
Copyright c
�

2005 by Austin Eliazar

All rights reserved

DP-SLAM

by

Austin Eliazar

Department of Computer Science
Duke University

Date:
Approved:

Ronald Parr, Supervisor

Pankaj Agarwal

Larry Carin

Carlo Tomasi

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Computer Science
in the Graduate School of

Duke University

2005

ABSTRACT

DP-SLAM

by

Austin Eliazar

Department of Computer Science
Duke University

Date:
Approved:

Ronald Parr, Supervisor

Pankaj Agarwal

Larry Carin

Carlo Tomasi

An abstract of a dissertation submitted in partial
fulfillment of the requirements for the degree
of Doctor of Philosophy in the Department of
Computer Science in the Graduate School of

Duke University

2005

Abstract

We present a novel, laser range finder based algorithm for simultaneous localization and

mapping (SLAM) for mobile robots. SLAM addresses the problem of constructing an ac-

curate map in real time despite imperfect information about the robot’s trajectory through

the environment. Unlike other approaches that assume predetermined landmarks (and must

deal with a resulting data-association problem) our algorithm uses the sensor range data

directly to build metric occupancy maps. Our algorithm uses a particle filter to represent

both robot poses and possible map configurations. By using a new map representation,

which we call distributed particle (DP) mapping, we are able to maintain and update hun-

dreds of candidate maps and robot poses efficiently. Through careful implementation, we

are able to achieve a time complexity which is linear in both the area observed and the

number of particles used. Our technique contains essentially no assumptions about the

environment yet it is accurate enough to close loops over 100m in length with crisp, per-

pendicular edges on corridors and minimal or no misalignment errors, despite significant

noise and ambiguity.

iv

Contents

Abstract iv

List of Tables ix

List of Figures x

Acknowledgements xiv

1 Introduction 1

1.1 Objective . 3

2 Previous Work 5

2.1 Localization Overview . 5

2.1.1 Particle Filter Review . 5

2.1.2 Particle Filters for Localization 6

2.2 Landmark SLAM . 9

2.2.1 Kalman Filter Overview . 9

2.2.2 Kalman Filters for SLAM . 11

2.2.3 Variations on Landmark SLAM 12

2.3 Hybrid Topological SLAM . 15

3 Map Representation 17

3.1 Occupancy Grids . 17

3.2 Deterministic and Stochastic Occupancy Models 18

3.3 Laser Model . 19

3.4 Map Representation and Observation Model 20

3.5 Map Updates & Observation Model . 24

v

4 DP-SLAM 26

4.1 Algorithm . 26

4.1.1 Single Map . 27

4.1.2 Ancestry Trees . 30

4.1.3 Maintaining the Particle Ancestry Tree 31

4.1.4 DP-Map Representation . 36

4.1.5 SLAM using a DP-Map . 38

4.2 Complexity . 39

4.2.1 Naive Implementation . 39

4.2.2 Initial Analysis of DP-SLAM 40

4.2.3 Empirical Evaluation of DP-SLAM 43

5 Linear Time Complexity 53

5.1 Map Data Structure . 53

5.2 Ancestry tree node data structure . 54

5.3 Map cache data structure . 55

5.4 Updates . 57

5.5 Deletions . 58

5.6 Summary of Computational Complexity 59

5.7 Implementation and Empirical Results 60

6 Motion Models and Proposal Distributions 62

6.1 Other Proposal Distribution Improvements 62

6.2 Previous Calibration Methods . 64

6.3 Motion Model Details . 65

6.4 Parameter Estimation . 68

vi

6.5 Empirical Results . 70

7 Coalescence 81

7.1 Empirical Behavior of Coalescence . 81

7.2 Implications of Coalescence . 84

8 Hierarchical SLAM 86

8.1 Drift . 86

8.2 Hierarchical SLAM . 87

8.2.1 Related Work . 89

8.2.2 Hierarchical Algorithm . 89

8.3 Implementation and Empirical Results 92

8.4 Extensions of Hierarchal SLAM . 97

9 Practical Improvements 98

9.1 Culling . 98

9.2 Important Parameters . 99

9.2.1 Observation Model . 100

9.2.2 Motion Model . 101

9.2.3 Map Parameters . 101

9.2.4 Hierarchical Parameters . 103

10 Summary of 2-D DP-SLAM 104

11 3-D SLAM 106

11.1 Preliminary 3-D SLAM Work . 106

11.2 Technical Issues . 108

11.2.1 Proposal Distribution / Motion Estimation 108

vii

11.2.2 Observation Dependence . 109

11.3 Data Explosion . 111

11.3.1 3-D Mapping with Voxels . 111

11.3.2 Localization . 115

11.3.3 Map Updates . 116

11.4 Computation Complexity . 121

11.5 Initial Results . 123

12 Future Directions 127

12.1 Alternate Sensors . 127

12.1.1 Adapting Better Stereo Vision 128

12.2 Proposal Distributions . 129

12.2.1 Adaptive Particle Numbers . 129

12.3 Alternative Map Representations . 130

12.3.1 Quad Trees . 130

12.3.2 Variable Map Resolution . 132

12.3.3 Soft Updates . 132

12.3.4 Improved Priors . 133

12.3.5 Spheres of Influence . 134

12.4 Active SLAM and Exploration . 135

12.5 Principled Loop Closing . 136

Bibliography 138

Biography 142

viii

List of Tables

5.1 Comparison of the running times for the original, quadratic version of DP-
SLAM versus the linear implementation. 60

10.1 Summary of Computational Complexity 105

ix

List of Figures

2.1 A plot of the robot’s actual motion, shown in grey, compared with the
trajectory described by the odometry, shown in black. 7

3.1 Effect of angle on number of grid cells penetrated. 21

3.2 Effect of grid resolution on scan probabilities. If the grid squares all have
the same density to the sensor, the scan on the left should have the same
probability as the one on the right. 22

4.1 A SLAM algorithm in progress, demonstrating the distribution of particles.
This illustrates the possible differences between the most likely particle at
a given time step, and the true pose. This partial map corresponds to the
upper left corner of the final map in Figure 4.2. 28

4.2 The results of ignoring the joint distribution over maps and robot poses,
and maintaining only a single map. The two sections of hallway at the
bottom are supposed to line up. 28

4.3 An ancestry tree just beginning . 33

4.4 The children particles are propagated through the particle filter. 33

4.5 The child particles are resampled for the next generation 34

4.6 Unnecessary ancestor particles are pruned. 34

4.7 Resampling in the next generation . 35

4.8 Irrelevant ancestors are pruned, and the column on the left is collapsed. . 35

4.9 SLAM using a single map. 45

4.10 A DP-SLAM map with 9000 particles. 46

4.11 Deterministic occupancy grids fail to handle the difficulties of C-Wing . . 47

4.12 Proper stochastic mapping can successfully close the loop in C-Wing, us-
ing the same number of particles. 48

x

4.13 Robot perspective on the catwalk and railing, taken close to the Railing
label in Figure 4.12. Slight changes in the robot position will affect which
balusters are hit by the laser range finder, and which are missed. 49

4.14 A simplistic occupancy grid of C-Wing. 51

4.15 Stochastic occupancy grid of D-Wing, created using 3000 particles. . . . 52

5.1 An illustration of how the map cache works. (a) The robot is only able to
observe a small portion of the total occupancy grid. (b) Each grid square
in the global map maintains an entire set of observations, identified by the
ancestor particle which added that update. (c) The ancestry tree defines
the how these observations are inherited. (d) The map cache maintains a
complete local occupancy grid of the currently observed area for each leaf
of this ancestry tree. Recall that the set of leaves in the ancestry tree defines
the current set particles. 56

6.1 A complete loop of hallway, generated using a naive motion model. The
robot starts at the top left and moves counterclockwise. Each pixel in this
map represents 3cm in the environment. The total path length is approxi-
mately 60 meters. White areas are unexplored. Shades between gray and
black indicate increasing probability of an obstacle. 72

6.2 Close up of the area where the loop is closed, using the naive motion
model. Double walls reflect an accumulated error of approximately one
half meter over the path of the robot. 73

6.3 Close up of the same area as Figure 6.2, using the learned motion model
learned by EM. 73

6.4 The map created using the motion model learned from one sensor log to
on a different sensor log generated several days later. 74

6.5 First iteration in correcting an inaccurate motion model: close up of loop
closing. 75

6.6 Second iteration in correcting an inaccurate motion model 75

6.7 Final iteration in correcting an inaccurate motion model 76

xi

6.8 A map of the conference center in Edmonton, Canada, where AAAI 2002
was held. The motion model used was learned without ever having seen
the robot that collected the data. 78

6.9 A map of the location of IJCAI 2001, in Acapulco, Mexico. 79

7.1 A graph of the coalescence behavior for DP-SLAM during the creation of
the D-Wing map in Figure 4.10, using 3000 particles. 82

7.2 The coalescence behavior of a particle filter with 3000 particles, using
completely uninformative data. All coalescence is purely the result of par-
ticle depletion. 82

8.1 A map of CMU’s Wean Hall, using a non-hierarchical implementation of
DP-SLAM with 20,000 particles. There is a distinct error in the closing of
the loop in the right hallway. 88

8.2 CMU’s Wean Hall at 4cm resolution, using hierarchical SLAM. 93

8.3 A depiction of the current uncertainty in the map, shortly before the non-
hierarchical approach attempts to complete the loop. Pink areas indicate
sections of the map where the given map has no observations, but alterna-
tive hypotheses do have entries. 94

8.4 The amount of uncertainty in the map (once again shown in pink) is much
greater for the hierarchical approach. 95

11.1 Left: a planar grid-based map. Center: a 3-D voxel-based map. The den-
sity coefficients for each voxel are listed beside them. Right: A 3-D map,
condensing adjacent empty voxels in the same column into a single interval. 112

11.2 A cross section of a single observation, illustrating how the area being
observed forms a polyhedron. The perimeter of this polyhedron is all that
is needed for updating the map. 118

11.3 An example of a partial line trace for a dense sensor reading. The darker
lines indicate which portion of the individual rays would need to be traced
in order to ensure coverage of the perimeter of the observation polyhedron. 119

11.4 Initial mapping results from traversing part of the way around the perimeter
of a 15m radius crater. The map shown is a topographical view, with lighter
areas representing higher elevations. 125

xii

11.5 The resulting topographical map after completing the loop of the perimeter
of the crater. 125

xiii

Acknowledgements

The author gratefully acknowledges the support of the National Science Foundation, the
Sloan Foundation, and SAIC for this research. I also thank the NASA Ames Research Cen-
ter for funding and other resources supporting the initial research into three dimensional
SLAM.

The data sets for Acapulco and Edmonton convention centers were obtained from the
Robotics Data Set Repository (Radish) [1]. Thanks to Nicholas Roy for providing this
data.

My deep appreciation also goes to Ronald Parr, for his advice and guidance throughout
much research and many deadlines.

My love and gratitude to my wife, Rachel Eliazar, for her patience and tolerance
throughout this all.

xiv

Chapter 1

Introduction

Significant strides have been made towards creating a robot capable of performing com-

pletely autonomous tasks. The basic tasks of path planning, localization, navigation and

environmental manipulation are well understood, and to some limited degree, have been

solved. These components form the basic tools for solving higher level tasks, and allow a

robot to operate for some time without human oversight or intervention.

However, one component which has been assumed in all of these areas is the existence

of a good map of the environment. This map not only needs to be accurate, but also needs to

be a fairly complete map of everywhere that the robot has observed so far in its exploration.

Furthermore, it needs to be able to incorporate new information immediately, as the robot

explores new areas. This problem of tracking the robot’s pose and constructing a map in

real-time is known as Simultaneous Localization and Mapping, or SLAM.

In recent years, the availability of relatively inexpensive laser range finders and the

development of particle filter based algorithms have led to great strides on the problem

of robot localization – determining a robot’s position given a known map [2]. Initially,

the maps used for these methods were painstakingly constructed by hand. However, the

accuracy of the laser suggests its use for map-making as well as localization.

SLAM has long been a stumbling block for autonomous robots. What appears on the

surface to be two separate challenges, localization and mapping, are in fact intricately

intertwined problems. For the robot to update the map correctly, it is necessary to know

where the robot is when it makes an observation. However, when tracking the robot’s pose,

it is essential to have a good map against which to compare the observations. Solving both

of these problems incrementally and at the same time means that a small error in one

1

solution can easily corrupt all future estimations. In fact, it is the quick accumulation of

many tiny mistakes which is commonly the cause of failure for nearly all SLAM methods.

External sensors, such as a global positioning system (GPS), are unsuited for tracking

the robot’s pose. GPS relies on receiving signals from satellites in orbit, and are easily

obscured by trees, buildings, canyons, or other obstacles. Also, GPS coverage is unreliable

in many terrestrial locations, and would not be possible for extraterrestrial applications.

Finally, the readings provided by GPS are only a latitude and a longitude; there are other

important elements of the robots pose, including facing and height displacement, which

are unable to be measured by GPS.

The Expectation-Maximization (EM) algorithm provides a very principled approach to

the problem of mapping, but it involves an expensive off-line alignment phase [3]. There

exist heuristic approaches to this problem that fall short of full EM, but they do not pro-

vide a complete solution and they require additional passes over the sensor data [4]. Scan

matching can produce good maps [5, 6] from laser range finder data, but such approaches

typically must explicitly look for loops and require additional effort to close them. In vary-

ing degrees, these approaches can be viewed as partially separating the localization and

mapping components of SLAM.

Recent approaches to SLAM have shown some significant progress towards solving

the combined, real-time problem. One of the more popular of these methods is FastSLAM,

which typifies a group of approaches called landmark-based SLAM. For these algorithms,

the map is represented by a set of distinctive landmarks, and a Kalman filter is maintained

over these landmark positions. Another group of approaches concentrates more on the

underlying topological map, and then builds a more comprehensive map on top of the

topology [7].

However, it is important to keep in mind the purpose of the map. Landmarks and topol-

ogy are fine tools for localization and even simple navigation, but are not very informative

2

for other applications. To make well reasoned, intelligent decisions about the environment,

a more complete picture is needed. To achieve any useful level of autonomy, even to merely

travel unaided from one specific point to another, the robot needs to have a fairly complete

picture of the world. With this in mind, we concentrate on developing a SLAM method

which can produce a dense metric representation of the world, using occupancy grids.

1.1 Objective

The primary goal of this project is to produce highly accurate and detailed maps for both

2-D and 3-D environments in real time. These maps should be complete and informative

as well as being accurate over large environments, regardless of the robot’s path through

the environment. Ideally, SLAM should be a passive algorithm, and explicit behaviors,

such as traveling in loops should not be a requirement for accurate mapping. To preserve

the robot’s autonomy, it should be able to achieve these goals with little or no human

intervention.

We have made significant progress towards this goal, in the two dimensional case. The

development of a novel algorithm, Distributed Particle SLAM (DP-SLAM), allows for

the efficient maintenance of multiple map hypotheses in a principled fashion. A carefully

constructed map formulation provides complete maps, which are able to represent areas of

uncertainty and semi-transparency.

We present a number of advances in effectively managing resources, allowing better

concentration in relevant areas of the state space. The effective use of an efficient map

representation, when combined with dynamic programming, allows the algorithm to be run

in linear time with respect to both the size of the observations and the number of hypotheses

being considered. Surprisingly, this provides an asymptotic running time which is identical

to pure localization, for a given number of particles.

To maintain an appropriate proposal distribution in the face of changing environmental

3

and robot parameters, we have also developed a purely autonomous method for calibration

of the robot’s motion model. Using the SLAM algorithm itself within an Expectation

Maximization (EM) framework, we can create much tighter proposal distributions. This,

in turn, can greatly improve the distribution of resources within the state space. With these

methods, in conjunction with efficient implementation and a well concentrated proposal

distribution, we are able to produce very high quality, accurate two dimensional maps at

efficient speeds.

Three dimensional mapping, is still an open area of research. However, we have

promising initial results on how to represent the vast amount of data needed in an effi-

cient manner, and how to process the wealth of input information in reasonable amounts

of time. We are continuing work on promising methods for many of the related problems,

such as the development of effective sensors and their associated observation models. We

are also continuing to pursue more efficient representation and manipulation of the data, to

overcome the data explosion inherent in moving from 2-D to 3-D.

4

Chapter 2

Previous Work

2.1 Localization Overview

A simpler, but similar problem to SLAM is robotic localization. For pure localization, the

robot already has a map of its environment. The goal is to use the robot’s sensors to track

the robot’s pose as it moves through the environment. The sensors can provide indirect

observations of the environment, which the robot can then compare with its internal map

of the world. Using these comparisons between the expected observations and the actual

readings, combined with the robot’s belief of its pose in the past, it is possible to determine

the robot’s current pose.

Successful localization is not a trivial problem in itself. The sensor readings tend to be

noisy and sparse, and many areas within the environment appear to be very similar. There-

fore, a probabilistic algorithm is required to track the robot’s position. This is achieved

either through a Kalman Filter, or a more general Particle Filter.

2.1.1 Particle Filter Review

A particle filter is a simulation-based method of tracking a system with a partially observ-

able state. We briefly review particle filters here, but refer the reader to excellent overviews

of this topic [8] and its application to robotics [9] for a more complete discussion.

A particle filter maintains a weighted (and normalized) set of sampled states, ���
�������	�	�
�	�
�

, called particles. At each step, the robot executes a motion � , and makes an

observation � (or vector of observations). The particle filter executes the following steps:

5

1. Samples � new states � � � ��� � � �	�	� � �� �
from � with replacement.

2. Propagates each new state through a Markovian transition (or simulation) model:
��� � � ��� � ��� �
	 . This entails sampling a new state from the conditional distribution over

next states given the sampled previous state.

3. Weighs each new state according to a Markovian observation model:
��� � � � � � 	

4. Normalizes the weights for the new set of states

Particle filters are easy to implement have been used to track multimodal distributions

for many practical problems [8].

2.1.2 Particle Filters for Localization

A particle filter is a natural approach to the localization problem, where the robot pose

is the hidden state to be tracked. The state transition is the robot’s movement and the

observations are the robot’s sensor readings, all of which are noisy.

The change of the state over time is handled by a motion model. Usually, the motion in-

dicated by the robot’s odometer is taken as the basis for the motion model, as it is a reliable

measure of the amount that the wheels have turned. However, odometry is a notoriously

inaccurate measure of actual robot motion, even in the best of environments. The slip and

shift of the robot’s wheels, and unevenness in the terrain can combine to give significant

errors which will quickly accumulate (Figure 2.1. A motion model differs across robots

and types of terrain, but generally consists of a linear shift, to account for systematic errors

and Gaussian noise. Thus, for odometer changes of � , � and
 , a particle filter applies the

noise model and obtains, for particle � ,
��� � ����������������� � � ��! �"	 (2.1)

�#� � ��$����%�&��$'��� � � �(! $)	 (2.2)

*� � �,+-�.
/�0�1+-�2� ��� ��! +�	 (2.3)

6

Figure 2.1: A plot of the robot’s actual motion, shown in grey, compared with the trajectory
described by the odometry, shown in black.

7

The � and � terms are linear correction to account for consistent errors in motion. The

function � ��� ��! 	 returns random noise from a normal distribution with mean 0 and stan-

dard deviation
!

, which is derived experimentally and may depend upon the magnitudes

of � , � , and
 .

After simulation, we need to weight the particles based on the robot’s current observa-

tions of the environment. For pure localization, the robot has a map stored in memory. The

position described by each particle corresponds to a distinct point and orientation within

that map. Therefore, it is relatively simple to determine what values the sensors should

return, given the pose within the map. The standard assumption is that sensor errors are

normally distributed. Thus, if the first obstruction in the map along a line traced by a laser

cast is at distance � and the reported distance is � � , the probability density of observing dis-

crepancy � ��� ��� � , is normally distributed with mean
�
. Given the model and pose, each

sensor reading is correctly treated as an independent observation [10]. The total posterior

for particle � is then
� � ����� � � � �	� � � � � � 	 �

where � �	� is the difference between the expected and perceived distances for sensor (laser

cast)
 and particle � .
Particle filters have been used successfully in many different ways to localize a robot.

One of the most notable is the pair of robots used as museum tour guides, Rhino and

Minerva, deployed at the Deutsches Museum Bonn and the Smithsonian’s National Mu-

seum of American History, respectively, for a period of several days at a time [2]. These

robots were able to guide visitors to various exhibits successfully, even in the presence of

significant noise, most notably from the people themselves.

Since using particle filters in this manner is so successful at localization, it is natural

to consider them for the problem of SLAM. However, all previous attempts are stopped

at the same point: how to represent the uncertainty in the robot’s pose when updating

8

positions of possible obstructions in the map. The conceptually correct method is to allow

each particle to maintain and update its own map. However, implementation of this idea

requires extraordinary amounts of memory, and is prohibitively slow, discouraging further

research into this approach. We will return to this issue in later sections for a more detailed

discussion.

2.2 Landmark SLAM

One popular approach to SLAM is to select distinctive features in the environment to use

as landmarks [11, 12]. These landmarks can then serve as navigational guides to determine

the robot’s pose in the world. The assumption is that these landmarks can be chosen to be

distinctive enough that the robot can easily correlate a landmark that is currently observed

with one of the previous observations of that same landmark. These landmark-based meth-

ods are algorithmically different from other SLAM methods, in that instead of using a

particle filter to track the robot pose, they use a Kalman Filter.

We present a brief overview of Kalman filters here, but refer the reader to an excellent

presentation of the topic [13] for greater detail and depth. For a complete basic treatment

of Kalman filters as applied to SLAM, we refer the reader to the original paper in the field

by Cheeseman, Self and Smith [14].

2.2.1 Kalman Filter Overview

A Kalman filter is a well established method tracking the state of a stochastic linear equa-

tion
�������

.
� � ��� � �	� � ��
 �

At each discrete time step, a noisy measurement of the state is made, � ���
�

� ��
 � � ��� �

9

The � and
 terms represent the noise present in the motion and observation equation,

respectively. These sources of noise are assumed to be Gaussian and independent of each

other.
���
 	 ��� ��� ��� 	 � ��� � 	 ��� � � ��� 	 �

�
is called the process covariance and

�
is the measurement covariance. Both of these

covariance matrices are allowed to vary between time steps.

As well as tracking the state itself, a Kalman filter also maintains the entire covariance

matrix of the state estimate
�

. At each time step, upon observing the measurement � , the

Kalman Filter does the following:

1. Predict the next state according to the transition model. Since the noise is assumed

to be mean zero, it is ignored for this step.
� � ��� � �	� �

2. Update the covariance of the state, thus increasing the uncertainty.
� � � � � ��� � �

3. Compute the Kalman gain, to determine the amount of strength that the new obser-

vation should have in updating the state. ��� � �
 � �
 � �
 � � � 	�	
�

4. Update the state by averaging it with the new observation, weighted by the Kalman

gain.
� � � � � � �
� � � �
 � � 	

5. Update the state covariance, to indicate the increased certainty from the new obser-

vation.
� � � � ��� � ��
2	 � �

Kalman filters are commonly used as an exact solution to tracking a wide variety of

linear systems. Unfortunately, the system being tracked during localization is distinctly

nonlinear, as there exists an inherent trigonometric relation between the lateral and rota-

tional motions of the robot. Therefore, it is necessary to use an Extended Kalman Filter

(EKF) to create an approximate solution. In the EKF, we use the first Taylor series expan-

sion of the nonlinear equation around the current state to create a linear approximate to the

10

system. This means that we need to incorporate the Jacobian matrix into the above steps,

giving us a new series of equations.

