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Abstract

We present the first application of the median of means in a PAC exploration
algorithm for MDPs. Using the median of means allows us to significantly reduce
the dependence of our bounds on the range of values that the value function can
take, while introducing a dependence on the (potentially much smaller) variance of
the Bellman operator. Additionally, our algorithm is the first algorithm with PAC
bounds that can be applied to MDPs with unbounded rewards.

1 Introduction

As the reinforcement learning community has shifted its focus from heuristic methods to methods
that have performance guarantees, PAC exploration algorithms have received significant attention.
Thus far, even the best published PAC exploration bounds are too pessimistic to be useful in prac-
tical applications. Even worse, lower bound results [14, 7] indicate that there is little room for
improvement.

While these lower bounds prove that there exist pathological examples for which PAC exploration
can be prohibitively expensive, they leave the door open for the existence of “well-behaved” classes
of problems in which exploration can be performed at a significantly lower cost. The challenge of
course is to identify classes of problems that are general enough to include problems of real-world
interest, while at the same time restricted enough to have a meaningfully lower cost of exploration
than pathological instances.

The approach presented in this paper exploits the fact that while the square of the maximum value
that the value function can take (Q2

max) is typically quite large, the variance of the Bellman operator
is rather small in many domains of practical interest. For example, this is true in many control tasks:
It is not very often that an action takes the system to the best possible state with 50% probability and
to the worst possible state with 50% probability.

Most PAC exploration algorithms take an average over samples. By contrast, the algorithm presented
in this paper splits samples into sets, takes the average over each set, and returns the median of the
averages. This seemingly simple trick (known as the median trick [1]), allows us to derive sample
complexity bounds that depend on the variance of the Bellman operator rather than Q2

max. Addi-
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tionally, our algorithm (Median-PAC) is the first reinforcement learning algorithm with theoretical
guarantees that allows for unbounded rewards.1

Not only does Median-PAC offer significant sample complexity savings in the case when the variance
of the Bellman operator is low, but even in the worst case (the variance of the Bellman operator is
bounded above by Q2

max

4 ) our bounds match the best, published PAC bounds. Note that Median-PAC
does not require the variance of the Bellman operator to be known in advance. Our bounds show that
there is an inverse relationship between the (possibly unknown) variance of the Bellman operator
and Median-PAC’s performance. This is to the best of our knowledge not only the first application
of the median of means in PAC exploration, but also the first application of the median of means in
reinforcement learning in general.

Contrary to recent work which has exploited variance in Markov decision processes to improve PAC
bounds [7, 3], Median-PAC makes no assumptions about the number of possible next-states from
every state-action (it does not even require the number of possible next states to be finite), and as a
result it is easily extensible to the continuous state, concurrent MDP, and delayed update settings [12].

2 Background, notation, and definitions

In the following, important symbols and terms will appear in bold when first introduced. Let X be
the domain of x. Throughout this paper, ∀∀∀x will serve as a shorthand for ∀x ∈ X . In the following
s, s̄, s̃, s′s, s̄, s̃, s′s, s̄, s̃, s′ are used to denote various states, and a, ā, ã, a′a, ā, ã, a′a, ā, ã, a′ are used to denote actions.

A Markov Decision Process (MDP) [13] is a 5-tuple (S,A, P,R, γ), where SSS is the state space
of the process, AAA is the action space2, PPP is a Markovian transition model

(
p(s′|s, a) denotes the

probability of a transition to state s′ when taking action a in state s
)
, RRR is a reward function(

R(s, a, s′) is the reward for taking action a in state s and transitioning to state s′
)
, and γγγ ∈ [0, 1)

is a discount factor for future rewards. A deterministic policy πππ is a mapping π : S 7→ A from
states to actions; π(s) denotes the action choice in state s. The value V π(s)V π(s)V π(s) of state s under
policy π is defined as the expected, accumulated, discounted reward when the process begins
in state s and all decisions are made according to policy π. There exists an optimal policy π∗π∗π∗
for choosing actions which yields the optimal value function V ∗(s), defined recursively via the
Bellman optimality equation V ∗(s)V ∗(s)V ∗(s) = maxa {

∑
s′ p(s

′|s, a) (R(s, a, s′) + γV ∗(s′))}. Similarly,
the value Qπ(s, a)Qπ(s, a)Qπ(s, a) of a state-action (s, a) under policy π is defined as the expected, accumulated,
discounted reward when the process begins in state s by taking action a and all decisions thereafter
are made according to policy π. The Bellman optimality equation for Q becomes Q∗(s, a)Q∗(s, a)Q∗(s, a) =∑
s′ p(s

′|s, a) (R(s, a, s′) + γmaxa′{Q∗(s′, a′)}). For a fixed policy π the Bellman operator for Q

is defined asBπQ(s, a)BπQ(s, a)BπQ(s, a) =
∑
s′ p(s

′|s, a)
(
R(s, a, s′) + γQ(s′, π(s′))

)
. In reinforcement learning

(RL) [15], a learner interacts with a stochastic process modeled as an MDP and typically observes the
state and immediate reward at every step; however, the transition model P and reward function R are
not known. The goal is to learn a near optimal policy using experience collected through interaction
with the process. At each step of interaction, the learner observes the current state s, chooses an
action a, and observes the reward received r, and resulting next state s′, essentially sampling the
transition model and reward function of the process. Thus experience comes in the form of (s, a, r, s′)
samples.

We assume that all value functions Q live in a complete metric space.

Definition 2.1. QmaxQmaxQmax denotes an upper bound on the expected, accumulated, discounted reward
from any state-action under any policy.

We require that Qmin, the minimum expected, accumulated, discounted reward from any state-action
under any policy is bounded, and in order to simplify notation we also assume without loss of

1Even though domains with truly unbounded rewards are not common, many domains exist for which
infrequent events with extremely high (winning the lottery) or extremely low (nuclear power-plant meltdown)
rewards exist. Algorithms whose sample complexity scales with the highest magnitude event are not well suited
to such domains.

2For simplicity of exposition we assume that the same set of actions is available at every state. Our results
readily extend to the case where the action set can differ from state to state.
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generality that it is bounded below by 0. If Qmin < 0, this assumption is easy to satisfy in all MDPs
for which Qmin is bounded by simply shifting the reward space by (γ − 1)Qmin.

There have been many definitions of sample complexity in RL. In this paper we will be using the
following [12]:

Definition 2.2. Let (s1, s2, s3, . . . ) be the random path generated on some execution of π, where π
is an arbitrarily complex, possibly non-stationary, possibly history dependent policy (such as the
policy followed by an exploration algorithm). Let ε be a positive constant, T the (possibly infinite)
set of time steps for which V π(st) < V ∗(st)− ε, and define3

εe(t) =V ∗(st)− V π(st)− ε, ∀ t ∈ T.
εe(t) =0, ∀ t /∈ T.

