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Probability Overview
(very brief)
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Ronald Parr

Goals Of These Slides

•Revisit a topic most of you have seen already to
•Refresh your memories
• Synchronize notation

•Provide context – for AI, RL, etc.
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Why does AI need uncertainty?
• Reason:  Sh*t happens
• Actions don’t have deterministic outcomes

• Can logic be the “language” of AI???
• Problem: General logical statements are almost always false

• Truthful and accurate statements about the world would seem to require an 
endless list of qualifications
• How do you start a car?
• Call this “The Qualification Problem”

The Qualification Problem

• Is this a real concern?
• YES!
• Systems that try to avoid dealing with uncertainty tend to be brittle.
• Plans fail
• Finding shortest path to goal isn’t that great if the path doesn’t really 

get you to the goal



1/30/24

3

When can we (mostly) ignore qualifications?

• When environment is highly engineered/controlled
• Objects moving in free space
• Carefully controlled factories
• When replanning is relatively cheap

Rela>ve Frequencies (simplest view of probs)
• Consider a world where a dentist agent D meets a new patient

• D is interested in only one thing: whether patient has a cavity (C)

• Before making any observation, D’s belief state is:

• This means that D believes that a fraction p of patients have cavities

C
¬C

Fraction p of possible
events where patient
has a cavity

Space of all possible events
(event space)
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Nota>on
• P(XY) = P(X,Y) = a joint probability distribution over all settings of X and Y 

(potentially a table with a large number of entries)

• P(xy) = P(x,y) = P(x AND y) = P(x ^ y) = P(X=x,Y=y),P(X=x AND Y=y)=P(X=x ^ 
Y=x) = a single number corresponding the probability that both X=x and Y=y

• P(Xy) = a table with one entry for each value of X when y is true – not a 
distribution

• P(X=false)=P(x)=P(¬x) = P(~x) = a single number for case where X is a binary 
variable takes value false (or zero)

Why Probabilities Are Messy

• Probabilities are not truth-functional
• Computing P(a and b) requires the joint distribution
• It is not, in general, a function of P(a) and P(b)
• It is not, in general, a function of P(a) and P(b)
• It is not, in general, a function of P(a) and P(b)

• This fact led to many approximations methods such as 
certainty factors and fuzzy logic (Why?)
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Working With Joint Distributions

• A joint distribution is an assignment of 
probabilities to every possible atomic event
• We can define all other probabilities in terms of 

the joint probabilities by marginalization:

!!

€ 

P(a) = P(ei)
e i∈e(a )
∑

!!

€ 

P(a) = P(a∧b) + P(a∧¬b)

Example

• P(cold ⋀ headache) = 0.4
• P(¬cold ⋀ headache) = 0.2
• P(cold ⋀ ¬ headache) = 0.3
• P(¬ cold ⋀ ¬ headache) = 0.1

• What are P(cold) and P(headache)?
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Independence

• If A and B are independent: P(A ⋀ B) = P(A)P(B)

• P(cold ⋀ headache) = 0.4

• P(¬cold ⋀ headache) = 0.2

• P(cold ⋀ ¬ headache) = 0.3

• P(¬ cold ⋀ ¬ headache) = 0.1

• Are cold and headache independent?

Independence and Mutual Exclusivity

• Examples of independent events:
• KC winning Superbowl, Biden winning reelection
• Two successive, fair coin flips
• My car starting and my iPhone working
• etc.

• If A and B are mutually exclusive:
P(A ∨ B) = P(A)+P(B) 
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Expecta>on

• Most of us use expectation in some form when we 
compute averages
• What is the average value of a fair die roll?

• (1+2+3+4+5+6)/6 = 3.5
(we divide by 6 because all outcomes are equally likely)

• Is it possible for all children to be above average?

Expectation in General

• Suppose we have some RV X
• Suppose we have some function f(X)
• What is the expected value of f(X)?

!!

€ 

E
x
f (x) = P(X ) f (X )

x
∑
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Linearity of Expectation

• Suppose we have f(X) and g(Y).
• What is the expected value of f(X)+g(Y)?

E
XY
f (X )+g (Y )= P (X ∧Y )( f (X )

XY
∑ +g (Y ))

= P (X ∧Y ) f (X )
XY
∑ + P (X ∧Y )

XY
∑ g (Y )

= P (X ∧Y ) f (X )+
Y
∑

X
∑ P (X ∧Y )g (Y )

X
∑

Y
∑

= f (x ) P (X ∧Y )+
Y
∑

X
∑ g (Y ) P (X ∧Y )

X
∑

Y
∑

= f (x )P (X )
X
∑ + g (Y ) P (X ∧Y )

X
∑

Y
∑

=E
X
f (X )+E

Y
g (Y )

AI avoided probabili.es for decades

• Reasoning about probabilities correctly requires the joint distribution
• Exponentially large! (all truth values of all variables)
• Very inconvenient!

