γǫ

)

, whereγǫ = log 1
log(1+ǫ) is independent of the

input parameters.
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Proof. In the above theorem, setg = log 1
f . Sincef(Φ) = M , we haveg(Φ) = log 1

M . Let S denote the
greedy set. Supposeg(S) ≥ g(S∗)− log(1 + ǫ). Then,f(S) ≤ (1 + ǫ)f(S∗).

Therefore, in the above theorem, we haveTlog(1+ǫ) = S, which implies the cost is̃C ≤ C(log log f(Φ)
f(S∗)−

log log(1 + ǫ)). Sincef(Φ) = M andf(S∗) ≥ V , we haveC̃ ≤ C
(

log log M
V + γǫ

)

.

Note: If instead oflog 1
f , we had used−f (which is submodular) as suggested by a naive greedy algorithm

then we would have needed a significantly worse cost ofC(log M
V +log 1

ǫ ) to achieve a(1+ǫ) approximation
to f(S∗). Thus the improved analysis (and algorithm) was necessary.We next prove the following lower
bound.

Theorem 4.5. The analysis of the greedy algorithm is tight on the cost.

Proof. There areK = log log M intervals of formIi = [22i
, 22i+1

] for i = 1, 2, . . . ,K. There areK
distributionsX1,X2, . . . ,XK . Distribution Xi (i = 1, 2, . . . ,K) takes value22i

with probability (1 −
2−2i+1+1) and takes value22r

w.p. 2−2i+1+1. Here, r = K + 1, andK = ω(1). Note that22r
=

221+log log M
= M2 is the range of the distributions.

There are two special distributionsY1 andY2 such thatPr[Yj > 22i
] = 2−2i+1, for j = 1, 2, and

i = 1, 2, . . . ,K. We also havePr[Yj ≥ 0] = 1 andPr[Yj > 22r
] = 0. All distributions have unit cost. Let

C = 2. The optimal solution chooses the distributionsY1 andY2. We have:

E[min(Y1, Y2)] = 4 +
K
∑

i=1

(

2−2i+1
)2 (

22i+1

− 22i
)

≤ 4

(

1 +

K
∑

i=1

2−2i+1

22i+1

)

≤ 4(1 + K) = O(K)

We claim thatGREEDYfirst choosesXK . If GREEDYchose any other distributionZ, then the expectation
can be lower bounded using just the contribution from the last intervalIK :

E[Z] ≥ (22r

− 22r−1

) Pr[Z > 22r−1

] ≥ (22r

− 22r−1

)2−2r−1+1 = 2
(

22r−1

− 1
)

Further, noting thatK = r − 1 and thatr = ω(1), we have:

E[XK ] = 22r−1 (

1− 2−2r+1
)

+ 22r

2−2r+1 = 22r−1

+ 2 + 2 · 2−2r−1

< 2
(

22r−1

− 1
)

This impliesGREEDY choosesXK first. At this point, the contribution from the intervalIK to GREEDY is
(22r

− 22r−1

)2−2r+1 ≤ 2. However,E[XK ] ≥ 22K

= ω(K).
We now repeat the whole argument using intervalIK−1, and show thatGREEDY choosesXK−1 next.

We lower bound the contribution ofE[min(Z,XK)] for every distributionZ 6= XK ,XK−1 on the interval
IK−1, and argue that this is at leastE[min(XK−1,XK)]. However,E[min(XK−1,XK)] ≥ 22K−1

=
ω(K). Continuing the same argument onIK−2, IK−3, . . ., it can now be shown thatGREEDY chooses
XK ,XK−1, . . . ,Xlog log K in order to achieve objective valueΘ(K). In other words, greedy spends cost
Ω(K) in order to achieve minimum value ofΘ(K). The rangeM2 of the distributions satisfiesK =
log log M , and further,V = E[min(minK

i=1 Xi, Y1, Y2)] = Ω(1). Therefore,GREEDY needs to exceed
the cost budget by a factor ofΩ

(

log log M
V

)

in order to achieve any constant factor approximation to the
minimum value.
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5 Improved Approximation Algorithms

TheGREEDY algorithm has approximation ratio which depends (inversely) on the value of the optimal solu-
tion on that instance (a lower bound on which isV = E[minn

i=1 Xi], which could be exponentially small).
The approximation ratio increases as the value of the optimal solution reduces. However, the algorithm is
desirable since the dependence is of the formlog log V .