1.
� � ��� � � � �
	

2.
� � ��� � � � ��� � � �

3. � � � �
 � �
 � �
 � ��� � � � 	 	
�

4.
� � � � � � � � � � ��� � � � 	(

5.
� � � � � � � ��
 	 � �

In the above equations, � and � are the Jacobian matrices of partial derivatives of the

process function � with respect to the current state and the process noise, respectively.

Similarly,
 and � are the Jacobians of the measurement function
�

with respect to the

current state and the measurement noise. Naturally, � and
 will need to be recomputed

round the new state estimate at each time step.

It should be noted that the Extended Kalman Filter is an approximate solution to the

inherently nonlinear system. This possible source of error should be kept in mind when

considering an EKF for the the problem of LAM. In addition, all distributions are assumed

to be Gaussian, and thus unimodal. This assumption should be treated skeptically in the

case of tracking the robot’s pose.

2.2.2 Kalman Filters for SLAM

One of the major difficulties for using Kalman filters for SLAM is the problem of data

association. The observation model assumes that there is a known transformation between

the measurements and the objects being modeled. However, most aspects of the environ-

ment are very similar, and it is not within the capacity of the sensor to distinguish directly

which specific object is being observed at any given time.

11

This is where the concept of landmarks is used. The assumption is made that the robot

can make direct observations of a certain subset of the objects in the environment, and rec-

ognize these specific objects unambiguously. Therefore, whenever an observation is made,

it is possible to know exactly which object is generating that specific measurement. Once

this problem of known data association is solved, the state estimation problem becomes

significantly more manageable.

As we have noted before, the state tracked in SLAM is both the robot pose and the map.

In the case of landmark-based SLAM algorithms, the map that the robot is using to localize

is the set of landmark positions. The maintenance of this type of map fits in very nicely

with the Kalman filter framework. Each landmark can be represented by a set of spatial

coordinates in the state estimation. This allows the landmarks to have correlated Gaussian

distributions over their positions, as expressed in the covariance matrix. The robot’s own

pose is also included in the state, and is the only portion of the state estimation affected by

the state update step of the Kalman filter; the landmarks are all assumed to be stationary in

the world.

2.2.3 Variations on Landmark SLAM

The use of a Kalman filter provides a principled, closed form solution to the SLAM prob-

lem. However, there exist several problems with this formulation. First, many of the

assumptions of Gaussian distribution are inaccurate. In particular, the distribution of robot

poses can be distinctly multimodal, due to sensor ambiguity. This problem is especially

exacerbated when landmarks are not completely unambiguous. Second, maintaining the

covariance matrix between the entire set of landmarks requires � ����� 	 running time, where
�

is the total number of landmarks in the map, in order to update the map. Notice that

this complexity has the undesirable quality that it is dependent on the total size of the map.

Thus, the running time can quickly become impractical as the robot is deployed over a

12

large area, even when the landmarks maintain a constant density. Finally, and perhaps

most importantly, the map which is maintained is only a map of landmarks; other, less

distinctive features in the environment, including walls and similar obstructions, will not

be represented. As a result, the map is only useful for localization and high level naviga-

tion. Any interaction with the world, including local path planning and obstacle avoidance,

requires a more complete map of the environment.

Another limitation of landmark-based methods is the selection and recognition of the

landmarks themselves. The problem of allowing the robot to select features of the envi-

ronment autonomously to use as landmarks is still an open question. Without some form

of object recognition, the task of picking an aspect of the world which is distinct from

several different points of view, in a manner general enough to be used in a wide variety

of environments, can be very difficult. Furthermore, the recognition of landmarks can be

a difficult data association problem. Attempting to identify a certain feature uniquely as a

specific landmark that has been seen before, particularly when leaving open the possibil-

ity that this may be a new, previously unobserved landmark, is a very difficult task. This

process is only hindered by the noisy, limited sensors available to the robot.

Finally, the Kalman filter representation is incapable of incorporating negative infor-

mation into the state estimation. Whenever an observation of a landmark is made, the state

can be updated. However, there is no method provided for updating the state when a land-

mark should be observed, according to some portion of the probable state space, but isn’t.

This negative information is potentially a very important source of information which is

completely ignored in landmark based SLAM.

Some of these problems have been addressed by existing work. One of the more promi-

nent methods is the use of thin junction trees to approximate the covariance between land-

mark position estimates [12]. This treats the covariance as a sparser set of relationships

between nearby landmarks. The ability of a single landmark to influence its neighbors is

13

restricted to allow propagation only if the influence has reached a certain threshold. There-

fore, most updates to the map affect only a local set of landmarks, but more informative

events, such as the completion of a loop, are still allowed to propagate through the entire

map. Therefore, the average running time of the Kalman filter is greatly reduced, while

still maintaining a good approximation of the full covariance matrix.

A similar approach uses a sparse extended information filter to approximate the EKF

by the most important pairwise constraints [15]. Much like the thin junction trees, this

method greatly reduces the amount of information that needs to be updated at each time

step, by passing information along the most informative constraints.

The other popular improvement on landmark-based SLAM is FastSLAM [11]. This

algorithm uses a Rao-Blackwellized particle filter [16] to track the robot’s pose. This

allows the map to still be represented as a set of Gaussian distributions of the landmark

positions like a Kalman filter, while sampling distinct hypotheses for the robot’s pose, in

the same manner as a particle filter. Given the robot pose, all of the landmark positions

become independent [10]. This important consequence greatly improves the running time,

since each landmark can now be treated as a separate Kalman filter, with trivial dimensions.

Furthermore, it no longer requires the distribution of robot poses to be constrained by

a Gaussian, allowing for more flexible, multimodal distributions. It is important to note,

however, that this method of sampling robot poses implies that the maps are now dependent

directly on the individual robot pose, and thus each particle needs to maintain its own map

of landmark positions, which can lead to other complications for running time and memory.

This method has met with considerable success, when the issues of data association are

solved, and can produce high quality maps in large environments.

Since the data association problem is such a crucial part of an effective landmark-based

SLAM method, there are a number of methods for solving this recognition problem. In one

effective method, data associations are always chosen so as to maximize the probability of

14

the current observation [11]. In different approach, the raw sensor information is com-

posed into a “template” for the landmark. Scan correlation is then used to identify these

landmarks [17].

2.3 Hybrid Topological SLAM

The predominant alternative to landmark-based SLAM methods is a loose collection of

topologically based methods. This topology can be represented either explicitly, in a

graph [7, 18, 19], or detected indirectly, through scan matching [5, 6]. Regardless of the

representation, there are a couple of important underlying properties of this variety of algo-

rithms. They all attempt to represent a more complete map than just a set of landmarks, and

more importantly, they all attempt to exploit the topology of the environment to achieve

consistency, and, hopefully, accuracy.

At the core of these algorithms is a method by which to detect when a loop is closed.

That is, they are specifically seeking to detect when the robot’s trajectory doubles back on

itself. The proper alignment of these loop closing events gives much the same information

that is captured by the Kalman filter when a landmark based method closes a loop, and the

entire trajectory between starting at that point and returning to it can be refined by this extra

information. Therefore, these methods attempt to leverage the topological information

explicitly, while still maintaining a more complete map of the environment, and avoiding

the data association difficulties inherent in landmark based methods.

However, loop closing is a much more difficult problem without the use of explicit

landmarks. Difficult questions arise of how to detect such an event, and how to align the

two perspectives on the same scene properly. Without explicit landmarks, data association

is ambiguous, and both detection of a closed loop and alignment of the two pieces can lead

to errors and false positives. Furthermore, exactly how to propagate this new information

is a difficult question. Correcting the intervening trajectory is difficult to accomplish in a

15

principled fashion, without a set of covariances to use. Lacking any method of enforcing

accuracy, the correction is instead usually performed in a manner emphasizing consis-

tency. While not widely adopted, a method has been proposed for modeling the residual

errors [20]. These residuals could then be used to distribute the error detected by the loop

closure.

The major drawback of these methods is their failure to be truly “simultaneous”. De-

tecting loop closures, and even more so, applying the additional information supplied by

them, is a very computationally intensive process, which is likely to cause a significant

discontinuity in the robot’s ability to process the algorithm in real time. Furthermore, the

quality of the maps are highly variable. Even though the final maps which are produced can

look very good, they are still not very accurate, as the corrections to the trajectory are not

necessarily applied to the correct portions. Resultant maps often have bends, elongations,

or other distortions from the correct map, as the loop closing event attempts to achieve

consistency in any way possible. Perhaps more importantly, even these consistent maps

can only be produced at distinct intervals. In the time between loop closures, the maps can

degrade arbitrarily.

16

Chapter 3

Map Representation

3.1 Occupancy Grids

Occupancy grids, also known as evidence grids, are a popular method for describing the

parameters of an environment, as they are very intuitive method for representing the world.

Occupancy grids were originally developed at Carnegie Mellon University in 1983 for

sonar navigation in the lab [21, 22]. They quickly became popular due to their ease of use

with sensor fusion and robot navigation [23].

Envision the entire world divided up into a regular grid of squares, all of equal size.

Each of these grid squares corresponds to a physical area in the world, and as such, each

square contains a different set of objects or portions of an object. An occupancy grid is an

abstract representation of these sections of the world, containing information on whether

that square in the real world is occupied. This notion of occupancy can change depending

on the application, but generally either indicates whether the area would block the passage

of a robot, or whether the area would show up on the robot’s sensors. Ideally these two

concepts should be one and the same, but due to noisy sensors, “invisible” objects, “insub-

stantial” objects, and many areas only being partially occupied, they sometimes diverge.

Nearly all early localization methods were developed for occupancy grids. Similarly,

many path planning algorithms assume either an occupancy grid or a similar dense metric

map. This lasting popularity is largely due to the simplicity of the representation, and the

detail which is easily available at different resolutions.

17

3.2 Deterministic and Stochastic Occupancy Models

An occupancy grid can be represented in many different ways. It is important to ensure that

the representation is well tailored to both the sensor being used and the application. Most

of the standard approaches can be generalized into two types: deterministic and stochastic.

Deterministic occupancy grids are the simplest implementation, and have a discrete set

of values for the grid squares. These typically are EMPTY and OCCUPIED, and some-

times include a value for UNKNOWN or UNOBSERVED. This clear and simple approach

tends to be popular for maps of the environment created by hand or for simulated environ-

ments, for use with path planning algorithms, or other methods having to do with physical

interaction with the world. They give a very clear cut description of the physical occupancy

of the world from a spatial standpoint. However, they tend to be an over simplification for

sensors, since very rarely will the sensor ever see square patch of the world which is both

completely occupied and always accurately observed. For this reason, stochastic maps

are much more popular for localization, mapping, and other methods which rely on an

observational interaction with the world.

Stochastic maps have a notion of OCCUPIED and EMPTY, just like deterministic

maps, but instead of viewing these values as absolutes, they have a sliding scale of var-

ious degrees of occupancy. These values are affected by a variety of factors, including

what percentage of the square is believed to be occupied, and how transparent the object

is to the sensor. Since these numbers represent the behavior of a specific sensor with the

given area, it makes sense that the method for representing this uncertainty would change

for different sensors. Both the stochastic representation and the corresponding observation

model need to be tuned properly for the device used.

18

3.3 Laser Model

The recent development of reasonably priced laser range finders has quickly made them

a dominant sensor for use in mapping as well as localization. Unlike other sensors, laser

range finders can give accurate measurements within a few centimeters, and are effective

out to ranges of 20 meters or more. Another important difference between laser range

finders and sensors such as sonar is that the laser traces a very thin line through the world,

as compared to the wide cone from sonar. As such, the laser can provide much more

precise and accurate readings, compared to previous sensors.

There are three main sources of uncertainty that we would like to accommodate in

our model. The first has to do with small objects, and irregular surfaces. Regardless of

the resolution of our grid, there will always be objects which do not fit well within a

grid square. Rough surfaces, such as rocks and plants, as well as small items like fences

and bushes are very difficult to represent explicitly in a deterministic fashion. Another

issue arises from the discretization of the world. Most surfaces do not align well with a

given grid, since they do not happen to be axis-parallel. Instead, they will only partially

occupy certain squares, and they will give differing readings depending on which portion

of the grid square is scanned. This can be particularly problematic for surfaces which

are nearly parallel to the current scan. Lastly, there are objects in the world that behave

in manners too complex to easily model, such as moving people, or surfaces which can

occasionally reflect the sensor. We would like a method which can recover gracefully from

these aberrant events, instead of placing permanent errors in the map.

The idea of using probabilistic map representations is possibly as old as the topic

robotic mapping itself [21]. Many of the earliest SLAM methods employed probabilis-

tic occupancy grids, which were especially useful for sonar sensors prone to noisy and/or

spurious measurements. However, by concentrating on a model for a laser range finder,

and the behavior of our own algorithm, we can develop a more appropriate method for

19

representing uncertainty in the map, which takes into account the distance the laser travels

through each grid square.

The main challenges for devising a probabilistic map representation are in developing a

representation of the environment that is consistent, flexible, and easily updated. Our basic

assumption is that each grid square responds to laser light in a manner that is independent

of neighboring squares. Moreover, the behavior is independent of the angle of incidence or

the part of square which is struck; the behavior with respect to a particular square depends

only on the distance the laser travels through the square.

Our assumptions are, of course, false for most environments. However, they are a plau-

sible relaxation of the rather strict assumptions made in the deterministic map. Intuitively,

our model corresponds to the assumption that between scans, the obstructions in each grid

square are redistributed uniformly within the square. Obviously, more sophisticated ap-

proaches that retain more information are possible and some are under consideration for

future work. However, if the robot is not permitted enough memory to recall the precise

locations of objects within a grid square (or if the laser does not have enough accuracy to

make such records worthwhile), the assumption of uniformity is quite natural.

3.4 Map Representation and Observation Model

Since maps are already fairly large data structures, we would like to maintain a small

and constant amount of additional information for each grid square that summarizes the

properties of the square. With this restriction, it seems natural to avoid overly complex

models by assuming that the probability of stopping at any particular point within the

square is uniform over the square. From that point, the specific method of developing

these probabilities can be tailored to the behavior of the sensor.

One important goal of our model is the idea that the probability of laser penetration

should depend on the distance traveled through a grid square. Earlier approaches to esti-

20

Figure 3.1: Effect of angle on number of grid cells penetrated.

mating the the total probability of the scan would trace the scan through the map, and weigh

the measurement error associated with each potential obstacle by the probability that the

scan has actually reached the obstacle [24]. In an occupancy grid with partial occupancy,

each cell is a potential obstacle.

Consider Figure 3.1, where we can see two possible scans of equal length, originating

from the same position, but with different orientations. Note that the axis parallel scan

passes through three grid squares, while the diagonal scan passes through 4. (In general,

the number of squares visited can differ by a factor of � � .) Without a method of weighting

the visited grid squares based on the distance the laser has traveled through them, two scans

of equal length traveling through similar grid squares can have vastly different probabilities

(since they represent a different number of possible laser obstacles) based solely on the

orientation of the map. Notice also that some of the squares that the angled scan passes

through are only clipped at the corner, resulting in a very short distance spent in those

squares. Even if these squares are known to interrupt laser scans with high probability, the

effects of these squares on the the total probability of the scan should be discounted. This

is largely due to the fact that the sensor only detects the boundaries of objects, and thus

map squares which are likely to be occupied are almost always only partially occupied.

These effects can cause a localization algorithm to prefer to align some scans along axes

for spurious reasons. While this issue has been recognized some existing work [2], is

often ignored in other stochastic models, despite being a very important consideration in

minimizing the effects of discretization in the map.

Our second goal in developing a laser penetration model was that the the model should

21

Figure 3.2: Effect of grid resolution on scan probabilities. If the grid squares all have the
same density to the sensor, the scan on the left should have the same probability as the one
on the right.

be consistent. We derive our notion of consistency from the following thought experiment.

Consider a laser cast that passes through two adjacent squares of identical composition and

travels the same distance through each square (Figure 3.2). The probability that the laser

beam will be interrupted should be the same as if the laser had traveled twice the distance

through a single, larger square of identical composition to the two smaller ones. More

generally, consistency suggests that our level of discretization should not directly affect

the probability that a laser cast of given a length will be interrupted.

If we define,
��� � � ��� 	 to be the cumulative probability that the laser will have been

interrupted after traveling distance � through a medium of type
�
, our consistency condition

can be stated more generally in terms of
 divisions as,

��� � � ��� 	 �
��

��� �
��� � �

��� 	 ��� � �	� � �

�
� 	 	�� � 	

��

This summation represents that the laser could be interrupted during any segment of length

� � . We accumulate the probability of stopping in each one. Inside the summation, the first

term is the probability that the scan would be obstructed in the given segment. The second

term represents the probability of the scan making it that far; that is, the probability that

each previous segment did not obstruct the laser. As can be seen by simple substitution,

the exponential distribution,
��� � � ��� 	 � � �������� , for a positive scalar

�
, is a compact

representation which satisfies this consistency condition. We will refer to
�

as the opacity

of grid square.

22

For any laser cast, we can express the interaction between the model and the trace

of the cast, up to some point
�

, as a vector of distances traveled through grid squares

� � � � ���	� � � � 	 and the corresponding opacities � � � � � �	�	� � � 	 of those squares. As

noted earlier, the distances will not be uniform. Depending upon the angle of a cast, the

beam could cut across a grid square in an axis parallel manner, go across it diagonally, or

possibly just clip a corner of the square. The probability that a laser cast will be stopped

at some point along its trajectory is therefore equal to the cumulative probability that the

laser cast is interrupted by squares up to and including
�

:

��� ��� ����� � � � ��� � � 	 � �	� � � � � 	 �
��

��� �
��� � ��� �
� � 	

� 	
�

	

 � �

��� � �	� � �
 �
�
 	(�

We express the probability that the laser cast will be interrupted at grid square � as
���

stop �
� 	 , which is computed as the probability that the laser has reached square � � �

and then

stopped at � ,

���
stop ��� � � � � 	 � ��� � �
 �
�
 	 ��� � ��� � � ��

	
� � � ��

 	

� 	 	 �

where � ��

 	
�

and � ��

 	
�

have the natural interpretation as fragments of the � and � vectors.

Suppose the vector � � � � ���	�	� � � 	 is a vector of differences such that �*� is the distance

between the laser distance measurement and grid square � along the trace of the laser cast.

We express the conditional probability of the measurement, given that the laser beam that

was interrupted in square � , as
��� � � � � stop � � 	 , for which we make the typical assumption

of normally distributed measurement noise [25]. Note the the � � terms are only defined if

the laser measurement observes a specific stopping point.

The events
� �)� � ��� ��� � � 	 for all � form a partition of all possible laser stopping events.

Therefore, the probability of the laser measurement, � , with an observed stopping point, is

then the sum, over all grid squares in the range of the laser, of the product of the conditional

probability of the measurement given that the beam has stopped at that point, and the

23

probability that the beam stopped in each square,

��� � �
stopped � true 	 �

��
� � �

��� � � � stop � � � � � � 	 �
��

��� �
� � � � � � stop � � 	 ���

stop � � � � � � 	 �

3.5 Map Updates & Observation Model

The mean of the exponential distribution with opacity
�

is simply
�
, which makes updating

our map particularly simple. For each square, we maintain what is essentially a laser

odometer that sums the total distance � � traveled by laser scans through the square. We

also keep track of the number of times that the laser is presumed to have stopped in the

square,
�
. Our estimate of

�
is therefore

�� � ���
� . In our initial implementation of the

occupancy grid we treat the laser as a reliable measurement when updating the map. Thus,

stop counts and grid odometers are updated under the assumption that the reported laser

depth is correct. We realize that this remains somewhat contradictory to our observation

model and we plan to implement soft updates, which will bring our approach closer to an

incremental version of EM, in future work.

Grid squares which have not been observed before are treated in a special manner.

The difficulty with such squares is that it is difficult to estimate the probability of the laser

stopping in a given square without previous experience with that square. The usual solution

to such a problem is the use of a prior. For our purposes, we use a gamma distribution as

a conjugate prior, with a shape parameter of 1, and a scale parameter that has a natural

interpretation as a previously observed ratio of distances to stops. We would like to set this

ratio to one stop every 8m (the maximum range of our laser range finder. The strength of

this prior is also kept low, equivalent to observing this probability for a few centimeters

worth of distance. This gives us a prior of ���
	 ���
	 � � � ���
m and

�
�
	 ����	 � � � � ���

.

Since all grid squares are at least semi-transparent, the line trace will never terminate

on its own; there is always a some chance that the laser should not have been stopped yet.

24

However, we know that when the laser reports an obstruction, there must be an object at

some point within its range. Therefore, when a line trace reaches the maximum range of

the sensor, we normalize the probability of the observation by the total probability that the

laser has been stopped so far. This has the effect of enforcing the assumption that a finite

laser reading must have originated from a physical object somewhere along its trajectory:

��� � �
stopped � true 	 �

� � � �
stopped � true 	� � � � ����� � � � ��� � � 	 �

� � � �
stopped � true 	�	� � � � � 	

�

Conversely, when the laser is not observed to be stopped, the probability of the laser scan

is equal to the probability that no object along its trajectory obstructed the laser:

��� � � � � ����� � � � false 	 � � � ��� � � � � 	 �

This proposed observation model assumes that all of the errors in the observations are

normally distributed. Since each observation is independent, a single poor observation

can have a drastic impact on the total probability of a given pose. However, in reality,

there exist many other causes for disagreements between the observations and the map.

Reflections from specular surfaces, non-static objects, and discretization errors are but a

few sources which can give rise to highly erratic readings. Fortunately, these are all fairly

low probability events, and do not need to be handled specifically by the observation model.

However, their impact on the total probability should be limited. Therefore, a certain

amount of “background noise”, � , is allowed in the observations. Any single observation

has a lower limit imposed on its probability, which can be interpreted as the probability

of an unmodeled event causing an erratic reading. In practice, this background noise level

was set to be relatively low compared to the normal observation model, less than 0.5%:

��� � ����� � �'	 � � ��� �
�
� ��� �'	 	

25

Chapter 4

DP-SLAM

4.1 Algorithm

DP-SLAM implements a particle filter over maps and robot poses, using an occupancy grid

to represent the map, to track the placement of objects in the environment. In this sense it

is a direct extension of many successful localization algorithms [9, 2, 25, 18]. However,

it is important to note that for pure localization, each particle is tracking just the robot’s

pose. Each particle exists in the same map, and therefore where a particle was resampled

from in the last time step is irrelevant. How a particle arrives at its current location in the

map is unimportant; all that matters is that the current pose is accurate.

When using a particle filter for SLAM, each particle corresponds to a specific trajectory

through the environment and has a specific map associated with it. When a particle is

resampled, the entire map itself is treated as part of the hidden state that is being tracked.

