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ABSTRACT

This paper presents an acceleration method, using both algorithmic and architectural means, for fast calcula-
tion of local correlation coefficients, which is a basic image-based information processing step for template or
pattern matching, image registration, motion or change detection and estimation, compensation of changes, or
compression of representations, among other information processing objectives. For real-time applications, the
complexity in arithmetic operations as well as in programming and memory access latency had been a divi-
sive issue between the so-called correction-based methods and the Fourier domain methods. In the presented
method, the complexity in calculating local correlation coefficients is reduced via equivalent reformulation that
leads to efficient array operations or enables the use of multi-dimensional fast Fourier transforms, without
losing or sacrificing local and non-linear changes or characteristics.
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1. INTRODUCTION

We present a fast computation method for two-dimensional convolutions and correlation coefficients (in the
statistical sense) via exploiting both mathematical properties and modern computer architectures. Two-
dimensional convolution has been a basic operation in image processing.1 In recent years the convolution
of a 2D image with a spatially-local filter is found at the central computation block in feature analysis, detec-
tion and matching, using algorithms based on the scale-invariant feature transform (SIFT).2 The computation
of the correlation coefficients between a 2D object template against a 2D image scene is frequently needed
in object recognition or detection in cluttered scenes3–5 or automated image registration and segmentation.6

Rapid computation of such operations is demanded in numerous real-time applications across many scientific
and engineering domains.7–9

We may describe the operation objects in the same way for the two basic operations. While mathematically
symmetric, the two operand objects in a 2D convolution differ in size in the applications of our interest. We
make the following convention. The first object is an m×n array of pixels with numerical values representing an
image scene. We call it a frame. The second is a relatively smaller p× q array of numerical pixels representing
a filter as in a convolution or a target object as in a correlation. We refer to it as a template. Each of
the operations renders an array of numerical values representing a filtered image or a similarity score map,
respectively. The output array size may range from m× n up to (m + 2p)× (n + 2q). All the array values are
assumed real.

Rapid computation of the convolution is relatively better understood. The number of arithmetic operations
for a convolution can be reduced when the template is sufficiently large, based on the convolution theorem and
the use of the fast Fourier transform (FFT). Specifically, the number of the real arithmetic operations is the
smaller one between O(pq × mn) by the direct evaluation method and O((m + p)(n + q) log((m + p)(n + q)))
via the use of FFTs. Similar results in arithmetic complexity can be obtained easily for the computation of the
correlation coefficients without local normalization, which is limited to applications where the changes across
the frame are homogeneously linear. Recently, these results are successfully extended to the general case for
computing correlation coefficients with local centering and normalization (LCCs), by a distinct reformation
in the LCC expression10 and a further algorithmic interpretation. The reformulation describes the LCCs in
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terms of a few phase correlations and element-wise array operations and therefore leads to a Fourier-domain
algorithm for the LCC computation. Since the phase correlation is the convolution with a flip permutation of
the template (or the frame), we may mention only one or the other at one place or another in the rest of the
paper without redundant discussion on both.

Once the arithmetic complexity is reduced to the minimal, one resorts to available computer architecture
means for further acceleration in order to meet real-time application demands. However, the algorithmic means
and architectural means for acceleration are not independent of each other. We investigate their mutual impact
on one another and their integral impact on the computational efficiency. As various multi-core processors
exist and emerge, we experiment in particular with the graphics processing units (GPUs)11–13 because they are
widely available, affordable and offering relatively developed programming environment and easy integration
with many kinds of host machines.

In the subsequent sections, we introduce the transformation of LCC expressions, the Fourier-domain algo-
rithm for computing LCCs, and the implementation on GPUs. We present experimental results and conclude
the paper with additional remarks.

2. LCC COMPUTATION VIA THE FFT

In this section, we review the correlation coefficients with local normalization and the reformulation of the
LCC expression introduced originally in.10 We then present the algorithm FLCC, in specific algorithmic
arrangements for the first time, for computing the LCC in the Fourier domain and provide the analysis on its
arithmetic complexity.

