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1. Introduction

We exhibit a family of 3SAT instances for which quantum adiabatic optimization
provably fails, since the spectral gap is exponentially small. This failure highlights
the inability of the algorithm to distinguish between local and global optima.

2. Physics Background

2.1. Quantum states, Hamiltonians, Schrödinger’s equation.

• A quantum state Ψ is a linear superposition of basis states {|x〉}x and is
described by the summation |Ψ〉 =

∑
x αx|x〉, with amplitudes αx ∈ C and

|α2
x| the probability of observing the state x.

• Formally, for an N dimensional system, the quantum state is represented
by a "2 normalized vector in the N dimensional Hilbert with complex am-
plitudes.

• Throughout this article we assume that our quantum system is finite di-
mensional (the dimension is typically denoted by N).

• A change of the state Ψ is represented by a rotation of the vector |Ψ〉 in
the Hilbert space.

• How the state changes is determined by the Hamiltonian H , which describes
the forces that act on the state Ψ.

• The Hamiltonian, which can be time dependendent, acts as a linear operator
on the state vector, and hence is described by a matrix ∈ CN×N . The time
evolution is expressed by Schrödinger’s differential equation:

i!d|Ψ(t)〉
dt

= H(t)|Ψ(t)〉, (1)

where ! is Planck’s constant h ≈ 6.6262×10−34 Joule seconds dived by 2π.
• The requirement that the vector |Ψ〉 stays normalized is reflected by the

requirement that the matrix H is Hermitian (H† = H).
• Crucial for an understanding of a Hamiltonian is the spectral decomposi-

tion into its eigenstates (=eigenvectors) and corresponding eigen energies(?)
(=eigenvalues) of H(t). The units of the eigenvalues is energy and the state
with the smallest eigenvalue is called the ground state.

• For a constant Hamiltonian H =
∑

j λj |φj〉〈φj | and |Ψ(0)〉 =
∑

j βj |φj〉,
then |Ψ(T )〉 =

∑
j e2πiλjTβj|φj〉.
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2.2. Quantum Adiabatic Theorem.
• Born and Fock’27: Let H(s) for 0 ≤ s ≤ 1 describe a continuous evolution

from the ‘initial Hamiltonian’ H(0) to the ‘final Hamiltonian’ H(1). If 1)
the initial state of the system is in the ground state H(0) 2) for every s
the ground state of H(s) is unique and the evolution from H(0) to H(1) is
done ‘slow enough’, then the final state will be the ground state of H(1).

• quantitative version: ‘Slow enough’ means: not faster than 1/gap2(H(s)),
where gap(H(s)) is the gap between the two smallest eigenvalues of H(s).

3. Quantum Adiabatic Optimization

3.1. The Idea by Farhi et al.
• The ground state of H(1) can be the solution to an minimization problem:

For example, let H(1) =
∑

z f(z)|z〉〈z| with f a cost function over a large
domain.

• Crucial for this to work are the requirements
(1) The evolution H(0) → H(1) must be efficiently implementable
(2) The ground state of H(0) must be efficiently constructable
(3) The gap of H(s) during the evolution has to be big (in comparison

with the dimension = size of domain).
• Farhi et al. Suggested that H(s) = (1 − s)H0 + sHf with H0 :=

∑
j σ

(j)
x

and Hf :=
∑

z f(z)|z〉〈z| with z ∈ {0, 1}n in the computational basis.

3.2. Efficient Implementation of QAO.

3.3. Quantum Walks on the Hypercube and Other Graphs. underlying
graph + quantum walks changing walk - simulated annealing gap ... trouble com-
puting ground state.

delete rest of subsection
Before we analyze the power of the quantum adiabatic method we will first try

to get some understanding of this approach to optimization. A standard approxi-
mation technique tells us that for fixed Hamiltonian H = (1− s)H0 + sHf we have
eiH ≈ (ei(1−s)H0/m · eisHf /m)m, which gets more precise as m gets bigger. We can
decompose the effect of H into the effect of H0 and Hf .
The Effect of Hf : The operation of Hf is clear: a phase change |z〉 )→ eif(z)|z〉
proportional to the function value f(z).
Effect of H0: Equally important is the effect of the initial Hamiltonian, which is a
combination the single-qubit Hamiltonians