The Total Cost of Exploration (TCE) is defined as the undiscounted infinite sum
∑∞
t=0 εe(t).

“Number of suboptimal steps” bounds follow as a simple corollary of TCE bounds.

We will be using the following definition of efficient PAC exploration [14]:

Definition 2.3. An algorithm is said to be efficient PAC-MDP (Probably Approximately Correct in
Markov Decision Processes) if, for any ε > 0 and 0 < δ < 1, its sample complexity, its per-timestep
computational complexity, and its space complexity, are less than some polynomial in the relevant
quantities (S,A, 1

ε ,
1
δ ,

1
1−γ ), with probability at least 1− δ.

3 The median of means

Before we present Median-PAC we will demonstrate the usefulness of the median of means with a
simple example. Suppose we are given n independent samples from a random variable X and we
want to estimate its mean. The types of guarantees that we can provide about how close that estimate
will be to the expectation, will depend on what knowledge we have about the variable, and on the
method we use to compute the estimate. The main question of interest in our work is how many
samples are needed until our estimate is ε-close to the expectation with probability at least 1− δ.

Let the expectation of X be E[X] = µ and its variance var[X] = σ2. Cantelli’s inequality tells
us that: P (X − µ ≥ ε) ≤ σ2

σ2+ε2 and P (X − µ ≤ −ε) ≤ σ2

σ2+ε2 . Let Xi be a random variable
describing the value of the i-th sample, and define X ′ = X1+X2+···+Xn

n . We have that E[X ′] =

µ and var[X ′] = σ2

n . From Cantelli’s inequality we have that P (X ′ − µ ≥ ε) ≤ σ2

σ2+nε2 and

P (X ′ − µ ≤ −ε) ≤ σ2

σ2+nε2 . Solving for n we have that we need at most n = (1−δ)σ2

δε2 = O
(
σ2

δε2

)
samples until our estimate is ε-close to the expectation with probability at least 1− δ. In RL, it is
common to apply a union bound over the entire state-action space in order to prove uniformly good
approximation. This means that δ has to be small enough that even when multiplied with the number
of state-actions, it yields an acceptably low probability of failure. The most significant drawback of
the bound above is that it grows very quickly as δ becomes smaller. Without further assumptions one
can show that the bound above is tight for the average estimator.

If we know that X can only take values in a bounded range a ≤ X ≤ b, Hoeffding’s inequality

tells us that P (X ′ − µ ≥ ε) ≤ e−
2nε2

(b−a)2 and P (X ′ − µ ≤ −ε) ≤ e−
2nε2

(b−a)2 . Solving for n we have

that n =
(b−a)2 ln 1

δ

2ε2 samples suffice to guarantee that our estimate is ε-close to the expectation with
probability at least 1− δ. Hoeffding’s inequality yields a much better bound with respect to δ, but
introduces a quadratic dependence on the range of values that the variable can take. For long planning
horizons (discount factor close to 1) and/or large reward magnitudes, the range of possible Q-values
can be very large, much larger than the variance of individual state-actions.

We can get the best of both worlds by using a more sophisticated estimator. Instead of taking the
average over n samples, we will split them into km = nε2

4σ2 sets of 4σ2

ε2 samples each,4 compute the

3Note that V π(st) denotes the expected, discounted, accumulated reward of the arbitrarily complex policy π
from state st at time t, rather than the expectation of some stationary snapshot of π.

4The number of samples per set was chosen so as to minimize the constants in the final bound.
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average over each set, and then take the median of the averages. From Cantelli’s inequality we have
that with probability at least 4

5 , each one of the sets will not underestimate, or overestimate the mean
µ by more than ε. Let f− be the function that counts the number of sets that underestimate the
mean by more than ε, and f+ the function that counts the number of sets that overestimate the mean

by more than ε. From McDiarmid’s inequality [9] we have that P
(
f− ≥ km

2

)
≤ e−

2( 3km
10 )

2

km and

P
(
f+ ≥ km

2

)
≤ e−

2( 3km
10 )

2

km . Solving for n we have that n =
200
9 σ2 ln( 1

δ )
ε2 ≈ 22.22σ2 ln( 1

δ )
ε2 samples

suffice to guarantee that our estimate is ε-close to the expectation with probability at least 1 − δ.
The median of means offers logarithmic dependence on 1

δ , independence from the range of values
that the variables in question can take (even allowing for them to be infinite), and can be computed
efficiently. The median of means estimator only requires a finite variance and the existence of a mean.
No assumptions (including boundedness) are made on higher moments.

4 Median PAC exploration

Algorithm 1 Median-PAC
1: Inputs: start state s, discount factor γ, max number of samples k, number of sets km, and

acceptable error εa.
2: Initialize sample sets unew(s, a) = ∅, u(s, a) = ∅ ∀ (s, a). (|u(s, a)| denotes the number of

samples in u(s, a))
3: Set εb = εa

√
k, and initialize value function Q̃(s, a) = Qmax ∀ (s, a).

4: loop
5: Perform action a = arg maxã Q̃(s, ã)
6: Receive reward r, and transition to state s′.
7: if |u(s, a)| < k then
8: Add (s, a, r, s′) to unew(s, a).
9: if |unew(s, a)| > |u(s, a)| and |unew(s, a)| = 2ikm, where i ≥ 0 is an integer then

10: u(s, a) = unew(s, a)
11: unew(s, a) = ∅
12: end if
13: while max(s,a)(B̃Q̃(s, a)− Q̃(s, a)) > εa or max(s,a)(Q̃(s, a)− B̃Q̃(s, a)) > εa do
14: Set Q̃(s, a) = B̃Q̃(s, a) ∀ (s, a).
15: end while
16: end if
17: end loop
18: function B̃Q̃(s, a)
19: if |u(s, a)| ≥ km then
20: Let (s, a, ri, s

′
i) be the i-th sample in u(s, a).

21: for j = 1 to km do

22: g(j) =
∑j

|u(s,a)|
km

i=1+(j−1)
|u(s,a)|
km

(
ri + γmaxā Q̃(s′i, ā)

)
23: end for
24: return min

{
Qmax,

εb√
|u(s,a)|

+ kmmedian{g(1),...g(km)}
|u(s,a)|

}
25: else
26: return Qmax.
27: end if
28: end function

Algorithm 1 has three parameters that can be set by the user:

• k is the maximum number of samples per state-action. As we will show, higher values for k
lead to increased sample complexity but better approximation.

• εa is an “acceptable error” term. Since Median-PAC is based on value iteration (lines 13
through 15) we specify a threshold after which value iteration should terminate. Value
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iteration is suspended when the max-norm of the difference between Bellman backups is no
larger than εa.