2.1 Local correlation coefficients

We introduce some notation and basic assumptions. Denote by T the target template with NT pixels. The
target template may represent an image feature drawn from an image feature bank or from a previous image in
a temporal or spectral image series. Denote by S the frame, with NS pixels, representing an image scene that
is to be analyzed against the feature template. By assumption, both T and S are real-valued, the template is
smaller than the frame, and hence NS > NT . Denote by P a typical sub-image (a panel) of S that is the same
size as the template T .

We start with the correlation coefficient c(P, T ) between the template T and a single panel P . Assume
momentarily that neither T nor P is constant-valued. We describe c(P, T ) in the following symmetric format:

c(P, T ) =
cov(T, P )
σ(T )σ(P )

=
1

NT

∑
(x,y)[P (x, y) − μ(P )] · [T (x, y) − μ(T )]

σ(T )σ(P )
,

where T (x, y) is the numerical value at (x, y) pixel of T , μ(T ) and σ(T ) are the mean and standard deviation
of T , respectively,

μ(T ) =
1

NT

∑

x,y

T (x, y), σ2(T ) =
1

NT

∑

x,y

(T (x, y) − μ(T ))2,

similarly with P , and cov(T, P ) is the covariance between T and P . By the Cauchy-Schwartz inequality,
c(P, T ) ∈ [−1, 1]. The coefficient is often interpreted as the cosine of the angle between P and T in the space
of zero-mean and normalized panel vectors. When c(P, T ) = 0, we may say the panel P is orthogonal to the
template T . When c(P, T ) = 1, P is a perfect match to T , pixel by pixel.

Consider the degenerate case that σ(T )σ(P ) = 0, i.e., either the template or the panel is constant valued,
or both. When the template T is constant valued, the matching problem becomes whether or not the panel is
constant valued. This test can be done efficiently in some other way. We may therefore assume that T is not
constant-valued and assume that T has zero mean and unit standard deviation (by appropriate translation in
the mean value and normalization in the standard deviation),

μ(T ) = 0, σ(T ) = 1.
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Unlike the template, a panel P from the scene S may be constant-valued. We express the correlation coefficient
in the seemingly asymmetric form instead,

σ̄(P ) c(P, T ) =
∑

x,y

[P (x, y) − μ(P )] T (x, y), σ̄(P ) =
1√
NT

σ(P ). (1)

When the left-hand side vanishes, either the panel is found constant by σ(P ) = 0, or else the correlation
coefficient is zero, i.e., the panel is not a match to the template.

We are in a position to describe the field of the correlation coefficients of the template T with all the panels
in the image scene S. With the reformulation in mind, we describe the LCC field as a whole entity in the
form of a 2D array. We describe the traversal of the template T across the frame S in terms of its spatial
translation, T (x − u, y − v), where (u, v) is the location of a designated marker pixel of T in the pixel indices
of S, (x− u, y− v) specify the spatial positions of the template pixels relative to the marker pixel. The marker
point can be arbitrarily chosen, such as the first pixel of the template at the north west corner. The panel P
overlapping with the template at location (u, v) can be described as follows,

P (x, y; u, v) = S(x, y)BT (x − u, y − v)

where BT is the binary-valued characteristic function of the spatial support of the template. Substituting the
spatially translated template and the overlapped panel into (1), we have the expression of the local correlation
coefficients of T with all candidate panels

c(u, v) σ̄(u, v) =
∑

x,y

[P (x, y; u, v) − μ(u, v)] T (x − u, y − v), (2)

where (u, v) is a location in S, traversing across the entire frame of S, μ(u, v) and σ(u, v) = σ̄(u, v)/
√

NT are the
mean value and standard deviation of the (u, v) panel, and c(u, v) is the correlation coefficient of the template
with the associated panel. The LCC field {c(u, v)} represents the collective information for subsequent location
of best template matching, for example. It accounts for non-linear, non-rigid, and local changes in the scene.