σx :=
1
2

(
1 −1
−1 1

)
(2)

that is applied to each of the n qubits: H0 :=
∑n

j=1 σ
(j)
x (where we used the

convention of omitting the trivial Hamiltonians such that σ(j)
x stands for I(1,...,j−1)⊗

σ(j)
x ⊗ I(j+1,...,n)). The eigenstates of σx are the two uniform superpositions |0̂〉 :=
1√
2
(|0〉+ |1〉) (ground state with eigenvalue 0) and |1̂〉 := 1√

2
(|0〉− |1〉) (excited state

with eigenvalue 1). With this knowledge it is straightforward to see that
• H0 has as ground state the uniform superposition 1√

2n

∑
z |z〉 (with energy

0)
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• The coupling 〈z′|H0|z〉 between two different strings is non-zero only for
those (z, z′) that have Hamming distance 1. This is reflected by the fact
that the non-zero off-diaginal terms of H0 define the adjacency matrix of
the hypercube {0, 1}n.

Joint Effect of (1 − s)H0 + sHf : By viewing the effect of the Hamiltonian H(s) as
the joint effect of (1− s)H0 and sHf we see a combination of a ‘mixing operation’
(defined by H0) along the edges of the hypercube {0, 1}n and a phase change
according to the values of the cost function f .

This setting and its numerous has proven to be extremely useful in the theory
of quantum computation. To position the quantum adiabatic method, we list the
following distinctions that researchers have made.

• Continuous time versus discrete time evolution: The adiabatic al-
gorithm uses a Hamiltonian that changes smoothly in a continuous time
fashion. Algorithms expressed in the circuit model will have use the uni-
tary transformations eiH0 and eiHf in a discrete time fashion such that the
Trotter approximation ei(1−s)H0+isHf ≈ ei(1−s)H0 ·eisHf does not necessarly
hold.

• Constant Hamiltonians versus Changing Hamiltonians: The adi-
abatic method uses a Hamiltonian H(s) that changes as the algorithm
proceeds from s = 0 to s = 1. If one keeps the Hamiltonian fixed, then it is
often possible to analyze the behaviour of the algorithm in greater detail.
Typically in this setting the state of the system will find the solution in a
periodic fashion (cf. Grover’s search).

• Searching databases versus complicated cost functions: In a data-
base search the cost function (which needs to be minimized) is a simple
delta function with f(z) = 0 for the target value, and f(z′) = 1 otherwise.
In heuristics we deal with a more complicated function f that defines an
(energy) landscape over the graph of search items. This allows an algorithm
to use the shape of the landscape as a guidance towards the solution, but
also carries the problem of local versus global minima.

• Different search graphs: Besides the hypercube, we can use other mix-
ing operations that correspond to other grpahs like the d dimensional grid
(Z/NZ)d and the complete graph KN . With the complete graph the algo-
rithm does not have any notion of distance between the strings, hence this
correspond where we treat each search items as a set without any further
structure (typical in the database search algorithm).

• Searching versus mixing An important application of walks on a graph
is the possibility of rapidly mixing to count the number elements of a struc-
ture. (Note that one can use the adiabatic algorithm in reverse to establish
this effect.)

4. Skeleton

4.1. Notation. Time dependent Hamiltonian H(t); ground state ψ0 of the time
dependent Hamiltonian; smallest eigenvalue λ0, next smallest eigenvalue: λ1 such
that the gap is λ1 − λ0.

4.2. For general Connected Graphs. We will assume that the initial Hamil-
tonian H0 is of the form H0 = −cA + dI where A is the adjacency matrix of an
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undirected connected graph, and c is positive. Since the final Hamiltonian Hf is
diagonal, the convex combination Hf (τ) also has a similar form to H0: namely
−cA + D where c is a positive constant and D is diagonal.