• Due to the stochasticity of Markov decision processes, Median-PAC is only guaranteed
to achieve a particular approximation quality with some probability. km offers a trade-
off between approximation quality and the probability that this approximation quality is
achieved. For a fixed k smaller values of km offer potentially improved approximation
quality, while larger values offer a higher probability of success. For simplicity of exposition

our analysis requires that k = 2ikm for some integer i. If km ≥

⌈
50
9 ln

4 log2
4Q2

max
ε2a
|SA|2

δ

⌉
the probability of failure is bounded above by δ.

Like most modern PAC exploration algorithms, Median-PAC is based on the principle of optimism
in the face of uncertainty. At every step, the algorithm selects an action greedily based on the
current estimate of the Q-value function Q̃. The value function is optimistically initialized to Qmax,
the highest value that any state-action can take. If k is set appropriately (see theorem 5.4), the
value function is guaranteed to remain approximately optimistic (approximately represent the most
optimistic world consistent with the algorithm’s observations) with high probability.

We would like to draw the reader’s attention to two aspects of Median-PAC, both in the way Bellman
backups are computed: 1) Instead of taking a simple average over sample values, Median-PAC divides
them into km sets, computes the mean over each set, and takes the median of means. 2) Instead of
using all the samples available for every state-action, Median-PAC uses samples in batches of a power
of 2 times km (line 9). The reasoning behind the first choice follows from the discussion above: using
the median of means will allow us to show that Median-PAC’s complexity scales with the variance of
the Bellman operator (see definition 5.1) rather than Q2

max. The reasoning behind using samples in
batches of increasing powers of 2 is more subtle. A key requirement in the analysis of our algorithm
is that samples belonging to the same state-action are independent. While the outcome of sample i
does not provide information about the outcome of sample j if i < j (from the Markov property), the
fact that j samples exist can reveal information about the outcome of i. If the first i samples led to a
severe underestimation of the value of the state-action in question, it is likely that j samples would
never have been collected. The fact that they did gives us some information about the outcome of the
first i samples. Using samples in batches, and discarding the old batch when a new batch becomes
available, ensures that the outcomes of samples within each batch are independent from one another.

5 Analysis

Definition 5.1. σσσ is the minimal constant satisfying

∀(s, a, πQ̃, Q̃),

√∑
s′

p(s′|s, a)
(
R(s, a, s′) + γQ̃(s′, πQ̃(s′))−BπQ̃Q̃(s, a)

)2
≤ σ,

where ∀Q̃ refers to any value function produced by Median-PAC, rather than any conceivable
value function (similarly πQ̃ refers to any greedy policy over Q̃ followed during the execution of
Median-PAC rather than any conceivable policy).

In the following we will call σ2σ2σ2 the variance of the Bellman operator. Note that the variance of the
Bellman operator is not the same as the variance, or stochasticity in the transition model of an MDP.
A state-action can be highly stochastic (lead to many possible next states), yet if all the states it
transitions to have similar values, the variance of its Bellman operator will be small.

From Lemmas 5.2, 5.3, and theorem 5.4 below, we have that Median-PAC is efficient PAC-MDP.
Lemma 5.2. The space complexity of algorithm 1 is O (k|S||A|).

Proof. Follows directly from the fact that at most k samples are stored per state-action.

Lemma 5.3. The per step computational complexity of algorithm 1 is bounded above by

O

(
k|S||A|2

1− γ ln
Qmax

εa

)
.
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Proof. The proof of this lemma is deferred to the appendix.

Theorem 5.4 below is the main theorem of this paper. It decomposes errors into the following three
sources:

1. εa is the error caused by the fact that we are only finding an εa-approximation, rather than
the true fixed point of the approximate Bellman operator B̃, and the fact that we are using
only a finite set of samples (at most k) to compute the median of the means, thus we only
have an estimate.

2. εu is the error caused by underestimating the variance of the MDP. When k too small
and Median-PAC fails to be optimistic, εu will be non-zero. εu is a measure of how far
Median-PAC is from being optimistic (follow the greedy policy over the value function of
the most optimistic world consistent with its observations).

3. Finally, εe(t) is the error caused by the fact that at time t there may exist state-actions that
do not yet have k samples.

Theorem 5.4. Let (s1, s2, s3, . . . ) be the random path generated on some execution of
Median-PAC, and π̃̃π̃π be the (non-stationary) policy followed by Median-PAC. Let εu =

max{0, σ
√

4km − εa
√
k}, and εa be defined as in algorithm 1. If km =

⌈
50
9 ln

4 log2
4Q2

max
ε2a
|SA|2

δ

⌉
,

2d 1
1−γ ln

(1−γ)Qmax
εa

e2 ln
log2

2k
km
δ

km|SA|+1 < 1, and k = 2ikm for some integer i, then with probability at least
1− δ, for all t

V ∗(st)− V π̃(st) ≤
2εu + 5εa

1− γ
+ εe(t), (1)

where
∞∑
t=0

εe(t) < c0

((
2km + log2

2k

km

)
Qmax + εak

(
8 +

8√
2

))
, (2)

and

c0 =
(|SA|+ 1)

(
1 + log2

⌈
1

1−γ ln (1−γ)Qmax

εa

⌉) ⌈
1

1−γ ln (1−γ)Qmax

εa

⌉
1−

√
2
⌈

1
1−γ ln

(1−γ)Qmax
εa

⌉
2 ln

log2
2k
km
δ

km|SA|+1

.

If k = 2ikm where i is the smallest integer such that 2i ≥ 4σ2

ε2a
, and ε0 = (1 − γ)εa, then with

probability at least 1− δ, for all t

V ∗(st)− V π̃(st) ≤ ε0 + εe(t), (3)

where5

∞∑
t=0

εe(t) ≈ Õ
((

σ2

ε0(1− γ)2
+
Qmax

1− γ

)
|SA|

)
. (4)

Note that the probability of success holds for all timesteps simultaneously, and
∑∞
t=0 εe(t) is an

undiscounted infinite sum.

Proof. The detailed proof of this theorem is deferred to the appendix. Here we provide a proof
sketch:

The non-stationary policy of the algorithm can be broken up into fixed policy (and fixed approximate
value function) segments. The first step in proving theorem 5.4 is to show that the Bellman error of
each state-action at a particular fixed approximate value function segment is acceptable with respect
to the number of samples currently available for that state-action with high probability. We use
Cantelli’s and McDiarmid’s inequalities to prove this point. This is where the median of means

5f(n) = Õ(g(n)) is a shorthand for f(n) = O(g(n) logc g(n)) for some constant c.
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becomes useful, and the main difference between our work and earlier work. We then combine the
result from the median of means, the fact that there are only a small number of possible policy and
approximate value function changes that can happen during the lifetime of the algorithm, and the
union bound, to prove that the Bellman error of all state-actions during all timesteps is acceptable
with high probability. We subsequently prove that due to the optimistic nature of Median-PAC, at
every time-step it will either perform well, or learn something new about the environment with high
probability. Since there is only a finite number of things it can learn, the total cost of exploration for
Median-PAC will be small with high probability.