Since the ancestry of each particle matters, different particles are not interchangeable in

the same sense as in pure localization, and a particle filter for SLAM is less able to recover

from mistakes. Small errors in the robot pose can be reinforced in later iterations, and

can quickly accumulate to form a poor map. Therefore, significantly greater numbers of

particles are necessary in order to cover the state space sufficiently, not only in order to

cover the extra dimension being tracked across the space of maps, but also to ensure that at

each iteration we are sufficiently close to the robot’s “true” pose at that time, so as to not

introduce a tendency towards error into the map.

For a particle filter to track this joint distribution properly over both robot poses and

maps, it is necessary for each particle to maintain a separate, complete map. During the

resampling phase of the particle filter, each particle could be resampled multiple times.

26

Therefore, it is necessary to copy over the entire map to each new particle, to allow each

hypothesis to maintain its own set of updates to the map. This joint distribution, and the

corresponding need for multiple map hypotheses, has been recognized for some time as

being crucial to the SLAM process [26]. However, a direct approach to this method, where

a complete map is assigned to each particle, is impractical. If the map is an occupancy

grid of size � and
�

particles are maintained by the particle filter, then ignoring the cost

of localization, � �
�

� 	 operations must be performed during the resampling step merely

copying maps. For a number of particles sufficient to achieve precise localization in a

reasonably sized environment, this naive approach would require gigabytes worth of data

movement per update.

The major contribution of DP-SLAM over previous attempts is an efficient represen-

tation of the map to make map copying more efficient, while at the same time reducing

the overall memory required to represent these large numbers of occupancy grids. This

is achieved through a method called distributed particle mapping (DP-Mapping), which

exploits the significant redundancies between the different maps.

4.1.1 Single Map

To appreciate fully the need for multiple maps, we first consider the behavior of using a

single map to track the observed environment. This is a common trick used by earlier re-

searchers in an attempt to avoid the complexities of map copying. In this method, a single

map is maintained and used for localization for all of the particles. At each iteration, the

single most likely particle is chosen, and the map is updated only once, based upon this

greedy choice of robot pose. All of the other particles are ignored during the mapping

stage. This simple method is nice because it looks almost exactly like a problem of pure

localization, and can be expected to take equivalent resources. The problem with it is that

although the map may seem consistent for short lengths of motion, small errors can very

27

Figure 4.1: A SLAM algorithm in progress, demonstrating the distribution of particles.
This illustrates the possible differences between the most likely particle at a given time
step, and the true pose. This partial map corresponds to the upper left corner of the final
map in Figure 4.2.

 ��

Figure 4.2: The results of ignoring the joint distribution over maps and robot poses, and
maintaining only a single map. The two sections of hallway at the bottom are supposed to
line up.

28

quickly accumulate, to give poor maps. The single map has no ability to revise the place-

ment of earlier hypotheses as future information is acquired. It must make the assumption

that that the most likely pose at each time step is the correct one, an assumption which

is usually false. Any future observations are unable to influence this choice of the map

update. Thus this method of mapping is very brittle and unable to recover from ambiguous

situations.

Let us take a closer look at how this method performs in an actual SLAM situation. In

Figure 4.1 we can see the results of a single-map SLAM algorithm in the midst of mapping

a section of hallway. Here we see an overhead view of the world, with the edges of objects

(occupied grid squares) depicted in black. In the center of the hall is a spread of red points,

representing the current set of particles within the map. Since the hallway at this point is

relatively featureless, it is difficult for the algorithm to differentiate its position along the

length of the hall, and thus the particles are mostly distributed in a line along the length of

the hallway. The most likely particle at this step, according to the sensor model, is a point

near the top of the distribution. However, the robot’s true position along the hallway was

actually measured to be much closer to the bottom of the distribution. Therefore, updating

the map based upon our single most likely particle has the effect of foreshortening the

hallway slightly, and moving all future observations that much closer to the top of this

hallway when they are entered into the map. Lacking any ability to keep multiple map

hypotheses, future observations which could otherwise help resolve this ambiguity are still

unable to correct the map.

In Figure 4.2, we can see the end result of this error, combined with many others like

it. Here, the robot has completed a loop of the hallway, and has physically returned to its

starting position in the world. However, because the SLAM algorithm was inaccurate, the

robot’s map does not reflect this. The two displaced sections of hallway at the bottom of

this map are in fact different views of the same hallway, and should be aligned in an accu-

29

rate map. Unfortunately, since the single map SLAM method does not properly maintain

the joint distribution over both robot poses and maps, it is unable to complete this task.

4.1.2 Ancestry Trees

It should be clear to the reader by now that correctly maintaining this joint distribution over

maps and poses, and thus maintaining multiple map hypotheses, is crucial to solving the

SLAM problem accurately, and producing high quality maps. However, as we have already

noted, if implemented in a naive fashion, this can be a very expensive task, both in terms

of processor time and memory requirements. The bottleneck of these approaches is of

course the sheer size of the maps, and the cost of copying over each map when resampling

particles.

An astute reader has most likely observed that the naive approach is doing too much

work. Each map carries much in common with most of the other maps, and reproducing all

of this information multiple times is an inefficient use of resources. To make this concept

clearer, we will introduce the notion of a particle ancestry. When a particle is sampled

from the distribution at iteration � to produce a new successor particle at iteration � � �
, we

call the generation � particle a parent and the generation �"� �
particle a child. Two children

with the same parent are siblings. From here, the concept of a particle ancestry extends

naturally. To see how this can be useful, suppose that the laser sweeps out an area of size

��� � and consider two siblings,
� �

and
� � . Each sibling will correspond to a different

robot pose and will make at most � updates to the map it inherits from its parent. Thus,

the maps for
� �

and
� � can differ in at most � map positions. The entire remainder of the

map is identical.

When the problem is presented in this manner, the natural reaction from most computer

scientists is to propose recording the “diff” between maps, i.e, recording a list of changes

that each particle makes to its parent’s map. While this would solve the problem of mak-

30

ing efficient map updates, it would create a bad computational problem for localization:

Tracing a line though the map to look for an obstacle would require working through the

current particle’s entire ancestry and consulting the stored list of differences for each par-

ticle in the ancestry. The complexity of this operation would be linear in the number of

iterations of the particle filter. The challenge is, therefore, to provide data structures that

permit efficient updates to the map and efficient localization queries with time complexity

that is independent of the number of iterations of the particle filter. We call our solution to

this problem Distributed Particle Mapping or DP-Mapping, and we explain it in terms of

the two data structures that are maintained: the ancestry tree and the map itself.

4.1.3 Maintaining the Particle Ancestry Tree

The basic idea of the particle ancestry tree is fairly straightforward. Every node in this

tree represents a distinct hypothesis, possibly originating from a previous iteration of the

particle filter. The tree itself is rooted with an initial particle, of which all other particles are

progeny. Each particle maintains a pointer to its parent and is assigned a unique numerical

ID. Finally, each particle maintains a list of grid squares that it has updated.

The details of how we will use the ancestry tree for localization are described in the sub-

sequent section. In this section we focus on the maintenance of the ancestry tree, specifi-

cally on making certain that the tree has bounded size regardless of the number of iterations

of the particle filter.

We maintain a bounded size tree by pruning away unnecessary nodes. First, note that

certain particles may not have children, due to resampling, and can simply be removed

from the tree. Of course, the removal of such a particle may leave its parent without

children as well, and we can recursively prune away dead branches of the tree. After

pruning, it is obvious that the only particles which are stored in our ancestry tree are exactly

those particles which are ancestors of the current generation of particles.

31

This is still somewhat more information than we need to remember. What we truly are

interested in is where and how the particles differ from each other in terms of the robot’s

trajectory, and thus the map. Therefore, if a particle has only one child in our ancestry tree,

we can essentially remove it, by collapsing that branch of the tree. This has the effect of

merging the parent’s and child’s updates to the map, a process described in the subsequent

section. By applying this process to the entire tree after pruning, we obtain a minimal

ancestry tree, which has several desirable and easily provable properties:

Independent of the number of iterations of the particle filter, a minimal ancestry tree of
�

particles

� has exactly
�

leaves, which are the set of particles for the current iteration;

� has branching factor of at least � , as a direct consequence of our tree maintenance;

� consequently, it has depth no more than
�

.

The process of maintaining an ancestry tree is perhaps best illustrated through a simple

example. Figure 4.3 depicts the start of this process. Here, the robot is traveling down

a featureless hallway, and we will observe how the ancestry tree is updated as the robot

moves. At the top of the figure is a single particle, where the robot’s pose is represented by

a red dot, and the current map additions are shown in black. This one particle is resampled

from several times, to give a number of identical children. Since the map for each particle

is inherited from their parent, it is shown in grey, instead of black. These new particles

are then each propagated forward by means of the probabilistic motion model. Thus in

Figure 4.4 each particle represents a different pose, and consequently, each has a different

set of map updates. These particles are then scored, based on how well the new updates

agree with the existing map, and randomly resampled proportionately based upon these

weights (Figure 4.5).

32

Figure 4.3: An ancestry tree just beginning

Figure 4.4: The children particles are propagated through the particle filter.

33

Figure 4.5: The child particles are resampled for the next generation

Figure 4.6: Unnecessary ancestor particles are pruned.

34

Figure 4.7: Resampling in the next generation

Figure 4.8: Irrelevant ancestors are pruned, and the column on the left is collapsed.

35

Notice that at this point some particles have scored higher than others, and therefore

were resampled more than once. Since the total number of particles at each iteration is

kept constant, this implies that there are other particles which were not resampled from at

all. These childless particles can be removed from the ancestry tree, as they will have no

influence on any future particles (Figure 4.6). In Figure 4.7, the new set of particles has

again been propagated forward, and then scored and resampled, to give the next generation

of particles. However, at this step, there are two important updates to be made to the an-

cestry tree. On the right, there are a pair of childless particles from the previous generation

which can be removed from the ancestry tree. However, when this is done, their common

parent will no longer have any children of its own. This older ancestor particle can also be

removed from the tree, as it also now has no descendants in the current generation.

The other interesting update is on the left side of Figure 4.7. Here, we see that once the

childless ancestor particles are removed, there will be a chain of ancestor particles, each of

which will have only one child. Since we are interested only in how the current generation

of particles diverge from each other, this chain gives us no pertinent information. There-

fore, these nodes can all be merged into a single ancestor particle, effectively collapsing

the chain. This single ancestor particle will contain all of the relevant map updates from all

three ancestor particles, as well as representing the point at which its descendants diverged

from the other particles. Figure 4.8 shows the pruned ancestry tree, with all unnecessary

nodes removed, and the non-branching chains collapsed.

4.1.4 DP-Map Representation

The challenge for our map representation is to devise a data structure that permits efficient

localization, updates and resampling. The naive approach of a complete map for each

particle is inefficient due to the high cost of resampling, while the somewhat less naive

approach of simply maintaining history of each particle’s updates is also inefficient because

36

it introduces a dependency on the number of iterations of the particle filter during the

localization stage.

Our solution to the map representation problem is to associate particles with maps,

instead of associating maps with particles. DP-mapping maintains just a single occupancy

grid, where the particles are distributed over the map. Unlike a traditional occupancy

grid, which stores a single value at each grid square, we propose storing the entire set of

observations for all of the particles. This set can initially be thought of being stored as

a tree, keyed on the IDs of the particles that have made changes to the occupancy of the

square. For efficient implementation, this tree can be kept balanced, using a red-black tree,

or a similar method. In the next chapter, we will show a more efficient way of storing this

information at each grid square.

The grid is initialized as a matrix of empty trees. When a particle makes an observation

about a grid square it inserts its ID and the observation into the associated tree. Notice

that this method of recording maps actually allows each particle to behave as if it has its

own map. The only complication is that each lookup and update is now performed on a

balanced tree, rather than a single entry. To check the value of a grid square, the particle

checks each of its ancestors to find the most recent one that made an observation for that

square. If no ancestor has made an entry, then the particle can treat this position as being

unknown.

We can now describe the effects of collapsing an ancestor with a single child in the an-

cestry tree more precisely. The goal of this step is to merge all of the pertinent information

from these two ancestry nodes, the parent and the child, into a single node. This allows

for the removal of one of the nodes from the ancestry tree, preventing branches of the tree

from growing arbitrarily, and thereby ensuring our � ��� 	 minimal bound on the size of the

tree. We accomplish this through the following steps:

Each ancestry particle currently maintains a list of the grid squares it has observed,

37

and thus updated. For each item in the child’s list:

– Change the ID of the observation to match that of the parent.

– If the parent also has an observation at this grid square, remove the observation

associated with the parent.

– Add this observation to the parent’s list of observed squares.

� Redirect all children of the child node (i.e. grandchildren of the parent) to recognize

the parent node as their new parent.

� Remove the child node from the ancestry tree.

4.1.5 SLAM using a DP-Map

Accessing a given grid square on a DP-map is slightly more complicated than with a stan-

dard occupancy grid. Since each grid square contains an entire set of observations, finding

out whether a specific particle has made an observation at this location requires a search

across this set of observations. However, each particle inherits the map updates inserted

by its ancestors. Therefore, we need to step backwards through the particle’s ancestry,

comparing each ancestor to the set of observations at this grid square. This will give us the

most recent map update for this location that this particle should have its own map.

Making an update to the map is a simpler process than accessing it. When a new

observation is made, the updated value is added to the set of observations at that grid

square. At the same time, the ancestor particle which made the update keeps a pointer to

the specific observation in the map.

Deletions of entries to the map are only performed when an ancestor particle is removed

from the ancestry tree. Using the list of map updates for this ancestor particle, which was

created when the map updates were originally added to the map, we can easily remove all

of the pertinent observations.

38

4.2 Complexity

The one nice thing about the naive approach of keeping a complete map for each particle

is the simplicity: If we ignore the cost of copying maps, then lookups and changes to the

map can all be done in constant time. In these areas, distributed particle mapping may

initially seem less efficient, due to the search over observations. However, we can show

that DP-maps are in fact asymptotically superior to the naive approach. We first present an

analysis of the direct implementation of DP-SLAM, resulting in � � � � ��� ��� � 	 worst-case

running time. With some careful changes, it is possible to improve this running time to

� � � � � 	 [27]. However, that result is completely superseded by our results in the next

chapter, where we show how the algorithm can be implemented much more efficiently.

Those methods reduce the running time for DP-SLAM to � � � � 	 , arguably the most effi-

cient bound that we could hope for.

4.2.1 Naive Implementation

As we have already noted, maintaining the joint distribution over maps and poses has

been attempted before in SLAM. The naive approach to maintaining these multiple maps

involved keeping a single full map for each particle. This has the nice feature of fast lookup

time; accessing any given grid square for a particular particle can be done in constant time.

If the area observed at each time step is bounded by � , and
�

particles are used, this means

that the localization step of SLAM can be performed in � � � � 	 time. Similarly, updating

a grid square takes only constant time, and so the mapping step should only take � � � � 	
time.

However, the main bulk of computation lies in the resampling step. Keeping multiple

complete maps means that the robot will need to copy over an entire map for each par-

ticle, which will require � � � � 	 time, where � is the size of the map. Since typically

� � � , this obviously is the dominant term in the computation. Likewise, the memory

39

requirements for this method will be � �
�

� 	 space. It is the enormous size of �
�

that

quickly hampers the robot in implementation. Vast memory requirements and processing

time needed for implementation have made this method infeasible for use in any reasonably

sized environment.

4.2.2 Initial Analysis of DP-SLAM

The main goals for using distributed particle maps are to remove the costly step of copying
�

maps at every iteration, and simultaneously reduce the space requirements to a more

reasonable bound. To achieve these goals, we are willing to accept an increase in the

complexity of the other steps. As we will see later, this sacrifice is not in fact necessary.

Lookup on a DP-map requires a comparison between the ancestry of a particle with the

observation tree at that grid square. Let � be the depth of the ancestry tree, and thus the

maximum length of a particle’s ancestry. Therefore, we can complete our lookup after just

� accesses to the observation tree. Strictly speaking, as the ancestry tree is not guaranteed

to be balanced, � can be as much as � ��� 	 . However, in practice, this is almost never

the case, and we have found ��� � ������� � 	 , as the nature of particle resampling lends to

very balanced ancestry trees. Since the observation tree itself can hold at most
�

entries,

and a single search takes � �	���
� � 	 time. Accessing a specific grid square in the map can

therefore be done in � � � ����� � 	 time.

For localization, each particle will need to make � � � 	 accesses to the map. As each

particle needs to access the entire observed space for its own map, we need � � � � 	 ac-

cesses, giving localization with DP-maps a complexity of � � ��� �
���
��� 	 .
To complete the analysis we must handle two remaining details: The cost of inserting

new information into the map, and the cost of maintaining the ancestry tree. Since the

observation tree for each grid square is balanced, insertions and deletions on our map both

take � ������� � 	 per entry. Each particle can make at most � � � 	 new entries, which in turn

40

will only need to be removed once. Each new map update requires accessing the map, in

order to find the previous entry for this particle. Thus the procedure of adding new entries

can be accomplished in � � � � ���
��� 	 per particle, or � � ��� � ����� � 	 total, and the cost of

deleting childless particles will be amortized as � � ��� � �����'� 	 .
It remains to be shown that the housekeeping required to maintain the ancestry tree

has reasonable cost. Specifically, we need to show that the cost of collapsing childless

ancestry tree nodes does not exceed � � ��� �
�����'� 	 . This may not be obvious at first,

since successive collapsing operations can make the set of updated squares for a node in

the ancestry tree as large as the entire map. We now argue that the amortized cost of

these changes will be � � ��� �
���
� � 	 . First, consider the cost of merging the child’s list

of modified squares into the parent’s list. If the child has modified
�

squares, we must

perform � ��� ����� � 	 operations (n observation tree queries on the parent’s key) to check

the child’s entries against the parent’s for duplicates.

The final step that is required consists of updating the ID for all of the child’s map

entries. This is accomplished by deleting the observation with the old ID, and inserting a

new copy of it with the parent’s ID. The cost of this is again � � � ����� � 	 . Consider that

each map entry stored in the particle ancestry tree has a total potential of � times that it

can be involved in a collapse over the course of the algorithm, since � is the total number

of nodes between its initial position and the root, and no new nodes will ever be added in

between. At each iteration,
�

particles each create � new map entries with potential � .

Thus the total potential at each iteration is � � � � � �����'� 	 .
The computational complexity of DP-SLAM can be summarized as follows: For a

particle filter that maintains
�

particles, with a laser that sweeps out � grid squares, and

an ancestry tree of depth � , DP-SLAM requires:

� � � � � � ����� � 	 operations for localization arising from:

–
�

particles checking � grid squares

41

– A lookup cost of � � � ���
� � 	 per grid square

� � � � � � ����� � 	 operations to insert new data into the tree, arising from:

–
�

particles inserting information at � grid squares

– Each insert requires a lookup to retrieve the previous information, at a cost of

� � � ����� � 	
– Insertion cost of � ������� � 	 per new piece of information

� Ancestry tree maintenance with amortized cost � � � � � ����� � 	 arising from

– A cost of � �	���
� � 	 to remove an observation or move it up one level in the

ancestry tree

– A maximum potential of � � �
introduced at each iteration.

The space complexity of DP-SLAM is a little harder to put a tight bound on. At first

glance, it appears that the map could have a worst case scenario in which each grid square

has a complete set of
�

different observations. Therefore, the space complexity of DP-

SLAM could approach � � � � 	 , and be asymptotically no better than the naive implemen-

tation. However, the robot’s uncertainty very rarely stretches far enough back in time to

allow for such a case. Much more often, there is one recent iteration in the past, before

which all of the current particles agree on the trajectory. This point is referred to as the

point of coalescence, and will be described in more detail in Chapter 7. If we establish this

point of common ancestry as existing
�

iterations in the past, then we can impose a very

weak � � � ��� � � 	 memory bound on DP-SLAM, where � ��� � . The important point

to be made by this observation is that for larger maps, the memory requirements are closer

to that of maintaining only a single map, instead of
�

separate ones.

42

4.2.3 Empirical Evaluation of DP-SLAM

To evaluate the results of DP-SLAM, we ran several experiments using three different

methods. The first experiments were designed to compare the results from using a single-

map SLAM algorithm, such as the one described in section 4.1.1, against the results of

DP-SLAM, using a simple deterministic occupancy grid for both methods. The second set

of experiments demonstrate the benefits of using the stochastic occupancy grid described

earlier, over the deterministic occupancy grids.

These test were performed on data from sensor logs, in order to ensure consistency

between experiments. The sensor logs were collected by our iRobot ATRV Jr. in a cyclic

hallway environment, with observations made approximately every 15cm. The robot is

equipped with a SICK laser range finder, which scans at a height of 7cm from the floor.

Readings are made across
�������

, spaced one degree apart, with an effective distance of up

to
�
m. The error in distance readings is typically less than

�
mm. The logs were then run

offline on a fast PC (2.4 GHz Pentium 4), in a manner simulating the actual run, in order

to allow for better control in our experiments.

We examined results from two different environments. The first is a smaller loop of

a carpeted office environment, from the D-Wing of Duke University’s LSRC building,

approximately 30m x 25m, with the robot traversing a path 16m x 14m. The second, larger

loop is also from the LSRC building, including C-Wing and a catwalk above the foyer.

This second environment is much more complicated, and includes both carpet and tiled

floor, as well as transparent windows and many small, cluttered objects. The size of this

environment is roughly 25m x 60m, with the robot completing a loop approximately 14m

x 40m.

The sensor logs for these experiments, as well as additional experiments, annotated

maps, and pictures are available at http://www.cs.duke.edu/˜parr/dpslam/.

For the results we present, it is important to emphasize that our algorithm knows abso-

43

lutely nothing about the environment or the existence of loops. No assumptions about the

environment are made, and no attempt is made to smooth over errors in the map when loops

are closed. The precision in our maps results directly from the robustness of maintaining

multiple maps.

Deterministic Maps

In our initial implementation our map representation is a deterministic occupancy grid.

At first, we are ignoring the stochastic map representation described at length earlier in

this document, and instead are allowing only two different occupancy values for the grid

squares, either occupied, indicated in black, or empty/unknown, in white. In the next

section, we will see the effects of a stochastic map representation.

This first sensor log that we use as a test of DP-SLAM is the smaller, less complicated

environment. This is the same sensor log that we have used before, in order to demon-

strate the failings of using only a single map for all particles (Figure 4.2 and repeated in

Figure 4.9). In this test, the robot began in the middle of the bottom hallway and continued

counterclockwise through the rest of the map, returning to the starting point. The result

shown in Figure 4.10 shows the highest probability map generated by DP-SLAM after the

completion of the D-Wing loop using 9000 particles.

This example demonstrates the accuracy of DP-SLAM when completing a loop, one

of the more difficult tasks for SLAM algorithms. After traveling 60m, the robot is once

again able to observe the same section of hallway in which it started. At that point, any

accumulated error will readily become apparent, as it will lead to obvious misalignments

in the corridor. As the figure shows, the loop was closed perfectly, with no discernible

seam or misalignment.

To underscore the advantages of maintaining multiple maps, we refer the reader back to

the results obtained when using a single map and the same number of particles. Figure 4.9

44

 ��

Figure 4.9: SLAM using a single map.

shows the result of processing the same sensor log file by generating �
�����

particles at

each time step, keeping the single particle with the highest posterior, and updating the map

based upon the robot’s pose in this particle. There is a considerable misalignment error

where the loop is closed at the bottom of the map.