We now present an algorithm CIP-GREEDY whose approximation ratio (on the cost) ofO(log m + γǫ)
depends just onm, the number of possible values that can be taken by the input discrete distributions.
(Recall the notation from Theorem 4.4.) This algorithm is based on computing a good start solution for
GREEDY using linear program rounding. This also has the advantage of yielding an algorithm for the case
when the input distributions are integer valued over a smallrange – the approximation ratio in this case
depends only on the range and not on the value,V . We finally show that if each distribution is log-concave,
the approximation on the cost isO(γǫ) in order to obtain a(1 + ǫ) approximation on the minimum value.
The approximation factor therefore becomesindependentof the parameters of the distribution.

5.1 CIP-GREEDY Algorithm

We first consider the case where theXi are discrete distributions overm values. We present aO(log m)
approximation (on the cost) by combining the greedy algorithm with column monotone CIPs. Let the num-
ber of distinct values taken by the discrete distributions bem, corresponding to the intervalsI1, I2, . . . , Im.
Let lj denote the length of the intervalIj. Let X∗ denote the value of the optimal solution to MINIMUM –
ELEMENT. Let aji = log 1

pij
. The CIP-GREEDY algorithm runs in the following three steps.

Step 1: The first step of the algorithm defines the following integer program:

Minimize z
∑n

i=1 yiaji ≥ log lj − z ∀j = {1, 2, . . . ,m}
∑n

i=1 ciyi ≤ C
yi ∈ {0, 1} ∀i ∈ {1, 2, . . . , n}

Claim 5.1. z = log X∗ is feasible for the above IP.

Proof. Consider the optimal solutionS to MINIMUM –ELEMENT and setyi = 1 if i ∈ S and0 otherwise.
Clearly, we have

∑

i ciyi ≤ C. Furthermore, the IP constraints together with the definition of X∗ implies
the following:

X∗ = E[min
i∈S

Xi] =
m
∑

j=1

lj
∏

i∈S

pij =
m
∑

j=1

lj

(

Πip
yi

ij

)

≥ max
j

(

lj

(

Πip
yi

ij

))

Taking logs, we have

log X∗ ≥ max
j

(

log lj −
∑

i

yiaji

)

Rearranging, this implies:

n
∑

i=1

yiaji ≥ log lj − log X∗ ∀j = {1, 2, . . . ,m}

Thereforez = log X∗ satisfies all the constraints of the LP.
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The next claim follows using the same proof argument as the previous claim.

Claim 5.2. Consider any feasible solution to the above IP with cost budget C ′ and objectivez. Then the
subsetS corresponding toi s.t.yi = 1 satisfies:

∑

i∈S ci ≤ C ′, andE[mini∈S Xi] ≤ mez.

Proof. Clearly, we have
∑

i ciyi =
∑

i∈S ci ≤ C ′. Further, we have:

z ≥ log lj −
n
∑

i=1

yiaji ⇒ lj
∏

i

pyi

ij ≤ ez ∀j = 1, 2, . . . ,m

We finally have:

E[min
i∈S

Xi] =

m
∑

j=1

lj
∏

i∈S

pij =

m
∑

j=1

lj
∏

i

pyi

ij ≤ mez

Step 2: Solve the linear relaxation of the IP presented in Step (1), with cost budgetC. Suppose the optimal
solution has valuez∗. From Claim 5.1,z∗ ≤ log X∗. Re-write the LP relaxation as follows:

Minimize
∑

i

ciyi

n
∑

i=1

yiaji ≥ log lj − z∗ ∀j = {1, 2, . . . ,m}

yi ∈ [0, 1] ∀i ∈ {1, 2, . . . , n}

It is clear by the choice ofz∗ that there exists a solution to the above LP with objective value at mostC.
Note further that the above is the LP relaxation of a coveringinteger program (CIP). This CIP isCOLUMN-
MONOTONE, but we do not use that fact below. We now use the following proposition proved in [Carret al.
2000; Kolliopoulos and Young 2001].