A typical “number of suboptimal steps” sample complexity bound follows as a simple corollary of
theorem 5.4. If the total cost of exploration is

∑∞
t=0 εe(t) for an ε0-optimal policy, there can be no

more than
∑∞
t=0 εe(t)

ε1
steps that are more than (ε0 + ε1)-suboptimal.

Note that the sample complexity of Median-PAC depends log-linearly on Qmax, which can be finite
even if Rmax is infinite. Consider for example an MDP for which the reward at every state-action
follows a Gaussian distribution (for discrete MDPs this example requires rewards to be stochastic,
while for continuous MDPs rewards can be a deterministic function of state-action-nextstate since
there can be an infinite number of possible nextstates for every state-action). If the mean of the reward
for every state-action is bounded above by c, Qmax is bounded above by c

1−γ , even though Rmax is
infinite.

As we can see from theorem 5.4, apart from being the first PAC exploration algorithm that can be
applied to MDPs with unbounded rewards, Median-PAC offers significant advantages over the current
state of the art for MDPs with bounded rewards. Until recently, the algorithm with the best known
sample complexity for the discrete state-action setting was MORMAX, an algorithm by Szita and
Szepesvári [16]. Theorem 5.4 offers an improvement of 1

(1−γ)2 even in the worst case, and trades
a factor of Q2

max for a (potentially much smaller) factor of σ2. A recent algorithm by Pazis and
Parr [12] currently offers the best known bounds for PAC exploration without additional assumptions
on the number of states that each action can transition to. Compared to that work we trade a factor of
Q2

max for a factor of σ2.

5.1 Using Median-PAC when σ is not known

In many practical situations σ will not be known. Instead the user will have a fixed exploration cost
budget, a desired maximum probability of failure δ, and a desired maximum error εa. Given δ we

can solve for the number of sets as km =

⌈
50
9 ln

4 log2
4Q2

max
ε2a
|SA|2

δ

⌉
, at which point all variables in

equation 2 except for k are known, and we can solve for k. When the sampling budget is large enough
such that k ≥ 4σ2km

ε2a
, then εu in equation 1 will be zero. Otherwise εu = σ

√
4km − εa

√
k.

5.2 Beyond the discrete state-action setting

Recent work has extended PAC exploration to the continuous state [11] concurrent exploration [4] and
delayed update [12] settings. The goal in the concurrent exploration setting is to explore in multiple
identical or similar MDPs and incur low aggregate exploration cost over all MDPs. For a concurrent
algorithm to offer an improvement over non-concurrent exploration, the aggregate cost must be lower
than the cost of non-concurrent exploration times the number of tasks. The delayed update setting
takes into account the fact that in real world domains, reaching a fixed point after collecting a new
sample can take longer that the time between actions. Contrary to other work that has exploited
the variance of MDPs to improve bounds on PAC exploration [7, 3] our analysis does not make
assumptions about the number of possible next states from a given action. As such, Median-PAC
and its bounds are easily extensible to the continuous state, concurrent exploration, delayed update
setting. Replacing the average over samples in an approximation unit with the median of means over
samples in an approximation unit in the algorithm of Pazis and Parr [12], improves their bounds
(which are the best published bounds for PAC exploration in these settings) by (Rmax + γQmax)2

while introducing a factor of σ2.
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6 Experimental evaluation

We compared Median-PAC against the algorithm of Pazis and Parr [12] on a simple 5 by 5 gridworld
(see appendix for more details). The agent has four actions: move one square up, down, left, or right.
All actions have a 1% probability of self-transition with a reward of 100. Otherwise the agent moves
in the chosen direction and receives a reward of 0, unless its action causes it to land on the top-right
corner, in which case it receives a reward of 1. The world wraps around and the agent always starts at
the center. The optimal policy for this domain is to take the shortest path to the top-right corner if at a
state other than the top-right corner, and take any action while at the top-right corner.

While the probability of any individual sample being a self-transition is small, unless the number of
samples per state-action is very large, the probability that there will exist at least one state-action
with significantly more than 1

100 sampled self-transitions is high. As a result, the naive average
algorithm frequently produced a policy that maximized the probability of encountering state-actions
with more than 1

100 sampled self-transitions. By contrast, it is far less likely that there will exist
a state-action for which at least half of the sets used by the median of means have more than 1

100
sampled self-transitions. Median-PAC was able to consistently find the optimal policy.

7 Related Work

Maillard, Mann, and Mannor [8] present the distribution norm, a measure of hardness of an MDP.
Similarly to our definition of the variance of the Bellman operator, the distribution norm does not
directly depend on the stochasticity of the underlying transition model. It would be interesting to see
if the distribution norm (or a similar concept) can be used to improve PAC exploration bounds for
“easy” MDPs.

While to the best our knowledge our work is the first in PAC exploration for MDPs that introduces a
measure of hardness for MDPs (the variance of the Bellman operator), measures of hardness have
been previously used in regret analysis [6]. Such measures include the diameter of an MDP [6], the
one way diameter [2], as well as the span [2]. These measures express how hard it is to reach any
state of an MDP from any other state. A major advantage of sample complexity over regret is that
finite diameter is not required to prove PAC bounds. Nevertheless, if introducing a requirement for a
finite diameter could offer drastically improved PAC bounds, it may be worth the trade-off for certain
classes of problems. Note that variance and diameter of an MDP appear to be orthogonal. One can
construct examples of arbitrary diameter and then manipulate the variance by changing the reward
function and/or discount factor.

Another measure of hardness which was recently introduced in regret analysis is the Eluder dimension.
Osband and Van Roy [10] show that if an MDP can be parameterized within some known function
class, regret bounds that scale with the dimensionality, rather than cardinality of the underlying MDP
can be obtained. Like the diameter, the Eluder dimension appears to be orthogonal to the variance of
the Bellman operator, potentially allowing for the two concepts to be combined.

Lattimore and Hutter [7] have presented an algorithm that can match the best known lower bounds
for PAC exploration up to logarithmic factors for the case of discrete MDPs where every state-action
can transition to at most two next states.