Stochastic Maps

Figure 4.10 demonstrates the successful performance of DP-SLAM using deterministic

occupancy grids. However, as can be expected, deterministic maps have difficulties in

larger, more complex situations. The previous D-Wing environment was fairly regular and

well behaved – clear walls are always apparent, and most objects interact predictably with

the laser range finder. In the C-Wing environment, walls are often cluttered and irregular,

at times disappearing altogether, such as along the catwalk (see Figure 4.13). In addition, a

number of windows are apparent, which are only semi-opaque to the laser, and the thin rails

45

Figure 4.10: A DP-SLAM map with 9000 particles.

along the catwalk are smaller than the grid resolution for the map. This more complicated

environment exposes the shortcomings of deterministic occupancy. Figure 4.11 shows

what happens when this type of a map representation encounters the more challenging

C-Wing section. The robot begins the run at the very top left corner of the map, and

travels down the long hallway on the left, before turning up at the bottom of the map and

returning along the right hallway. The loop is finally closed near the top right of the map.

Predictably, the algorithm runs into serious trouble early into the run, which has continuing

effects throughout the rest of the map.

When stochastic occupancy grids are used, a dramatic improvement is apparent. Fig-

ure 4.12 shows a map produced by stochastic occupancy grids with a resolution of 3cm per

grid square, using 10,000 particles. We again emphasize that our algorithm knows nothing

about loops and makes no explicit effort to correct map errors. The extraordinary precision

and seamless nature of our maps arises solely from the robustness of maintaining a joint

46

Figure 4.11: Deterministic occupancy grids fail to handle the difficulties of C-Wing

47

Figure 4.12: Proper stochastic mapping can successfully close the loop in C-Wing, using
the same number of particles.

48

 ��

Figure 4.13: Robot perspective on the catwalk and railing, taken close to the Railing label
in Figure 4.12. Slight changes in the robot position will affect which balusters are hit by
the laser range finder, and which are missed.

distribution over robot positions and maps.

Details about the map, the environment, and the robot’s trajectory give insight into

the robustness and accuracy of the algorithm. The area in which the robot starts is on a

raised catwalk, with a railing supported by many thin balusters (Figure 4.13), which at

our scanning height appear as a series of small, evenly spaced obstacles. (The individual

balusters are visible when the map is enlarged.) These small balusters provide a very

difficult challenge for both localization and mapping, due to both their size and lack of

distinction. Another challenge is a large set of windows along the left hand side of the

map, near the top edge. The glass is a semi-opaque surface to the laser, only occasionally

stopping the laser, due to dirt and angle of incidence. On close inspection, this area of

the map may appear blurry, with some possible line doubling. This is actually because the

window is double paned, and the laser has a chance of being stopped by either pane.

Other features of note are the intervening openings, which occur between the two long

stretches of hall. When the robot moves from top to bottom along the left hallway, it

sees only the lower walls of these passages, and it sees the upper walls on the return trip.

Therefore, these passages provide no clues that would make it any easier for the robot to

49

close the large loop in the map.

The loop is closed on the top right of the map on a catwalk parallel to the first. The

accuracy in this map is high enough to maintain the correct number of balusters for the

hand rail between the two catwalks. There is one section of map that may appear to be

inaccurate, at the bottom right hand corner of the map. Here, there are two intersecting

hallways, which meet at a slightly acute angle. This is enough of a disparity to make one

end of the two “parallel” hallways in our map approximately 20cm closer together on the

top end when compared to the bottom. We were (pleasantly) surprised to discover, upon

measuring the corresponding areas in the real world, that there was in fact a disparity of

approximately 20cm in the real building. Our algorithm had detected an anomaly in the

construction.

We performed several other experiments on the same data log. Our first test involved

the same algorithm with a grid resolution of 5cm. With the same parameters, and an equal

number of particles, the loop still successfully closed. Our last experiment involved a more

simplistic approach to representing occupancy probabilities, which merely used a ratio of

the number times the laser had stopped in the square compared to the number of times that

it was observed. This method, while still able to handle some of the uncertainty in the

environment, had significant skew and misalignment errors upon closing the loop, as seen

in Figure 4.14.

Figure 4.15 demonstrates the results of running the stochastic mapping method on the

sensor log from D-Wing. Since the deterministic map was able to correctly map the envi-

ronment, it is not surprising to see that the stochastic method was also able to close the loop

correctly. The important result is that these results were obtained with significantly fewer

particles, only 3000, when compared to the deterministic method, which required 9000 for

the same accuracy. So not only do we find that stochastic maps help us handle larger, more

difficult environments, but they are also capable of handling the simpler environments with

50

Figure 4.14: A simplistic occupancy grid of C-Wing.

51

Figure 4.15: Stochastic occupancy grid of D-Wing, created using 3000 particles.

fewer particles. This demonstrates that it is not only those areas with semi-transparency

and significant amounts of partial occupancies that benefit from the stochastic occupancy,

but also objects with much better behaved surfaces as well.

52

Chapter 5

Linear Time Complexity

A straightforward implementation of the DP-SLAM algorithm can provide us with an

asymptotic time complexity of � � � � � � � � � 	 . As we have shown, this is good, but can we

do better? To perform SLAM in larger, more complex environments, it becomes necessary

to use more particles, and the feasibility for real-time implementation is threatened. A sim-

ple analysis suggests that � � � � 	 is a lower bound for any method that considers each grid

square covered by � . How close can we get to this optimal bound, using the distributed

particle map structure?

What we detail in this chapter is a clever manner of using dynamic programming in

order to speed up computation, and in fact achieve this optimal � � � � 	 , under mild as-

sumptions. In order to develop this efficient implementation, we first need to restructure

how we store observations within the map. We can then construct an additional data struc-

ture, the observation cache, to allow for constant time references to the map for every

particle.

5.1 Map Data Structure

Recall that the DP-SLAM map is a global occupancy grid-like array. Each grid cell holds a

set of observations, with one entry for each ancestor particle that has made an observation

of this grid square. Previously, this set of observations was stored as a balanced tree. How-

ever, this adds significant overhead, both conceptual and computational, to the algorithm

and is not required in the linear time implementation of DP-SLAM. Instead, we simply

store this information as a vector of observations, which we will refer to as the observation

list. Each entry in this list is an observation node containing the following fields:

53

opacity A data structure storing sufficient statistics for the current estimate of the opacity

of the grid cell to the laser range finder. For the purposes of the stochastic occu-

pancy grids described earlier, this consists of the total observed laser distance trav-

eled through this square, along with with the total number of times that the laser has

been observed to stop in the square.

parent A pointer to another observation node in the same list, for which this node is an

update. If this grid square had previously been unobserved by this particle’s ancestry,

this pointer is null. Note that if an ancestor of a current particle has seen this square

already, then the opacity value for this square is considered an update to the previous

value stored by the ancestor. However, both the update and the original observation

can be stored, since it may not be the case that all successors of the ancestor have

made updates to this square.

anode A pointer to the node in the ancestry tree which is associated with this observation.

In addition to this observation list, each grid also contains an ocache pointer and a

generation counter, both used for the dynamic programming, and explained further later.

5.2 Ancestry tree node data structure

For reference purposes, we list the elements of the ancestry tree data structure. This is

no different from the implementation described earlier, but is enumerated a little more

specifically here. Each node in the ancestry tree consists of the following fields:

parent A pointer to this node’s parent.

ID The unique identification number assigned to this ancestor particle.

children The number of nodes in the ancestry tree which are children of this node. When

this number is reduced to zero, this node can be removed from the tree.

54

onodes A list of pointers to all of the observation nodes in the map which were added by

this specific node.

5.3 Map cache data structure

The main sacrifice that was made when originally designing an occupancy grid for DP-

SLAM was that map accesses could no longer be performed in constant time, due to the

need to search across the set of observations at each given grid square. The map cache

provides a way of returning to this constant time access, by reconstructing a separate local

map for each particle. This local map is consistent with the history of map updates for that

particle.

As Figure 5.1 indicates, the size of each of these local maps does not need to be very

large. We only need to maintain in the cache those grid squares which are observable by

the current sensor reading. Using a typical laser range finder that sweeps out a semicircular

area, with a maximum laser range
�
, using a grid resolution of � , and assuming a reasonably

concentrated posterior, the number of grid squares needed for any one local map in the

cache would be approximately equal to �
	 ���� � .

For a localization procedure using
�

particles and observing an area of � grid squares,

there are a total of � � � � 	 map accesses. For the constant time accesses provided by the

map cache to be useful, the time complexity to build the map cache needs to be � � � � 	 .
This result can be achieved by constructing the cache in two passes.

The first pass iterates over all grid squares in the global map which could be within the

sensor range of the robot. For each one of these grid squares, the observation vector stores

all of the observations made at that grid square by any particle. We traverse this vector,

and for each observation visited, we update the corresponding local map with a pointer

back to the corresponding observation node. This creates a set of partial local maps that

have been seeded with their direct map updates, but no inherited map information. Since

55

7 0.0
1 0.0

ID ρ

1 0.2

ID ρ
2 0.1
4 0.0

3 0.8
8 0.1
2 0.0

ID ρ

8 0.3

ρ=ρ=0.0 ρ=0.8ρ=ρ=0.0 ρ=0.0 ρ=0.0ρ=0.0 ρ=0.1

(d)

. . . etc.ID : 2

0.1 0.2

ID : 4ID : 3

ID=7

ID=1

ID=8

ID=9ID=3 ID=2ID=5 ID=4

(a) (b)

(c)

Figure 5.1: An illustration of how the map cache works. (a) The robot is only able to
observe a small portion of the total occupancy grid. (b) Each grid square in the global map
maintains an entire set of observations, identified by the ancestor particle which added that
update. (c) The ancestry tree defines the how these observations are inherited. (d) The map
cache maintains a complete local occupancy grid of the currently observed area for each
leaf of this ancestry tree. Recall that the set of leaves in the ancestry tree defines the current
set particles.

56

the size of the observation vector is no larger than the size of the ancestry tree, which has

� � � 	 nodes, the first pass takes � ��� 	 time per grid square.

In the second pass, we fill the holes in the local maps by propagating the inherited map

information. The entire ancestry tree is traced, depth first, and the local map is checked

for each ancestor node encountered. If the local map for the current ancestor node was

not filled in during the first pass, then the hole is patched by the ancestor node’s parent.

Since we are tracing the ancestry tree from top to bottom, this will fill in any gaps in the

local maps for grid squares that have been seen by any current particle. If a grid square has

not been filled in by this process, then no ancestor of the given particle has observed this

square, and it can be treated as unknown. As this pass is directly based on the size of the

ancestry tree, it is also � � � 	 per grid square. Therefore, the total complexity of building

the map cache is � � � � 	 .
For each particle, this algorithm constructs a local map of pointers to the appropriate

observation nodes. This provides constant time access to the opacity values consistent

with each particle’s map. Localization now becomes trivial with this representation. Laser

scans are traced through the corresponding local map, and the necessary opacity values are

extracted via the pointers. With the constant time accesses afforded by the local maps, the

total localization cost in DP-SLAM is now � � � � 	 .

5.4 Updates

When the observations associated with a new particle’s sensor sweep are integrated into

the map, the following steps are performed for each grid square observed:

1. Retrieve the appropriate previous observation information for this grid square.

2. Insert a new observation node into the observation list for this grid square, which is

an update of the information retrieved.

57

3. Insert a pointer to this new observation node into the particle’s onodes list.

The cost of this operation is obviously no more than the cost of localization. In fact,

the same map cache can be used to speed up the accesses for each grid square, thus saving

a significant portion of the work.

5.5 Deletions

We will first consider the mechanism and cost of individual deletions from the ancestry

tree, and then consider the computational impact of performing multiple deletions within

a single iteration. There are two situations that require deleting nodes from the ancestry

tree. The first is the simple case of removing a node from which the particle filter has not

resampled. This involves the constant time operation of removing the ancestry node from

the ancestry tree, and the process of removing the observations associated with this node

from the observation lists in the global grid. Since pointers to these are stored at the node,

this simply involves � � � 	 constant time deletions from the observation list.

The second case for deleting a node occurs when an only child is merged with its parent

in the ancestry tree. This involves the following steps:

1. Remove the child node from the ancestry tree.

2. For each observation node in the child’s onodes list.

(a) Replace the opacity value of the observation node’s parent with opacity of the

current child’s observation node.

(b) Remove the child’s observation node from its grid cell observation list.

Note that merging has the effect of replacing the parent’s map with the child’s map.

This is the desired behavior, since the child’s map is more current than the parent’s map

58

and there are no siblings left to inherent anything from the parent map. As in the case of a

simple deletion, this involves � � � 	 constant time deletions.

So far, we have discussed only the cost of individual deletions, but determining the

overall time complexity of deletions is somewhat complicated because the number of dele-

tions performed at any mapping iteration can vary quite significantly. When an ambiguity

is resolved, entire branches of the ancestry tree could require deletion and/or merging. For

this reason, we analyze the complexity of deletions in an amortized sense.

In the case of simple deletions, we establish a potential number of deletions based on

the total information inserted per iteration. Notice that each iteration creates precisely
�

new ancestry nodes. Each added node has � � � 	 new observations associated with it. Since

each new observation can only be removed once, this introduces � � � � 	 potential deletions

at each iteration.

For the case of merges, remember that a merge only occurs when a parent has exactly

one child. Therefore, only a single set of � � � 	 observations from a given iteration can be

inherited up an edge in the ancestry tree. This means that the total potential for merges

introduced by any iteration of the particle filter is bounded by the number of interior nodes

in the tree, which is � � � 	 . Since the contribution to each merge from a given iteration is

� � � 	 , the total potential merging work introduced at each iteration is just � � � � 	 , and the

amortized cost of all deletion-related work is just � � � � 	 per iteration.

5.6 Summary of Computational Complexity

We have shown that localizing, adding new observations, and maintaining a minimal an-

cestry tree each require � � � � 	 time. Ironically, the only part of the our algorithm with

superlinear complexity is the simplest part of the resampling phase of the particle filter.

For resampling, we must convert samples from the uniform distribution generated by our

pseudo-random number generator to samples from our weighted set of particles. This is

59

log particles quadratic method linear method

D-Wing 1500 55 14
D-Wing 3000 124 28
C-Wing 11000 1345 690
C-Wing 20000 3609 826

Table 5.1: Comparison of the running times for the original, quadratic version of
DP-SLAM versus the linear implementation.

typically done by imposing a total ordering on the particles, computing the cumulative dis-

tribution, and then performing binary search to find the event corresponding to the sampled

probability. For
�

particles, this would take � ��� ���
� � 	 time, so the overall complexity

of our algorithm should be stated as � ��� �����'� � � � 	 . However, the area swept out by

the laser will be much larger than
���
���

for any typical laser and reasonable number of

particles, so
� � � 	 is accurate.

5.7 Implementation and Empirical Results

In the preceding section, we presented the algorithm in a manner intended to maximize

clarity and ease of analysis. The only negative aspect of the observation cache is that it can

be fairly memory intensive. Our actual implementation has the same computational com-

plexity, but uses fewer pointers and fields to reduce memory consumption and constructs

the observation cache for each grid cell in a lazy manner to improve speed.

For a complex algorithm like DP-SLAM, asymptotic analysis may not always give a

complete picture of real world performance. Therefore, we provide a comparison of actual

run times on our two different data logs, with several different particle counts.

The linear implementation is merely a more efficient method of arriving at the same

numbers produced by a more straight forward implementation. Therefore, the maps pro-

duced by these two methods are identical, and displaying these maps would not be infor-

60

mative.

61

Chapter 6

Motion Models and Proposal Distributions

Robot motion models play an important role in modern robotic algorithms. The main

goal of a motion model is to capture the relationship between a control input to the robot

and a change in the robot’s configuration. Good models will capture not only systematic

errors, such as a repeated tendency of the robot to drift left or right when directed to move

forward, but will also capture the stochastic nature of the motion. The same control inputs

will almost never produce the same results and the effects of a robot’s actions are, therefore,

best described as distributions [9]. These distributions play an important role in algorithms

that use particle filters for localization and mapping. Specifically, they form the proposal

distribution for the particle filter.

In general, it is well known that a poor proposal distribution in a particle filter may

require a prohibitively large number of particles to track the state of a system successfully.

If the true behavior is not well within the sampling region of the particle filter, the proba-

bility of generating a particle consistent with the state of the system will be very low. In

application, a SLAM procedure with a poor proposal distribution will require an excessive

number of particles and yet may still lose track of the robot state. Thus, the motivation for

acquiring a good motion model is quite strong.

6.1 Other Proposal Distribution Improvements

Poor proposal distributions are a common problem, and researchers have developed a num-

ber of methods for dealing with the issue. One common method used for particle filters

in general is a technique called adaptive importance sampling [28]. This method takes

a proposal distribution and evaluates a small number of samples within that distribution.

62

Those samples are then used to successively refine the proposal distribution, based upon

their position and weight. This method has been effective in a number of other particle

filter applications, but its usefulness for DP-SLAM is minimal. The improvement in the

proposal distribution at each stage is not large enough to offset the cost of evaluation. This

is exacerbated by the immense size of the joint distribution over maps and robot poses;

each hypothetical map should have a slightly different proposal distribution after one step

of refinement. In practice, it has been found that merely increasing the number of particles

used is more efficient than attempting to refine the distribution using adaptive importance

sampling.

Another method for improving the proposal distribution in SLAM relies on matching

the observations from one time step to the next. Using scan matching to align the laser

endpoints of one observation to the laser endpoints of the next, it is possible to find a better

estimation of the motion than odometry alone will allow [29, 30]. Similar in concept to

adaptive importance sampling, this method relies on the range sensor observations to refine

the proposal distribution. Therefore, it has similar issues of a continued reliance on an ini-

tial distribution, and can require additional computational power. The major improvement

for scan matching lies in the fact that it depends solely on the two most recent observa-

tions, and not on the map or the trajectory of the robot. Therefore, scan matching can be

performed just once each iteration, and it will provide a refined distribution over possible

poses for all particles. Adaptive importance sampling, on the other hand, is dependent on

the map to give the refined distribution. Consequently, adaptive importance sampling must

be performed for each particle separately, or else it will give a biased estimate, with greater

variance.

63

6.2 Previous Calibration Methods

Previous work in automatic acquisition of motion models for mobile robots has been fairly

sparse. Most of the efforts have dealt with the problem of systematic errors, rather than the

levels of noise that can be present. Borenstein and Feng [31] describe a method for cali-

brating odometry to account for systematic errors. This method assumes a fairly smooth

surface for calibration, with low non-systematic errors, and attempts to model each wheel

independently. This method would become significantly more difficult for a robot with

more than two drive wheels. Voyles and Khosla [32] use shape from motion to learn the

motion model parameters, but instead of using the shaft encoders, attempt to model the ob-

servation of applied force vectors directly. This would require an additional sensor which

is not typically available on many robots, and has limited accuracy. Roy and Thrun [33]

propose a method which is more amenable to the problems of localization and SLAM.

They treat the systematic errors in turning and movement as independent, and compute

these errors for each time step by comparing the odometric readings with the position esti-

mate given by a localization method. They can then use an exponential estimator to learn

these two parameters online, assuming that short term localization results will be accurate

enough to refine the motion model.

The goals of our approach are most similar to those of Roy and Thrun. We aim to

have a method that can start with a crude model and bootstrap itself towards a more refined

motion model, giving the robot the ability to adapt to changing motion parameters. In-

stead of merely learning two simple parameters for the motion model, as with the method

proposed by Roy and Thrun, we seek to use a more general model which incorporates all

of the interdependence between motion terms, including the influence of turns on lateral

movement, and vice-versa. Furthermore, the proposed method extends the scope of the cal-

ibration beyond the systematic errors dealt with in previous methods. We believe that great

gains in performance can be achieved by estimating the non-systematic errors, to quantify

64

the variance in the different movement terms. This can be crucial to the motion model of

SLAM methods, as different amounts of noise in the movement terms can produce vastly

different proposal distributions [34]. A properly calibrated set of variance parameters will

provide the localization algorithm with a more appropriate proposal distribution, allowing

it to better focus its resources on the most likely poses for the robot.

The algorithm for learning the motion model is integrated with a SLAM algorithm,

giving increased autonomy to the system. The robot now has the potential to learn the

most appropriate model based upon recent experiences, and in direct conjunction with its

current task. This is especially useful as the robot’s motion model will change over time,

both from changes in the terrain and from general wear on the robot. It is also important

that this calibration method can be performed in a remote location, without the need of

external sensors to measure the robot’s true motion. (A rover landing on another planet

with unknown surface conditions would be an obvious application of this approach.)

With this view in mind, we can identify two categories of hidden variables in our prob-

lem formulation. We are attempting to learn both the map of the environment and the set of

motion model parameters that describe stochastic relationship between the odometry and

the actual movement of the robot. To estimate the parameters of this model, we propose

using an EM algorithm: The expectation step is provided by a SLAM algorithm, imple-

mented with some initial motion model parameters. The possible trajectories postulated

are then used in the maximization step to create a set of parameters which best describe the

motions represented by these trajectories.

6.3 Motion Model Details

Let the robot’s pose at any given time step be represented as
� � � � � � �
�	 , where
 is the

facing angle of the robot. The motion model then seeks to determine
��� � � � � � �#	 , where

� �
is the robot’s pose one time step in the future, and � � � � � � 	 is the amount of lateral and

65

rotational movement (respectively) that odometry has reported over that time interval.

Roy and Thrun [33] propose the following motion model:

� � � ��� ���
��� �
 � � 	

� � � � � � ����� �
/� � 	

 � �
/� � 	 ��
 �
�

Here, � is the actual distance traveled by the robot, and
�

is the actual turn performed. This

is correct only if the turn and drive commands are performed independently, a simplifying

assumption which even their own experiments violate. A simple improvement to account

for simultaneous turning and lateral movement would be:

� � � � � ���
���"�
/� ����� ��	 	

� � � �%� � ����� �
/� ����� ��	 	

 � �
 � � 	 ��
 �
�

This model assumes that the turning velocity of the robot is constant throughout the time

step, and that the robot can only move in the direction it is facing. These improved equa-

tions do not take into account that, even in this case, the distance traveled will actually be

an arc, and not a straight line. However, when T is reasonably small, this error is minor

and can be absorbed as part of the noise.

A better model would take into account the ability of the robot to move in a direction

that is not solely determined by the beginning and end facing angle of the robot. Such a

model would be able to account for variable speed turns and sideways shifts, both of which

have been apparent with our robots, even on the best of surfaces.

� � � ��� ���
���"�
��1	

� � � � � � ����� �
��1	

 � �
 � � 	 ��
 �
� �

66

Here
 � is the true movement angle of the robot. In this method, the direction of move-

ment has been expressed separately from
 and
�

, which permits movement in a direction

distinct from the facing angle of the robot. In practice it is often difficult to determine this

independently from
 and
�

, but with some robots, the shaft encoders on each wheel can

be read independently, and can give a more direct observation of this parameter.