The computation of the LCC field c(u, v) with each and every panel translated in value to zero mean and
normalized to 1 in standard deviation, as expressed in (2), is computationally expensive. It is not a phase
correlation except when μ(u, v) and σ(u, v) are constant across all the panels in the frame.1 Various ad-hoc
assumptions or heuristic approximations had been made on the properties of the image scene in an attempt to
reduce the arithmetic complexity in evaluating the LCCs.

2.2 The reformulation

We describe the reformulation, as introduced in,10 in expressing the LCCs in general, without distortion. The
reformulation leads to an algorithm with most of the computation done in the Fourier domain.

We write the right-hand side of (2) in terms of three phase correlations,

∑

x,y

[P (x, y; u, v) − μ(u, v)] T (x − u, y − v) = {S ∗ T }(u, v)− 1
NT

{S ∗ BT }(u, v) · {BS ∗ T }(u, v), (3)

with
{S ∗ T }(u, v) =

∑

x,y

S(x, y)T (x − u, y − v),

{S ∗ BT }(u, v) =
∑

x,y

S(x, y)BT (x − u, y − v) = NT μ(u, v),

{BS ∗ T }(u, v) =
∑

x,y

BS(x, y)T (x − u, y − v),
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where BX denotes the binary-valued characteristic function of the spatial support of X . We reformulate the
expression of the standard deviation σ2(u, v) on the left side of (2) in terms of phase correlations as well,

NT · σ2(u, v) = {S2 ∗ BT }(u, v) − NT · μ2(u, v) =
∑

x,y

S2(x, y)BT (x − u, y − v) − NT · μ2(u, v). (4)

The reformulation in (3) and (4) describes the LCC computation in terms of four phase correlations and
pixel-wise array operations among them, namely, pixel-wise scaling, shifting, division and square root extrac-
tion.

2.3 The FLCC algorithm

We explain how the reformulation in (3) and (4) leads to an algorithm with most of the computation in the
Fourier domain. The evaluation of the phase correlations, dominating the LCC computation by the reformu-
lation can be done in the Fourier domain as follows. Consider first the following five quantities in the Fourier
domain,

F (BT ), F (T ), F (BS), F (S), F (S2)

where F (X) denotes the discrete Fourier transform of X . By the convolution/correlation theorem, the following
four element-wise products in the Fourier domain

F (T ) · F (BS), F (T ) · F (S), F (BT ) · F (S), F (BT ) · F (S2)

correspond to the respective phase correlations via the inverse Fourier transforms.

The FLCC exploits the relationship between these quantities as well and utilizes further certain properties
of the (discrete) Fourier transform. Denote by FFT and iFFT the fast forward and inverse Fourier transforms.
We describe the special algorithmic arrangements in the use of FFTs in four stages,

A. FFTs of BT , BS and T and iFFT of F (T ) · F (BS);

B. FFT of the complex array S + i · S2 to obtain both F (S) and F (S2) ;

C. iFFT of F (BT ) · F (S) + i · F (BT ) · F (S2) to obtain both S ∗ BT and S2 ∗ BT ;

D. iFFT of F (S) · F (T ) to obtain S ∗ T .

The data packing and unpacking in the last three stages are explained as follows. Stage B is based on
the relationships between X̂ = F (X), Ŷ = F (Y ) and Ẑ = F (X + i · Y ) with real X and Y . Denote by I
and J the identity operator and the reversal permutation except the leading element, respectively. Then, the
relationships are as follows, in one dimensional expressions for convenience,

2 X̂ = (I + J)ẐRe + i · (I − J)ẐIm, 2 Ŷ = (I + J)ẐIm − i · (I − J)ẐRe.

The identity underlying stage C is

F−1(X + i · Y ) = F−1(X) + i · F−1(Y ),

where F−1(X) and F−1(Y ) are real. In Stage D, the number of operations in stage D can be reduced by a
half if the real-valued property of S ∗ T is taken advantage of. Some existing software for FFTs provides such
option.
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2.4 The arithmetic complexity

We now provide an analysis on the arithmetic complexity of Algorithm FLCC in a common situation where a
target template T is provided for object detection in a stream of image frames.