Proposition 5.3. Given a CIP withm constraints whose LP relaxation has a feasible solution, wecan find
an integral solution (allyi either 0 or 1) in poly-time with approximation ratioO(log m) against the LP
solution.

The above implies that there is a solution to the above LP where allyi are either0 or 1; that respects all
the constraints; and that has objective value (or cost)O(C log m). Using Claim 5.2 withC ′ = O(C log m)
andz ≤ log X∗, this integer solution corresponds to a subsetS0 such thatE[mini∈S0 Xi] ≤ mX∗, and
∑

i∈S0 ci = O(C log m).

Step 3:Run the greedy algorithm in Figure 2 with initial solutionS0 and with cost budget̃C = C (log log m + γǫ),
whereγǫ = log 1

log(1+ǫ) . Let the final solution beSf .

Claim 5.4. E[mini∈Sf Xi] ≤ (1 + ǫ)X∗.

Proof. As in the proof of Theorem 4.4, we start with the statement of Theorem 4.3. Useg(S) = − log E[mini∈S Xi].
Since the greedy algorithm starts withS0, we haveg(Φ) = g(S0) = − log(mX∗). Further,g(S∗) =
− log X∗. Our choice of cost budget impliesSf = Tlog(1+ǫ), so thatg(Sf ) ≥ − log((1+ ǫ)X∗). Therefore,
E[mini∈Sf Xi] ≤ (1 + ǫ)X∗.

We finally have the following theorem:

Theorem 5.5.For discrete distributions onm values, theCIP-GREEDY algorithm achieves aO (log m + γǫ)
approximation on the cost in order to find a solution of value at most(1 + ǫ)X∗.
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5.2 Algorithm for Polynomial Input Domain

We now improve the above result when the domain of the distributions is the set{0, 1, . . . ,M −1}. Assume
w.l.o.g. thatM is a power of2. We first group the intervals so that the lengths are increasing in powers of2,
and the first interval has length1. For each distributionXi, construct a new distributioñXi over the domain
R = {0, 1, 2, 4, . . . , 2log M} as follows: Set̃pi0 = pi0, and fork ∈ R \ {0}, setp̃ik =

∑k
j=⌈k/2⌉ pij. Let

X∗ denote the value of MINIMUM –ELEMENT for the distributionsXi and letY ∗ denote the corresponding
value for the distributions̃Xi. It is easy to show thatX∗ ≤ Y ∗ ≤ 2X∗.

The algorithm is as follows: Run Steps (1) and (2) of the CIP-GREEDY algorithm using the distribu-
tions X̃i. Settingm = log M , it is easy to see that this produces a solutionS0 so thatE[mini∈S0 Xi] ≤
2X∗ log M using costO(C log log M). Now run the greedy algorithm in Figure 2 using starting solu-
tion S0, and using the original distributionsXi, with budget set tõC = C (log log log(2M) + γǫ), where
γǫ = log 1

log(1+ǫ) . Using the same proof as Theorem 4.4, this yields a solution of value (1 + ǫ)X∗. We
therefore have the following theorem:

Theorem 5.6. In theM INIMUM –ELEMENT problem, when the domain of values is{0, 1, . . . ,M − 1}, then
the approximation ratio (on the cost) of the modifiedCIP-GREEDY is O (log log M + γǫ), and this achieves
a solution of value(1 + ǫ)X∗.

Remarks. An interesting open question is to improve the above approximation factor toO(1) on the cost.
The super-constant approximation ratio is in sharp contrast with the lack of even a NP-HARDNESS result
for the case whereM is polynomially bounded. (Note that the NP-HARDNESSproof required exponentially
large values in the domain.)

Next, note that in both the cases discussed in this section, the bottleneck in the approximation ratio is
in solving the covering program. In particular, replacing the GREEDY algorithm in each case by thenaive
greedy algorithm that adds the variable argmaxi

f(S)−f(S∪{Xi})
ci

at each step, would also yield the same
approximation ratio. This strongly suggests that them-constraint COLUMN-MONOTONE CIPs that arise in
these settings have a better approximation ratio thanO(log m). Note that we have only been able to show
NP-HARDNESSfor these problems, and the hardness of approximation proofs for general CIPs do not carry
over to COLUMN-MONOTONE CIPs.