Even in the rare cases where it might be possible to observe
 � , it would be very difficult

to develop a good noise model. Representing the noise in
 � as a Gaussian would require

some choice for a mean. For a robot which can perform holonomic turns, the lateral shift

of the robot could very easily be in any direction, while the lateral movement reported

by the odometry would be negligible. In this case,
 � would more accurately be modeled

as a uniform distribution. For these reasons, we prefer a slightly different model that

decomposes the movement into two principle components:

� � � � � � �
��� �
/�

�

� 	 � � �
��� �
 �

� � �
� 	

� � � � � � ����� �
/�
�

� 	 � � ����� �
 �
� � �

� 	

 � �
/� � 	 ��
 �
�

We approximate
 � with
�
 � � � 	 and refer to this direction as the major axis of movement.

�
is an extra lateral translation term, which is present to model shift in the orthogonal

direction to the major axis, which we call the minor axis. This axis is at angle
�
 � �

�

�� 	 ,
and is defined so as to have a consistent (left-hand) orientation.

This motion model lends itself to a fairly natural noise model. We expect that the true

values of � and
�

will be distributed normally with respect to the reported values, � and
�
, but that the mean of each will scale linearly with both � and

�
while the variance will

scale with � � and
� �

. This is plausible if the total noise is the sum of two independent noise

sources with magnitude that scales linearly with � and
�
. We expect that

�
will have a

similar dependence on � and
�
. In this view,

�
, � and

�
are all conditionally Gaussian

67

given � and
�
:

� � � � � ����� � � ����� � � � ! ���� � � � ! ���� 	
� � � � � ���	� � � ���
� � � � ! ��	� � � � ! ��	� 	
� � � � � � � � � � �

�
� � � � ! �� � � � � ! �

�
� 	 �

where ����
 is the coefficient for the contribution of odometry term � to the mean of the

distribution over � . It is these sets of mean and variance terms that we propose to learn.

6.4 Parameter Estimation

The learning problem for our robot is that of discovering the parameters of the distribution
��� � � � � �
 � � � � 	 , where
 is the reported odometry, � is the set of observations of the

environment, and � is the map of the environment. With this in mind, consider a SLAM

algorithm, which uses a particle filter to produce a distribution over maps and poses at each

time step. For a given set of motion model parameters, our particle filter provides a set of

possible trajectories with forward probabilities (normalized particle weights) at each time

step. To complete the � step, we must perform backward smoothing over our particles.

There are many ways to do this with a particle filter, but we use the simplest, which is

to compute the probability of each trajectory and average across successor trajectories for

particles that are resampled multiple times.

The complete run of the particle filter with smoothing can now be viewed as producing

a set of � weighted estimates of the true motion of the robot, where sample � with weight

.� can be expressed as ����� , ����� , �
*� . From algebraic manipulation of the previous

68

equations, we obtain

� � � ��� � � ������� � � �-�
*� 	� � �-�
 � � � 	 � � � � �
/� � � 	 � � �-�
 	 (6.1)

� � � � ��� � � ��� � � � �
/� � � 	
� � � �
�	 (6.2)

� � � �
*� (6.3)

To complete the M step of our EM procedure, we must compute the maximum likeli-

hood values of the parameters in our model. The means in our model have linear contri-

butions from the reported odometry values. We therefore determine the influence of each

term on the motion parameters using a weighted least squares method. For example, let

��� be the column vector
� � � � ��� ��� � , 	 be an ��
 � matrix, where each row is the reported

odometric movement
� � � � � � , and � be the �
 �

matrix of the estimated
� � terms. We

obtain the least squares solution of �
� from the overdetermined system:

� 	 ��� � � � �

where
�

is an ��
 � diagonal weight matrix with diagonal element � as �
.� . The process

can be repeated for the other two motion terms.

The variance in our model has a quadratic dependence in the odometry terms. To

compute the variance parameters for the
�

term in our model,
!��� � � ! ���� ! ���� � � , we define

	 � as an ��
 � matrix whose rows are the squared odometry readings, �%� � � � �� � �� � . We

define ����� as the ��
 � matrix such that
� �

�� � � � � ��� � ����	 � . As before, we are interested

in the least squares solution to an overdetermined system of linear equations:

� 	
� ! �� � � � � � �

The calculation is similar for the variance parameters of the other motion model terms.

The least squares solution for all
� � parameters of the motion model constitutes the

� step of our EM procedure. The new model parameters can now be used for a new run

69

of the SLAM algorithm on the same set of sensor data, and the process can be repeated

until (near) convergence. This method can be applied to varying quantities of motion data.

Run over the entire set of data, it can be applied off-line as a means of determining the

best motion model for a robot in future deployments in the same, or similar, environment.

This is useful, as it allows the algorithm to learn, with high confidence, the proper set of

motion parameters, due to the large amount of training data. It also provides the operator

the ability to check the performance of final motion parameters, by observing the accuracy

of the final trajectory.

An alternative, quasi real time application of this method would run EM on a smaller

set of data, allowing the robot to learn the motion model as it explores. In this case, the

robot would use a fixed size chunk of recent observations to fine tune the motion model to

changes in its behavior. For example, the robot might apply this technique if it encounters

a type of terrain that it has never seen before. This can slow any mapping activities under-

taken by the robot. If the robot is using a SLAM algorithm for mapping, the EM nature of

the model learning algorithm will require that the localization be run multiple times over

each section and the mapping will no longer be real time. In practice, we expect that model

tuning procedures would not be used continuously, but would be used primarily at sparse

intervals or when there is some reason to believe that an inaccurate model is degrading

mapping accuracy.

6.5 Empirical Results

We tested the learning algorithm on the D-Wing sensor log used in previous sections.

During this set of experiments, we noticed a small anomaly where laser readings some-

times changed in a manner implying motion, when no changes were reported in odometry.

This could possibly be caused by readings from the laser range finder not being perfectly

synchronized with the readings from the from the odometers. Since the motion model de-

70

scribed is directly dependent on the magnitude of reported motion, the variance in these

situations would be zero, and the SLAM algorithm would have no ability to recover the

correct motion for that time step. To handle this problem, we found it necessary to set a

minimum amount of noise that must be present at each time step. These levels were small

(variances less than 2cm along the major axis and less than
� �

in facing), and the model

exceeded these variance levels in all but a few time steps.

The first experiment for this algorithm demonstrates the ability of the proposed method

to calibrate the motion model parameters for a robot with little or no previous knowledge

of the environment. The learning process is performed over the entire loop of hallway

from the D-Wing data set. Note that the completion of a loop is not necessary for either the

SLAM algorithm or the learning method, but merely serves to help illustrate the quality

of the map at each EM iteration. The motion model is set initially with no systematic

biases (mean zero noise), but high variances. Figure 6.1 shows the highest probability map

produced at the end of the first run of EM. The resulting map has the right general shape,

but in the top left area where the robot returns to its starting position there is a significant

error in the map, resulting in double walls. A closeup of this region is shown in Figure 6.2.

After three EM iterations, the model parameters are refined to the point where the SLAM

algorithm successfully closes the loop without any blemishes in the map. A closeup of the

same area is shown in Figure 6.3.

One concern that we had when learning a motion model was the possibility of over-

fitting the specific trajectory that was supplied to the SLAM algorithm. We would like

the learned parameters to be tuned to the properties of the robot and environment, but not

the quirks of individual data collection runs, since it would be it would be inefficient and

contrary to the spirit of SLAM to learn a new motion model with EM every time that the

robot is redeployed. To verify this generality of the motion model, we used one run of the

robot to learn the parameters in the same indoor environment as before. Then, using this

71

Figure 6.1: A complete loop of hallway, generated using a naive motion model. The robot
starts at the top left and moves counterclockwise. Each pixel in this map represents 3cm
in the environment. The total path length is approximately 60 meters. White areas are
unexplored. Shades between gray and black indicate increasing probability of an obstacle.

72

Figure 6.2: Close up of the area where the loop is closed, using the naive motion model.
Double walls reflect an accumulated error of approximately one half meter over the path
of the robot.

Figure 6.3: Close up of the same area as Figure 6.2, using the learned motion model
learned by EM.

set of learned motion parameters, we had the robot remap the same environment using data

collected from several days later. The resulting map shown in Figure 6.4 is the same high

quality as if we had learned the motion model directly from the second trajectory itself.

A strong test of the robustness of our method is its ability to recover from a poor

motion model. This is also important to the applicability of the method since changes in the

environment or in the robot itself can cause the appropriate motion model to change. In this

experiment, we used a set of data collected in an office environment to learn a good motion

model. We then tested the model using a second set of data collected in the same area, but

73

Figure 6.4: The map created using the motion model learned from one sensor log to on a
different sensor log generated several days later.

74

Figure 6.5: First iteration in correcting an inaccurate motion model: close up of loop
closing.

with approximately a year of time separating the two data sets. When attempting to use the

same model on the second data set, we quickly notice that the map produced by the SLAM

algorithm is obviously flawed where it attempts to complete the loop (Figure 6.5). A

year of use and some rough handling during shipping caused significant wear in the robot

and changes in its behavior, resulting in an altered motion model. In the next iteration

(Figure 6.6), the learned motion model can be seen to be improving the quality of the

map as a result of increased accuracy. Figure 6.7 depicts the map from the next and final

iteration, where the two ends of the loop are seamlessly aligned.

Figure 6.6: Second iteration in correcting an inaccurate motion model

Most of our results are visual or anecdotal, since the actual parameters would be fairly

75

Figure 6.7: Final iteration in correcting an inaccurate motion model

meaningless to all but those very familiar with this model of robot. However, in this ex-

periment the difference in variances is particularly telling. Predictably, the variances have

all increased significantly over the course of the year, as wear on the robot has caused

movements to become more erratic. The most significant of these is the
! � � term, which

changes from �
��� � �

	 � � to
� � � � � �

	 � � , indicating significantly more erratic lateral shifts during

turns, a result consistent with our observations of the robot in action.

We also performed an experiment on a smaller segment of sensor data. We wanted

to use a section with a significant amount of both lateral motion and turning within its

trajectory, so we chose an area consisting of two corners connected by one lateral stretch

of hallway, for a total of approximately one quarter of a full sensor log. The initial model

provided was the same naive model presented in the first experiment. We performed this

experiment to verify the ability to learn a model with less information and to illustrate that

traversing a loop is not necessary for accurate performance of the learning method. This

experiment took ten iterations to converge while those based upon full sensor logs typically

took less than five. However, the final motion model parameters upon convergence of EM

were accurate enough to result in seamless mapping when the algorithm was presented

with a full sensor log. The resulting maps are indistinguishable from those produced with

models learned from full sensor logs, and as such, are not shown here.

76

Finally, we considered the possibility of using very large variances and a large number

of particles as an alternative to learning a good model. The problem with this approach is

that adequately covering the configuration space of the robot when the model parameters

have high variance is quite difficult. Even with four times as many samples as our refined

models, our naive model was unable to produce seamless maps.

Perhaps the most significant test of this method’s ability to learn the motion model

parameters for a given robot is to apply it to other robots, without any knowledge of that

robot or its construction. Several sensor logs were obtained from other research groups,

each recorded using their own robot. Using a mean zero, high variance noise model as

our initial model, this EM algorithm was run on a short section (200 iterations, or approx-

imately 5m of motion with turns) of the sensor log. Using no other alterations, the entire

data log was successfully mapped. We present two of the larger data sets here.

Figure 6.8 shows a map of the convention center in Edmonton, Alberta where AAAI

2002 was held [1]. This sensor log, provided by Nick Roy, covers an area approximately

75m x 95m. The map shown was generated using 2000 particles, and used a motion model

learned after six iterations of our EM algorithm.

Figure 6.9 is a map of another conference site, this one in Acapulco, Mexico, at the site

of IJCAI 2001 [1]. The robot begins in the lower right hand corner, and observes a total

area approximately 60m x 110m. The strange zig-zag pattern at the top are the posters on

display, and the set of three small “rooms” on the right side of the image is the course for

the robotic search and rescue competition. This map was made with 1500 particles, and

spent eight iterations learning the motion model.

These results show that the method is capable of learning accurate motion models with

very little user input. Beginning with a general, naive set of motion parameters, it is pos-

sible to refine the model to be significantly more accurate. In addition, this model can be

generally applied to similar environments. Furthermore, when presented with an incorrect

77

Figure 6.8: A map of the conference center in Edmonton, Canada, where AAAI 2002 was
held. The motion model used was learned without ever having seen the robot that collected
the data.

78

Figure 6.9: A map of the location of IJCAI 2001, in Acapulco, Mexico.

79

model, the proposed method quickly adapted, and was able to learn more appropriate pa-

rameters successfully. Finally, we demonstrated the power of this method to learn a good

model that is applicable to a large area when presented with data from only a small piece

of this area.

80

Chapter 7

Coalescence

Our research into particle filters is unusual, in that it specifically observes the ancestry of

each particle, and keeps track of the relations and similarities between each particle. In

doing so, we have observed an interesting phenomenon, called coalescence. As one traces

the ancestry of the current particles back in time, the particle diversity decreases, indicating

a general agreement among the current hypotheses about some earlier state. The point at

which all current particles share a single ancestor is called the point of coalescence.

As can be expected, the number of iterations between the current generation and this

point of coalescence is a function of the uncertainty present in the system. During periods

of increased uncertainty this difference will grow, as the available particles spread out

to cover a larger area of the state space. As more information is gathered, it is possible to

resolve uncertainties in the past. Once this uncertainty is resolved, the point of coalescence

will jump back towards the present iteration, indicating that all alternative hypotheses up

until that point have a negligible probability.

7.1 Empirical Behavior of Coalescence

Let us examine the behavior of coalescence in a specific run of DP-SLAM. Figure 7.1

shows how the distribution of ancestor particles changes during the D-Wing experiment

shown in Figure 4.10. The higher, red line indicates the number of ancestor particles

maintained in the ancestry tree which were inserted at least five iterations earlier than the

current iteration. The lower, green line plots the number of ancestor particles which were

created at least ten iterations ago. As can be seen, these numbers vary significantly over

the course of the experiment.

81

Figure 7.1: A graph of the coalescence behavior for DP-SLAM during the creation of the
D-Wing map in Figure 4.10, using 3000 particles.

Figure 7.2: The coalescence behavior of a particle filter with 3000 particles, using com-
pletely uninformative data. All coalescence is purely the result of particle depletion.

82

There are a few sections of the graph which are particularly interesting. The initial

uncertainty of the robot, as the first observations are being entered into the map, is apparent

at the very start of the graph. Iterations 100 and 180 both mark the start of rises in the

graph, and correspond to start of two new hallways: the right side hall, and the hall at the

top of the map. As the robot first enters these hallways, there is very little information

to disambiguate the robot’s position, as there exist few features along the walls which the

robot is able to observe very well. Similarly, the spike in the graph beginning around

iteration 350 correlates with the robot entering the long section in the left hallway. The

lack of doorways, or any other distinguishing feature, leaves the algorithm with very little

information with which to confidently localize.

The final rise in uncertainty, from iterations 420 to 530, arises from a different source.

In this area, the robot has closed the loop, and therefore has previously mapped this area.

The robot is not lacking accurate map information to localize with. Instead, as the robot

has not visited this section of the map recently, some of the data which was entered ear-

lier is no longer valid, due to traffic in the halls. Most obviously, there is a door which

previously was observed to be empty, and now the observations indicate that it is closed.

These inconsistencies between the old map and the new observations have the effect of

decreasing the algorithm’s certainty of any particle, as no combination of map and pose fit

the observations very well. This lack of confidence translates into a marked increase in the

diversity of particles, which slowly returns to previous levels, as the map is updated with

the new state of the world.

It is important to realize that this point of coalescence is not merely a side effect of

random particle depletion. The point of coalescence is actually driven by the information

present in the observations. To compare the results above to the behavior of an uninformed

particle filter, a dummy particle filter was constructed. This dummy particle filter ignores

the observations completely; each particle is automatically given the same weight as all of

83

the others. The number of particles and the resampling method stayed the same as those

used in DP-SLAM for Figure 7.1. This dummy particle filter was run several times, to

compare the coalescence behavior in DP-SLAM against the particle depletion which is

observed in an uninformed particle filter. Figure 7.2 plots the results of one of these runs,

shown by the points in the graph, as well as the average results over twenty different runs,

indicated by the solid line. The higher set of traces represents the number of ancestor

particles currently kept in the ancestry tree which were created more than five iterations

ago. The lower trace indicates the number of ancestor particles older than ten iterations.

As the figure shows, an uninformed particle filter quickly reaches significantly greater

amounts of diversity in the population of ancestor particles, and maintains those high levels

throughout the experiment. The amount of uncertainty in the system needs to be much

higher before particle depletion begins to seriously affect the behavior of DP-SLAM.

7.2 Implications of Coalescence

This examination of coalescence in DP-SLAM provides important insight into the prop-

erties of DP-SLAM. Primarily, it establishes that the particle filter is maintaining the un-

certainty in the proper area of the state space. This uncertainty is reduced as a natural

consequence of the particle filter when future observations resolve the ambiguity. The

reduction in the diversity of particles from earlier iterations is the result of information ef-

fectively propagating back in time, affecting the distributions at previous iterations, rather

than result of random particle depletion.

A nice consequence of maintaining a relatively recent point of coalescence is a reduc-

tion in space complexity. All map updates made prior to the point of coalescence nec-

essarily agree across all particles, allowing us to represent those sections compactly. As

mentioned in previously in section 4.2.2, if the point of coalescence is defined as existing
�

iterations in the past, then the space complexity of maintaining distributed particle maps

84

is � �
� ��� � � 	 . This suggests that as the map increases in size, the memory required to

represent the map approaches the size of maintaining only a single map.

So far, examination of coalescence has only been preliminary. DP-SLAM relies on the

behavior of coalescence to be able to maintain multiple map hypotheses practically, yet

it has not been thoroughly examined for other benefits. There remains a number of other

potential applications for exploiting coalescence in particle filters. These possible uses

could include variable particle numbers, adaptive resampling of past iterations, and more

efficient data compression.

85

Chapter 8

Hierarchical SLAM

8.1 Drift

The DP-SLAM algorithm presented here provides a highly accurate and efficient method

for building maps. However, for certain trajectories which cover a sufficient amount of dis-

tance before completing a cycle, the accuracy of the map can degrade. This problem of drift

over large distances is a significant problem that is faced by essentially all current SLAM

algorithms. Small errors can accumulate over several iterations, and while the resulting

map may seem locally consistent, there could be large total errors, which become apparent

after the robot closes a large loop. Due to an inability to represent the full joint probabil-

ity distribution in sufficient detail, it becomes impossible to recover from these errors. In

theory, drift can be avoided by some algorithms in situations where strong linear Gaussian

assumptions hold [11]. In practice, it is hard to avoid drift, either as a consequence of vi-

olated assumptions or as a consequence of particle filtering. The best algorithms can only

extend the distance that the robot travels before experiencing drift. Errors come from (at

least) three sources: insufficient particle coverage, coarse precision, and resampling itself

(particle depletion).

The first problem is a well known issue with particle filters. Given a finite number of

particles, there will always be unsampled gaps in the particle coverage of the state space

and the proximity to the true state can be as coarse as the size of these gaps. This is ex-

acerbated by the fact that particle filters are often applied to high dimensional state spaces

with Gaussian noise, making it impossible to cover unlikely (but still possible) events in

the tails of distribution with high particle density. The second issue is coarse precision.

This can occur as a result of explicit discretization through an occupancy grid, or implicit

86

discretization through the use of a sensor with finite precision. Coarse precision can make

minor perturbations in the state appear identical from the perspective of the sensors and the

particle weights. Finally, resampling itself can lead to drift by shifting a finite population

of particles away from low probability regions of the state space. While this behavior of a

particle filter is typically viewed as a desirable reallocation of computational resources, it

can shift particles away from the true state in some cases.

The net effect of these errors is the gradual but inevitable accumulation of small errors

resulting from failure to sample, differentiate, or remember a state vector that is sufficiently

close to the true state. In practice, we have found that there exist large domains where

high precision mapping is essentially impossible with any reasonable number of particles.

Figure 8.1 demonstrates the result of DP-SLAM attempting to map Carnegie Mellon Uni-

versity’s Wean Hall with 20,000 particles, requiring more than six hours of computation.

As can been seen by the misalignment in the right hallway, the loop in this domain is large

enough that existing particle diversity is insufficient to correct the inevitable small errors

that occur.

8.2 Hierarchical SLAM

The DP-SLAM algorithm that we have constructed so far presents an approach to SLAM

that reduces the asymptotic complexity per particle to that of pure localization. This is

likely as low as can reasonably be expected and should allow for the use of large numbers of

particles for mapping. However, the discussion of drift in the previous section underscores

that the ability to use large numbers of particles may not be sufficient. If we accept that

drift is an inevitable result of a sampling based SLAM algorithm, then we would like to

have techniques that delay the onset of drift as long as possible. We therefore propose a

hierarchical approach to SLAM that is capable of recognizing, representing, and recovering

from drift.

87

Figure 8.1: A map of CMU’s Wean Hall, using a non-hierarchical implementation of
DP-SLAM with 20,000 particles. There is a distinct error in the closing of the loop in the
right hallway.

88

8.2.1 Related Work

Other methods have also attempted to preserve uncertainty for longer numbers of time

steps. One approach seeks to delay the resampling step for several iterations, so as to

address the total noise in a certain number of steps as one Gaussian with a larger variance

[29, 30]. The information between resampling steps is not neglected, however. The weights

used for resampling are the accumulation of the scores at the intervening steps. In general,

there exist other look-ahead methods that can “peek” at future observations to use the

information from later time steps to influence samples at a previous time step [35]. The

HYMM approach[17] creates a number of small local maps, and seeks to combine them

by overlaying them on a topological map.

A different way to interpret hierarchical SLAM is in terms of a hierarchical hidden

Markov model framework [36]. In a hierarchical HMM, each node in the HMM has the

potential to invoke sub-HMMs to produce a series of observations. The main difference is

that in hierarchical HMMs, there is assumed to be a single process that can be represented

in different ways. In our hierarchical SLAM approach, only the lowest level models a

physical process, while higher levels model the errors in lower levels.

8.2.2 Hierarchical Algorithm

The basic idea is that the main sources of drift can be modeled as the cumulative effect

of a sequence of random events. Through experimentation, we can quantify the expected

amount of drift over a certain distance for a given algorithm, in much the same way that we

create a probabilistic motion model for the noise in the robot’s odometry. Since the total

drift over a trajectory is assumed to be a summation of many small, largely independent

sources of error, it can be well approximated by a Gaussian distribution.

If we view the act of completing a small map segment as a random process with noise,

we can then apply a higher level filter to the output of the map segment process in an

89

attempt to track the underlying state more accurately. There are two benefits to this ap-

proach. First, it explicitly models and permits the correction of drift. Second, the coarser

time granularity of the high level process implies fewer resampling steps and fewer oppor-

tunities for particle depletion. Thus, if we can model how much drift is expected to occur

over a small section of the robot’s trajectory, we can maintain this extra uncertainty longer,

and resolve inaccuracies or ambiguities in the map in a natural fashion.