To the best of our knowledge there has been no work in learning with unbounded rewards. Harrison [5]
has examined the feasibility of planning with unbounded rewards.
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8 Appendix A: Experimental evaluation
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Figure 1: Accumulated discounted reward as a function of the number of episodes for a random walk,
the algorithm of Pazis and Parr [12], and Median-PAC on a simple gridworld. Each plot represents an
average over 1000 independent repetitions.

The discount factor for the gridworld described in section 6 was set to 0.98, and every episode was
1000 steps long. We used modified versions of both learning algorithms that accumulate samples
rather than using them in batches and discarding the old, smaller batch once a new batch has been
collected. The algorithm of Pazis and Parr [12] (Average-PAC), was allowed allowed 1000 iterations
of value iteration after each sample was added. Median-PAC was allowed 1000 iterations of value
iteration every time the i ∗ km-th sample was added to a state action, where i > 0 is an integer. εb
was set to 0.01Qmax for both algorithms (since both algorithms truncate state-action values to Qmax,
setting εb close to Qmax for small values of k saturates the value function). Notice that Median-PAC
for k = 105 and km = 21 takes longer to achieve good performance than for k = 9 and km = 3.
This is because for km = 21 the value of every state-action state is Qmax until at least 21 samples
have been collected.

9 Appendix B: Analysis

Before we prove lemma 5.3 and theorem 5.4 we have to introduce a few supporting definitions and
lemmas.
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Definition 9.1. Let |u(s, a)| = 2ikm for some i ∈ {1, 2, . . . }. The function Fπ(Q, u(s, a))Fπ(Q, u(s, a))Fπ(Q, u(s, a)) is
defined as

Fπ(Q, u(s, a))Fπ(Q, u(s, a))Fπ(Q, u(s, a)) =
εb√
|u(s, a)|

+median
{
Gπ(Q, u(s, a), 1),

. . . ,

Gπ(Q, u(s, a), km)
}
,

where

Gπ(Q, u(s, a), j)Gπ(Q, u(s, a), j)Gπ(Q, u(s, a), j) =
km

|u(s, a)|

j
|u(s,a)|
km∑

i=1+(j−1)
|u(s,a)|
km

(
ri + γQ(s′i, π(s′i))

)
,

and (s, a, ri, s
′
i) is the i-th sample in u(s, a). We will use F (Q, u(s, a))F (Q, u(s, a))F (Q, u(s, a)) to denote Fπ

Q

(Q, u(s, a)).

Fπ splits the samples in u(s, a) into km groups, computes the average of the sample values in each
group, and returns the median of the averages.

Definition 9.2. For state-action (s, a), the approximate optimistic Bellman operator B̃πB̃πB̃π for policy π
is defined as

B̃πQ(s, a)B̃πQ(s, a)B̃πQ(s, a) = min
{
Qmax, F

π(Q, u(s, a))
}
.

We will use B̃Q(s, a)B̃Q(s, a)B̃Q(s, a) to denote B̃π
Q

Q(s, a). When |u(s, a)| = 0, B̃πQ(s, a) = Qmax.

The approximate optimistic Bellman operator is applied to the approximate value function on line 14
of the algorithm.

Lemma 9.3. B̃ is a γ-contraction in maximum norm.

Proof. Suppose ||Q1 −Q2||∞ = ε. For any (s, a) we have

B̃Q1(s, a) = min
{
Qmax, F (Q1, u(s, a))

}
≤ min

{
Qmax, F (Q2, u(s, a)) + γε

}
≤ γε+ min

{
Qmax, F (Q2, u(s, a))

}
= γε+ B̃Q2(s, a)

⇒ B̃Q1(s, a) ≤ γε+ B̃Q2(s, a).

Similarly we have that B̃Q2(s, a) ≤ γε+ B̃Q1(s, a) which completes our proof.

Lemma 9.4. Let σ be defined as in Definition 5.1. For a fixed Q̃ and fixed (s, a) such that
|u(s, a)| > 0

P

(
Gπ(Q̃, u(s, a), j)−BπQ̃(s, a) ≤ − σ

√
4km√

|u(s, a)|

)
≤ 1

5
,

and

P

(
Gπ(Q̃, u(s, a), j)−BπQ̃(s, a) ≥ σ

√
4km√

|u(s, a)|

)
≤ 1

5
.

Proof. From Definition 9.1 we have that

BπQ̃(s, a) = E
[
Gπ(Q̃, u(s, a), j)

]
,

where the expectation is over the next-states that samples in u(s, a) used by Gπ land on.

Let Y be the set of |u(s,a)|
km

samples used by Gπ(Q̃, u(s, a), j) at (s, a). Define Z1, . . . Z |u(s,a)|
km

to be
random variables, one for each sample in Y . The distribution of Zi is the distribution of possible

11



values that ri + γmaxa′ Q̃(s′i, a
′) can take. From the Markov property we have that Z1, . . . Z |u(s,a)|

km

are independent random variables.6 From Definition 5.1 we have that var[Zi] ≤ σ2 ∀ i, and
var[Gπ(Q̃, u(s, a), j)] ≤ σ2km

|u(s,a)| .

From Cantelli’s inequality we have

P

(
Gπ(Q̃, u(s, a), j)−BπQ̃(s, a) ≤ − σ

√
4km√

|u(s, a)|

)

≤ P

(
Gπ(Q̃, u(s, a), j)− E

[
Gπ(Q̃, u(s, a), j)

]
≤ − σ

√
4km√

|u(s, a)|

)

≤
σ2km
|u(s,a)|

σ2km
|u(s,a)| +

(
σ
√

4km√
|u(s,a)|

)2

=

σ2km
|u(s,a)|

σ2km
|u(s,a)| + 4σ2km

|u(s,a)|

=
1

5
,

and

P

(
Gπ(Q̃, u(s, a), j)−BπQ̃(s, a) ≥ σ

√
4km√

|u(s, a)|

)

≤ P

(
Gπ(Q̃, u(s, a), j)− E

[
Gπ(Q̃, u(s, a), j)

]
≥ σ

√
4km√

|u(s, a)|

)

≤
σ2km
|u(s,a)|

σ2km
|u(s,a)| +

(
σ
√

4km√
|u(s,a)|

)2

=

σ2km
|u(s,a)|

σ2km
|u(s,a)| + 4σ2km

|u(s,a)|

=
1

5
.

Based on Lemma 9.4 we can now bound the probability that an individual state-action will have
Bellman error of unacceptably high magnitude for a particular Q̃:

Lemma 9.5. Let σ be defined as in Definition 5.1, and εu = max{0, σ
√

4km − εb}. For a fixed Q̃

P
(
Fπ
∗
(Q̃, u(s, a))−Bπ

∗
Q̃(s, a) ≤ −εu

)
≤ e−

9km
50 ,

and

P

(
Fπ

Q̃

(Q̃, u(s, a))−Bπ
Q̃

Q̃(s, a) ≥ εu + 2
εb√
|u(s, a)|

)
≤ e−

9km
50 .