The following lemma proves a useful property of the ground state of the instan-
tenuous Hamiltonian Hf (τ) at every point during the adiabatic process.

Lemma 1. Let H be a Hamiltonian of the form −cA + D with A the adjacency
matrix of a undirected connected graph, c is positive and D is diagonal. Then H
has a unique ground state |ψ0〉 =

∑
x αx|x〉. Moreover we can assume that all αx

are positive reals.

Proof. Since we are interested in the ground state of H , we can equivalently consider
the principal eigenvector (the eigenvector corresponding to the largest eigenvalue)
of M := I − δH , with δ > 0 small enough such that M is a nonnegative matrix and
the diagonal entries of M are all positive. The pseudo-graph of M equals the graph
of A where we include all self-loops (due to the positive diagonal of M). Because M
is nonnegative we have Mw > 0 with w the finite width or diameter of the graph,
hence M is primitive (see [1, Chapter 8]). This shows that H has a unique smallest
eigenvalue and all entries of the corresponding eigenvector can be assumed to be
positive. !

The above lemma applies to all but the final ground state of the adiabatic process
(where c = 0). For the final Hamiltonian H(1) = Hf , the states |s〉 that achieve the
minimum f(s) are the ground states of H(1). Hence if f has a unique minimum,
then Hf (τ) will have a unique ground state throughout the whole evolution τ =
0 → τ = 1. If f has several minima, then the ground state of Hf is a space spanned
by the vectors |x1〉, |x2〉 for the xj that achieve this minimum.

We now derive a lowerbound on the spectral gap in the very general setting
of connected graph Hamiltonians, thus providing an upperbound on the running
time of the adiabatic optimization algorithm. We note that we must add one
additional constraint here — that the cost function being optimized is polynomially
bounded. In terms of the notation above, this means that the diagonal matrix D
in Hf (τ) = −cA+D has entries bounded by a polynomial in log N , where N is the
dimension of the Hamiltonian.

Lemma 2. For connected graph Hamiltonians, the spectral gap will be no smaller
than 2−w log w, where w is the width/diameter of the graph.

Proof. [Here we will prove that on the cube {0, 1}n the quantum adiabatic
method will always succeed in time 2O(n log n).] Given the Hamiltonians H0

and Hf , define
M := −H0 − λHf , (3)

such that the off-diagonal terms of M are 0 or +1 and we the gap g(M) between the
biggest two eigenvalues of M equals the (1 + λ) times the gap of the two smallest
eigenvalues of 1

λ+1H0+ λ
1+λ . For λ ≥ n+1 be the adjusted Hamiltonian that has off

diagonal entries 0 or 1, is non-negative (entry wise) and positive definite (eigenvalue
wise). For this, p, q don’t have to be bigger than poly(n). By the mixing properties
of the hypercube, we see that Mn is a positive matrix with entries ≥ 1, which shows
that the gap of Mn between the two biggest eigenvalues is bigger than 1. Hence,
the gap of H is not smaller than 2−poly(n). !
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4.3. Adiabatic Optimization on the Hypercube. We now consider adiabatic
algorithms for optimization problems over binary strings. In this context the nat-
ural graph to consider is the n-dimensional hypercube. Luckily the corresponding
initial Hamiltonian H0 is natural and easy to implement, since H0 = σ(1)

x + . . .σ(n)
x .

This is the initial Hamiltonian suggested by Farhi, et al.
The underlying graph plays a crucial role in the evolution of the adiabatic pro-

cess, since the Hamiltonian only allows interaction between adjacent vertices. The
key to our analysis of the adiabatic process is to view it as a quantum analog of
local search. We show that if the cost function is monotone on the hypercube, then
so is the ground state at every point during the adiabatic process.

Definition 1 (Monotonicity on the hypercube). Consider the hypercube {0, 1}n

with the partial ordering on its strings x " y if and only if xi ≤ yi for all i =
1, . . . , n. A function f : {0, 1}n → R is monotonically decreasing if x " y implies
f(x) ≥ f(y). Similarly for monotonically increasing functions.

