Introduction to Algorithms
6.046J/18.401J

ALGORITHMS
|
-~
o

\ \“

‘\“

Lecture 20
Prof. Piotr Indyk

“.w* Fast Fourier Transform

¢ Discrete Fourier Transform (DFT):
— Given: coefficients of a polynomial
a(x)=a,ta,x+a,x>+...+a, x™!
—Goal: compute
a(0,%), a(,)), a(,™),
where w, = ™" = cos(2st/n)+i sin(27/n)
¢ Challenge: perform DFT in O(n log n) time

© Piotr Indyk Introduction to Algorithms

¥ Motivation I: 6.003

» FFT is essential for digital signal
processing

—ay, a,,... a,: discretized signal
in the time domain

—a(w,%), a(w,), ..., a(w,™"):
signal in the frequency domain

— FFT enables quick conversion
from one domain to the other

* Used in compact disks, digital
cameras, synthesizers, etc, etc.

© Piotr Indyk Introduction to Algorithms

\,- Example application: SETI

* Searching For Extraterrestrial Intelligence:

e SETI@home “At each drift rate, the client searches for signals at one
or more bandwidths between 0.075 and 1,221 Hz. This is accomplished b
using FFTs of length 2" (n=3,...,17) to transform the data into a number of
time-order spectra”

© Piotr Indyk Introduction to Algorithms

w7 Motivation II: Computer
~*" Science

* We will see how to multiply two n-degree
polynomials in O(n log n) time using FFT

* Multiplication of polynomials =
multiplication of large integers - crypto

* Other surprising applications:

— Pattern matching with wildcards
(recitations)

© Piotr Indyk Introduction to Algorithms

\‘“

¥ FFT

Y

* Very elaborate implementations

(e.g., FFTW, “the Fastest Fourier Transform
in the West”, done at MIT)

* Hardware implementations

© Piotr Indyk Introduction to Algorithms

FFT

© Piotr Indyk Introduction to Algorithms

e |

“ & DFT: Preliminaries

Y

+ Goal: we want a(w,%), a(w, '), ..., a(w ")
where , is the “principal n'" root of unity”.
Le., (w,)"=1 for all j=0,...,n-1

* We will work in the field of complex numbers
where

, = e 2n=cos(2nt/n)+i sin(27/n)
* Then
(w,))r= e 2 =cos(2mj)+i sin(2mj) = 1

© Piotr Indyk Introduction to Algorithms

“<* Main Lemma

 If n>0 is even, then the squares of the n-th
roots of unity are the n/2-th roots of unity,
ie.,
(w/)?=w,, forj=0...n-1
* Note that /= w,)" for j=0...n/2-1
 Therefore:

{ (@22, o, (@12, (0,2 o, (0,71)? = {w,,0,..., 0,1}

2 S

. Proof: ((’Unj)h =g - “2ij/n = e 2nij/(n/2) :(’Un Zj

© Piotr Indyk Introduction to Algorithms

FoY FFT

Y

* Divide and conquer algorithm
¢ Idea: divide a(x) into al’l(x) and al'l(x):
—alfl(x) = a,ta,x+a,x>+...+a, ,xV*!
—alll(x) = a,ta;x+asx>+...+a, | xV*!
* Note that
a(x) = alfl(x?)+x alll(x?)
a(0,) = a(@,) Yo,) a(,)?)

© Piotr Indyk Introduction to Algorithms

\,- FFT: the algorithm

N

* Want: evaluate the polynomial a(x) at points
{00, ..., 0>}
» FFT algorithm:
— Recursively evaluate al%l(x) and al'l(x) at

P:ll ((U“())l N ((Unl)l e ((u““'\)l : = :(U“ 1() s ey OO 2n 2—1}

— Compute a(w, /) = al’l((w,)?)+wJ alll((w])?)
for j=0...n-1
* Time: T(n)=2T(n/2)+O(n) = T(n)=O(n log n)
* This is the whole FFT!

© Piotr Indyk Introduction to Algorithms

2T(n/2)

O(n)

< Comments

* We needed to assume that n is a power of 2
* This assumption cannot be easily removed
— We need algebraic properties of o

© Piotr Indyk Introduction to Algorithms

e

Implications

© Piotr Indyk Introduction to Algorithms

“* Inverse DFT

* We showed how to transform quickly
1 a()), a(w,)), ..., a(o,"")

 The opposite transformation, i.e.,

Qg Ays--- 8y
0 1 -1

a(w,"), a(w,"), ..., a(w, ") = a,, ay,... a,

is called “the Inverse DFT”

« Fact: Slightly modified FFT solves the
inverse DFT in O(n log n) time [see CLRS,
p. 836 for an optional proof]

© Piotr Indyk Introduction to Algorithms

“.<* Polynomial multiplication

* Input: n-1-degree polynomials a(x), b(x)
* Output: a polynomial c(x)=a(x)*b(x)

— ¢=a*b; ... T a%b,
» Have seen sub-quadratic time algoritms
 Claim: there is O(n log n) time algorithm

© Piotr Indyk Introduction to Algorithms

—

“ <~ FFT-based poly multiplication

+ Extend a,b to degree 2n-1 (by adding 0’s)
* Using FFT, compute:
= a(w,,0), a(w,,), ..., a(wy,>™1)
= b(0,,"), b(w,,1), ..., b(w,,>™1)
+ Compute c(m,,))= a(w,,)*b(w,,)), j=0..2n-1
» Compute ¢, ¢/,... ¢, using inverse FFT
* Correctness: if we fix the values of a d-degree polynomial
at d+1 points, then the polynomial is unique
— E.g., there is only one line passing through two distinct
points
— See CLRS, p. 825 for an optional proof

© Piotr Indyk Tntroduction o Bgumhm\

= 4~ Conclusions

Y

e DFT + inverse DFT in O(n log n) time
* LOTS of applications!

© Piotr Indyk Introduction to Algorithms