Proof. Let Y be the set of |u(s, a)| samples used by Fπ(Q̃, u(s, a)) at (s, a). Define Z1, . . . Z|u(s,a)|
to be random variables, one for each sample in Y . The distribution of Zi is the distribution of next

6The state-actions the samples originate from as well as Q̃ and the transition model of the MDP are fixed
with respect to Zi, and no assumptions are made about their distribution. The only source of randomness is the
the transition model of the MDP.
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states s′i, given (s, a). From the Markov property, we have that Z1, . . . Z|u(s,a)| are independent
random variables (similarly to Lemma 9.4). Let xj be a realization of Xj , where Xj’s distribution is
the joint distribution of all Zi corresponding to samples that participate in Gπ(Q̃, u(s, a), j).

We define fπ
∗
(x1, . . . xkm) to be the function that counts the number of j’s such that

Gπ
∗
(Q̃, u(s, a), j)−Bπ

∗
Q̃(s, a) ≤ − σ

√
4km√

|u(s, a)|
,

and fπ
Q̃

(x1, . . . xkm) to be the function that counts the number of j’s such that

Gπ
Q̃

(Q̃, u(s, a), j)−Bπ
Q̃

Q̃(s, a) ≥ σ
√

4km√
|u(s, a)|

.

From Lemma 9.4 we have that

E[fπ
∗
(x1, . . . xkm)] ≤ km

5
,

and

E[fπ
Q̃

(x1, . . . xkm)] ≤ km
5
.

∀ i ∈ [1, km]:

sup
x1,...xk,x̂i

|fπ
∗
(x1, . . . xka)− fπ

∗
(x1, . . . , xi−1x̂i, xi+1 . . . x|u(s,a)|)| ≤ 1,

and

sup
x1,...xk,x̂i

|fπ
Q̃

(x1, . . . xka)− fπ
Q̃

(x1, . . . , xi−1x̂i, xi+1 . . . x|u(s,a)|)| ≤ 1.

From McDiarmid’s inequality we have

P

(
fπ
∗
(x1, . . . xkm) ≥ km

2

)
≤ P

(
fπ
∗
(x1, . . . xkm)− E[fπ

∗
(x1, . . . xkm)] ≥ 3km

10

)

≤ e−
2( 3km

10 )
2

km

= e−
9km
50 ,

and

P

(
fπ

Q̃

(x1, . . . xkm) ≥ km
2

)
≤ P

(
fπ

Q̃

(x1, . . . xkm)− E[fπ
Q̃

(x1, . . . xkm)] ≥ 3km
10

)

≤ e−
2( 3km

10 )
2

km

= e−
9km
50 .

Since the probability that

Gπ
∗
(Q̃, u(s, a), j)−Bπ

∗
Q̃(s, a) ≤ − σ

√
4km√

|u(s, a)|

for at least km2 j’s is bounded above by e−
9km
50 , and the probability that

Gπ
Q̃

(Q̃, u(s, a), j)−Bπ
Q̃

Q̃(s, a) ≥ σ
√

4km√
|u(s, a)|

for at least km2 j’s is bounded above by e−
9km
50 , the result follows from Definition 9.1.
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Given a bound on the probability that an individual state-action has Bellman error of unacceptably
high magnitude, lemma 9.6 uses the union bound to bound the probability that there exists at least
one state-action for some Q̃ produced by Median-PAC during execution, with Bellman error of
unacceptably high magnitude.

Lemma 9.6. Let εu = max{0, σ
√

4km − εb}. The probability that for any Q̃ during an execution of
Median-PAC there exists at least one (s, a) with |u(s, a)| > 0 such that

Fπ
∗
(Q̃, u(s, a))−Bπ

∗
Q̃(s, a) ≤ −εu (5)

or

Fπ
Q̃

(Q̃, u(s, a))−Bπ
Q̃

Q̃(s, a) ≥ εu + 2
εb√
|u(s, a)|

(6)

is bounded above by 2 log2
4k
km
|SA|2e−

9km
50 .

Proof. At most log2
4k
km
|SA| distinct Q̃ exist for which |u(s, a)| > 0 for at least one (s, a). Thus,

there are at most 2 log2
4k
km
|SA|2 ways for at least one of the at most |SA| state-actions to fail at least

once during non-delay steps (log2
4k
km
|SA|2 ways each for equation 5 or equation 6 to be true at least

once), each with a probability at most e−
9km
50 . From the union bound, we have that the probability

that for any Q̃ there exists at least one (s, a) such that equation 5 or 6 is true, is bounded above by
2 log2

4k
km
|SA|2e−

9km
50 .

Based on Lemma 9.6 we can now bound the probability that any (s, a) will have Bellman error of
unacceptably high magnitude:

Lemma 9.7. Let εu = max{0, σ
√

4km − εb}. The probability that for any Q̃ during an execution of
Median-PAC there exists at least one (s, a) such that

Q̃(s, a)−Bπ
∗
Q̃(s, a) ≤ −εu − εa (7)

or at least one (s, a) with |u(s, a)| > 0 such that

Q̃(s, a)−Bπ
Q̃

Q̃(s, a) ≥ εu + εa + 2
εb√
|u(s, a)|

(8)

is bounded above by 2 log2
4k
km
|SA|2e−

9km
50 .

Proof. When |u(s, a)| < km, Q̃(s, a) = Qmax. Since Bπ
∗
Q̃(s, a) ≤ Qmax, Q̃(s, a) −

Bπ
∗
Q̃(s, a) ≤ −εu − εa. Otherwise, ∀(s, a, Q̃) with probability 1− 2 log2

4k
km
|SA|2e−

9km
50

Bπ
∗
Q̃(s, a) = min

{
Qmax, B

π∗Q̃(s, a)
}

< min
{
Qmax, F

π∗(Q̃, u(s, a)) + εu
}

≤ B̃π
∗
Q̃(s, a) + εu

≤ B̃Q̃(s, a) + εu

≤ Q̃(s, a) + εu + εa.
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∀(s, a, Q̃) with u(s, a) ≥ km, with probability 1− 2 log2
4k
km
|SA|2e−

9km
50

Bπ
Q̃

Q̃(s, a) = min
{
Qmax, B

πQ̃Q̃(s, a)
}

> min
{
Qmax, F

πQ̃(Q̃, u(s, a))− εu − 2
εb√
|u(s, a)|

}
≥ min

{
Qmax, F

πQ̃(Q̃, u(s, a))
}
− εu − 2

εb√
|u(s, a)|

≥ B̃π
Q̃

Q̃(s, a)− εu − 2
εb√
|u(s, a)|

= B̃Q̃(s, a)− εu − 2
εb√
|u(s, a)|

≥ Q̃(s, a)− εu − εa − 2
εb√
|u(s, a)|

.