Recall that the ground state ψ0 of Hf (s) has positive real amplitudes αx. We
say that ψ0 is monotone decreasing if the function x )→ αx is monotone decreasing.

Lemma 3. For a monotone increasing cost function f , the ground state ψ0 of
Hf (s) is monotone decreasing as well.

Proof. Let M = I − δHf (τ). First observe that since φ is the unique principal
eigenvector of M , we can use the limit |φ〉 ∝ limn→∞ Mn|0n〉. Also M has interest-
ing structure — it can be written as a sum of two operators G0 and G1, where G0

is the adjacency matrix of the hypercube, and G1 is diagonal and monotonically
decreasing. |0n〉 is monotone, and moreover G0 and G1 each have the property that
when they operate on a monotone vector the result is a monotone vector. It follows
that Mn|0n〉 is monotone, and therefore so is |φ〉. !

The intuitive picture behind the above lemma is that the adiabatic process starts
off with the uniform superposition on the hypercube, and the ground state progres-
sively shifts amplitude towards the optimum vertex (the base of the hypercube)
until it has the entire weight there at τ = 1.

We now use the monotonicity of the ground state to show that the total weight
of the ground state at the top levels of the hypercube is neglibile throughout the
adiabatic process.

Lemma 4. Let p be a monotonically decreasing probability distribution over the
hypercube {0, 1}n. Then, for every δ > 0:

∑
w(x)≥(

1
2+δ)n

p(x)
∑

x p(x)
≤

|{x : w(x) ≥ (1
2 + δ)n}|

2n
= 2−Ω(n), (4)

where w(x) denotes the Hamming weight of the string x.

So far we have established that for monotone cost functions, the ground state
throughout the adiabatic process has negligible weight at the top levels of the hy-
percube. It follows that if we modify the cost function at the top levels of the
hypercube, then the original ground state still feels almost the same force as be-
fore. Intuitively, the dynamics are essentially unchanged and if run for polynomial
time the process converges as before to the base of the hypercube, even though
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the optimum vertex for the modified cost function may lie in the top of the hy-
percube. Formally, we use some of these considerations to prove an exponentially
small upperbound on the spectral gap for the adiabatic process on the modified
cost function.

Definition 2. A cost function f : {0, 1}n → R is “ε-deceptive monotone” if it is
monotone for all but a fraction ε vertices comprising the top layers of the hypercube.
Moreover, we require that the global minimum is not at f(0n) (and hence in the ε-top
of the hypercube.

Theorem 1. For ε-deceptive monotone cost functions the adiabatic process has
spectral gap at most ε.

Proof. Let g be an ε-deceptive monotone function and let f be a monotone function
that only differs from g at the top. How does the adiabatic algorithm perform while
trying to minimize g? Since the ground state of Hf (τ) is always monotone, by
the claim above, its ground state ψ0 ‘feels’ only an exponentially small difference
between Hf and Hg. Thus if we were to switch from Hf to Hg, the state ψ(τ)
of the adiabatic algorithm would not notice the difference very much. This idea
can be formalized to show that there must be a critical value of τc such that the
eigenvalue gap of the adiabatic algorithm for minimizing g is exponentially small
in n.

To see this, view Hg(τ) in the rotating eigenbasis φ0(τ),φ1(τ), . . . of Hf (τ)—
call this matrix A(τ). By definition, the ground state of Hf (τ) is always φ0(τ).
At τ = 0 and τ = 1, Hf and Hg have the same eigenbasis and hence both A(0)
and A(1) are diagonal matrices. Moreover, the initial A(0) has the same ground
state φ0(0), while the minimum eigenvalue of the final A(1) corresponds to the
state |φs(1)〉 = |s〉 that minimizes g, where this s is a string with Hamming weight
≥ (1

2 + ε)n.
The main claim is that for every 0 ≤ τ ≤ 1, the interaction between φ0(τ) and

the other eigenstates φj(τ) is expontially small. Which gets expressed by the fact
that the norm of the off-diagonal entries of A(τ) corresponding to the state |0n〉
are exponentially small. This is because when written in the standard basis, |0n〉
is monotone, and so ‘feels’ only an exponentially small difference between f and g.