5.3 Log-concave Distributions

We now show that a slightly modified greedy algorithm actually performs much better when each distribu-
tion Xi is a log-concave distribution. LetFi(r) = Pr[Xi ≥ r]. A distribution is said to belog-concaveif
log Fi(r) is a concave function ofr. We note that several common distributions such as uniform,Gaussian,
and Beta densities1 are known to be log-concave [6].

The problem with using the greedy algorithm directly is thatinitially, the algorithm could make a se-
quence of wrong choices which are costly to rectify. We show that if the distributions are truncated near
the optimal solution value, such a problem cannot arise, andtherefore the greedy algorithm performs much
better. To get around the issue of not knowing the optimal solution value, we try all possible truncations in
powers of2. In order to describe the new algorithm, we first define thetruncationof a distribution:

Definition 5.7. Xt is a truncationofX at pointt if Pr[Xt = t] = Pr[X ≥ t], andPr[Xt = r] = Pr[X = r]
for r < t.

The algorithm is presented in Figure 3. It clearly has polynomial running time since it tries values oft
in powers of2, so that the number of tries is polynomial in the bit complexity of the input. As before, letS∗

denote the optimal solution andX∗ = E[mini∈S∗ Xi].

1Beta(a, b) is log-concave whena, b ≥ 1.
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MODIFIED GREEDY (C, ǫ) /* ǫ ≤ 0.2 */

C̃ ← 2Cγǫ

t← mini E[Xi]/ǫ
While t ≥ E[mini Xi] do:

St ← GREEDY solution onXt
1, . . . ,X

t
n with cost boundC̃.

t← t/2.
endwhile
OutputSt with minimumE[mini∈St Xi].

Figure 3: Modified Greedy Algorithm for Log-Concave Distributions.

We will use the following lemma about the log-concave densities [6].

Lemma 5.8. Consider any distributionX with F (r) = Pr[X ≥ r]. If log F (r) is concave, then

g(r) =

∫∞
x=r F (x)dx

F (r)

is monotonically non-decreasing.

The crux of the proof is the following lemma, which in effect states that truncation aroundX∗/ǫ pre-
serves the expected minimum of all solutions whose originalminimum was close toX∗.

Lemma 5.9. Let t = αX∗

ǫ for α ∈ [1/2, 1]. For any setS with E[mini∈S Xi] = q ≥ X∗, either
E[mini∈S Xt

i ] ≥ 1.2X∗ or E[mini∈S Xt
i ] ≥ (1− 5ǫ)q.

Proof. Consider any setS and q = E[mini∈S Xi] ≥ X∗. Let t = αX∗

ǫ for α ∈ [1/2, 1]. Define the
following:

FS(t) = Pr[min
i∈S

Xi ≥ t] = Πi∈SFi(t)

Since eachXi is log-concave, we have thatlog Fi(r) is concave. By linearity, this implieslog FS(t) is
concave as well. Therefore, from the previous lemma, we havethat:

gS(t) =

∫∞
x=t FS(x)dx

FS(t)

is a monotonically non-increasing function oft. We split the analysis into two cases:

Case 1:If FS(t) ≥ 2.4ǫ, then,

E[min
i∈S

Xt
i ] =

∫ t

x=0
FS(x)dx ≥ tFS(t) ≥ α

X∗

ǫ
2.4ǫ ≥ 1.2X∗

where we have usedα ≥ 1/2.

Case 2:If FS(t) ≤ 2.4ǫ, sincegS(0) = E[mini∈S Xi] ≥ gS(t), we have:
∫ ∞

x=t
FS(x)dx ≤ E[min

i∈S
Xi]FS(t) ≤ 5ǫq

Therefore,

E[min
i∈S

Xt
i ] =

∫ t

x=0
FS(x)dx = E[min

i∈S
Xi]−

∫ ∞

x=t
FS(x)dx ≥ q(1− 5ǫ)
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Theorem 5.10. Let γǫ = log 1
log(1+ǫ) . For ǫ ≤ 0.2, the modifiedGREEDY algorithm yields a solution of

value(1 + 7ǫ)X∗ for log-concave distributions using cost2Cγǫ.