First of all, the number of arithmetic operations for the pixel-wise array operations, in and out of the Fourier
domain, is linear in the frame size Ns. Next, the computation in the algorithm stage A is independent of any
frame content and shall be done once for all the frames. Consequently, the total number of real arithmetic
operations with the FLCC algorithm is about

12.5 N log(N) + α NS , N = NT + NS .

The scalar factor in the dominant term is based on the convention that the arithmetic complexity of the FFT
in computational implementation is no more than 5N log(N). The scalar α in the term linear in NS is a
modest constant, independent of data or data size, accounting for the scaling operations in the Fourier domain,
the packing and unpacking operations before and after each fast Fourier transform, and the pixel-wise array
operations in the image domain as described in Section 2.2.

The direct LCC evaluation by (1) takes 5NSNT + β (NS + NT ) arithmetic operations, with a very modest
scalar β. In comparison, the pairing of the template size NT and the frame size NS in the arithmetic complexity
is multiplicative for the direct method and nearly additive for the FLCC algorithm.

3. CONVOLUTION AND FLCC ON GPUS

Further acceleration of convolutions and LCC computation for real-time image processing applications lies in
advancing and utilizing computer technology and techniques. Many advanced computers today have multicore
processors as the hardware architectures and support multi-threaded programming environments. We experi-
ment with the graphics processing units (GPUs) in particular because they are widely available, affordable and
integrate easily with desktop and laptop computers. GPUs by different vendors are equipped with different
software environments to ease algorithm implementation and facilitate utilizing the parallel-processing hard-
ware. We use the GPUs by NVIDIA for their relatively easy-to-use CUDA programming environment14 and
the CUFFT library providing the FFT functions.

3.1 Parallel implementation on GPUs

In the GPU implementation of the Fourier-domain algorithms for convolution and LCC computation we made
extensive use of the library FFT routines. We are also facilitated in exploiting the data type at input or
output for reduction in arithmetic operations. Specifically, if the data at the input or output of the FFT are
real-valued, the number of arithmetic operations for the FFT is reduced by a half. We refer to these as half
FFTs. For the LCC computation on GPUs, we use the FFTs as specified in the FLCC algorithm in Section 2.3.
The element-wise array operations in the FLCC algorithm can be easily parallelized at any granularity level.
We omit the detail in packing and unpacking the data arrays before and after the FFTs. The convolution via
the FFT is much simpler. The convolution of a filter or template T with a scene frame S in a frame stream can
be obtained by the use of a half FFT (from real to complex) and a half iFFT (from complex to real), assuming
the Fourier transform of T is computed once for all or drawn from a template bank. In short, its takes two
half FFTs per frame.

The parallelization of the direct methods is more involved. To ensure mutual exclusion in writing the
results, the output data array is partitioned without overlapping. CUDA threads are grouped into CUDA
blocks. Each thread can access data in three distinct memory spaces during execution: (i) a local memory
private to the single thread, (ii) a shared memory visible to all threads in the same thread block, and (iii) the
global memory to all threads. To utilize the memory structure, we partition the output array into sub-arrays.
Each thread block is associated with a sub-array and responsible for the computation of the output sub-array.
Every element in a sub-array is assigned to a designated thread. The template is copied to all blocks. At each
thread block, a sub-array of the input frame that is needed by the output sub-array is copied from the global
memory to the shared memory associated with the thread block. The input sub-array is larger than the output
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sub-array along both dimensions. The margin in between is determined by the template size. The computation
per thread for the LCC computation is of course different from that for the convolution.

The GPU implementation of the Fourier-domain methods is reported here first. The GPU implementation
of the direct methods was by an earlier effort and detailed in.15

3.2 Experimental results

We present next experimental results on the NVIDIA Tesla C1060 GPU card, with 240 streaming processor cores
running at 1.35GHz. The GPU has 4GB of dedicated memory and a 512-bit memory interface with a bandwidth
of 102GB/sec. The host machine is a Dell T5400 workstation with two Quad Core Intel Xeon processors at
1.86GHz. We present two sets of experiments. The first demonstrates the architectural acceleration, by
comparing the GPU computation to the CPU computation. The CPU-computation experiments were on the
host machine with only one of its cores activated. The second set shows the algorithmic acceleration, by
comparing the direct methods and the Fourier-methods on the GPU.