Note that both the first half of Lemma 9.6 (used in the fist half of the proof) and the second half
(used in the second half of the proof) hold simultaneously with probability 2 log2

4k
km
|SA|2e−

9km
50 ,

therefore we do not need to take a union bound over the individual probabilities.

We will use the following three lemmas from Pazis and Parr (2016):
Lemma 9.8. Let ti for i = 0 → l be the outcomes of independent (but not necessarily identically
distributed) random variables in {0, 1}, with P (ti = 1) ≥ pi. If 2

m ln 1
δ < 1 and

l∑
i=0

pi ≥
m

1−
√

2
m ln 1

δ

,

then
∑l
i=0 ti ≥ m with probability at least 1− δ.

Lemma 9.9. Let Q(s, a)−Bπ∗Q(s, a) ≥ −ε∗ ∀(s, a), X1, . . . , Xi, . . . , Xn be sets of state-actions
where Q(s, a)− BπQQ(s, a) ≤ εi ∀(s, a) ∈ Xi, Q(s, a)− BπQQ(s, a) ≤ επQ ∀(s, a) /∈ ∪ni=1Xi,

and επQ ≤ εi∀i. Let TH =
⌈

1
1−γ ln (1−γ)Qmax

εa

⌉
and define H = {1, 2, 4, . . . , 2i} where i is the

largest integer such that 2i ≤ TH . Define ph,i(s) for h ∈ [0, TH−1] to be Bernoulli random variables
expressing the probability of encountering exactly h state-actions for which (s, a) ∈ Xi when starting
from state s and following πQ for a total of min{T, TH} steps. Finally let peh,i(s) =

∑2h−1
m=h pm,i(s).

Then

V ∗(s)− V π
Q

(s) ≤ε∗ + επQ + εa
1− γ

+ εe,

where εe = 2
∑n
i=1

(∑
h∈H

(
hpeh,i(s)

)
(εi − επQ)

)
+ γTQmax.

Lemma 9.10. Let B̂ be a γ-contraction with fixed point Q̂, and Q the output of

1

1− γ
ln
Qmax

ε

iterations of value iteration using B̂. Then if 0 ≤ Q̂(s, a) ≤ Qmax and 0 ≤ Q0(s, a) ≤
Qmax ∀ (s, a), where Q0(s, a) is the initial value for (s, a)

−ε ≤ Q(s, a)− B̂Q(s, a) ≤ ε ∀(s, a).

Lemma 9.11 bounds the number of times the policy produced by Median-PAC can encounter state-
actions with fewer than k samples.
Lemma 9.11. Let (s1, s2, s3, . . . ) be the random path generated on some execution of Algorithm 1.
Let τ(t) be the number of steps from step t to the next step for which the policy changes. Let

TH =
⌈

1
1−γ ln (1−γ)Qmax

εa

⌉
and define H = {1, 2, 4, . . . , 2i} where i is the largest integer such
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that 2i ≤ TH . Let Ka = {20km, 2
1km, 2

2km, . . . k}. Let k−a be the largest value in Ka that is
strictly smaller than ka, or 0 if such a value does not exist. Let Xka(t) be the set of state-actions
at step t for which k−a = |u(s, a)|. Define ph,ka(st) for ka ∈ Ka to be Bernoulli random variables
that express the following conditional probability: Given Q̃ at step t, exactly h state-actions in
Xka(t) are encountered during the next min{TH , τ(t)} steps. Let peh,ka(st) =

∑2h−1
i=h pi,ka(st). If

2d 1
1−γ ln

(1−γ)Qmax
εa

e2 ln
log2

2k
km
δ

km|SA|+1 < 1, with probability at least 1− δ

∞∑
t=0

∑
h∈H

(hpeh,ka(st,j)) <
(ka|SA|+ 1)

(
1 + log2

⌈
1

1−γ ln (1−γ)Qmax

εa

⌉) ⌈
1

1−γ ln (1−γ)Qmax

εa

⌉
1−

√
2d 1

1−γ ln
(1−γ)Qmax

εa
e2 ln

log2
2k
km
δ

km|SA|+1

∀ ka ∈ Ka and ∀ h ∈ H simultaneously.

Proof. From the Markov property we have that peh,ka(st) variables at least TH steps apart are
independent.7 Define THi for i ∈ {0, 1, . . . , TH − 1} to be the (infinite) set of timesteps for which
t ∈ {i, i+ TH , i+ 2TH , . . . }.
Since ka samples will be added to a state-action such that |u(s, a)| = k−a before |u(s, a)| = ka, at
most ka|SA| state-actions such that k−a = |u(s, a)| can be encountered.

Let us assume that there exists an i ∈ {0, 1, . . . , TH − 1} and h ∈ H such that∑
t∈THi

peh,ka(st,j) ≥
ka|SA|+ 1

h

(
1−

√
2h

ka|SA|+1 ln
2 log2

2k
km

δ

) .
From Lemma 9.8 it follows that with probability at least 1− δ

2 log2
2k
km

, at least ka|SA|+1 state-actions

such that k−a = |u(s, a)| will be encountered, which is a contradiction. It must therefore be the case
that ∑

t∈THi

peh,ka(st,j) <
ka|SA|+ 1

h

(
1−

√
2h

ka|SA|+1 ln
2 log2

2k
km

δ

)
with probability at least 1− δ

2 log2
2k
km

for all i ∈ {0, 1, . . . , TH−1} and h ∈ H−{TH} simultaneously,

which implies that
∞∑
t=0

∑
h∈H

(hpeh,ka(st,j)) <
(ka|SA|+ 1)|H|TH

1−
√

2TH
ka|SA|+1 ln

2 log2
2k
km

δ

≤
(ka|SA|+ 1)

(
1 + log2

⌈
1

1−γ ln (1−γ)Qmax

εa

⌉) ⌈
1

1−γ ln (1−γ)Qmax

εa

⌉
1−

√
2d 1

1−γ ln
(1−γ)Qmax

εa
e2 ln

log2
2k
km
δ

km|SA|+1

with probability at least 1− δ
2 log2

2k
km

for all h ∈ H simultaneously.

From the union bound we have that since ka can take at most log2
2k
km

values, with probability 1− δ

∞∑
t=0

∑
h∈H

(hpeh,ka(st,j)) <
(ka|SA|+ 1)

(
1 + log2

⌈
1

1−γ ln (1−γ)Qmax

εa

⌉) ⌈
1

1−γ ln (1−γ)Qmax

εa

⌉
1−

√
2d 1

1−γ ln
(1−γ)Qmax

εa
e2 ln

log2
2k
km
δ

km|SA|+1

∀ ka ∈ Ka and ∀ h ∈ H simultaneously.
7While what happens at step t affects which variables are selected at future timesteps, this is not a problem.