Now let B(τ) be the matrix that results from zeroing out the off-diagonal entries
in the |0n〉 row and column of A(τ). Now, B(τ) has two blocks, and its initial
minimum eigenvalue at τ = 0 starts in the first block and ends up (at τ = 1) in
the second block. It follows that there is a critical τc such that there is a level-
crossing between the two smallest eigenvalues of B(τ). But since ‖A(τ) − B(τ)‖
is exponentially small, it follows that at this same moment the eigenvalue gap of
A(τc) is exponentially small as well. !

Remark: The properties in this sections hold more general for “sedimented
graphs” and their corresponding monotone functions.

Corollary 1. The following 3SAT function is ε-deceptive monotone.

4.4. A Hard Family of 3SAT Instances. We have just shown how functions
with a hidden global minimum can mislead adiabatic algorithms. Here we show how
such a fooling function occurs when trying to solve the NP-complete problem 3SAT
via adiabatic computing, as suggested by Farhi et al. The 3SAT problem asks us
to decide whether a Boolean formula Ψ(x1, . . . , xn) in ‘3-conjunctive normal form’
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is satisfiable by an assignment x ∈ {0, 1}n, or not (where we use the values 0 (1)
to denote that a variable is set to be False (True)). The normal form that is used
requires that the formula is a conjunction OR-clauses of three variables.

The adiabatic approach tries to solve the 3SAT problem by minimizing the num-
ber of violated clauses over the set of 2n possible assignments. More formally,
given a 3CNF formula Ψ the cost function VΨ : {0, 1}n → N is defined, where
VΨ(x) := #(violated clauses in Ψ(x)). Our goal is now to define a Boolean fomula
Φ that has a cost function that is ‘deceptive’ in the sense of the previous section.
For a simple example, consider first the formula

Φ(x1, . . . , xn) :=
∧

1≤i,j,k≤3

(xi ∨ x̄j ∨ x̄k), (5)

which has n3 clauses. By symmetry, one sees that the cost VΨ(x) only depends on
the Hamming weight w(x) of the assignment x ∈ {0, 1}n. Specifically, the string x
with w(x) assignments xi = True (combined with (n−w(x))False values) will have
(n−w(x))w(x)2 different ways of violating the (xi∨ x̄j ∨ x̄k) clauses. Hence we have
for the cost function VΦ(x) = (n− w(x))w(x)2 , which is a third degree polynomial
in 0 ≤ w(x) ≤ n that has its two minima at the extreme points x = 0n and x = 1n.
What is important for our purposes here is that the maximum of VΦ is reached
for the strings with Hamming weight 2

3n, and that on the part on the hypercube
between 0n and w(x) = 2

3n, VΦ is monotone increasing. To get a truelly fooling
function, we need to make entry x = 1n the unique minimum of the function V ,
but this is easily done by the following 3CNF formula:

Φ′(x1, . . . , xn) := (x1 ∨ x1 ∨ x1) ∧
∧

1≤i,j,k≤n

(xi ∨ x̄j ∨ x̄k). (6)

Note that indeed the only satisfying assignment of Φ′ is obtained by setting all
variables x1, . . . , xn to be true. The satisfiablity of Φ′ thus gets expressed by the
global minimum VΦ′(1n) = 0. In this case, the value of VΦ′(x1, . . . , xn) only gets
determined by x1 and the Hamming weight 0 ≤ |w(x)| ≤ n of the string x =
x1 . . . xn, which indicates how many variables xj are True:

VΦ′(x1, . . . , xn) = (1 − x1) + (n − w(x)) · w(x)2. (7)

On the domain w(x) < 2
3n, this functoin is monotone, while its global minimum

is obtained at VΦ′(1n) = 0. This thus fits the general lower bound scenario of the
previous section, hence the minimization of VΦ′ requires an exponential slowdown
for the quantum adiabatic algorithm.
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