Probability Overview (very brief)
CSCI 2951-F
Brown University
Ronald Parr

Goals Of These Slides

- Revisit a topic most of you have seen already to
- Refresh your memories
- Synchronize notation
- Provide context - for AI, RL, etc.

Why does AI need uncertainty?

- Reason: Sh*t happens
- Actions don't have deterministic outcomes
- Can logic be the "language" of Al???
- Problem: General logical statements are almost always false

- Truthful and accurate statements about the world would seem to require an endless list of qualifications
- How do you start a car?
- Call this "The Qualification Problem"

The Qualification Problem

- Is this a real concern?
- YES!

- Systems that try to avoid dealing with uncertainty tend to be brittle.
- Plans fail
- Finding shortest path to goal isn't that great if the path doesn't really get you to the goal

When can we (mostly) ignore qualifications?

- When environment is highly engineered/controlled
- Objects moving in free space
- Carefully controlled factories
- When replanning is relatively cheap

Relative Frequencies (simplest view of probs)

- Consider a world where a dentist agent D meets a new patient
- D is interested in only one thing: whether patient has a cavity (C)
- Before making any observation, D's belief state is:

Space of all possible events (event space)

Fraction p of possible events where patient has a cavity

- This means that D believes that a fraction p of patients have cavities

Notation

- $P(X Y)=P(X, Y)=$ a joint probability distribution over all settings of X and Y (potentially a table with a large number of entries)
- $P(x y)=P(x, y)=P(x$ AND $y)=P\left(x^{\wedge} y\right)=P(X=x, Y=y), P(X=x$ AND $Y=y)=P(X=x \wedge$ $Y=x)=a$ single number corresponding the probability that both $X=x$ and $Y=y$
- $P(X y)=$ a table with one entry for each value of X when y is true - not a distribution
- $P(X=$ false $)=P(\bar{x})=P(\neg x)=P\left(\sim_{x}\right)=$ a single number for case where X is a binary variable takes value false (or zero)

Why Probabilities Are Messy

- Probabilities are not truth-functional
- Computing $\mathrm{P}(\mathrm{a}$ and b$)$ requires the joint distribution
- It is not, in general, a function of $\mathrm{P}(\mathrm{a})$ and $\mathrm{P}(\mathrm{b})$
- It is not, in general, a function of $\mathrm{P}(\mathrm{a})$ and $\mathrm{P}(\mathrm{b})$
- It is not, in general, a function of $\mathrm{P}(\mathrm{a})$ and $\mathrm{P}(\mathrm{b})$
- This fact led to many approximations methods such as certainty factors and fuzzy logic (Why?)

Working With Joint Distributions

- A joint distribution is an assignment of probabilities to every possible atomic event
- We can define all other probabilities in terms of the joint probabilities by marginalization:

$$
\begin{gathered}
P(a)=P(a \wedge b)+P(a \wedge \neg b) \\
P(a)=\sum_{e_{i} \in e(a)} P\left(e_{i}\right)
\end{gathered}
$$

Example

- $\mathrm{P}($ cold \wedge headache $)=0.4$
- $\mathrm{P}(\neg$ cold \wedge headache $)=0.2$
- $\mathrm{P}($ cold $\wedge \neg$ headache $)=0.3$
- $\mathrm{P}(\neg$ cold $\wedge \neg$ headache $)=0.1$
- What are $\mathrm{P}($ cold $)$ and P (headache)?

Independence

- If A and B are independent: $P(A \wedge B)=P(A) P(B)$
- $\mathrm{P}($ cold \wedge headache $)=0.4$
- $\mathrm{P}(\neg$ cold \wedge headache $)=0.2$
- $\mathrm{P}($ cold $\Lambda \neg$ headache $)=0.3$
- $\mathrm{P}(\neg$ cold $\Lambda \neg$ headache $)=0.1$
- Are cold and headache independent?

Independence and Mutual Exclusivity

- Examples of independent events:
- KC winning Superbowl, Biden winning reelection
- Two successive, fair coin flips
- My car starting and my iPhone working
- etc.
- If A and B are mutually exclusive:

$$
P(A \vee B)=P(A)+P(B)
$$

Expectation

- Most of us use expectation in some form when we compute averages
- What is the average value of a fair die roll?
- $(1+2+3+4+5+6) / 6=3.5$
(we divide by 6 because all outcomes are equally likely)
- Is it possible for all children to be above average?

Expectation in General

- Suppose we have some RV X
- Suppose we have some function $f(X)$
- What is the expected value of $f(X)$?

$$
E_{x} f(x)=\sum_{x} P(X) f(X)
$$

Linearity of Expectation

- Suppose we have $f(X)$ and $g(Y)$.
- What is the expected value of $f(\mathrm{X})+\mathrm{g}(\mathrm{Y})$?

$$
\begin{aligned}
{\underset{X Y}{ }}_{E} f(X)+g(Y) & =\sum_{X Y} p(X \wedge Y)(f(X)+g(Y)) \\
& =\sum_{X Y} P(X \wedge Y) f(X)+\sum_{X Y} p(X \wedge Y) g(Y) \\
& =\sum_{X} \sum_{Y} P(X \wedge Y) f(X)+\sum_{Y} \sum_{X} p(X \wedge Y) g(Y) \\
& =\sum_{X} f(x) \sum_{Y} p(X \wedge Y)+\sum_{Y} g(Y) \sum_{X} P(X \wedge Y) \\
& =\sum_{X} f(X) P(X)+\sum_{Y} g(Y) \sum_{X} P(X \wedge Y) \\
& =E_{X}^{E} f(X)+E_{Y} g(Y)
\end{aligned}
$$

