
princeton university cos 522: computational complexity

Lecture 1: Introduction

Lecturer: Sanjeev Arora Scribe:Scribename

The central problem of computational complexity theory is : how efficiently
can we solve a specific computational problem on a given computational model?
Of course, the model ultimately of interest is the Turing machine (TM), or
equivalently, any modern programming language such as C or Java. However,
while trying to understand complexity issues arising in the study of the Turing
machine, we often gain interesting insight by considering modifications of the
basic Turing machine —nondeterministic, alternating and probabilistic TMs,
circuits, quantum TMs etc.— as well as totally different computational models—
communication games, decision trees, algebraic computation trees etc. Many
beautiful results of complexity theory concern such models and their interrela-
tionships.

But let us refresh our memories about complexity as defined using a multi-
tape TM, and explored extensively in undergrad texts (e.g., Sipser’s excellent
“Introduction to the Theory of Computation.”) We will assume that the TM
uses the alphabet {0, 1}. A language is a set of strings over {0, 1}. The TM is
said to decide the language if it accepts every string in the language, and re-
jects every other string. We use asymptotic notation in measuring the resources
used by a TM. Let DTIME(t(n)) consist of every language that can be decided
by a deterministic multitape TM whose running time is O(t(n)) on inputs of
size n. Let NTIME(t(n)) be the class of languages that can be decided by a
nondeterministic multitape TM (NDTM for short) in time O(t(n)).

The classes P and NP, and the question whether they are the same is basic
to the study of complexity.

Definition 1 P = ∪c≥0DTIME(nc).
NP = ∪c≥0NTIME(nc)

We believe that the class P is invariant to the choice of a computational
model, since all “reasonable” computational models we can think of happen to
be polynomially equivalent1. Namely, t steps on one model can be simulated
in O(tc) steps on the other, where c is a fixed constant depending upon the
two models. Thus in a very real sense, the class P exactly captures the notion
of languages with “feasible” decision procedures. Of course, one may argue
whether DTIME(n100) represents “feasible” computation in the real world.
However, in practice, whenever we show that a problem is in P, we usually can
find an n3 or n5 time algorithm for it.

1Recent results suggest that a computational model based upon quantum mechanics may
not be polynomially equivalent to the Turing machine, though we do not yet know if this
model is “reasonable” (i.e., can be built). We will discuss the quantum model later in the
course.

1

2

x

T = n
O(1)

x is in L iff a valid tableau exists.

Figure 1: Tableau as used in Cook-Levin reduction

NP contains decision problems in which a “YES” answer has a short cer-
tificate whose size is polynomial in the input length, and which can be verified
deterministically in polynomial time. Formally, we have the following definition,
which is easily seen to be equivalent to Definition 1.

Definition 2 (Alternative definition of NP) Language L is in NP if
there is a language L0 ∈ P and constants c, d > 0 such that

∀x ∈ {0, 1}∗
x ∈ L ⇐⇒ ∃y ∈ {0, 1}∗

, |y| ≤ |x|c + d and (x, y) ∈ L0.

Example 1 CLIQUE, 3-COLORING are NP problems and not known to be
in P. The language of connected graphs is in P.

A polynomial-time reduction from language A to language B is a polynomial-
time computable function f mapping strings to strings, such that x ∈ A if and
only if f(x) ∈ B. A language is NP-hard if there is a polynomial-time reduction
from every NP language to it. An NP-hard language is NP-complete if it is
NP-hard and in NP.

Cook and Levin independently showed that the language 3SAT is NP-
complete. We briefly recall this classical reduction. Let L be an NP language
and x be an input. The reduction uses the idea of a tableau, which is a step-
by-step transcript whose ith line contains the state of the tape at step i of the
computation. Clearly, x ∈ L iff there exists a tableau that contains a computa-
tion of M that contains x in the first line and in which the last line shows that
M accepts (Figure 1).

The main observation is that the tableau represents a correct computation
iff all 2 × 3 windows look “correct,” i.e. thay satisfy some local consistency
conditions. Cook-Levin reduction encodes these consistency checks with 3CNF
clauses so that a valid tableau exists iff the set of all these 3CNF clauses is
satisfiable.

Remark 1 The fact that NP-hard problems exist is trivial: the halting prob-
lem is an NP-hard problem. Actually, the fact that NP-complete languages
exist is also trivial. For instance, the following language is NP-complete:

{< M, w, 1n >: NDTM M accepts w in time n} .

3

Cook and Levin’s seminal contribution was to describe explicit, combinatorial
problems that are NP-complete. 3SAT has very simple structure and is easy
to reduce to other problems.

1 EXPTIME and NEXPTIME

The following two classes are exponential time analogues of P and NP.

Definition 3 EXPTIME = ∪c≥0DTIME(2nc

).
NEXPTIME = ∪c≥0NTIME(2nc

).

Is there any point to studying classes involving exponential running times?
The following simple result —providing merely a glimpse of the rich web of
relations we will be establishing between disparate complexity questions— may
be a partial answer.

Theorem 1
If EXPTIME 	= NEXPTIME then P 	= NP.

Proof: We prove the contrapositive: assuming P = NP we show EXPTIME =
NEXPTIME. Suppose L ∈ NTIME(2nc

). Then the following language

Lpad =
{

< x, 12|x|c
>: x ∈ L

}
(1)

is in NP (in fact in NTIME(n)). (Aside: this technique of adding a string of
symbols to each string in the language is called padding.) Hence if P = NP
then Lpad is in P. But if Lpad is in P then L is in EXPTIME: to determine
whether an input x is in L, we just pad the input and decide whether it is in
Lpad using the polynomial-time machine for Lpad. �

What if P = NP?
If P = NP —specifically, if an NP-complete problem like 3SAT had say an O(n2)
algorithm— then the world would be mostly a Utopia. Mathematicians could be
replaced by efficient theorem-discovering programs (a fact first pointed out by Kurt
Gödel in 1955). AI software would be perfect since we could easily do exhaustive
searches in a large tree of possibilities. Inventors and engineers would be greatly
aided by software packages that can design the perfect part or gizmo for the job at
hand. VLSI designers will be able to whip up optimum circuits, with minimum power
requirements. Designers of financial software will be able to write the perfect stock
market prediction program.

Somewhat intriguingly, this Utopia would have no need for randomness. Random-
ized algorithms would buy essentially no efficiency gains over deterministic algorithms.
(Armchair philosophers should ponder this.)

This Utopia would also come at one price: there would be no privacy in the digital
domain. Any encryption scheme would have a trivial decoding algorithm. There would
be no digital cash, no PGP, no RSA. We would just have to learn to get along better
without these, folks.

We will encounter all these consequences of P = NP later in the course.

4

Exercises

§1 If P = NP then there is a polynomial time decision algorithm for 3SAT.
Show that in fact if P = NP then there is also a polynomial time algorithm
that, given any 3CNF formula, produces a satisfying assignment if one
exists.

§2 Mathematics can be axiomatized using for example the Zermelo Frankel
system, which has a finite description. Show that the following language
is NP-complete.

{< ϕ, 1n >: math statement ϕ has a proof of size at most n in the ZF system} .

(Hints: Why is this language in NP? Is boolean satisfiability a mathmat-
ical statement?) Conclude that if P = NP then mathematicians can be
replaced by polynomial-time Turing machines.

§3 Can you give a definition of NEXPTIME analogous to the definition of
NP in Definition 2? Why or why not?