There are some special properties of the SLAM problem that make it particularly well

suited to this approach. In the full generality of an arbitrary tracking problem, one should

view drift as a problem that affects entire trajectories through state space and the complete

belief state at any time. Sampling the space of drifts would then require sampling pertur-

bations to the entire state vector. In this fully general case, the benefit of the hierarchical

view would be unclear, as the end result would be quite similar to adding additional noise

to the low level process.

In SLAM, we can make two assumptions that simplify things. The first is that the robot

state vector is highly correlated with the remaining state variables, and the second is that

we have access to a low level mapping procedure with moderate accuracy and local con-

sistency. Under these assumptions, the effects of drift on low level maps can be accurately

approximated by perturbations to the endpoints of the robot trajectory used to construct a

low level map. By sampling drift only at endpoints, we will fail to sample some of the

internal structure that is possible in drifts, e.g., we will fail to distinguish between a linear

drift and a spiral pattern with the same endpoints. However, the existence of significant,

complicated drift patterns within a map segment would violate our assumption of moderate

accuracy and local consistency within our low level mapper.

To achieve a hierarchical approach to SLAM, we use a standard SLAM algorithm for

the low level mapping process. The input to the low level algorithm is a short portion of

the robot’s trajectory, along with the associated observations. This SLAM process runs

90

normally, with no alterations. The only difference is that the output that we use from this

algorithm is not only a distribution over maps, but also a distribution over robot trajectories.

We can treat these distributions over trajectories as a distribution over motions in the

higher level SLAM process, to which additional noise from drift is added. This allows

us to use the output from each of our small mapping efforts as the input for a new SLAM

process, working at a much higher level of time granularity. Since the sampled trajectory is

treated as a single, atomic motion, this defines the placement of the associated observations.

The observation model at the high level is then just the collection of observations that were

made at each step along this trajectory. The high level algorithm otherwise behaves in much

the same way as any other SLAM method, and will combine a large series of iterations into

a larger map.

For the high level SLAM process, we need to be careful to avoid double counting evi-

dence. Each low level mapping process runs as an independent process initialized with an

empty map. The distribution over trajectories returned by the low level mapping process

incorporates the effects of the observations used by the low level mapper. To avoid double

counting, the high level SLAM process can only weigh the match between the new obser-

vations and the existing high level maps. In other words, all of the observations for a single

high level motion step (single low level trajectory) must be evaluated against the high level

map, before any of those observations are used to update the map. We summarize the high

level SLAM loop for each high level particle as follows:

1. Sample a high level SLAM state (high level map and robot state).

2. Perturb the sampled robot state by adding random drift.

3. Sample a low level trajectory from the distribution over trajectories returned by the low level

SLAM process.

4. Compute a high level weight by evaluating the trajectory and robot observations against the

sampled high level map, starting from the perturbed robot state.

91

5. Update the high level map based upon the new observations.

In practice this can give a much greater improvement in accuracy over simply doubling

the resources allocated to a single level SLAM algorithm because the high level is able to

model and recover from errors much longer than would be otherwise possible with only a

single particle filter. In our implementations we have used DP-SLAM at both levels of the

hierarchy. However, there is reason to believe that this approach could be applied to any

other sampling-based SLAM method just as effectively. We also implemented this idea

with only one level of hierarchy, but multiple levels could provide additional robustness.

We felt that the size of the domains on which we tested did not warrant any further levels.

The computational complexity of hierarchical SLAM requires a slightly different anal-

ysis than the ones we have performed already. Since we use a linear implementation of

DP-SLAM at both levels, each level itself can run in � � � � 	 time. However, the � and
�

terms are different for the two levels, so the complexity is really � � ��� � � � ��� �
�.	 .

We can assume
�
�

� � �
�

� � �
. Unfortunately, it appears that ��� � ��� . If we assume

the low level of the hierarchy runs at a frequency
 times greater than the high level, then

���
� �
 ��� . Therefore, the high level is only run

�
� as often, implying that the total run

time for the high level, compared to the run time of the low level, is
�
� �
 ��� � 	 � ��� � .

Thus the total complexity for both levels is still � � � � 	 .

8.3 Implementation and Empirical Results

To demonstrate the benefits of hierarchical SLAM, we chose to use a data log of Carnegie

Mellon University’s Wean Hall, shown in Figure 8.2. In this domain, the robot travels

approximately 220m before returning to an earlier position. This data set has previously

been found to be very difficult for non-hierarchical SLAM algorithms. Linear DP-SLAM

was successfully able to map the environment, but required at least 120,000 particles and

92

Figure 8.2: CMU’s Wean Hall at 4cm resolution, using hierarchical SLAM.

93

Figure 8.3: A depiction of the current uncertainty in the map, shortly before the
non-hierarchical approach attempts to complete the loop. Pink areas indicate sections of
the map where the given map has no observations, but alternative hypotheses do have en-
tries. 94

Figure 8.4: The amount of uncertainty in the map (once again shown in pink) is much
greater for the hierarchical approach.

95

took more than 42 hours on a 3.2 GHz processor. This is significantly more particles than

the few thousand typically accepted as a reasonable number.

When we ran a hierarchical version of DP-SLAM on the data, each low level SLAM

process was run for 75 iterations, with an average motion of 12cm for each time step. This

process was able to map the building successfully with significantly fewer particles, 2000

for the low level and 3000 for the high level, and it took only 4 hours and 53 minutes.

This extreme difference in particle counts and computation time demonstrates the great

improvement that can be realized with the hierarchical approach. (The Wean Hall dataset

has been mapped successfully before at low resolution using a non-hierarchical approach

with run time per iteration that grows with the number of iterations. [29].)

The reason that a non-hierarchical method has such a difficult time mapping this data

is the extreme longevity of the uncertainty. Given the large size of the loop, small ambi-

guities in the beginning of the map are not resolved for several thousand iterations. Non-

hierarchical DP-SLAM requires a tremendous number of particle to maintain this early

particle diversity long enough. As Figure 8.3 indicates, there is little uncertainty in the

map as the loop nears completion.

Compare this to the amount of uncertainty maintained by hierarchical DP-SLAM, as

shown in Figure 8.4. Shortly before completing the loop, the high level particle filter can

be seen to maintain multiple hypotheses all the way back to the beginning of the trajectory.

In fact, at this point, the point of coalescence for the high level is at the very first iteration.

For the non-hierarchical approach to maintain this same amount of uncertainty, it would

need to have a point of coalescence nearly 2000 iterations ago. In fact, its point of coales-

cence at this stage is close to twenty iterations ago. As the robot completes the loop, the

uncertainty in the hierarchical method is nearly eliminated, as the additional information

from revisiting the starting area is sufficient to resolve the remaining ambiguities.

Hierarchical DP-SLAM is also useful for simpler domains, such as the C-Wing data

96

set used earlier. The non-hierarchical version of DP-SLAM required 11,000 particles to

reliably map this domain, and even with the linear time implementation, it required 690

minutes. The using the hierarchical version required 2000 particles for both the high and

low levels, and was able to complete the map in 123 minutes. Thus the significant reduc-

tion in particle counts for the hierarchical implementation provides dramatic improvements

in running time, even in situations that would otherwise be possible map without the hier-

archy.

8.4 Extensions of Hierarchal SLAM

So far, we have only extended the hierarchical framework for SLAM to two levels, as

this has been sufficient for our data sets. For the paths traveled during these experiments,

the distance is small enough between loop closing events that there is not yet a significant

amount of drift at the high level. However, for sufficiently large domains, it is reasonable to

expect that such drift could occur. In that case, one could extend the hierarchical framework

further, and add an additional layer to the hierarchy. Naturally, it has been difficult for us

to empirically test the feasibility of this idea without artificially altering the data set or

significantly hampering the underlying SLAM method.

This idea of hierarchical SLAM does not need to be restricted to being used solely

with DP-SLAM. The sources of drift outlined above are inherent in any sampling based

SLAM method. Likewise, none of the elements of the hierarchical structure we create are

specific to DP-SLAM; since the hierarchical structure solely focuses on engineering inputs

and outputs, this method should be equally effective when used in conjunction with any

other SLAM method.

97

Chapter 9

Practical Improvements

9.1 Culling

At each iteration of DP-SLAM, we generate many more particles than we keep. Evalu-

ating a particle requires line tracing 181 laser casts. However, most particles will have

significantly lower probability than others and this can be discovered before they are fully

evaluated. Using a technique we call particle culling we divide the laser scans into
 par-

titions, and evaluate our set of particles in
 passes. At each pass, the particle’s pose is

evaluated against the map for those
��� �
� laser casts, and that total probability is multiplied

by the previous probability for that particle. The highest probability particle can be identi-

fied, and a single scan through the set of particles can remove those particles which have a

significantly lower probability than the current best particle. In this manner, particles with

very low probability of getting resampled are never fully evaluated. In practice, this leads

to large reduction in the number of laser casts that are traced through the grid.

The trick to our culling method is to remove as many particles as possible, while keep-

ing all of the particles which would normally have a high probability of being resampled.

Let us examine the probability of any given particle being resampled. For the sake of

simplicity, we can assume that their weights are normalized. Given a weighted set of
�

particles, the probability of choosing a specific particle � � , is equal to that particle’s nor-

malized weight
 � . For resampling, we make
�

independent selections, with replacement,

so the chance of choosing a given particle is now
� � � � �
 � 	 � . For purposes of culling, we

would like to remove those particles which are least likely to be resampled, so we can set

some sort of threshold, and any particle whose normalized weight is less than that threshold

can be eliminated. If we were to ignore the particle weights, the probability of choosing

98

any specific particle would be
�
� . Requiring that each maintained particle be more likely

than this uninformed choice gives us a threshold value of
�
� . In practice, this has provided

us with good results. This number can of course be altered, depending on how aggressive

the user is about culling.

Expanding on this idea of early heuristic evaluation, we can also preprocess the entire

set of particles for obvious poor poses. To scan through the different particles quickly, we

initially evaluate them solely on the evidence of a partial line trace. This is a much shorter

line trace, centered around the laser endpoints, and is only a few grid squares long in either

direction from the endpoint. Since this heuristic does not include all of the information

present in a full line trace, it is unable to detect objects which should obstruct the laser

early on in the scan, and therefore it is a somewhat coarse evaluation. However, it is able

to quickly determine which particles do not have a significant portion of their endpoints

line up with well established obstacles, which is sufficient to identify a large number of the

poor particles in a very fast manner.

When combined together, these two heuristics significantly reduce the total number of

particles that need to be completely evaluated, and give an average practical speed up on the

order of � �
 . Extensive comparative empirical analysis of these methods has convinced

us that no particles which are eliminated early would have otherwise lasted for more than

one iteration. Thus the approximation does not degrade the accuracy of our algorithm.

9.2 Important Parameters

Perhaps one of the most obfuscated and annoying aspects of implementing another re-

searcher’s algorithm is attempting to infer the values of important parameters. These

“magic knobs” represent important values in the algorithm which were arrived at through

experimentation or intuition, and are often difficult for other researchers to understand,

much less duplicate. Hopefully to make this somewhat clearer for DP-SLAM, we will

99

briefly review the most important of these parameters, and discuss their role as well as

reasonable values for them.

9.2.1 Observation Model

Within the robot’s observation model are two important parameters. The first of these is

the laser variance. This number expresses the expected amount of error that should be

present in any one of the laser scans, when compared to the robot’s map, assuming that

both the map and the current robot position are both correct. Notice that this is not purely

the amount of noise present in the sensor. Although this is a major contributing factor, it

is also affected by noise and clutter in the environment (which can lead to ’blurry’ object

boundaries) as well as the the scale of the map itself, since the precision of the observation

model is influenced by the resolution of the map. The main effect that this parameter has

on the algorithm is to affect the resampling stage. A smaller variance creates stronger

distinctions between particles’ weights, and thus makes it less likely for many particles

to be resampled each iteration. A good value that we tend to use for most domains at a

resolution of 3cm tends be a standard deviation of 4cm.

The other important parameter in the observation model is the maximum allowed error.

This is a term which limits the total amount of error that a single observation can have. Seen

a little differently, this term represents a certain amount of background noise, past which

point any reading is equally likely. This helps to model several seemingly aberrant events

that can occur in the environment, such as semi-transparent or semi-reflective surfaces, or

objects with small holes or sharp boundaries. Since the probability of a single robot pose

is the product of the probability of each laser cast, this term is important to ensure that

a single poor observation (with probability near zero) does not completely eliminate an

otherwise good pose. In practice, we use a value of
�������� � , where

!
is the standard deviation

of the laser’s noise discussed above, as the lower bound for the probability that any single

100

laser cast can be assigned.

9.2.2 Motion Model

The most obvious parameters relating to the motion model of a robot are the motion param-

eters themselves. This includes a mean motion, usually derived from the robot’s odometry,

and a set of variances, which describe the size and shape of a multidimensional Gaussian

distribution about that mean. A full discussion of the motion model that is used in our

implementations, and how the values can be obtained, is described in great detail in the

earlier chapter on proposal distributions.

One of the important issues in implementing a SLAM algorithm that is rarely discussed

is the speed of the robot, or more precisely, the speed of sensory input into the the algo-

rithm. Due to the crucial issue of particle depletion, it should be obvious that the separation

between iterations should be based on distance traveled, rather than time elapsed. In partic-

ular, if the robot is not moving at all, continuing to model “motion” in the robot is pointless.

We have found that the appropriate distance between obtaining observations about the en-

vironment should be close enough together as to allow for significant overlap between one

observation and the next, yet far enough apart so that there are minimal resampling errors.

While previous work has come up with methods for resampling occasionally while still

using all of the incoming data [29], we have found that the simpler approach of merely fil-

tering out the intermediate information is sufficient for our purposes. The intervals that we

generally use are a minimum of 10cm of lateral motion, or 0.04 radians of angular motion.

9.2.3 Map Parameters

There exist several map parameters that can be controlled by the user. The first of these is a

practical limitation on the size of the map allowed. The map width and map height describe

the size of environment, and, as such, define the size of many internal data structures, and

101

by extension have a profound impact on the amount of memory used. This parameter

naturally can vary greatly, depending on the domain that the robot will be expected to

cover.

Another map parameter that should be acknowledged is the map prior. This is the

probability of occupancy which is assigned to any previously unobserved grid square. This

value can of course be changed according to the clutter in the environment. Recall that the

probability of laser being obstructed by a given grid square is determined by an exponential

distribution
��� � � �
� 	 � � � ��� �� , where � is the distance that the laser traveled through that

square. As described earlier, we use a gamma distribution as a conjugate prior, with a shape

parameter of 1. This conjugate prior has the same practical effect on each unobserved

grid square as if there had been a previous observation with parameters � � � � ���
m and

� � � � �����
.

The last map parameter is the scale of the map. This dictates how much area in the

real world is represented by a single grid square in the map representation. The map reso-

lution can affect the speed, accuracy and memory requirements of the algorithm. Coarser

resolutions will of course tend to be faster and require less memory, but can fail to repre-

sent important features in the environment accurately, and can increase the amount of drift.

However, if the resolution is too fine, this can lead to problems with accuracy as well; due

to the spread of the different rays cast out from the laser range finder, a fine enough grid

can fail to have significant overlap from one time step to the next, even when the robot’s

relative motion is small. In our experience, we have found that resolutions of 3-5cm to a

side for each grid square to be best, though in certain domains, 10cm can be sufficiently

precise.

102

9.2.4 Hierarchical Parameters

The hierarchical SLAM structure creates multiple SLAM processes running alongside each

other. The lowest level is the basic SLAM algorithm, working unperturbed. However, the

higher levels are working with slightly different data, and as such, require a different laser

noise model. While the actual noise in the laser has not changed, a large number of factors

about the map have. With a rigid trajectory passed up from the lower level, there is less

room for minor perturbations, and certain amount of assumed drift. In addition, the number

of observations has scaled, and as such, the difference between very similar poses scales.

All of this is included in the high level laser variance, which needs to be correspondingly

larger. Empirical results for our domains show that using a standard deviation of 7cm at

the higher level works well.

As the observation model changes in hierarchical SLAM, so does the motion model.

No longer are we modeling the noise in the odometry readings, but instead the noise in

the lower level’s mapping accuracy. This “motion” model is assumed to be Gaussian, and

evenly distributed about the lateral axes. The specific values for these variances are highly

mutable, affected by the specific SLAM algorithm used at the low level, and amount of

resources used, as well as elements from the robot or the environment. This values could

either be altered by hand, or learned in a similar manner as the odometric motion model at

the lower level.

Beyond modeling parameters, hierarchical SLAM also needs to decide the duration of

the lower level mapping process. Typically expressed in numbers of iterations, this number

should reflect how long the low level mapper can reliably be trusted to create maps with

no serious misalignments or errors. This is another number that varies considerably, but in

our experiments, we tend to keep it between 75-150 iterations

103

Chapter 10

Summary of 2-D DP-SLAM

Through the development of DP-SLAM, we have made significant progress towards cre-

ating an accurate, principled SLAM algorithm, capable of efficiently maintaining multiple

map hypotheses. At the core of this solution is the concept of maintaining an ancestry tree,

in order to better represent the differences between the separate hypotheses. The informa-

tion contained in this ancestry tree is sufficient to allow us represent the map data in a very

compact manner, without having to maintain any information multiple times, and without

a need for map copying. This core idea of distributed particle mapping is the key concept

that allows practical use of multiple map hypotheses, where earlier attempts were bogged

down.

This distributed particle representation has a very nice implementation, which allows

for a linear time asymptotic complexity, in both the number of particles and the size of

the observations. By expanding those grid squares which are to be observed in a given

iteration into easily accessible observation caches, we can reduce the access time of each

grid square to constant time, and achieve a time complexity which is identical to that of

pure localization with a single map. The co-development of methods such as culling, to

remove poor particles before they are fully evaluated, allow us to run DP-SLAM with

sufficiently large numbers of particles in real time to map many interesting environments.

The stochastic map formulation described here provides a rigorous and flexible rep-

resentation of the environment, and effectively models the behavior of the laser through

various media and surfaces. By properly modeling inconsistent behavior within certain

areas, we are not constrained to treating as many different events as “background noise”,

and are better able to distinguish the sub-grid square resolution in the robot’s pose.

104

Process Naive DP-SLAM Linear DP-SLAM Hierarchical

Localize � � � � 	 � � � � � ����� � 	 � � � � 	 � � � � 	
Insert � � � � 	 � � � � � ����� � 	 � � � � 	 � � � � 	
Delete N/A � � � �
�����'� 	 � � � � 	 � � � � 	
Merge N/A � � � � � ����� � 	 � � � � 	 � � � � 	
Resample � �

�
� 	 � � � 	 � � � 	 � ��� 	

Table 10.1: Summary of Computational Complexity

The last major contribution to two dimensional SLAM was the development of hierar-

chical SLAM. Even the most precise mapping methods can accumulate drift as the robot

travels increasingly long distances. Hierarchical SLAM is a principled method of recog-

nizing this drift, and representing the drift in a way that makes it possible to easily recover

from the tiny, inescapable errors that build up. Using hierarchical SLAM on the largest

of our environments, we able to map significantly larger loops than would otherwise be

possible. Even those domains that were mapped previously can be done so in less time and

with fewer particles through the use of hierarchical SLAM.

All of this together puts us close to achieving our goals in two dimensions. A principled

approach to maintaining multiple maps is possible, producing very detailed, accurate maps

which are produced regardless of the path of the robot’s trajectory; loop closing is used

as a measure of accuracy, and not as a tool to provide accuracy. All of this is possible in

real time, using reasonable computing resources. To this effect, research has made great

progress towards considering two dimensional SLAM solved. However, there are still

improvements left to achieve for the two dimensional case, and much work to be done for

effective three dimensional mapping, the ultimate goal of SLAM.

105

Chapter 11

3-D SLAM

11.1 Preliminary 3-D SLAM Work

Existing SLAM methods tend to be restricted to planar cases, where the map produced is a

two dimensional cross section of the world, and robot motion is restricted to motion within

this plane. Not only does this constraint prohibit use in many interesting environments,

effectively exiling the robot to the floor of a building, it is also insufficient to represent ob-

jects and obstacles which may be displaced from the plane, such as table tops or stairwells.

While some methods exist for three dimensional motion, they tend to represent the

world in terms of a few sparse, point-sized landmarks. These maps, while useful for lo-

calization, and possibly for navigation, give very little information about the presence of

objects in the world. Carnegie Mellon University’s Mine Mapping project is a notable

exception, which built volumetric three dimensional maps using a series of laser range

finders set at different angles [37]. Using a combined method of both local and global scan

matching techniques, a two dimensional occupancy grid is created. Using the correspond-

ing trajectory for the robot, the remaining, three dimensional, data is filled in to create the

volumetric maps. Thus a three dimensional map is constructed, while motion in the third

dimension is ignored.

The DP-SLAM architecture, as it exists now, has only been applied to two dimensional

mapping. However, the restriction to planar motion is unrealistic in most applications

of mobile robots. Wheeled robots traveling across uneven terrain, and underwater au-

tonomous vehicles (UAVs) can move with six degrees of freedom, three lateral and three

angular. For the robot to operate in this environment, we not only need to track these

three new degrees of motion (roll, pitch and height), but also maintain a three dimensional

106

representation of the environment.

This expansion of the problem presents two types of challenges, technical and dimen-

sional. The technical problems are mainly issues of sensing. Previous sensors used were

well suited for a two dimensional world, but are unable to make observations outside of

the plane. In particular, odometry is unable to detect any motion in the three new degrees

of freedom. Also, laser range finders, which are so popular for two dimensional map-

ping, are typically a planar sensor. While three dimensional laser range finders exist, they

are prohibitively slow, and do not allow the robot to move while making an observation.

Therefore, 3-D SLAM not only needs a new measure of estimated motion for the proposal

distribution of the particle filter, but also a new sensor for the primary observations of the

environment.

Dimensional challenges are problems of scale. As new dimensions are added to the

problem, the resources needed to deal with SLAM grow exponentially, so that merely ex-

tending previous methods is infeasible on any computer architecture we might expect to

see in the near future. One of these challenges deals with space requirements. Two dimen-

sional maps are large data structures, and proper maintenance of multiple map hypotheses

can already take on the order or gigabytes of memory for reasonably sized environments.

Adding a third dimension to these maps in a straightforward manner would, of course,

increase the memory requirements from � �
to �

�

, where � is the linear size of the en-

vironment, quickly placing the memory requirements outside the realm of feasibility. The

other challenge that needs to be addressed here is one of time complexity. Robot motion

in three dimensions allows for six degrees of freedom, which is twice as many parameters

to track as in the planar case. This means not only that more particles are likely to be

needed by the particle filter, but that the sensor also needs to gather more information, e.g.,

by making more independent observations of the environment to disambiguate the robot’s

pose. Maintaining these extra particles, comparing these extra observations with the map,

107

and adding each of the new observations to the map all take significantly more time. In our

preliminary work, we attempt to address all of these challenges, but focus particularly on

decreasing the complexity of map updates.