Proof. During some point in the execution of the algorithm, we will have t = αX∗

ǫ for α ∈ [1/2, 1].
Consider this value oft. For any setS with cost at mostC, we haveE[mini∈S Xi] ≥ X∗. Applying the
previous lemma, it is clear thatE[mini∈S Xt

i ] ≥ (1− 5ǫ)X∗.
Note now thatE[Xt

i ] ≤ X∗/ǫ for all i. Therefore, usingg(S) = − log E[mini∈S Xt
i ] (with g(Φ) =

− log(X∗/ǫ), g(S∗) = − log((1 − 5ǫ)X∗), andg(St) = − log((1 + ǫ)X∗)), and repeating the proof of
Theorem 4.4 yields (forǫ ≤ 0.2):

C̃ ≤ C

(

log log
1 + 5ǫ

ǫ
+ γǫ

)

≤ 2Cγǫ

This yields a setSt such thatE[mini∈St Xt
i ] ≤ (1 + ǫ)X∗ < 1.2X∗.

Now, eitherE[mini∈St Xi] ≤ X∗, in which case we are done; or we apply the previous lemma to show
thatE[mini∈St Xi] ≤ (1 + 5ǫ)E[mini∈St Xt

i ] ≤ (1 + 5ǫ)(1 + ǫ)X∗ ≤ (1 + 7ǫ)X∗ for ǫ ≤ 0.2.

6 The Mixed Model

So far the only variables we were allowed to use in our solution were the ones that we observed. In general,
our solution can use both probed and unprobed variables: If the minimum value among the probed set is
larger than the expected value of a variable that has not beenprobed, we would prefer to use that variable as
opposed to one of the probed values.

We show that the restriction of using only the probed set doesnot significantly alter the problem:

Theorem 6.1. In order to achieve the same (or better) objective forM INIMUM –ELEMENT, the solution
that uses only probed variables probes at most one more variable than the solution that is allowed to use
unprobed variables.

Proof. Consider the optimal solution in the mixed model. Suppose itprobes setS∗ and letX∗ denote
the variable not inS∗ with the smallest expectation. The strategy is to probeS∗ and if the minimum value
observed is larger thanE[X∗], outputX∗. The value of the solution is given byE[min(minY ∈S∗ Y,E[X∗])].
Consider now the solution that probesS∗ ∪{X∗}. The value of this solution isE[min(minY ∈S∗ Y,X∗)]. It
is easy to see that this value is smaller than the value of the optimal strategy for the mixed model.

7 Conclusions

We have presented a framework (along with simple greedy algorithms) for studying the cost-value trade-off
in resolving uncertainty based on the objective function being optimized. This paradigm will increasingly
play a role in model-driven optimization in sensor networksand other complex distributed systems.

In the context of MINIMUM –ELEMENT our work presents interesting open questions. First, thereis
a huge gap between the lower bounds and approximation ratioswe show. Can this gap be closed? In
particular, can logarithmic hardness be shown for the general case, and NP-HARDNESS for the case where
the domain is restricted to be poly-bounded. Furthermore, can the algorithms be extended to the case
where the observations are adaptive,i.e., based on the results of previous observations? In subsequent
work [Guhaet al.2008], a poly-time optimal algorithm is presented for the problem of adaptively probing
for the maximum value, with the objective being to maximize (over adaptive choices ofS), the quantity
E[maxi∈S Xi] − α

∑

i∈S ci. The same algorithm also optimizesE[mini∈S Xi] + α
∑

i∈S ci over adaptive
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choices ofS. However, these techniques do not extend to the non-adaptive MINIMUM –ELEMENT problem
with cost budgets considered in this paper. We leave this aspect as a challenging open question.

Acknowledgments:We thank Shivnath Babu, Utkarsh Srivastava, Sampath Kannanand Brian Babcock for
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