We illustrate the GPU acceleration in Table 1 for FFT-accelerated 2D convolution without assuming sep-
arability. The execution time is in milliseconds. On the CPU, the 2D convolution is calculated as two real-
to-complex FFTs, followed by element-wise complex multiplication and a complex-to-real FFT using FFTW
version 3.2.1. Experiments on the CPU in single-precision (float) and double-precision (double) floating point
operations are reported.

One observes that, among the comparable cases, the computation on the GPU is 45-50 times faster that
on the CPU, or 60-70 times faster if we take into account the difference in frequency. This is consistent with
that for the algorithms addressed in this paper. We shall mention that the NVIDIA SDK provides indeed an
FFT-accelerated 2D convolution as a demo. However, it is 50% slower for real-valued convolution.

Table 1. Execution time (msec) for FFT-accelerated 2D correlation

Data Size Xeon 1 core @ 1.86GHz C1060 @ 1.35 GHz
double float float

2K×2K 931 674 15
4K×4K 4,223 3,210 63

The experiments of the second set are summarized in Figure 1. The plot on the left is for the 2D convolution
on the GPU and the plot on the right is for the LCC computation. Each plot shows the comparison between the
direct method and the FFT-acceleration as the template size varies. The experimental results with 2K × 2K
frame are plotted in blue lines; with 4K × 4K in red. The arithmetic complexity and execution of the Fourier-
domain method for the convolution, or the LCC computation, depends on the additive size of the template
and the frame and therefore changes slowly with the increase in the template size, in comparison to that with
the respective direct method. In the plot on the right for the LCC computation with the FLCC algorithm, for
each of the two frame sizes, we give the time results in two different situations. In the first situation, the LCC
computation includes the operations in stage A as described in Subsection 2.3. In total 4.5 FFTs are used.
In the second, the same template is used on a stream of frames, the quantities in stage A are precomputed.
Therefore, only 2.5 FFTs are used per frame. In each case, when the template size increases beyond a certain
point, the Fourier-domain method is indeed faster. The second situation is more common in image processing
applications, which motivated the design and development of the FLCC algorithm in the first place.

4. CONCLUDING REMARKS

We discuss first about the cross-over point in the comparison between the direct method and the Fourier-domain
method, for the LCC computation as well as for the convolution. For each of the operations, the cross-over
point on the GPU is higher than that in the arithmetic complexity. In fact, the up shift in the cross-over
point for the convolution is mainly due to that in the discrete Fourier transform (DFT) between the FFT and
the direct DFT. There are two primary factors contributing to this shift in the cross-over point. One is how
the parallel processing architecture with complex memory hierarchy is utilized by the implementation in the
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Figure 1. 2D Correlation on the left and LCC computation on the right; the direct and the Fourier-domain methods for
each of the operations; data range with two frame sizes and multiple template sizes.

provided programming environment. The other is the effect of the architectural constraints on a particular
algorithm. Such a shift may be reduced to some extent. Its existence, however, is a manifest of the mutual
constraints between a parallel architecture like the GPU and an algorithm with a low ratio between arithmetic
operations and memory accesses, such as the FFT.

We remark next on the ratio between the template size and the frame size and its impact. There are
situations in image processing applications where the frames to be analyzed against the same template are
sub-regions of a large image and the frame size is not much larger than the template size. For this case, the
direct method for the LCC computation is not expected to change much in performance; the FLCC algorithm
is expected to be more advantageous.

Finally we would like to comment on the connection and disconnection in algorithm design and develop-
ment between the convolution and the LCC computation. The reformulation in Subsection 2.2 relates the
LCC computation to the phase correlations. We take a further step in developing the FLCC algorithm in
Subsection 2.3. Instead of using the phase correlation as the primitive operation for the LCC computation, we
exploit the relationship among the phase correlations and utilize the properties of the Fourier transform. This
leads to a substantial reduction in arithmetic complexity.
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