11.2 Technical Issues

As can be expected, extending SLAM to handle 3-D maps does not merely increase the

dimensionality of the problem. The same set of sensors that were effective for motion

within a plane are no longer sufficient to give useful information in a three dimensional

environment. Odometry is no longer sufficient to capture the motion of the robot, as shaft

encoders cannot measure roll, tilt, or changes in elevation. Likewise, a planar range sensor,

such as the laser range finders which are popular in 2-D SLAM, is of limited use in three

dimensions. Even slight motion out of the plane will cause a new observation to misalign

with previous scans.

Fortunately, both of these issues can be addressed using existing methods in computer

vision. Motion estimates can be obtained through maintaining a “visual odometer”. In

addition, the field of stereo vision has provided a wealth of methods for getting useful 3-D

sensor data, if one is willing to accept the associated running time for the time being. We

take a closer look now at the implications of using these methods for SLAM.

11.2.1 Proposal Distribution / Motion Estimation

One of the most basic steps in almost all existing SLAM methods is the generation of a

proposal distribution. Based upon the robot’s last position, an initial estimate of the robot’s

current position is generated, based upon either control inputs or a secondary sensory in-

put. The use of odometry for this step is almost universal, but as has been already noted,

odometry is insufficient for capturing three dimensional motion.

One option is to augment the standard shaft encoders with a set of inclinometers. These

108

sensors are able to directly measure the robot’s pitch and roll. However, they are at least as

noisy as shaft encoders, and can be expensive. Also, the change in elevation can only be

indirectly observed.

Another option is the use of accelerometers, in order to measure displacement by ob-

serving changes in velocity over time. This has the nice property that the robot is no longer

required to have wheels, or even travel over land. However, the problem of excessive noise

is even greater for these sensors, and good accelerometers remain costly.

Visual odometry methods, such as Lowe’s Scale Invariant Feature Tracker (SIFT), pro-

vide a very nice, low cost alternative approach to tracking incremental motion[38]. By

identifying a number of points of interest in a series of stereo image pairs, SIFT solves the

data association problem in order to track the relative motion of the camera with respect to

the world.

SIFT keypoints have many nice properties, which have generated some interest in using

them as features for a landmark-based SLAM method. However, these features of interest

are not always found at the exact same world coordinate position in each frame, due to

uncertainty in the SIFT algorithm. In addition, SIFT keypoints are usually short lived,

and usually are not observable from substantially different perspectives. However, they

still perform very nicely as a dead-reckoning system, and are perfect for use a proposal

distribution in other SLAM methods.

11.2.2 Observation Dependence

As stated before, sensors which make range measurements directly, such as laser range

finders, are difficult to use with three dimensional motion. Instead, we use stereo corre-

spondence methods to create a three dimensional depth observation. This works well in

conjunction with SIFT, since the method for extracting keypoints in SIFT automatically re-

jects any potential keypoints which are not sufficiently distinctive for a given image. This

109

virtually eliminates the potential for false matches, which is the primary source of error in

stereo algorithms. Therefore, when the cameras are properly calibrated, the noise in one

method can be assumed to be independent from noise in the other.

Unfortunately the independence assumption is not true for different depth measure-

ments within a single stereo pair matching. Stereo algorithms work by taking a section of

the left camera image, and comparing it with different sections of the right image. How-

ever, a single pixel is not enough to create reliable matches between the images, so an

entire window around each pixel is used to compute the correspondences. These windows

overlap across neighboring pixels, so that the error in one depth estimate is no longer inde-

pendent of the depth estimates nearby. However, these dependencies become weaker the

further the pixels are from each other in the image plane. In fact, for some stereo methods,

if a pixel is not within the stereo window of another pixel, those two pixels are not directly

dependent, and assuming their independence introduces negligible bias.
�

Therefore, in us-

ing stereo depth estimates for localization, we use only every
�

th row and column, where
�

is the size of the stereo window. We then treat this subset of readings as independent,

and compute the probability of each measurement separately, given the map and the robot

pose, and take their product as the total (unnormalized) weight for a particle.

It is important to note that map is merely a record of the observations, which is used

an assumption of the future behavior of the sensor in that area. For this purpose, we can

make a good approximation of the empirical opacities by treating the noise for each pixel

matching as independent when building the map. Therefore, we expect that it is more

informative to use every pixel matching to update the map.
�

Independence along the vertical axis is common in stereo vision algorithms. However, horizontal depen-
dence may exist for some algorithms, such as dynamic programming methods.

110

11.3 Data Explosion

One of the most difficult problems of expanding SLAM into three dimensional environ-

ments is the simple problem of dimensionality. By allowing movement outside of a plane,

the scope of the problem increases dramatically. Not only does the map representation

move from two dimensional to three, but tracking now expands from three degrees of free-

dom to six. This implies that a naive extension of two dimensional work in SLAM will

not suffice. The vast amount of resources needed, both in terms of time and space, would

make implementation infeasible. More clever algorithms are needed to manage these new

dimensions before the more subtle difficulties of three dimensional SLAM can be identified

and addressed.

11.3.1 3-D Mapping with Voxels

The most natural extension to the grid-based map representation of DP-SLAM is the use of

voxels. These metric cubes can take on the same properties of stochastic grid squares, while

representing volumetric space. Like the previous implementations of grid squares, these

voxels are small in scale, on the order of a few centimeters. The problem is that a three

dimensional map is equivalent in size to a large number of two dimensional maps stacked

on top of each other, one for each height increment. For a map resolution of centimeters,

this can easily mean the voxel map is several hundred or even thousand times the size of

a grid-based map. Given the large amounts of memory needed to maintain a single planar

map for DP-SLAM, the memory requirements for a complete voxel representation of the

world would be infeasible.

What I propose instead is to maintain a data structure which behaves very much like

a full voxel representation, while on average requiring only the equivalent space of a map

which is just a few voxels high. This is achieved by condensing a series of empty voxels,

which all share the same (x, y) coordinates in the world, into a single interval.

111

d=0.0

d=0.0

d=0.0d=0.0

d=0.0

d=0.0

d=0.1

d=0.7

d=0.9

d=0.0d=0.0

d=0.1

d=0.7

d=0.9

X

Z

Y

Y

X

Z

Y

X

Figure 11.1: Left: a planar grid-based map. Center: a 3-D voxel-based map. The density
coefficients for each voxel are listed beside them. Right: A 3-D map, condensing adjacent
empty voxels in the same column into a single interval.

112

Consider a single, planar grid for the map representation. Let each entry in this grid

correspond not to a single grid square, but instead contain the entire column of voxels that

exist at this
� � � � 	 location. If the entries of this column are indexed with an array, the

map representation degenerates back into a full voxel representation. However, we can

do better than that. In nearly all environments, the total observable space of the world is

overwhelmingly dominated by empty space. Most applications for the map data, including

localization, treat this empty space as all equivalent; there is very little to distinguish one

part of empty space from another. Furthermore, observable empty space tends to come in

long stretches. Therefore, it is reasonable to consider condensing large intervals of these

empty voxels into a single entry, describing the scope of the entire interval. Since these

intervals are dynamic while the map is still being built, the set of all voxels in a given

column are stored in a balanced tree, keyed on � position, with empty space using the

lower end of the interval as the � value.

The resulting map representation requires significantly less space to store than a com-

plete voxel representation, due to the compact representation of empty space. For a column

of space hundreds of voxels high which crosses but a few object boundaries, the space re-

quired to represent the observed voxels in this column could easily to less than a dozen

entries. Furthermore, any unobserved voxels are not even included in the set.

These benefits of course come at a price. First, there is a slight increase in the running

time needed to access a voxel. The search through the set of observations requires
� � � �

time, where � is the number of entries for the column. Luckily, the same argument which

implies a good space reduction also ensures that this time increase will be small, since both

are dependent on the number of column entries.

The other drawback of this method is that it becomes necessary to introduce an ap-

proximation to the SLAM process. Since each empty interval is stored as a single entry,

the entire interval necessarily has to be homogeneous. This means that unlike the previ-

113

ously described approach to stochastic occupancy in DP-SLAM, we are unable to keep a

meaningful observation odometer for any portion of the interval over empty space. That

is to say, we are not storing how much that area has been observed, and correspondingly,

we do not have a measurement of how confident we are in the designation of that area as

unoccupied. Therefore, if an object is ever detected in any one of the voxels along the

interval, the new occupied value for that voxel will only be an approximation of the actual

observed occupancy.

This all describes how to build a single three dimensional map efficiently. We still need

to address the core property of DP-SLAM, describing how this can be used to maintain

multiple maps for each of the distinct particles efficiently. Recall that in two dimensions,

we represent the distinctions between the different map hypotheses at each grid square,

by storing up to
�

different opacity values in the observation vector. Given the use of

intervals to represent empty space, it is difficult to extend this concept efficiently to the

three dimensional case, by maintaining the distinctions between maps at each voxel. Each

particle can have a different start and end point for a given empty interval. Thus it either

becomes necessary to maintain these empty intervals only at areas where all particles agree,

or else a more complicated method would be needed to describe the combined intervals.

Our approach takes a step back from the entire issue, and instead maintains the dis-

tinctions between particles at a slightly coarser level. For each
� � � � 	 location, we let each

particle maintain its own column. As each particle adds a new observation to the map, it

can create its own set of column entries. Just like two dimensional versions of the dis-

tributed particle map, any section which is not observed by the current observation can be

seamlessly inherited from the parent’s hypothesis, simply by not creating a new entry for

that particle. When localization realizes that the particle has no entry for the desired voxel,

it will continue back up the ancestry to the parent of the particle.

This mechanism can be exploited for empty space as well. We are now representing all

114

empty space identically, since we do not keep a record of how much we have observed an

empty voxel. Therefore, if a voxel has already been designated as empty, any further obser-

vations that continue to indicate that the voxel is empty do not require updating that voxel.

This drastically reduces the number of ancestor particles which create new, updated entries

for that empty voxel, further reducing the space necessary to store the three dimensional

maps.

This three dimensional approach can be viewed as a direct extension of two dimen-

sional DP-SLAM. Looking at it this way, the map is still a two dimensional grid, maintain-

ing multiple observations at each grid square. The main difference in the map representa-

tion is that the notion of an observation is changing; the data stored by each particle is now

representing an entire column of space. Consequently, each access to the map returns a

complex set of data for the given particle, rather than a single opacity. For a given particle

to retrieve the information for a specific voxel at location
� � � � �

�,	 , we first need to access

the observation for this particle at grid square
� � � � 	 . Then we need to search over the

column of data in that observation to return the specific voxel (or empty interval) at height

� .

11.3.2 Localization

Localization using one of these three dimensional maps is very similar to localization for

DP-SLAM with a two dimensional map. The two main differences – the subsampling of

the observation and the use of a column of data at each grid square – have already been

described.

The stereo vision depth map is first subsampled to create a set of individual range

measurements, which are treated as possessing independent noise. For each particle, this

set of observations is treated in much the same way as any other range sensor: a ray is

traced through the map from the origin of the sensor to the endpoint of the observation. For

115

each
� � � � 	 position crossed by this three dimensional ray trace, DP-SLAM retrieves the

corresponding data for the given particle at that grid square. As described earlier, this data

consists of a set of individual voxels and intervals of empty space; finding the appropriate

� value within the column requires a search over the set of data. Otherwise, the trace for

each observation is performed in a manner identical to two dimensional DP-SLAM. The

probability of each measurement, given the map and the robot’s pose, is computed using

an appropriate observation model. As before, the probability of each particle is simply the

product of the probabilities of each individual observation.

11.3.3 Map Updates

Another issue of dimensionality concerns the sensor directly. Using a stereo method for

the range observations introduces its own jump in complexity. Planar SLAM algorithms

primarily use laser range finders, or similar sensors, which have on the order of
��� �

sensor

readings comprising a single observation. Stereo, on the other hand, can have millions of

depth estimates for a single observation. This is significantly more than the
����� �

that would

produced by a three dimensional range finder of the same observation density as the current

planar LRFs. Stereo produces much denser information, and it would be unfortunate not

to use as much of that data as we can to reduce the uncertainty within the map. However,

performing millions of line traces through the map is a daunting task. A more efficient

method is needed if using all of the data is to be feasible.

As described earlier, the problem is already reduced for the case of localization. Ap-

proximating an independence assumption has forced us into using a subsample of the ob-

servation. This is not necessarily a serious loss of data; use of the subsampled data will

likely give a very close approximation to the particle weights obtained by using the en-

tire observation. However, for updating the map, it is important to have dense updates, so

that a future observation can line up with the map, without falling along gaps. Therefore,

116

subsampling is not the preferred option for mapping.

The solution for efficient map updates comes from the very density of the observation

data. For a typical camera and lens, the number of pixels across a single row is sufficiently

large, so that even out to a distance of 8m, adjacent pixels correspond to points no more

than 1cm apart. Therefore, for a reasonable map resolution of 3cm to a voxel side, any

voxel within the field of view of the camera will be observed by multiple pixels, unless it

is occluded by an object closer to the camera.

This density of observations means that the observations do not need to be considered

a set of rays to be traced anymore, but instead can be viewed as a single polyhedron of

empty space, resembling a pyramid originating from the camera, with an irregular base,

corresponding to the observed objects in the frame. If we can describe the exterior of this

polyhedron in terms of voxels, the actual map updates can be made quickly, similar to

drawing a polyhedron using raster lines in graphics. Even better, the boundaries of the

polyhedron represent the upper and lower boundaries of an empty interval, which is the

natural form for our map representation.

Figure 11.2 illustrates an example of one of these polyhedrons of observations. In the

top image we see a simple cross section of the camera viewing the environment. The area

observed is denoted by the grey area. The first two boundaries describe the two sides of a

triangle, and are the perimeter of the camera’s field of view. The observations are limited

to a certain distance, creating the curved boundary on the left. The black section represents

the observed terrain, and serves as another, irregular section of the polyhedron’s perimeter.

The final section of the perimeter is the occlusion boundary created by the obstruction

jutting up out of the ground. Taken together, we can see the enclosing perimeter of the

observation in the middle figure. This completely describes the area of the environment

which is currently observed as empty. As described above, we can easily find the height

at which each column in the map will intersect with the perimeter of the observation. This

117

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���

Figure 11.2: A cross section of a single observation, illustrating how the area being ob-
served forms a polyhedron. The perimeter of this polyhedron is all that is needed for
updating the map.

allows us to describe the new intervals of empty space, according to a given observation,

in an efficient manner.

To describe this polyhedron in terms of voxels, some ray tracing is required, though

significantly less than a full trace per pixel. We begin by performing a full ray trace for

each pixel on the first row of the image. This will form a single flat side of the polyhedron

from which to build. Subsequently, the next rows of pixels are added to the description. For

these later pixels, however, it is only necessary to trace a small portion of the corresponding

ray. Since we are only concerned with tracing the perimeter of the observation polyhedron,

we only need to perform that section of the line trace which extends beyond the surrounding

polyhedron. Our partial line traces therefore proceed as follows:

For each pixel, � , we first consider all of the pixels which are adjacent to � within the

image plane, paying attention to the one whose corresponding distance from the camera is

the smallest. Starting from the endpoint of � , we trace a ray backwards towards the camera,

118

B

D
E

F

C

A

Figure 11.3: An example of a partial line trace for a dense sensor reading. The darker
lines indicate which portion of the individual rays would need to be traced in order to
ensure coverage of the perimeter of the observation polyhedron.

until we are closer to the camera than any of the adjacent pixels. This ensures that any

portion of the line trace for � which could possibly be on the perimeter of the observation

polyhedron has been covered. The remaining section of the line trace which has not been

covered is all ensured to be on the interior of the polyhedron, since the adjacent pixels all

project out past that portion of the line trace.

This point is illustrated in Figure 11.3. Here, the observation has again been reduced

to a two dimensional cross section for ease of illustration. A number of rays, � through
�

, are emitted from a sensor, and are assumed to be dense enough to be treated together

as a single polyhedron. Lines � and
�

are both on the far edges of the polyhedron, and

thus need to perform a complete line trace, as indicated by the thicker line, in order to

define the far edges of the the polyhedron. Lines � and � both consider their neighboring

scans, and find that
�

is the shortest adjacent line. Therefore, they only have to trace that

portion of their ray trace which extends beyond
�

. The rest of the ray trace would always

119

have another scan on all sides of it, which extends further out. This guarantees that the

remaining portion of the scan will not be on the perimeter of the polyhedron, and thus does

not need to be traced. The line
�

itself is a local minimum; all surrounding lines extend

further than
�

. This means that only the endpoint of line
�

could possibly be exposed to

the exterior, and therefore no portion of that line needs to be traced.

Along each partial line trace, we place a marker at each voxel we passed through,

indicating its possible status as a portion of the perimeter. After all pixels are visited,

this collection of perimeter markers can be combined to create a set of empty intervals,

corresponding to the interior of the polyhedron. These empty intervals are then easy to

incorporate into the map as a new set of updates. Occupied observations, by definition,

will only occur at the endpoint of a ray, and can easily be inserted into the map separately.

We have described how to update a column of space efficiently. However, we have not

specified where the data that we modify comes from. Recall that the map cache maintains

only a single pointer at each
� � � � 	 location. Therefore, each data entry for a grid square in

the distributed particle map needs to maintain the entire column of data for a given particle,

not just what was observed by that specific particle. Otherwise, for each gap in the column,

corresponding to unobserved space, any particle attempting to access this data would need

to search across all of its ancestors, to see if any of them had observed that precise voxel.

This would eliminate the constant time access which the map cache was built for. This

implies that each time that a particle updates a voxel in any given
� � � � 	 position, the entire

column of information inherited by that particle would need to be copied over into a new

entry, before any updates could be made. As we will see when we analyze the complexity

of this algorithm, this copying step is not a limiting factor on the running time of entire

method.

120

11.4 Computation Complexity

3-D DP-SLAM offers a nice extension of the framework of DP-SLAM into a three dimen-

sional representation of the world. Much of the same structure and methods are preserved,

which helps to provide an efficient running time. However, there are a few changes in the

asymptotic limits.

One of the important differences in the complexity of the localization stage is the sub-

sampling of the observations. Instead of using the entire set of observations, we use a

distinct subset of the range measurements. Let us denote the area covered by this subset

of data as ��� . Using the map cache data structure, we can preserve constant time access

to each
� � � � 	 position in the map. However, this only provides the column data for each

grid square. In order to retrieve the appropriate voxel information for a given height, we

need to search across this column. If we define the maximum number of entries in one of

these columns as � , each search is limited by � �	����� � 	 . This provides us with an upper

bound for localization of � � ��� � ����� � 	 . For any natural environment, it is reasonable to

expect � ������� � 	 � � � ��� 	 , as the number of object boundaries in any given column will be

small. Even for man made environments, the probability that a flat surface, such as a wall,

is perfectly parallel with the z axis is negligible.

An important additional consideration is the cost of building the map cache. While we

perform line traces only on a subset of the data, the total area covered by all particles with

this subset is likely to be much closer to � � � 	 . However, since the particle distinctions are

maintained at the level of the grid, the map cache only needs to be as large as the projection

of � onto the grid, �
�
. The data stored at each grid square in the three dimensional map

is still no more than one (complex) observation per particle. Therefore, building the map

cache in the three dimensional case is no more difficult than the two dimensional case; this

step can be completed in � � �
�
� 	 time.

Deletions from the map are very easy to perform. Using the list of map updates at

121

each ancestor particle, the observations can be deleted directly from the grid. Since all

observations made by a single particle are removed at the same time, the information within

the column data set can be ignored. Given that the projection of the area observed at

each time step onto the grid is �
�
, each iteration will only add the potential for � � �

�
� 	

deletions.

Merging data from the collapse of a branch in the ancestry is simple for the same rea-

son. Recall that the expensive portion of a merge involves comparing the list of updated

map locations for a parent particle with that of the child. In the three dimensional map,

these lists of updates point to columns of data stored in the
� � � � 	 grid. Therefore, the po-

tential number of observations inserted at any given iteration is � � �
�
� 	 . When comparing

the lists, each entire column from the child is inserted into the parent’s list as an entire unit.

Similarly, an entry from the parent which is being replaced by the child’s update can be re-

moved as a single unit. Therefore, the amortized analysis of merges provides a complexity

of � � �
�
� 	 .

The first step in updating the map is for each particle to create a new observation in

the
� � � � 	 grid for each grid square within the projection of the current observation. As

currently described, this requires the particle to make a copy of all of the data in this

column inherited from its parent. Given a column of size � , this will require � � �
�
� � 	

time.

To update the map for a given particle, the surface of the current observation is traced.

Recording each voxel of the surface does not require any access to the map; this record of

surface is kept separately for the time being. Therefore, each step in tracing the surface

can be performed in constant time. If we denote the size of the surface of the observation

polyhedron as ��� , the time required to trace the surface for each particle is � � ��� � 	 .
In the process of tracing the surface of the observation polyhedron, each column is

assigned a list of � positions, indicating where the surface insects with this column. As

122

we are tracing the surface of the observed area in order from top to bottom, this list can be

assumed to already be sorted by � value. These points of intersection define the intervals

over which the map will be updated with an empty observation. The data within the column

is stored in a balanced tree, keyed on the � value. Therefore, the items in the column can

be traversed in order, in � � � 	 time. Given these two ordered lists, a comparison to find

which items in the column need to be updated can be performed in � � � � � 	 , where � is

the number of intersections for that column. This update needs to be performed for each

grid square in �
�
, and for each particle, providing a complexity of � � �

�
��� � � � 	(. Note

that �
�
� is in fact the size of the surface of the observation, ��� . Therefore, this bound

can be simplified to � � � � � � �
�
� � 	 , which is the same complexity required for the two

preliminary steps of the map update.

In analyzing the total complexity, we arrive at � � ��� � ���
� � � � � � � �
�
� � 	 . This is a

complex bound to place on the running time, but one that accurately describes the different

influences on the running time. The amount of resampling used for localization, the com-

plexity of the observations, and the density of small objects in the environment can each

define the dominant term for the upper bound. There are a couple of nice properties of this

bound, however. First, the complexity is still linear in the number of particles used. This

aspect is particularly important, as the number particles needed to track the robot’s motion

in three dimensions is typically greater than the two dimensional case. Second, none of

the area terms include the entire size of observation. Using this method of storing the �

dimension in columns of data allows us to avoid including the tremendous area covered by

the sensor in our complexity bound.

11.5 Initial Results

To demonstrate the effectiveness of the proposed methods, we performed a series of exper-

iments. All of these experiments were performed on stereo data collected from the NASA

123

Ames Marscape, using the K9 rover. In these experiments, the robot observed a total area

of approximately 15m by 17m, with a total height observed of 3m. The data collected were

then run offline, in simulation of the actual exploration, with a map resolution of 3cm.

First, after giving such a pessimistic description of the memory requirements for a

voxel-based map, we need to prove that our proposed map representation can actually be

implemented within reasonable memory requirements. To represent this area with a full

voxel map would require an estimated 15Gb of memory, which was more than we have

available. Implemented with the proposed map structure, the total memory used was only

511Mb.

Our second experiment was to demonstrate the effectiveness of updating the map using

the perimeter of the observed polyhedron. During an experimental run of the data, we

recorded the time required to update the map for a single particle. Updating the map with

a full set of line traces took an average of nearly an hour. By using only the perimeter of

the polyhedron, the map update time was reduced to an average of 2.5 seconds.