We only care that the outcomes of the variables are independent given their selection.
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Lemma 5.3. The per step computational complexity of algorithm 1 is bounded above by:

O

(
k|S||A|2

1− γ
ln
Qmax

εa

)
.

Proof. From lemma 9.10 we have that on every iteration of algorithm 1, lines 13 through 15 will we
executed at most O

(
1

1−γ ln Qmax

εa

)
times. For each one of these iterations, function B̃Q̃(s, a) will

be called |S||A| times. Line 22 in function B̃Q̃(s, a) will be executed at most km times, with a per
execution cost of O

(
k
km
|A|
)

.

Theorem 5.4. Let (s1, s2, s3, . . . ) be the random path generated on some execution of
Median-PAC, and π̃̃π̃π be the (non-stationary) policy followed by Median-PAC. Let εu =

max{0, σ
√

4km − εa
√
k}, and εa be defined as in algorithm 1. If km =

⌈
50
9 ln

4 log2
4Q2

max
ε2a
|SA|2

δ

⌉
,

2d 1
1−γ ln

(1−γ)Qmax
εa

e2 ln
log2

2k
km
δ

km|SA|+1 < 1, and k = 2ikm for some integer i, then with probability at least
1− δ, for all t

V ∗(st)− V π̃(st) ≤
2εu + 5εa

1− γ
+ εe(t),

where
∞∑
t=0

εe(t) < c0

((
2km + log2

2k

km

)
Qmax + εak

(
8 +

8√
2

))
,

and

c0 =
(|SA|+ 1)

(
1 + log2

⌈
1

1−γ ln (1−γ)Qmax

εa

⌉) ⌈
1

1−γ ln (1−γ)Qmax

εa

⌉
1−

√
2d 1

1−γ ln
(1−γ)Qmax

εa
e2 ln

log2
2k
km
δ

km|SA|+1

.

If k = 2ikm where i is the smallest integer such that 2i ≥ 4σ2

ε2a
, and ε0 = (1 − γ)εa, then with

probability at least 1− δ, for all t

V ∗(st)− V π̃(st) ≤ ε0 + εe(t),

where8

∞∑
t=0

εe(t) ≈ Õ
((

σ2

ε0(1− γ)2
+
Qmax

1− γ

)
|SA|

)
.

Note that the probability of success holds for all timesteps simultaneously, and
∑∞
t=0 εe(t) is an

undiscounted infinite sum.

Proof. From Lemma 9.7 we have that with probability at least 1− 2 log2
4k
km
|SA|2e−

9km
50

Q̃(s, a)−Bπ
∗
Q̃(s, a) > −εu − εa (9)

for all (s, a, Q̃), and

Q̃(s, a)−Bπ
Q̃

Q̃(s, a) < εu + εa + 2
εb√
|u(s, a)|

(10)

for all (s, a) with |u(s, a)| ≥ km. We also have that

Q̃(s, a)−Bπ
Q̃

Q̃(s, a) ≤ Qmax −Qmin ∀ (s, a, Q̃).

8f(n) = Õ(g(n)) is a shorthand for f(n) = O(g(n) logc g(n)) for some c.
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Let Ka, k−a , TH , H , τ(t), and peh,ka(st) be defined as in lemma 9.11. With probability at least

1− 2 log2
4k
km
|SA|2e−

9km
50 , for any (s, a) with |u(s, a)| > 0 samples

Q̃(s, a)−Bπ
Q̃

Q̃(s, a) < εu + εa + 2
εb√
|u(s, a)|

.

Even though π̃ is non-stationary, it is comprised of stationary segments. Starting from step t, π̃ is
stationary for at least τ(t) steps. Substituting the above into Lemma 9.9 we have that with probability
at least 1− 2 log2

4k
km
|SA|2e−

9km
50

V ∗(st)− V π̃(st) ≤
2εu + 3εa + 2 εb√

k

1− γ
+ εe(t),

where

εe(t) = γτ(t)Qmax + 2
∑
h∈H

(hpeh,km(st))Qmax +
∑

ka∈{Ka−km}

2
∑
h∈H

(hpeh,ka(st))2
εb√
ka
.

From the above it follows that
∞∑
t=0

εe(t)

=

∞∑
t=0

(
γτ(t)Qmax + 2

∑
h∈H

(hpeh,1(st,j))Qmax +
∑

ka∈{Ka−km}

2
∑
h∈H

(hpeh,ka(st,j))2
εb√
ka

)

=

∞∑
t=0

γτ(t)Qmax + 2

∞∑
t=0

∑
h∈H

(hpeh,1(st,j))Qmax + 2
∑

ka∈{Ka−km}

∞∑
t=0

∑
h∈H

(hpeh,ka(st,j))2
εb√
ka

<
|SA|Qmax log2

2k
km

(1− γ) + 2kmc0Qmax + 2
∑

ka∈{Ka−km}

kac02
εb√
ka

<

(
2km + log2

2k

km

)
c0Qmax + 2

∑
ka∈{Ka−km}

kac02
εb√
ka

=

(
2km + log2

2k

km

)
c0Qmax + 4c0εb

∑
ka∈{Ka−km}

√
ka

<

(
2km + log2

2k

km

)
c0Qmax + 4c0εb

√
k

(
∞∑
i=0

(
1

2i
+

1

2i
√
2

))

= c0

((
2km + log2

2k

km

)
Qmax + εb

√
k

(
8 +

8√
2

))
with probability 1− δ − 2 log2

4k
km
|SA|2e−

9km
50 , where in step 3 we used the fact that there can be

at most log2
2k
km
|SA| policy changes. Since Lemma 9.7 (used to bound the Bellman error of each

(s, a, Q̃)) holds with probability 2 log2
4k
km
|SA|2e−

9km
50 and Lemma 9.11 (used to bound how many

times each (s, a, Q̃) is encountered) holds with probability of at least 1− δ, the bound above holds
with probability of at least 1− δ − 2 log2

4k
km
|SA|2e−

9km
50 .

Setting εb = εa
√
k we have that with probability at least 1− δ − 2 log2

4k
km
|SA|2e−

9km
50

V ∗(st)− V π̃(st) ≤
2εu + 5εa

1− γ
+ εe(t),

where
∞∑
t=0

εe(t) < c0

((
2km + log2

2k

km

)
Qmax + εak

(
8 +

8√
2

))
.

Equations 3 and 4 follow by substitution and by using the fact that σ ≤ Qmax

2 .
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