• But…assuming independence (mutual exclusivity) when there is not 
independence (mutual exclusivity) leads to incorrect answers

• Examples:
• ANDing symptoms by multiplying (independence)
• ORing symptoms by adding (mutual exclusivity)

• “Dutch Book” argument shows that any system of beliefs not consistnet with 
probability theory can lead to bad bets
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Conditional Probabilities

• Ordinary probabilities for random variables:
unconditional or prior probabilities

• P(a|b) = P(a AND b)/P(b)

• This tells us the probability of a given that we know only b

• If we know c and d, we can’t use P(a|b) directly 
(without additional assumptions)

• Annoying, but solves the qualification problem…

Probability Solves the Qualification Problem

• P(disease|symptom1)

• Probability of a disease given that we have observed only symptom1

• The conditioning bar indicates that the probability is defined with 
respect to a particular state of knowledge, not as an absolute thing
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Condi>on with Bayes’s Rule

!!

€ 

P(A∧B) = P(B∧ A)
P(A |B)P(B) = P(B | A)P(A)

P(A |B) =
P(B | A)P(A)

P(B)

Note that we will usually call Bayes’s rules “Bayes Rule”

Let’s Play Doctor

• P(cold) = 0.7, P(headache) = 0.6
• P(headache|cold) = 0.57 
• What is P(cold|headache) using Bayes Rule?

• IMPORTANT:  Not always symmetric

!!!!

€ 

P(c |h) =
P(h | c)P(c)

P(h)

=
0.57*0.7

0.6
= 0.66
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Conditional Independence

• We say that two variables, A and B, are conditionally independent given C if:
• P(A|BC) = P(A|C)
• P(AB|C) = P(A|C)P(B|C)

• How does this help?

• We store only a conditional probability table (CPT) of each variable given its 
parents

• Naïve Bayes (e.g. Spam Assassin) is a special case of this! (Words are conditionally 
independent given spam/ham)

What is a Bayes Net?

• A directed acyclic graph (DAG)
• Given parents, each variable is 

conditionally independent of non-descendants, 
• Joint probability decomposes:

• For each node Xi, store P(Xi|parents(Xi))
• Call this a Conditional Probability Table (CPT)
• CPT size is exponential in number of parents

!!!!

€ 

P(x1 ...xn) = P(xi |parents(xi))
i
∏

Flu Allergy

Sinus

Headache Nose
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Space Efficiency

• Entire joint distribution as 32 (31) entries
• P(H|S),P(N|S) have 4 (2)
• P(S|AF) has 8 (4)
• P(A), P(F) have 2 (1)
• Total is 20 (10)

• This can require exponentially less space
• Space problem is solved for “most” problems

Flu Allergy

Sinus

Headache Nose

(Non)Uniqueness of Bayes Nets I

• Suppose you have two variables that are NOT independent
• Two possible networks:
• A is parent of B
• B is parent of A

•Which is right?
• There is no wrong answer!
• Each network can express arbitrary P(AB)
• Network does NOT encode causal or temporal dynamics
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(Non)Uniqueness of Bayes Nets II

• Can construct valid Bayes net by adding variables incrementally

• For each new variable, connect all influencing variables as parents –
new variables never become parents of existing variables (how does 
this ensure that all variables are conditionally independent of non-
descendants given parents?)

• Different order → different Bayesian networks for same distribution

Working with Bayes nets

• Can give exponential reduction in storage for joint distribution
• What if we want to answer questions using joint distro, e.g., P(f|h)?

• In the worst case, answering arbitrary queries using a Bayesian 
network is NP-hard
• This doesn’t always occur (depends upon the structure, and the 

query), so Bayes nets are still useful in practice

• For this class: Mostly used to show relationships between variables
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Plate Nota<on

• A compact way of representing a Bayes net with repeated structure
• Naïve Bayes:

• Plate version:

Probability and Simple Decisions

Probability (Ch. 2)

Plate Notation

Lets us talk about related sets of variables.

42 / 181

Probability and Simple Decisions

Probability (Ch. 2)

Plate Notation

Lets us talk about related sets of variables.

42 / 181

Bonus material (if time permits)
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Another Example
• From: http://opinionator.blogs.nytimes.com/2010/04/25/chances-are/ (attributed to Gerd Gigerenzer)

• “…The probability that one of these women has breast cancer is 0.8 percent. If a woman has 
breast cancer, the probability is 90 percent that she will have a positive mammogram. If a woman 
does not have breast cancer, the probability is 7 percent that she will still have a positive 
mammogram. Imagine a woman who has a positive mammogram. What is the probability that 
she actually has breast cancer?”

• 95/100 U.S. doctors answered ~75%

Source: Wikipedia

Understanding Probabili.es More Subtly

• Initially, probabilities are “relative frequencies”
• This works well for dice and coin flips
• For more complicated events, this is problematic
• Probability Trump running and winning in 2024?

• This event only happens once
• We can’t count frequencies
• Still seems like a meaningful question

• In general, all events are unique
• “Reference Class” problem

• Most things are in the middle
• Not repeatable and identical
• Not fully unique – previous, related events may inform us

http://opinionator.blogs.nytimes.com/2010/04/25/chances-are/