Al avoided probabilities for decades

- Reasoning about probabilities correctly requires the joint distribution
- Exponentially large! (all truth values of all variables)
- Very inconvenient!
- But...assuming independence (mutual exclusivity) when there is not independence (mutual exclusivity) leads to incorrect answers
- Examples:
- ANDing symptoms by multiplying (independence)
- ORing symptoms by adding (mutual exclusivity)
- "Dutch Book" argument shows that any system of beliefs not consistnet with probability theory can lead to bad bets

Conditional Probabilities

- Ordinary probabilities for random variables: unconditional or prior probabilities
- $P(a \mid b)=P(a$ AND $b) / P(b)$
- This tells us the probability of a given that we know only b
- If we know c and d, we can't use $\mathrm{P}(\mathrm{a} \mid \mathrm{b})$ directly (without additional assumptions)
- Annoying, but solves the qualification problem...

Probability Solves the Qualification Problem

- P(disease|symptom1)
- Probability of a disease given that we have observed only symptom1
- The conditioning bar indicates that the probability is defined with respect to a particular state of knowledge, not as an absolute thing

Condition with Bayes's Rule

$$
\begin{aligned}
& P(A \wedge B)=P(B \wedge A) \\
& P(A \mid B) P(B)=P(B \mid A) P(A) \\
& P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

Note that we will usually call Bayes's rules "Bayes Rule"

Let's Play Doctor

- $P($ cold $)=0.7, P($ headache $)=0.6$
- $P($ headache \mid cold $)=0.57$
- What is P (cold|headache) using Bayes Rule?

$$
\begin{aligned}
& P(c \mid h)=\frac{P(h \mid c) P(c)}{P(h)} \\
& \quad=\frac{0.57 * 0.7}{0.6}=0.66
\end{aligned}
$$

- IMPORTANT: Not always symmetric

Conditional Independence

- We say that two variables, A and B, are conditionally independent given C if:
- $\mathrm{P}(\mathrm{A} \mid \mathrm{BC})=\mathrm{P}(\mathrm{A} \mid \mathrm{C})$
- $P(A B \mid C)=P(A \mid C) P(B \mid C)$
- How does this help?
- We store only a conditional probability table (CPT) of each variable given its parents
- Naïve Bayes (e.g. Spam Assassin) is a special case of this! (Words are conditionally independent given spam/ham)

What is a Bayes Net?

conditionally independent of non-descendants,

- Joint probability decomposes:

$$
P\left(x_{1} . . x_{n}\right)=\prod_{i} P\left(x_{i} \mid \text { parents }\left(x_{i}\right)\right)
$$

- For each node X_{i}, store $P\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Call this a Conditional Probability Table (CPT)
- CPT size is exponential in number of parents

Space Efficiency

- Entire joint distribution as 32 (31) entries
- $P(H \mid S), P(N \mid S)$ have $4(2)$
- P(S|AF) has 8 (4)
- $P(A), P(F)$ have 2 (1)
- Total is 20 (10)
- This can require exponentially less space
- Space problem is solved for "most" problems

(Non)Uniqueness of Bayes Nets I

- Suppose you have two variables that are NOT independent
- Two possible networks:
- A is parent of B
- B is parent of A
- Which is right?
- There is no wrong answer!
- Each network can express arbitrary P(AB)
- Network does NOT encode causal or temporal dynamics

(Non)Uniqueness of Bayes Nets II

- Can construct valid Bayes net by adding variables incrementally
- For each new variable, connect all influencing variables as parents new variables never become parents of existing variables (how does this ensure that all variables are conditionally independent of nondescendants given parents?)
- Different order \rightarrow different Bayesian networks for same distribution

Working with Bayes nets

- Can give exponential reduction in storage for joint distribution
- What if we want to answer questions using joint distro, e.g., $P(f \mid h)$?
- In the worst case, answering arbitrary queries using a Bayesian network is NP-hard
- This doesn't always occur (depends upon the structure, and the query), so Bayes nets are still useful in practice
- For this class: Mostly used to show relationships between variables

Plate Notation

- A compact way of representing a Bayes net with repeated structure
- Naïve Bayes:

Observed features

- Plate version:

Bonus material (if time permits)

Another Example

- From: http://opinionator.blogs.nytimes.com/2010/04/25/chances-are/ (attributed to Gerd Gigerenzer)
- "...The probability that one of these women has breast cancer is 0.8 percent. If a woman has breast cancer, the probability is 90 percent that she will have a positive mammogram. If a woman does not have breast cancer, the probability is 7 percent that she will still have a positive mammogram. Imagine a woman who has a positive mammogram. What is the probability that she actually has breast cancer?"
- 95/100 U.S. doctors answered ~75\%

Understanding Probabilities More Subtly

- Initially, probabilities are "relative frequencies"
- This works well for dice and coin flips
- For more complicated events, this is problematic
- Probability Trump running and winning in 2024?
- This event only happens once
- We can't count frequencies
- Still seems like a meaningful question
- In general, all events are unique
- "Reference Class" problem
- Most things are in the middle
- Not repeatable and identical
- Not fully unique - previous, related events may inform us