Our final empirical result was to demonstrate the early results of voxel mapping. In

these experiments, a significant amount of distortion was observed in the stereo matches,

for which we were unable to correct. Therefore, given poor input data, we would not expect

very good accuracy for the maps. However, the results are still impressive. In the run, the

robot entered the Marscape, and traversed the perimeter of a crater bed. Figure 11.5 shows

the resulting map as the robot completes a loop, and is able to see the entrance to the crater

again. The map displayed is a topographical view, with lighter areas representing higher

elevations of the terrain. Several bulges can be seen in the center of the crater, which

correspond to rocks and debris. Paying particular attention to the rocks at the top of the

map, near where the loop is closed, it can be seen that when these rocks are observed from

a new angle, the map places them at a very similar location, but due to warping effects

of distorted stereo, the rocks do present a slight “double image”. This sensor error would

124

Figure 11.4: Initial mapping results from traversing part of the way around the perimeter of
a 15m radius crater. The map shown is a topographical view, with lighter areas representing
higher elevations.

Figure 11.5: The resulting topographical map after completing the loop of the perimeter
of the crater.

125

need to be corrected in future experiments. However, these results are encouraging, in that

even with poor data, the resultant map is reasonable and relatively consistent.

126

Chapter 12

Future Directions

12.1 Alternate Sensors

With the exception of the preliminary three dimensional experiments in the previous chap-

ter, DP-SLAM has focused primarily on a laser range finder as our primary sensor. This is

a nice tool, in that it can make very accurate range measurements, and can reliably sense

objects out to distances of 10-30m, depending on the particular model used.

However, laser range finders do have certain drawbacks. A laser necessarily traces a

single, nearly one dimensional line through the world. This means that a laser range finder,

emitting several of these laser beams along a plane, is necessarily a two dimensional sensor,

and cannot detect overhangs or cliff ledges. The other implication is that as the range to

an object increases, the density of the point range estimates across its surface can decrease

dramatically. At a distance of even 5m, the readings are becoming very sparse, and large

sections of the surface will not be observed at all, even over multiple time steps. Likewise,

many smaller, distinctive variations in the environment which could be very informative

are completely missed, and are not usable to estimate the robot’s precise pose.

To create a better set of observations about the world, we would like to include sensor

fusion with other types of sensors, such as sonar or infrared sensors. Also, we would like

to consider a greater reliance on computer vision techniques, not just stereo, to provide a

good density of sensory information. These inclusions would entail much more complex

observation models, and possibly storing more information within the map. However,

we expect this approach would result in much greater accuracy, and more efficient use of

particles to localize the robot correctly, while building a more complete map.

127

12.1.1 Adapting Better Stereo Vision

In the three dimensional version of DP-SLAM that we have proposed, stereo vision is

already used as the primary range sensor. However, stereo suffers from a number of com-

plications for our application.

One of the most difficult aspects of using stereo vision for SLAM is the lack of an

appropriate observation model. As we have noted before, the depth map returned by stereo

necessarily has dependent noise. This will naturally create difficulties in modeling the sen-

sor. Perhaps equally important is that the amount of noise for any given depth estimate

can change, depending on the texture in the scene. Using stereo vision, it is much harder

to determine the distance to a blank wall than a textured one. However, current methods

for stereo vision do not include any indication of the amount of certainty in a given ob-

servation, or possible alternate depth maps that could result from the given image pair.

Quantifying the uncertainty in the depth maps, or providing some means of sampling from

possible depth maps would greatly affect the potential accuracy of SLAM methods which

use stereo vision.

As was noted earlier, another limitation of using stereo cameras as the primary sensor

is the assumption of perfect calibration. While there exist many methods for achieving

good stereo calibration, most of the more accurate ones are time consuming, and require

significant human intervention. Given that the algorithm’s performance does not degrade

gracefully as the calibration accuracy decreases, it would be useful to develop a better

method for correcting the stereo calibration in the field. This could either be tracked as

extra parameters in the SLAM formulation, or could be placed in an external loop, such as

the EM framework used for odometry calibration.

128

12.2 Proposal Distributions

As with all sampling based method, DP-SLAM is heavily reliant on a good proposal distri-

bution for fast, accurate results. Maintaining a joint distribution over maps and robot poses

creates a high dimensional space within which to sample, and keeping this space as small

as possible is crucial to real-time performance.

Autonomous learning of the robot’s motion model is a great benefit to generating accu-

rate proposal distributions. However, this is specifically a single set of parameters for the

proposal distribution, based entirely on the odometry readings. The possibility still exists

to allow the motion model parameters to change, even while the robot is exploring, to adapt

to changes in terrain or degrading hardware on the robot.

Also, the inclusion of the sensor data itself could be used to aid the generation of the

proposal distribution. Refining the motion based upon the range sensors has been used by

other researchers with different SLAM methods [11, 30]. It seems likely that there exists a

similar method which can be applied to DP-SLAM.

Another area of future research includes the development of alternate sensors to use as

a motion estimate. Odometry is known to be a very poor estimate of the actual motion of

a robot. Further investigation is needed into the suitability of adapting or designing other

sensors to solve the problem. The preliminary work for 3-D DP-SLAM indicates that the

use of visual keypoints, such as SIFT, has tremendous potential for giving accurate motion

estimates with less noise.

12.2.1 Adaptive Particle Numbers

Beyond the question of how to generate proposal distributions is the question of how to

use them. Many situations arise where the uncertainty in the system is significantly lower

than normal. In these cases, it is natural to question whether the resources should be

distributed in the same way. In fact, perhaps even fewer particles can be used at these

129

times, thus freeing the processor for other useful tasks for the robot. Alternatively, the

extra resources could be used for processing more data, in order to give a more detailed

map of the environment in that area, and perhaps further reducing the uncertainty at later

time steps.

In the opposite direction, it would be useful to know how many particles are needed to

estimate the robot’s pose for a given proposal distribution, to better handle those situations

where the uncertainty has grown larger than normal. This can reduce the amount of drift

in the map, and greatly reduce the possibility of losing track of the robot’s pose during

unlikely events.

In general, determining an appropriate number of particles for a given proposal dis-

tribution could greatly improve the reliability of DP-SLAM under particularly difficult or

uncertain circumstances. In a larger sense, using an appropriate amount of resources can

also allow the robot in general to perform other tasks more efficiently, and allow DP-SLAM

to be a more useful tool for a complete autonomous system.

12.3 Alternative Map Representations

DP-SLAM gains much of its success by maintaining a distributed particle map over a

simple stochastic occupancy grid. The formulation of distributed particle maps allows DP-

SLAM to maintain many different map hypotheses efficiently. However, there is nothing

in this formulation which is necessarily restricting us to the simplest grid representation.

A large number of alternate map representations are possible, any one of which could

potentially benefit the accuracy or the efficiency of the DP-SLAM algorithm.

12.3.1 Quad Trees

One of the most popular ways of improving the efficiency of occupancy grids is the use

of quad trees. This method seeks to improve both the running time of line traces, as well

130

reduce the space required to store the map, by combining adjacent grid squares if they are

identical in their makeup. A tree structure is maintained, effectively representing the grid at

a series of exponentially finer resolution. At each level in the tree, if each sub-component

does not agree on the occupancy for the larger grid square, the quad tree breaks the grid

square up into the four component sub-squares.

Adapting this idea to DP maps presents a number of challenges. The primary challenge

is that the grid squares in a DP map are very rarely identical. Since each grid square

potentially has a large set of different entries, it is unlikely that adjacent grid squares agree

across all possible hypotheses. Even for a single particle, the stochastic nature of the

occupancy grid means that adjacent grid squares often have differing amounts of evidence

to support an observation. Even under the best of assumptions, it seems unlikely that quad

trees could present a significant advantage in terms of space requirements. However, it is

possible that some level of speed may be gained, if the quad tree is formulated correctly.

Instead, let us concentrate on increasing the speed of line traces through the map, which

will improve running time of the localization stage, empirically the most time consuming

portion of DP-SLAM. If the quad tree is built by ignoring the amount of supporting evi-

dence, grid squares could be generalized over their density values,
�
. The only situations

where this value could be expected to generalize with any regularity is in areas observed

to be empty, or in areas where no observation has been made at all. Fortunately, these two

types of grid squares dominate the bulk of the map. The most straightforward approach

would involve maintaining an entire observation list at each level in the quad tree, and

the decision as to whether to look at the next level would be made individually for each

particle.

There remain a number of issues regarding precisely how to implement this basic con-

cept, particularly concerning how to maintain the map cache effectively. However, it is

possible that the time required to perform the necessary line traces through the map could

131

be dramatically reduced. It is also possible that it could be used to help with map updates,

with some further research.

12.3.2 Variable Map Resolution

Another issue that needs to be addressed is the possibility of variable resolution occupancy

grids. Most existing sensors degrade in resolution as the distance increases. This occurs

not only from a potential increase in the noise from the sensor, but also from the expansion

of the field of view. Since the data points from a single observation do not cover parallel

lines, the distance between the data points grows as the distance from the sensor increases.

This leads to a sparse coverage of the environment at the far end of the sensor range.

To deal with this problem appropriately, particularly with very high resolution maps or

long range sensors, it would seem appropriate to be able to represent the map at several

different levels of resolution. Areas first observed at a great distance would be entered

into the map at the lowest resolution, and as the robot approached closer to that area, the

data could be resolved into a higher resolution. How exactly to generalize data both to

higher and lower resolutions, in a principled and efficient manner, is an open question

which is worth some serious investigation. This would be particularly useful for outdoor

environments with a three dimensional map, both in terms of increasing the accuracy of

the map as well as possibly increasing the practical speed of the algorithm.

12.3.3 Soft Updates

In DP-SLAM there is a slight inconsistency in the way that the sensor is handled. For

purposes of localization, the observations are treated as noisy, to create a a more realistic

probability for each observation, given the robot’s pose and map. However, when updating

the map, the sensor is treated as a deterministic sensor, and the observation is added to the

map as if it were completely accurate. This is not a complete contradiction, as the map can

132

be viewed as an accumulation of evidence, and thus a predictor of what future observations

might return.

In order to build a better map, particularly with greater motion between observations or

a finer grid resolution, it may be useful to treat the sensor as a noisy reading when updating

the map as well. This would entail making a soft update to the map, perhaps by distributing

the observation of stopping the sensor across multiple grid squares. The original work on

occupancy grids [22] developed a very good early treatment of this idea for sonar sensors.

This could also be extended to include some degree of hypothesized data association, so as

to attempt to exactly pinpoint the true locations of objects, as compared to where we can

expect them to be observed in future sensor readings.

12.3.4 Improved Priors

In earlier sections, we describe the treatment of previously unobserved grid squares, and

the prior that is used for determining their occupancy during localization. The development

of this prior has largely been intuitive and empirical. After using our knowledge of the laser

range finder in general, we were able to make a reasonable assumption about the behavior

of a sensor in the absence of previous knowledge, which we have found to works well in

practice. However, significant improvement on this treatment of unknown space is likely

possible.

More examination of the proper treatment of previously unobserved squares could po-

tentially develop a superior method. Experiments to determine the likelihood of a grid

square’s occupancy, based on other nearby observations, might uncover a useful set of

dependencies. This could lead to a treatment very similar to soft updates, or variable reso-

lution. Another approach that has been recently suggested for occupancy grids is the use of

polygonal random fields to provide a principled set of priors for the unobserved areas in the

map [39]. Given the significant amount of new area which is observed at each time step,

133

it is could be very valuable to extract any possible extra information which could improve

the accuracy of the map.

12.3.5 Spheres of Influence

Previously, all of the discussion of occupancy grids has, not surprisingly, assumed a dis-

crete, grid-like structure to store the evidence in. However, there is nothing specifically

holding us to this structure. One of the most interesting possible directions to investigate

for mapping is the possibility of other representations of a metric map.

One possible extension to occupancy grid involves removing the inherent discretization

of the world. While this is a very convenient form for storing the information collected

by the sensors, it can lead to possible biases or loss of information across the discrete

boundaries of the grid.

Consider a map representation where the information is still stored at regular intervals

along a grid-like structure. However, instead of each point representing a finite grid square,

over which this data is the only pertinent set of observations, we can allow the data points to

have overlapping areas of influence. Thus the probability that a given location is occupied

is a combination of several of the nearby data points, weighted by some function of the

distance from the given location to the data point. This allows us to not only avoid the

discretization problems inherent in an occupancy grid, but also suggests a partial solution

to the treatment of unobserved areas. This formulation also provides a natural progression

across multiple resolutions.

Several issues would still need to be investigated in this formulation of the map. Certain

technical issues would need to be handled, such as the appropriate weighting function used

to determine the influence of a particular data point. Also, a new method would have to be

developed to determine how to compute the probability of a line trace, now that the density

of an area is a smooth function, rather than a series of step functions. It may become

134

necessary to compute a full integral of the probability of stopping the sensor, rather than

taking a sum of discrete steps. However, even an approximation of an integral could be

more accurate than the implicit approximation introduced by the discrete occupancy grid.

This map representation, or others like it, is likely to require significant amounts of re-

search to develop fully. However, the potential rewards for a more dynamic and more exact

map representation could be very useful, not only for SLAM, but other robotic applications

as well.

12.4 Active SLAM and Exploration

Typically, SLAM is treated purely as a passive algorithm; the robot’s motion and sensors

are left under the control of another process on the robot. This restriction is not neces-

sary, however, and interesting control questions arise when the uncertainty of of SLAM is

considered in determining the best actions for the robot.

In the field of pure localization, there is some research into the problem of active local-

ization [40]. For this problem, the localization algorithm is recognized as having difficulty

under certain circumstances. To reduce the probability of the robot becoming lost during a

trajectory, the potential uncertainty in the robot’s pose is taken as an additional cost while

performing path planning for the robot.

Interesting decisions could result from attempting to solve the same problem for SLAM.

While many of the same situations which are unfavorable for localization would also be

undesirable for SLAM, there exist many new and more complicated problems for SLAM.

The precise path used to arrive at a given location has a significantly greater impact on

SLAM than on pure localization. This could possibly lead to better paths which include

several small loops in the trajectory, since this could greatly reduce the uncertainty in the

map, allowing the robot to arrive at the desired location with more certainty.

In addition to optimizing path planning with respect to the difficulties of SLAM, there

135

are other questions that concern integrating SLAM with control strategies. One area which

has received very little rigorous attention is the problem of exploration. In many situations,

such as scientific missions, search and rescue, or surveillance, the collection of new infor-

mation is the very goal of the robotic motion. In these cases, we would like to determine

the optimal path for the robot to take that provides the most information about the environ-

ment, and expands the map as much as possible. In the cases of exploration, the robot must

prioritize which unknown areas to visit next, and how best to place itself so as to observe

the most new information, while still maintaining a high degree of reliability and accuracy

for the map and position of the robot.

12.5 Principled Loop Closing

A large number of existing SLAM methods have loop closing as an explicit feature of the

algorithm. Whenever the robot revisits an area by a different path, there exists additional

information which can be leveraged for improved accuracy. However, the majority of these

methods perceive loop closing as a separate event from the rest of mapping, and incorporate

the additional information in a weak and unprincipled manner.

DP-SLAM does not currently address the loop closing issue directly, as we have con-

centrated on improving the overall accuracy of the algorithm, and use loop closure as a

an evaluation measure, rather than as a way to fix problems. In particular, the hierarchi-

cal mapping method leverages much of the same information used in explicit loop closing

techniques, in a more principled approach. However, other approaches to the same problem

could possibly result in better solutions.

One potential method to exploit the information in closing a loop is very similar to

the hierarchical mapping method already described. However, instead of using DP-SLAM

at all levels, it may be a better idea to only use the particle filter at the lowest level. At

the higher level, we could instead use an extended Kalman filter to maintain the relations

136

between the various local maps. This would allow the high level to choose a variety of

methods to “sense” the various local maps. Landmarks could be identified as features

within the local maps, keeping in the spirit of most EKF methods. Alternatively, a restricted

method of global localization could be performed on the different local maps, as it became

likely that robot had returned to that area.

137

Bibliography

[1] A. Howard and N. Roy, “The robotics data set repository (radish),” 2003. [Online].
Available: http://radish.sourceforge.net/

[2] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localization: Efficient
position estimation for mobile robots,” in Sixteenth National Conference on Artificial
Intelligence (AAAI-99), 1999.

[3] W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun, “Sonar-based mapping with
mobile robots using EM,” in Sixteenth International Conference on Machine Learn-
ing (ICML-99), 1999.

[4] S. Thrun, “A probabilistic online mapping algorithm for teams of mobile robots,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 335–363, 2001.

[5] F. Lu and E. Milios, “Globally consistent range scan alignment for environment map-
ping,” Autonomous Robots, vol. 4, pp. 333–349, 1997.

[6] J. Gutmann and K. Konolige, “Incremental mapping of large cyclic environments,”
in IEEE International Symposium on Computational Intelligence in Robotics and
Automation (CIRA), 2000.

[7] B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli, “Local metrical
and global topological maps in the hybrid spatial semantic hierarchy,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), May 2004.

[8] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo Methods in Prac-
tice. Berlin: Springer-Verlag, 2001.

[9] S. Thrun, “Probabilistic algorithms in robotics,” AI Magazine, vol. 21, no. 4, pp.
93–109, 2000.

[10] K. Murphy, “Bayesian map learning in dynamic environments,” in Advances in Neu-
ral Information Processing Systems 11, 1999.

[11] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that provably
converges,” in Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI-03), 2003, pp. 1151–1156.

138

[12] M. Paskin, “Thin junction tree filters for simultaneous localization and mapping,”
in Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03),
Acupulco, 2003.

[13] G. Welch and G. Bishop, “An introduction to the kalman filter,” Department of COm-
puter Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, Tech.
Rep. TR95-041, 1995.

[14] P. Cheeseman, P. Smith, and M. Self, “Estimating uncertain spatial relationships in
robotics,” in Autonomous Robot Vehicles, 1990, pp. 167–193.

[15] Y. Liu and S. Thrun, “Results for outdoor-SLAM using sparse extended information
filters,” 2003.

[16] A. Doucet, N. de Freitas, K. Murphy, and S. Russell, “Rao-blackwellised particle fil-
tering for dynamic bayesian networks,” in Uncertainty in Artificial Intelligence (UAI),
2000.

[17] J. Nieto, T. Bailey, and E. Nebot, “Scan-SLAM: Combining EKF-SLAM and scan
correlation,” in 5th International Conference on Field Robotics (FSR), June 2005.

[18] S. Thrun and A. Bucken, “Integrating grid-based and topological maps for mobile
robot navigation,” in Thirteenth National Conference on Artificial Intelligence (AAAI-
96), 1996, pp. 944–950.

[19] S. Thrun, J.-S. Gutmann, D. Fox, W. Burgard, and B. Kuipers, “Integrating topologi-
cal and metric maps for mobile robot navigation: A statistical approach,” in Fifteenth
National Conference on Artificial Intelligence (AAAI-98), 1998, pp. 989–995.

[20] D. Hähnel, D. Fox, W. Burgard, and S. Thrun, “A highly efficient FastSLAM algo-
rithm for generating cyclic maps of large-scale environments from raw laser range
measurements,” in IEEE International Conference on Intelligent Robots and Systems
(IROS), 2003.

[21] H. P. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” in 1985
IEEE International Conference on Robotics and Automation (ICRA-85), St. Louis,
Missouri, Mar. 1985, pp. 116–121.

[22] M. C. Martin and H. Moravec, “Robot evidence grids,” Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-96-06, March 1996.

[23] H. Moravec, “Certainty grids for sensor fusion in mobile robots,” in Sensor Devices
and Systems for Robitcs, 1989, pp. 243–276.

139

[24] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile robots in dynamic
environments,” Journal of Artificial Intelligence Research, vol. 11, 1999.

[25] D. Fox, “Markov localization: A probabilistic framework for mobile robot localiza-
tion and navigation,” Germany, 1998.

[26] J. H. Leonard, , and H. F. Durrant-Whyte, “Mobile robot localization by tracking
geometric beacons,” in IEEE Transactions on Robotics and Automation, June 1991,
pp. 376–382.

[27] A. Eliazar and R. Parr, “DP-SLAM: Fast, robust simulataneous localization and map-
ping without predetermined landmarks,” in Eighteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI-03), Acupulco, 2003.

[28] C. Kollman, K. Baggerly, D. Cox, and R. Picard, “Adaptive importance sampling on
discrete markov chains,” Los Alamos National Laboratory, Los Alamos, NM, Tech.
Rep. LA-UR-96-3998, 1996.

[29] D. Hähnel, W. Burgard, D. Fox, and S. Thrun, “A highly efficient FastSLAM algo-
rithm for generating cyclic maps of large-scale environments from raw laser range
measurements,” in IEEE International Conference on Intelligent Robots and Systems
(IROS), 2003.

[30] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling,” in IEEE
International Conference on Robotics and Automation (ICRA), 2005, pp. 2443–2448.

[31] J. Borenstein and L. Feng, “Umbmark - a method for measuring, comparing, and cor-
recting dead-reckoning errors in mobile robots,” University of Michigan, Ann Arbor,
MI, Tech. Rep. UM-MEAM-94-22, 1994.

[32] R. Voyles and P. Khosla, “Collabrative calibration,” in IEEE International Conference
on Robotics and Automation (ICRA), Morgan Kaufmann, 1997.

[33] N. Roy and S. Thrun, “Online self-calibration for mobile robots,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Morgan Kaufmann, 1999.

[34] W. Burgard, A. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner,
and S. Thrun, “Experiences with an interactive museum tour-guide robot,” Artificial
Intelligence, vol. 114, no. 1-2, pp. 3–55, 1999.

[35] N. de Freitas, R. Dearden, F. Hutter, R. Morales-Menendez, J. Mutch, and D. Poole,

140

“Diagnosis by a waiter and a Mars explorer,” in IEEE Special Issue on Sequential
State Estimation, 2003.

[36] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden markov model: Analysis
and applications,” Machine Learning, vol. 32, no. 1, pp. 41–62, 1998.

[37] S. Thrun, D. Hähnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Burgard, C. Baker,
Z. Omohundro, S. Thayer, and W. Whittaker, “A system for volumetric robotic map-
ping of abandoned mines,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), 2003.

[38] D. G. Lowe, “Object recognition from local scale-invariant features,” in International
Conference on Computer Vision ICCV, 1999, pp. 1150–1157.

[39] M. Paskin, “Robotic mapping with polygonal random fields,” in Twenty-First Confer-
ence on Uncertainty in Artificial Intelligence (UAI-05), Edinburgh, Scotland, 2005.

[40] D. Fox, W. Burgard, and S. Thrun, “Active markov localization for mobile robots,” in
Robotics and Autonomous Systems, vol. 25, 1998, pp. 195–207.

141

Biography

Austin Eliazar was born September
� � �

, 1979 in Gainesville, FL. He received his Bachelor
of Arts from New College of Florida in May, 2001.

His published papers include “DP-SLAM” (IJCAI-03), “DP-SLAM 2.0” (ICRA-04),
“Learning Probablistic Motion Models for Mobile Robots” (ICML-04), and “Hierarchical
Linear/Constant Time SLAM Using Particle Filters for Dense Maps” (NIPS-05), all of
which were co-authored with Ronald Parr.

142

